286 research outputs found

    A vision-based optical character recognition system for real-time identification of tractors in a port container terminal

    Get PDF
    Automation has been seen as a promising solution to increase the productivity of modern sea port container terminals. The potential of increase in throughput, work efficiency and reduction of labor cost have lured stick holders to strive for the introduction of automation in the overall terminal operation. A specific container handling process that is readily amenable to automation is the deployment and control of gantry cranes in the container yard of a container terminal where typical operations of truck identification, loading and unloading containers, and job management are primarily performed manually in a typical terminal. To facilitate the overall automation of the gantry crane operation, we devised an approach for the real-time identification of tractors through the recognition of the corresponding number plates that are located on top of the tractor cabin. With this crucial piece of information, remote or automated yard operations can then be performed. A machine vision-based system is introduced whereby these number plates are read and identified in real-time while the tractors are operating in the terminal. In this paper, we present the design and implementation of the system and highlight the major difficulties encountered including the recognition of character information printed on the number plates due to poor image integrity. Working solutions are proposed to address these problems which are incorporated in the overall identification system.postprin

    Job shop scheduling with artificial immune systems

    Get PDF
    The job shop scheduling is complex due to the dynamic environment. When the information of the jobs and machines are pre-defined and no unexpected events occur, the job shop is static. However, the real scheduling environment is always dynamic due to the constantly changing information and different uncertainties. This study discusses this complex job shop scheduling environment, and applies the AIS theory and switching strategy that changes the sequencing approach to the dispatching approach by taking into account the system status to solve this problem. AIS is a biological inspired computational paradigm that simulates the mechanisms of the biological immune system. Therefore, AIS presents appealing features of immune system that make AIS unique from other evolutionary intelligent algorithm, such as self-learning, long-lasting memory, cross reactive response, discrimination of self from non-self, fault tolerance, and strong adaptability to the environment. These features of AIS are successfully used in this study to solve the job shop scheduling problem. When the job shop environment is static, sequencing approach based on the clonal selection theory and immune network theory of AIS is applied. This approach achieves great performance, especially for small size problems in terms of computation time. The feature of long-lasting memory is demonstrated to be able to accelerate the convergence rate of the algorithm and reduce the computation time. When some unexpected events occasionally arrive at the job shop and disrupt the static environment, an extended deterministic dendritic cell algorithm (DCA) based on the DCA theory of AIS is proposed to arrange the rescheduling process to balance the efficiency and stability of the system. When the disturbances continuously occur, such as the continuous jobs arrival, the sequencing approach is changed to the dispatching approach that involves the priority dispatching rules (PDRs). The immune network theory of AIS is applied to propose an idiotypic network model of PDRs to arrange the application of various dispatching rules. The experiments show that the proposed network model presents strong adaptability to the dynamic job shop scheduling environment.postprin

    Numerical Solution of Optimal Control Problems with Explicit and Implicit Switches

    Get PDF
    This dissertation deals with the efficient numerical solution of switched optimal control problems whose dynamics may coincidentally be affected by both explicit and implicit switches. A framework is being developed for this purpose, in which both problem classes are uniformly converted into a mixed–integer optimal control problem with combinatorial constraints. Recent research results relate this problem class to a continuous optimal control problem with vanishing constraints, which in turn represents a considerable subclass of an optimal control problem with equilibrium constraints. In this thesis, this connection forms the foundation for a numerical treatment. We employ numerical algorithms that are based on a direct collocation approach and require, in particular, a highly accurate determination of the switching structure of the original problem. Due to the fact that the switching structure is a priori unknown in general, our approach aims to identify it successively. During this process, a sequence of nonlinear programs, which are derived by applying discretization schemes to optimal control problems, is solved approximatively. After each iteration, the discretization grid is updated according to the currently estimated switching structure. Besides a precise determination of the switching structure, it is of central importance to estimate the global error that occurs when optimal control problems are solved numerically. Again, we focus on certain direct collocation discretization schemes and analyze error contributions of individual discretization intervals. For this purpose, we exploit a relationship between discrete adjoints and the Lagrange multipliers associated with those nonlinear programs that arise from the collocation transcription process. This relationship can be derived with the help of a functional analytic framework and by interrelating collocation methods and Petrov–Galerkin finite element methods. In analogy to the dual-weighted residual methodology for Galerkin methods, which is well–known in the partial differential equation community, we then derive goal–oriented global error estimators. Based on those error estimators, we present mesh refinement strategies that allow for an equilibration and an efficient reduction of the global error. In doing so we note that the grid adaption processes with respect to both switching structure detection and global error reduction get along with each other. This allows us to distill an iterative solution framework. Usually, individual state and control components have the same polynomial degree if they originate from a collocation discretization scheme. Due to the special role which some control components have in the proposed solution framework it is desirable to allow varying polynomial degrees. This results in implementation problems, which can be solved by means of clever structure exploitation techniques and a suitable permutation of variables and equations. The resulting algorithm was developed in parallel to this work and implemented in a software package. The presented methods are implemented and evaluated on the basis of several benchmark problems. Furthermore, their applicability and efficiency is demonstrated. With regard to a future embedding of the described methods in an online optimal control context and the associated real-time requirements, an extension of the well–known multi–level iteration schemes is proposed. This approach is based on the trapezoidal rule and, compared to a full evaluation of the involved Jacobians, it significantly reduces the computational costs in case of sparse data matrices

    A study of optimization and optimal control computation : exact penalty function approach

    Get PDF
    In this thesis, We propose new computational algorithms and methods for solving four classes of constrained optimization and optimal control problems. In Chapter 1, we present a brief review on optimization and optimal control. In Chapter 2, we consider a class of continuous inequality constrained optimization problems. The continuous inequality constraints are first approximated by smooth function in integral form. Then, we construct a new exact penalty function, where the summation of all these approximate smooth functions in integral form, called the constraint violation, is appended to the objective function. In this way, we obtain a sequence of approximate unconstrained optimization problems. It is shown that if the value of the penalty parameter is sufficiently large, then any local minimizer of the corresponding unconstrained optimization problem is a local minimizer of the original problem. For illustration, three examples are solved using the proposed method.From the solutions obtained, we observe that the values of their objective functions are amongst the smallest when compared with those obtained by other existing methods available in the literature. More importantly, our method finds solutions which satisfy the continuous inequality constraints.In Chapter 3, we consider a general class of nonlinear mixed discrete programming problems. By introducing continuous variables to replace the discrete variables, the problem is first transformed into an equivalent nonlinear continuous optimization problem subject to original constraints and additional linear and quadratic constraints. However, the existing gradient-based optimization techniques have difficulty to solve this equivalent nonlinear optimization problem effectively due to the new quadratic inequality constraint. Thus, an exact penalty function is employed to construct a sequence of unconstrained optimization problems, each of which can be solved effectively by unconstrained optimization techniques, such as conjugate gradient or quasi-Newton types of methods.It is shown that any local optimal solution of the unconstrained optimization problem is a local optimal solution of the transformed nonlinear constrained continuous optimization problem when the penalty parameter is sufficiently large. Numerical experiments are carried out to test the efficiency of the proposed method.In Chapter 4, we investigate the optimal design of allpass variable fractional delay (VFD) filters with coefficients expressed as sums of signed powers-of-two terms, where the weighted integral squared error is minimized. A new optimization procedure is proposed to generate a reduced discrete search region. Then, a new exact penalty function method is developed to solve the optimal design of allpass variable fractional delay filter with signed powers-of-two coefficients. Design examples show that the proposed method is highly effective. Compared with the conventional quantization method, the solutions obtained by our method are of much higher accuracy. Furthermore, the computational complexity is low.In Chapter 5, we consider an optimal control problem in which the control takes values from a discrete set and the state and control are subject to continuous inequality constraints. By introducing auxiliary controls and applying a time-scaling transformation, we transform this optimal control problem into an equivalent optimal control problem subject to original constraints and additional linear and quadratic constraints, where the decision variables are taking values from a feasible region, which is the union of some continuous sets. However, due to the new quadratic constraints, standard optimization techniques do not perform well when they are applied to solve the transformed problem directly.We introduce a novel exact penalty function to penalize constraint violations, and then append this penalty function to the objective function, forming a penalized objective function. This leads to a sequence of approximate optimal control problems, each of which can be solved by using optimal control techniques, and consequently, many optimal control software packages, such as MISER 3.4, can be used. Convergence results how that when the penalty parameter is sufficiently large, any local solution of the approximate problem is also a local solution of the original problem. We conclude this chapter with some numerical results for two train control problems.In Chapter 6, some concluding remarks and suggestions for future research directions are made

    Optimization Algorithms for Machine Learning Designed for Parallel and Distributed Environments

    Get PDF
    This thesis proposes several optimization methods that utilize parallel algorithms for large-scale machine learning problems. The overall theme is network-based machine learning algorithms; in particular, we consider two machine learning models: graphical models and neural networks. Graphical models are methods categorized under unsupervised machine learning, aiming at recovering conditional dependencies among random variables from observed samples of a multivariable distribution. Neural networks, on the other hand, are methods that learn an implicit approximation to underlying true nonlinear functions based on sample data and utilize that information to generalize to validation data. The goal of finding the best methods relies on an optimization problem tasked with training such models. Improvements in current methods of solving the optimization problem for graphical models are obtained by parallelization and the use of a new update and a new step-size selection rule in the coordinate descent algorithms designed for large-scale problems. For training deep neural networks, we consider the second-order optimization algorithms within trust-region-like optimization frameworks. Deep networks are represented using large-scale vectors of weights and are trained based on very large datasets. Hence, obtaining second-order information is very expensive for these networks. In this thesis, we undertake an extensive exploration of algorithms that use a small number of curvature evaluations and are hence faster than other existing methods

    Spectrogram inversion and potential applications for hearing research

    Get PDF

    Hierarchical workflow management system for life science applications

    Get PDF
    In modern laboratories, an increasing number of automated stations and instruments are applied as standalone automated systems such as biological high throughput screening systems, chemical parallel reactors etc. At the same time, the mobile robot transportation solution becomes popular with the development of robotic technologies. In this dissertation, a new superordinate control system, called hierarchical workflow management system (HWMS) is presented to manage and to handle both, automated laboratory systems and logistics systems.In modernen Labors werden immer mehr automatisierte Stationen und Instrumente als eigenständige automatisierte Systeme eingesetzt, wie beispielsweise biologische High-Throughput-Screening-Systeme und chemische Parallelreaktoren. Mit der Entwicklung der Robotertechnologien wird gleichzeitig die mobile Robotertransportlösung populär. In der vorliegenden Arbeit wurde ein hierarchisches Verwaltungssystem für Abeitsablauf, welches auch als HWMS bekannt ist, entwickelt. Das neue übergeordnete Kontrollsystem kann sowohl automatisierte Laborsysteme als auch Logistiksysteme verwalten und behandeln

    A full degree-of-freedom photonic crystal spatial light modulator

    Get PDF
    Harnessing the full complexity of optical fields requires complete control of all degrees-of-freedom within a region of space and time -- an open goal for present-day spatial light modulators (SLMs), active metasurfaces, and optical phased arrays. Here, we solve this challenge with a programmable photonic crystal cavity array enabled by four key advances: (i) near-unity vertical coupling to high-finesse microcavities through inverse design, (ii) scalable fabrication by optimized, 300 mm full-wafer processing, (iii) picometer-precision resonance alignment using automated, closed-loop "holographic trimming", and (iv) out-of-plane cavity control via a high-speed micro-LED array. Combining each, we demonstrate near-complete spatiotemporal control of a 64-resonator, two-dimensional SLM with nanosecond- and femtojoule-order switching. Simultaneously operating wavelength-scale modes near the space- and time-bandwidth limits, this work opens a new regime of programmability at the fundamental limits of multimode optical control.Comment: 25 pages, 20 figure

    Numerical and Analytical Methods in Electromagnetics

    Get PDF
    Like all branches of physics and engineering, electromagnetics relies on mathematical methods for modeling, simulation, and design procedures in all of its aspects (radiation, propagation, scattering, imaging, etc.). Originally, rigorous analytical techniques were the only machinery available to produce any useful results. In the 1960s and 1970s, emphasis was placed on asymptotic techniques, which produced approximations of the fields for very high frequencies when closed-form solutions were not feasible. Later, when computers demonstrated explosive progress, numerical techniques were utilized to develop approximate results of controllable accuracy for arbitrary geometries. In this Special Issue, the most recent advances in the aforementioned approaches are presented to illustrate the state-of-the-art mathematical techniques in electromagnetics
    • …
    corecore