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1. Introduction

Like all branches of physics and engineering, electromagnetics relies on mathematical methods
for modeling, simulation, and design procedures in all of its aspects (radiation, propagation, scattering,
imaging, etc.). Originally, rigorous analytical techniques were the only machinery available to produce
any useful results. Essentially, the aim was the solution of partial differential equations (such as
the Laplace, Poisson, Helmholtz, and wave equations) since the electric and magnetic fields are the
unknown quantities in such expressions, although exact analytical methods (e.g., the Wiener–Hopf
technique) were limited to canonical geometries, which are unfortunately rare in nature. Hence, in the
1960s and 1970s, emphasis was placed on asymptotic techniques, which produced approximations of
the fields for very high frequencies when closed-form solutions were not feasible. Typical examples of
such techniques were the geometrical and physical optics (GO and PO, respectively), improved by the
geometrical, physical, and uniform theories of diffraction (GTD, PTD and UTD, respectively). Later,
when computers demonstrated explosive progress, numerical techniques were utilized to develop
approximate results of controllable accuracy for arbitrary geometries. Either differential or integral
equations were discretized, leading to standard techniques, such as the method of moments (MoM),
finite element method (FEM), the finite difference time domain method (FDTD), finite integration
technique (FIT), and the method of auxiliary sources (MAS). Researchers soon realized that several
practical problems required extremely high computational resources, in terms of memory and CPU
time, to handle, typically, millions of unknowns. Therefore, “fast” variants of the latter techniques were
developed to suppress the computational cost, such as the adaptive integral method (AIM); the fast
multipole method (FMM); its parallel version, called the multi-level fast multipole algorithm (MLFMA);
and its time domain counterpart, i.e., the plane wave time domain (PWTD) method. The lists above
are by no means exhaustive; there is a plethora of additional algorithms, having evolved particularly
over the last few years, designed to reduce the complexity and simultaneously improve the accuracy
of calculations. In this Special Issue, the most recent advances thereof were presented to illustrate the
state-of-the-art mathematical techniques in electromagnetics.

2. The Contents of This Special Issue

A wide variety of practical electromagnetic problems were addressed in this Special Issue and
further solved via appropriate mathematical methods. In [1], Wei Gao et al. used partial differential
equation techniques to solve the nonlinear Schrödinger equations applied to wave propagation in
optical fibers with nonlinear impacts. Two powerful analytical methods, namely the (m+G’/G) improved
expansion method and the exp(−φ (ξ)) expansion method were utilized to construct novel solutions of
the governing equations.

In [2], the application topic is geophysics; Yanju Ji et al. propose an efficient approach of the
GRounded Electrical-source Airborne Transient Electromagnetics (GREATEM), which is a widespread
detection method among researchers in the field. Maxwell’s equations are transformed via the

Appl. Sci. 2020, 10, 7242; doi:10.3390/app10207242 www.mdpi.com/journal/applsci1
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relationship between the diffusion field and fictitious wave field. The fractional order Cole–Cole
model is introduced into the fictitious wave field and the final solution is obtained by using the finite
difference time domain (FDTD) method. Finally, an integral transformation is applied to obtain the
calculation results in the actual diffusion field form.

Moreover, electromagnetic properties of composites filled with carbon nano tubes (CNTs) are
modeled by A. Plyushch et al. in [3]. The total conductivity of the composite is governed by the
inter-tube tunneling equation. In this framework, the direction for the conductivity computation is
selected and the nanotubes near the initial and final boarders are collected. The Dijkstra algorithm
is used to trace the paths of minimal resistance between the initial and final tubes, and, finally,
conductivity is computed in a highly accurate way.

Electromagnetic wave amplification by non-linear wave mixing is targeted in [4] by Ö. E.
Aşırım and M. Kuzuoğlu. Suitable numerical analysis is performed that provides evidence for
the high-gain amplification of a low-power stimulus wave, via intense pump waves of ultra-short
duration, inside a several-micrometers-long micro-resonator, by maximizing the electric energy density
of the pump wave in the resonator. In order to perform the optimization of the stimulus wave
magnitude at a given wave frequency, an efficient optimization procedure, namely the quasi-Newton
Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm is implemented.

Although analytical solutions are rare in real-world problems, efficient approximations are still
applicable to important devices. Such a case is a birdcage radio frequency coil used in nuclear magnetic
resonance (NMR) imaging applications, as demonstrated in [5] by Young Cheol Kim et al. A novel
analytical solution for the characteristic properties of the coil is derived via equivalent circuit modeling
and T-matrix theory, facilitating and efficient design strategy.

Scattering analysis is another important aspect of applied electromagnetics which is in need of
powerful mathematical tools. In [6], V.G. Iatropoulos et al. describe how the method of auxiliary
sources (MAS) can be optimized for cylindrical scattering geometries containing curvilinear wedges.
Instead of retaining a conformal auxiliary surface, which is customary in MAS, auxiliary sources are
locally positioned close to the wedge tips with variable density. Numerical results clearly show the
reduction of the calculation error and the improvement in the accuracy of the radar cross section.

An enjoyable application of numerical techniques to robotic system design is described in [7]:
a coil gun found in soccer ball launchers is analyzed and designed by V. Gies et al. A coupled
electromagnetic, electrical and mechanical model is used to simulate the performance of reluctance coil
guns. Four different mechatronic coupled models thereof are proposed, and for each one of these the
electromagnetic behavior is investigated on the basis of a finite element (FEM) software tool, whereas
commercial sofware was used for modeling the electrical and mechanical parts.

Comparison of simplified analytical models based on the principles of superposition and reflections
and the finite element method (FEM) was performed by R. Deltuva and R. Lukočius in [8], where the
modeling of electric power lines is facilitated. The target of the analysis is an actual high-voltage AC,
double-circuit 400 kV overhead power transmission line that runs from the city of Elk, Poland, to the
city of Alytus, Lithuania.

Integral equation methods could by no means be absent from this Special Issue. Indeed, an integral
formulation was used in [9] by Tung Le-Duc and G. Meunier to model thin surfaces coupled with an
external circuit. A hybrid integral formulation is proposed to allow for the modeling of an inhomogeneous
structure constituted by conductors and thin magnetic and conducting shells. The resulting integral
equations are discretized via a Galerkin procedure and are further transformed to a linear system of
equations, finally solved by standard linear algebra techniques.

The impressive application range of computational electromagnetics is clearly demonstrated in [10].
I. B. Yeboah et al. address a problem in biomedical engineering, namely fibroadenoma, which is one of
the commonest benign female breast diseases. A particular form of treatment involves nanomedicine,
which is based on the use of nanomaterials—metallic and ceramic (iron-oxide) nanoparticles (NPs)—for
theranostic purposes in living organisms. The authors characterize the material properties and
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quantify the photothermal heat generation of specific NPs by experimental measurements, obtain their
optical absorption coefficient via experimentally guided Mie scattering theory and integrate it into a
computational—finite element method (FEM)—model to predict the in-vivo thermal damage of an
NP-embedded tumor located in a multi-tissue breast model during irradiation by a near-infrared (NIR)
810 nm laser.

Finally, the relationship of mathematical methods in electromagnetics with other research
disciplines is underlined in multiphysics problems, such as the rail launcher addressed in [11].
The in-house integral equation code named “EN4EM” (Equivalent Network for Electromagnetic
Modeling), developed by V. Consolo et al., is able to take into account all relevant electromechanical
quantities and phenomena (i.e., eddy currents, velocity skin effect, sliding contacts etc.).
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Featured Application: The optical soliton solutions obtained in this research paper may be of

concern and useful in many fields of science, such as mathematical physics, applied physics,

nonlinear science, and engineering.

Abstract: In this paper, the cubic-quartic nonlinear Schrödinger and resonant nonlinear Schrödinger
equation in parabolic law media are investigated to obtain the dark, singular, bright-singular combo
and periodic soliton solutions. Two powerful methods, the

(
m + G′

G

)
improved expansion method

and the exp(−ϕ (ξ)) expansion method are utilized to construct some novel solutions of the governing
equations. The obtained optical soliton solutions are presented graphically to clarify their physical
parameters. Moreover, to verify the existence solutions, the constraint conditions are utilized.

Keywords: cubic-quartic Schrödinger equation; cubic-quartic resonant Schrödinger equation;
parabolic law

1. Introduction

In the current century, many entropy problems have been expressed by using mathematical
models that are nonlinear partial differential equations. New results in the last few years have shown
that the relation between non-standard entropies and nonlinear partial differential equations can be
applied on new nonlinear wave equations inspired by quantum mechanics. Nonlinear models of
the celebrated Klein–Gordon and Dirac equations have been found to admit accurate time dependent
soliton-like solutions with the shapes of the so-called q-plane waves. Such q-plane waves are
generalizations of the complex exponential plane wave solutions of the linear Klein–Gordon and
Dirac equations [1]. Wave progressing of soliton forming and its application in the differential
equation has been noticeable in the last few years. The physical phenomena of nonlinear partial
differential equations (NLPDEs) may connect to many areas of sciences, for example plasma physics,
optical fibers, nonlinear optics, fluid mechanics, chemistry, biology, geochemistry, and engineering
sciences. The nonlinear Schrödinger equations describe wave propagation in optical fibers with
nonlinear impacts [2–4].

Appl. Sci. 2020, 10, 219; doi:10.3390/app10010219 www.mdpi.com/journal/applsci5
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Various numeric and analytic techniques have been used to seek solutions for nonlinear
differential equations such as the homotopy perturbation scheme [5], the Adams–Bashforth–Moulton
method [6], the shooting technique with fourth-order Runge–Kutta scheme [7–10], the group
preserving method [11], the finite forward difference method [12,13], the Adomian decomposition
method [14,15], the sine-Gordon expansion method [16–18], the modified auxiliary expansion
method [19], the modified exp(−ϕ (ξ)) expansion function method [20,21], the improved Bernoulli
sub-equation method [22,23], the Riccati–Bernoulli sub-ODE method [24], the modified exponential
function method [25], the improved tan(φ (ξ) /2) [26,27], the Darboux transformation method [28,29],
the double

(
G′
G , 1

G′
)

expansion method [30,31], the
(

1
G′
)

expansion method [32,33], the decomposition
Sumudu-like-integral transform method [34], and the inverse scattering method [35].

In recent years, many researchers have carried out investigations on the governing models in
optical fibers. The nonlinear Schrödinger equation, involving cubic and quartic-order dispersion terms,
has been investigated to seek the exact optical soliton solutions via the undetermined coefficients
method [36], the modified Kudryashov approach [37], the complete discrimination system method [38],
the generalized tanh function method [39], the sin-cosine method, as well as the Bernoulli equation
approach [40], the semi-inverse variation method [41], a simple equation method [3], and the extended
sinh-Gordon expansion method [42].

Now, optical solitons are the exciting research area of nonlinear optics studies, and this research
field has led to tremendous advances in their extensive applications. It is identified that the dynamics
of nonlinear optical solitons and Madelung fluids are based on the generalized nonlinear Schrödinger
dispersive equation and resonant nonlinear Schrödinger dispersive equation. In the research of chirped
solitons in Hall current impacts in the field of quantum mechanics, a specific resonant term must be
given [43].

Dispersion and nonlinearity are the two key elements for the propagation of solitons over
intercontinental ranges. Normally, group velocity dispersion (GVD) leveling with self-phase
modulation in a sensitive way allows such solitons to maintain long distance travel. Now, it could occur
that GVD is minuscule and therefore completely overlooked, so in this condition, the dispersion impact
is rewarded for by third-order (3OD) and fourth-order (4OD) dispersion impacts. This is generally
referred to as solitons that are cubic-quartic (CQ). This term was implemented in 2017 for the first time.
This model was later extensively researched through different points of view such as the semi-inverse
variation principle [41], Lie symmetry [44], conservation rules [45], and the system of undetermined
coefficients [37]. Consider the nonlinear Schrödinger and resonant nonlinear Schrödinger equations in
the appearance of 3OD and 4OD without both GVD and disturbance. The equations are as follows:

iut + iαuxxx + βuxxxx + cF
(
|u|2
)

u = 0, (1)

iut + iαuxxx + βuxxxx + cF
(
|u|2
)

u + c3

( |u|xx
|u|
)

u = 0. (2)

In Equations (1) and (2), u (x, t) is the complex valued wave function and x (space) and t (time)
are independent variables. The coefficients α and β are real constants, while c3 is the Bohm potential
that occurs in Madelung fluids. The Bohm potential term of disturbance generates quantum behavior,
so that quantum characteristics are closely related to their special characteristics. Therefore, we have
the chirped NLSE’s disturbance expression giving us the introduction of the theory of hidden variables.
Therefore, it will be more crucial to retrieve accurate solutions for the development of quantum
mechanics from disturbed chiral (resonant) NLSE [46]. Furthermore, the functional F is a real valued
algebraic function that represents the source of nonlinearity and F

(
|u|2
)

u : C → C. In more detail,

the function F
(
|u|2
)

u is p-times continuously differentiable, so that:

6
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F
(
|u|2
)

u ∈
∞⋃

m, n=1

Cp
(
(−n, n)× (−m, m) : R2

)
.

Suppose that F (u) = c1u + c2u2, so Equations (1) and (2) can be rewritten as:

iut + iαuxxx + βuxxxx +
(

c1|u|2 + c2|u|4
)

u = 0, (3)

iut + iαuxxx + βuxxxx +
(

c1|u|2 + c2|u|4
)

u + c3

( |u|xx
|u|
)

u = 0. (4)

Equation (3) was investigated by making c2 = 0 in [47] via the Kudryashov approach.
The conservation laws to obtain the conserved densities for Schrödinger’s nonlinear cubic-quarter
equation have been analyzed in Kerr and power-law media [45]. The undetermined coefficients
method has been employed to construct bright soliton and singular soliton solutions of Equation (1),
when nonlinearity has been taken into consideration in the instances of the Kerr law and power
law [37]. In this study, we use two methods to investigate soliton solutions of the cubic-quartic
nonlinear Schrödinger equation and cubic-quartic resonant nonlinear Schrödinger equation with the
parabolic law, namely Equations (3) and (4).

2. Instructions for the Methods

Assume a nonlinear partial differential equation (NLPDE) as follows:

P (U, Ux, Ut, Uxx, Utt, Utx, . . .) = 0, (5)

and define the traveling wave transformation as follows,

U (x, y, t) = φ (ζ) , ζ = x − νt. (6)

Putting Equation (6) into Equation (5), the outcome is:

N
(
φ, φ′, φ′′, . . .

)
= 0. (7)

For the m + G′(ζ)
G(ζ)

expansion method, we take the trial solution for Equation (7) as follows:

φ (ζ) =
n

∑
i=−n

ai(m + F)i = a−n(m + F)−n + . . . + m a0 + a1 (m + F) + . . . + an(m + F)n, (8)

where ai, i = 0, 1, . . . , n and m are nonzero constants. According to the principles of balance, we find
the value of n. In this manuscript, we define F to be a function as:

F =
G′ (ζ)
G (ζ)

, (9)

where G (ζ) satisfy G′′ + (λ + 2m) G′ + μG = 0.
Putting Equation (8) into Equation (7) by using Equation (9), then collecting all terms with

the same order of (m + F)n, we get the system of algebraic equations for ν, an, n = 0, 1, . . . , n,
λ, and μ. As a result, solving the obtained system, we get the explicit and exact solutions of Equation (5).

For the (exp − ϕ (ξ)) expansion method, we use the trial solution as follows:

φ (ξ) =
n

∑
i=0

bi(exp (−ϕ (ξ)))i, i = 1, 2, . . . , n (10)

7
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where bi are non-zero constants. The auxiliary ODE ϕ (ξ) is defined as follows:

ϕ′ (ξ) = exp (−ϕ (ξ)) + μ exp (ϕ (ξ)) + λ. (11)

Solving Equation (11), we have:

Case 1. When Δ > 0 and μ �= 0, we get the hyperbolic function solution:

ϕ (ξ) = ln

⎛
⎝−λ −√

Δ tanh
(

1
2

√
Δ (ξ + c)

)
2μ

⎞
⎠ . (12)

Case 2. When Δ < 0 and μ �= 0, we get the trigonometric function solution:

ϕ (ξ) = ln

⎛
⎝−λ +

√−Δ tan
(

1
2

√−Δ (ξ + c)
)

2μ

⎞
⎠ . (13)

Case 3. When Δ > 0, μ = 0, and λ �= 0, we get hyperbolic function solution

ϕ (ξ) = − ln
(

λ

−1 + cosh (λ (ξ + c)) + sinh (λ (ξ + c))

)
. (14)

Case 4. When Δ = 0, μ �= 0 and λ �= 0, we get the rational function solution:

ϕ (ξ) = ln
(−2 − 2λ (ξ + c)

λ2 (ξ + c)

)
. (15)

Case 5. When Δ = 0, μ = 0, and λ = 0, we get:

ϕ (ξ) = ln (ξ + c) , (16)

where c is the non-zero constant of integration and Δ = λ2 − 4μ.

3. Application to the
(

m + G′
G

)
Expansion Method

In this section, we use the
(

m + G′
G

)
expansion method for the cubic-quartic nonlinear Schrödinger

and cubic-quartic resonant nonlinear Schrödinger equations.

3.1. The Cubic-Quartic Nonlinear Schrödinger Equation

To solve Equation (3), by the
(

m + G′
G

)
expansion method, we use the following transformation:

u (x, t) = U(ξ)e
i θ

, ξ = x − νt, θ = −κx + ωt. (17)

In the above equation, θ (x, t) symbolize the phase component of the soliton, κ represent the
soliton frequency, while ω denote the wave number, and ν symbolize the velocity of the soliton.
Substitute wave transformation into Equation (3), and separate the outcome equation into real and
imaginary parts. We can write the real part as follows:

−
(

ακ3 − βκ4 + ω
)

U + c1U3 + c2U5 + 3ακU′′ − 6βκ2U′′ + βU(4) = 0, (18)

and the imaginary part can be written as:

(
3ακ2 − 4βκ3 + ν

)
U′ − (α − 4βκ)U(3) = 0. (19)

From Equation (19) U′ �= 0 and U′′′ �= 0, then:

8
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ν = 4βκ3 − 3ακ2, α = 4βκ. (20)

Hence, Equation (18) can be rewritten as:

(
3βκ4 + ω

)
U − c1U3 − c2U5 − 12βκ2U′′ + 6βκ2U′′ − βU(4) = 0. (21)

Multiplying both sides of Equation (21) by U′ and taking its integration with respect to ξ, we get:

β
(
−12

(
U′′)2

+ 24U′′′ U′
)
+ 6c1U4 + 4c2U6 + 72βκ2(U′)2 −

(
36βκ4 + 12ω

)
U2 = 0. (22)

Finding the balance, we gain n = 1. Replacing this value of balance into Equation (8), we get:

U (ξ) = a−1(m + F)−1 + a0 + a1 (m + F) . (23)

By substituting Equation (23) into Equation (3) by using Equation (9), we get the following
solutions:

Case 1. When a0 = λa1
2 , κ = ∓

√
(2m+λ)2−4μ√

6
, c1 =

8β((2m+λ)2−4μ)
a2

1
, c2 = − 24 β

a4
1

, a−1 = 0, and Δ =

(λ + 2m)2 − 4μ, we get an exponential function solution as follows:

u (x, t) = e
i
(√

Δ
6 x+ 5

12 βΔ2t
)

⎛
⎜⎝λa1

2
+ a1

⎛
⎜⎝m +

1
2

⎛
⎜⎝−2m +

⎛
⎜⎝1 − 2A1

A1 + A2e
√

Δ
(

x− 2
3

√
2
3 β(Δ)3/2t

)
⎞
⎟⎠√

Δ − λ

⎞
⎟⎠
⎞
⎟⎠
⎞
⎟⎠ ,

(24)

which is a dark solution, as shown in Figure 1, A1 and A2 are non-zero numbers, and Δ > 0. Figure 1
shows that Equation (24) is a dark soliton under the suitable values of parameters.

Figure 1. 3D surface of Equation (24), which is a dark optical soliton solution plotted when A1 =

1, A2 = 0.3, β = 0.2, a1 = 0.4, λ = 1, m = 1, μ = −1, and t = 2 for 2D.

9
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Case 2. When a0 = − λa−1
2m(m+λ)−2μ

, a1 = 0, a2 = 12ω

5((2m+λ)2−4μ)
2 , κ =

√
(2m+λ)2−4μ√

6
, c1 =

96(−m(m+λ)+μ)2ω

5((2m+λ)2−4μ)a2
−1

, c2 = − 288(−m(m+λ)+μ)4ω

5((2m+λ)2−4μ)
2
a4
−1

, and Δ = (λ + 2m)2 − 4μ, we obtain an exponential

function solution:

u (x, t)=
a−1 e

i

(
− x

√
(2m+λ)2−4μ√

6
+tω

)

m + 1
2

⎛
⎜⎜⎝−2m +

⎛
⎜⎜⎝1 − 2A1

A1+A2e

√
Δ

⎛
⎝x+

8
√

2
3 ω

5
√

Δ
T

⎞
⎠

⎞
⎟⎟⎠√

Δ − λ

⎞
⎟⎟⎠

+
λa−1 e

i

(
− x

√
(2m+λ)2−4μ√

6
+tω

)

2m (m + λ)− 2μ
, (25)

which is a soliton solution, as shown in Figure 2, A1 and A2 are non-zero numbers, and Δ > 0.
With the suitable values, Figure 2 presents that Equation (25) is a singular soliton.

Figure 2. 3D surface of Equation (25), which is a singular soliton solution plotted when A1 = 2, A2 =

3, β = 6, a−1 = 6, λ = 1, m = 1, μ = −1, and t = 2 for 2D.

Case 3. When a−1 = − i
√

3 c1(m(m+λ)−μ)√
c2((2m+λ)2−4μ)

, a0 = i
√

3 c1λ

2
√

c2((2m+λ)2−4μ)
, a1 = 0, ω = − 5c1

2

32c2
, κ =

∓
√
(2m+λ)2−4μ√

6
, γ = − 3c1

2

8c2((2m+λ)2−4μ)
2 , and Δ = (λ + 2m)2 − 4μ, we have an exponential

function solution:

u (x, t)=e
i
(
− 5c2

1
32c2

t+
√

Δ√
6

x
)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

i
√

3
√

c1λ

2
√

c2Δ
− i

√
3
√

c1 (m (m + λ)− μ)⎛
⎜⎝m + 1

2

⎛
⎜⎝−2m +

⎛
⎜⎝1 − 2A1

A1+A2e

√
Δ

(
x+

c2
1t

2
√

6c2
√

Δ

)
⎞
⎟⎠√

Δ − λ

⎞
⎟⎠
⎞
⎟⎠√

c2Δ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
(26)

10
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which is a soliton solution, as shown in Figure 3, A1 and A2 are non-zero numbers, and Δ > 0.
Considering some values of parameters, Figure 3 shows singular soliton solution.

Figure 3. 3D surface of Equation (26), which is a singular soliton solution plotted when A1 = 0.3, A2 =

2, c1 = 0.3, c2 = 2, λ = 1, m = 1, μ = −1, and t = 2 for 2D.

3.2. The Cubic-Quartic Resonant Nonlinear Schrödinger Equation

To solve Equation (4), by the
(

m + G′
G

)
expansion method, we consider wave transformation

Equation (17). Replacing Equation (17) into Equation (4) and separating the outcome equation into
real and imaginary parts, we can write the real part as follows:

(
κ3 (α − βκ) + ω

)
U − c1U3 − c2U5 − (c3 + 3κ (α − 2βκ))U′′ − βU(4) = 0, (27)

and the imaginary part can be written as:

(
3ακ2 − 4βκ3 + ν

)
U′ − (α − 4βκ)U′′′ = 0. (28)

From Equation (28) U′ �= 0 and U′′′ �= 0, then:

ν = 4βκ3 − 3ακ2, α = 4βκ. (29)

Hence, Equation (27) can be rewritten as:

(
3βκ4 + ω

)
U − c1U3 − c2U5 −

(
c3 + 6βκ2

)
U′′ − βU(4) = 0. (30)

Multiplying both sides of Equation (30) by U′ and integrating it once with respect to ξ, we get:

(
36βκ4 + 12ω

)
U2 − 6c1U4 − 4c2U6 −

(
12c3 + 72βκ2

) (
U′)2

+ β
(

12
(
U′′)2 − 24U′U′′′

)
= 0. (31)

Finding the balance, we gain n = 1. Putting this value into Equation (8), we get the same result of
Equation (23). Substituting Equation (23) with Equation (9) into Equation (4), we get the following
solutions:

11
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Case 1. When a−1 = − 2(m(m+λ)−μ)a0
λ , a1 = 0, ω = 1

2 β

(
−6κ4 +

(
(2m + λ)2 − 4μ

)2
)

,

c1 =
2βλ2((2m+λ)2−4μ)

a2
0

, c2 = − 3βλ4

2a4
0

, and c3 = β
(
−6κ2 + (2m + λ)2 − 4μ

)
, we obtain the

following solutions:

Solution 1. In the case Δ > 0, we have an exponential function solution:

u (x, t)=ei
(
−κx+ 1

2 β
(
−6κ4+((2m+λ)2−4μ)

2)
t
)

⎛
⎜⎜⎝a0 − 2 (m (m + λ)− μ) a0(

m + 1
2

(
−2m +

(
1 − 2A1

A1+A2e
√

Δ(x+8βκ3t)

)√
Δ − λ

))
λ

⎞
⎟⎟⎠ .

(32)

Considering some values of parameters, Figure 4 shows singular soliton solution.

Figure 4. 3D figure of Equation (32), which is a singular soliton solution plotted when A1 = 1, A2 =

3, λ = 1, m = 1, μ = −1, β = 0.2, a0 = 0.2, κ = 0.01, and t = 2 for 2D.

Solution 2. In the case Δ < 0, we have a trigonometric function solution:

u (x, t)=e−iκx+ 1
2 iβ
(
−6κ4+((2m+λ)2−4μ)

2
t
)

⎛
⎝a0 +

4a0
(
m2 + mλ − μ

)
(A2 cos (α) + A1 sin (α))

λ
((

−A1
√−Δ + A2λ

)
cos (α) +

(
A2

√−Δ + A1λ
)

sin (α)
)
⎞
⎠ ,

(33)

which is α = 1
2

√−Δ
(

x + 8βκ3t
)
.

Periodic singular solution is plotted in Figure 5.

Case 2. When a−1 = 0, a1 = 2a0
λ , ω = 1

2 β

(
−6κ4 +

(
(2m + λ)2 − 4μ

)2
)

, c1 =
2βλ2((2m+λ)2−4μ)

a2
0

,

c2 = − 3βλ4

2a4
0

, and c3 = β
(
−6κ2 + (2m + λ)2 − 4μ

)
, we obtain the following solutions:

Solution 1. In the case Δ > 0, we get dark solution, as shown in Figure 6 :

12
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u (x, y)=ei
(
−κx+ 1

2 β
(
−6κ4+((2m+λ)2−4μ)

2)
t
)

⎛
⎜⎜⎝a0 +

2
(

m + 1
2

(
−2m +

(
1 − 2A1

A1+A2e
√

Δ(x+8βκ3t)

)√
Δ − λ

))
a0

λ

⎞
⎟⎟⎠ .

(34)

Figure 6 shows the dark structure this solution.

Figure 5. 3D surface of Equation (33), which is a periodic singular soliton solution plotted when
A1 = 1, A2 = 2, λ = 1, m = 1

2 , μ = 2, β = 0.1, a0 = 2, κ = 0.1, and t = 2 for 2D.

Figure 6. 3D surface of Equation (34), which is a dark soliton solution plotted when A1 = 1, A2 = 3,
λ = 1, m = 1, μ = −1, β = 0.2, a0 = 0.2, κ = 0.01, and t = 2 for 2D.

Solution 2. In the case Δ < 0, we have a trigonometric function solution:

13
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u (x, t)=e−ixκ+ 1
2 iβ
(
−6κ4+((2m+λ)2−4μ)

2)
t⎛

⎝
√−Δ

(
A1 cos

(
1
2

√−Δ
(
x + 8βκ3t

))− A2a0 sin
(

1
2

√−Δ
(
x + 8βκ3t

)))
λ
(

A2 cos
(

1
2

√−Δ (x + 8βκ3t)
)
+ A1 sin

(
1
2

√−Δ (x + 8βκ3t)
))

⎞
⎠ .

(35)

Periodic singular solution is plotted in Figure 7.

Figure 7. 3D figure of Equation (35), which is a periodic singular soliton solution plotted when
A1 = 1, A2 = 2, λ = 1, m = 1

2 , μ = 2, β = 0.1, a0 = 0.2, κ = 0.1, and t = 2 for 2D.

4. Application to the Exp (−ϕ (ξ)) Expansion Method

In this section, we apply the exp(−ϕ (ξ)) expansion method to the cubic-quartic nonlinear
Schrödinger and resonant nonlinear Schrödinger equations.

4.1. The Cubic-Quartic Nonlinear Schrödinger Equation

To apply this method on the cubic-quartic nonlinear Schrödinger equation, Equation (3), we
utilize the same wave transformation of Equation (17). As a result, we get Equation (22). Finding the
balance, we gain n = 1. By inserting the value of the balance into Equation (10), we get:

U (ξ) = b0 + b1e−ϕ(ξ). (36)

Substituting Equation (40) into Equation (22) and setting each summation of the coefficients of the
exponential identities of the same power to be zero, we discuss the following cases of the solutions.

Case 1. When b0 = λb1
2 , c1 =

8a2(λ2−4μ)
b2

1
, c2 = − 24a2

b4
1

, κ = −
√

λ2−4μ√
6

, and ω = 5
12 a2

(
λ2 − 4μ

)2, we get

the following solutions:

Solution 1. In the case λ2 − 4μ > 0 and μ �= 0, we have a hyperbolic function solution:

14
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u (x, t) = e
i

(√
λ2−4μ√

6
x+ 5

12 a2(λ2−4μ)
2
t

)

⎛
⎜⎜⎝λb1

2
+

2μb1

−λ −√λ2 − 4μ tanh
[

1
2

(
c + x − 2

3

√
2
3 a2(λ2 − 4μ)

3/2t
)√

λ2 − 4μ

]
⎞
⎟⎟⎠ .

(37)

This is a dark soliton solution, as shown in Figure 8.

Figure 8. 3D surface of Equation (37), which is a bright singular combo soliton solution plotted when
b1 = 0.2, β = 0.2, c = 1, λ = 3, μ = 1, and t = 2 for 2D.

Solution 2. When λ2 − 4μ > 0, μ = 0, and λ �= 0, we have hyperbolic function solutions:

u (x, t)=e
i
(

5
12 βλ4t+

√
λ2√
6

x
)

⎛
⎜⎜⎝λb1

2
+

λb1

−1 + cosh
(

λ

(
c + x − 2

3

√
2
3 β(λ2)

3/2t
))

+ sinh
(

λ

(
c + x − 2

3

√
2
3 β(λ2)

3/2t
))
⎞
⎟⎟⎠ .

(38)

This is a bright singular combo soliton solution, as shown in Figure 9.
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Figure 9. 3D surface of Equation (38), which is a bright singular combo soliton solution plotted when
b1 = 0.04, β = 0.2, c = 0.2, λ = 1, μ = 0, and t = 2 for 2D.

Case 2. When b0 =
√

3
√

c1λ

2
√

−c2(λ2−4μ)
, b1 =

√
3
√

c1√
−c2(λ2−4μ)

, κ = −
√

λ2−4μ√
6

, ω = − 5c1
2

32c2
, and β = − 3c2

1

8c2(λ2−4μ)
2 ,

we get the following solutions:

Solution 1. When λ2 − 4μ > 0 and μ �= 0, we get a dark solution, as shown in Figure 10:

u (x, t)=e
i

(
− 5c2

1
32c2

t+

√
λ2−4μ√

6
x

)

⎛
⎜⎜⎝

√
3
√

c1

(
λ2 − 4μ + λ

√
λ2 − 4μ tanh

(
c2

1t
4
√

6c2
+ 1

2 (c + x)
√

λ2 − 4μ

))

2
√−c2 (λ2 − 4μ)

(
λ +

√
λ2 − 4μ tanh

(
c2

1t
4
√

6c2
+ 1

2 (c + x)
√

λ2 − 4μ

))
⎞
⎟⎟⎠ .

(39)

Figure 10. 3D surface of Equation (39), which is a dark soliton solution plotted when b1 = 0.2, β =

0.2, c1 = 0.1, c2 = −0.1, c = 1, λ = 3, μ = 1, and t = 2 for 2D.
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Solution 2. When λ2 − 4μ > 0 and μ = 0, we get hyperbolic function solution:

u (x, t)=e
i

(
− 5c2

1
32c2

t+

√
λ2−4μ√

6
x

) ⎛
⎜⎜⎝
√

3
√

c1λ coth
(

1
24 λ

(
12 (c + x) +

√
6c2

1
c2
√

λ2 t
))

2
√
−c2λ2

⎞
⎟⎟⎠ . (40)

This is a singular soliton solution, as shown in Figure 11.

Figure 11. 3D figure of Equation (40), which is a singular soliton solution plotted when b1 = 4, β = 0.2,
c1 = 0.1, c2 = −0.1, c = 0.2, λ = 1, μ = 0, and t = 2 for 2D.

4.2. The Cubic-Quartic Resonant Nonlinear Schrödinger Equation

To apply the exp (−ϕ (ξ)) expansion method on the cubic-quartic resonant nonlinear Schrödinger
equation, Equation (4), we utilize the same wave transformation of Equation (17). As a result,
we get Equation (31). Finding the balance, we gain n = 1. Via inserting the value of the balance into
Equation (10), we get the same result of Equation (36). Substituting Equation (36) into Equation (31)
and setting each summation of the coefficients of the exponential identities of the same power to be
zero, we discuss the following cases of solutions.

Case 1. When b1 = 2b0
λ , c1 =

2βλ2(λ2−4μ)
b2

0
, c2 = − 3βλ4

2b4
0

, κ =

√
−c3+β(λ2−4μ)√

6
√

β
, and

ω =
−c32+2c3β(λ2−4μ)+5β2(λ2−4μ)

2

12β , we get the following solutions:

Solution 1. When λ2 − 4μ > 0 and μ �= 0, we get hyperbolic function solution:

u (x, t)=e
i

⎛
⎝−

√
−c3+β(λ2−4μ)√

6
√

β
x+

(
−c2

3+2c3β(λ2−4μ)+5β2(λ2−4μ)
2
)

12β t

⎞
⎠

⎛
⎜⎜⎜⎜⎝b0 +

4μb0

λ

(
−λ −√λ2 − 4μ tanh

[
1
2

(
c + x +

2
√

2
3 t(−c3+β(λ2−4μ))

3/2

3
√

β

)√
λ2 − 4μ

])
⎞
⎟⎟⎟⎟⎠ .

(41)

This is a dark soliton solution, as shown in Figure 12.
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Figure 12. 3D surface of Equation (41), which is a dark soliton solution plotted when b0 = 0.2, β = 0.2,
c3 = 1, c = 1, λ = 3, μ = 1, and t = 2 for 2D.

Solution 2. When λ2 − 4μ < 0 and μ �= 0, we get trigonometric function solution:

u (x, t)=e
i

⎛
⎝− x

√
−c3+β(λ2−4μ)√

6
√

β
+

t
(
−c2

3+2c3β(λ2−4μ)+5β2(λ2−4μ)
2
)

12β

⎞
⎠

⎛
⎜⎜⎜⎜⎝b0 − 4μb0

λ2 − λ
√−λ2 + 4μ tan

[
1
2

(
c + x +

2
√

2
3 (−c3+β(λ2−4μ))

3/2

3
√

β
t

)√−λ2 + 4μ

]
⎞
⎟⎟⎟⎟⎠ .

(42)

This is a periodic singular soliton solution, as shown in Figure 13.

Figure 13. 3D surface of Equation (42), which is a periodic singular soliton solution plotted when
b0 = 0.4, β = 0.1, c3 = −5, c = 1, λ = 1, μ = 1, and t = 2 for 2D.
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Solution 3. When λ2 − 4μ > 0 and μ = 0, we get hyperbolic function solution:

u (x, t)=e
i

(
− x

√
−c3+βλ2
√

6
√

β
+

t(−c2
3+2c3βλ2+5β2λ4)

12β

)

⎛
⎜⎜⎜⎜⎝b0 +

2b0

cosh

[
λ

(
c + x +

2
√

2
3 t(−c3+βλ2)

3/2

3
√

β

)]
+ sinh

[
λ

(
c + x +

2
√

2
3 t(−c3+βλ2)

3/2

3
√

β

)]
⎞
⎟⎟⎟⎟⎠ .

(43)

This is a bright singular combo soliton solution, as shown in Figure 14.

Figure 14. 3D surface of Equation (43), which is a singular soliton solution plotted when b0 = 0.4,
β = 0.2,c3 = −1, c = 0.2, λ = 3, μ = 0, and t = 2 for 2D.

Case 2. When b0 =
√

2
√

βλ2(λ2−4μ)√
c1

, b1 =
2
√

2
√

βλ2(λ2−4μ)√
c1λ , c2 = − 3c2

1

8β(λ2−4μ)
2 , c3 = β

(−6κ2 + λ2 − 4μ
)
,

and ω = 1
2 β
(
−6κ4 +

(
λ2 − 4μ

)2
)

, we get the following solutions:

Solution 1. When λ2 − 4μ > 0 and μ �= 0, we get hyperbolic function solution:

u (x, t) =
√

2βλ2 (λ2 − 4μ) e−iκx+ 1
2 iβ
(
−6κ4+(λ2−4μ)

2)
t

(
1 − 4μ

λ2+λ
√

λ2−4μ tanh
[

1
2 (c+x+8βκ3t)

√
λ2−4μ

]
)

√
c1

.

(44)

This is a dark soliton solution, as shown in Figure 15.
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Figure 15. 3D surface of Equation (44), which is a dark soliton solution plotted when β = 3, c1 = 5,
c = 0.03, λ = 1, μ = 0.1, κ = 0.1, and t = 2 for 2D.

Solution 2. When λ2 − 4μ < 0 and μ �= 0, we get trigonometric function solution:

u (x, t) =
√

2βλ2 (λ2 − 4μ)e−iκx+ 1
2 iβ
(
−6κ4+(λ2−4μ)

2)
t

(
1 − 4μ

λ2−λ
√

−λ2+4μ tan
[

1
2 (c+x+8tβκ3)

√
−λ2+4μ

]
)

√
c1

.

(45)

This is a periodic singular soliton solution, as shown in Figure 16.

Figure 16. 3D surface of Equation (45), which is a periodic singular soliton solution plotted when
β = −3, c1 = 5, c = 0.03, λ = 0.1, μ = 1, κ = 0.1, and t = 2 for 2D.

Solution 3. When λ2 − 4μ > 0 and μ = 0, we get the hyperbolic function solution:
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u (x, t) =

√
2e−iκx+ 1

2 iβ(−6κ4+λ4)t√βλ4 coth
(

1
2
(
c + x + 8βκ3t

)
λ
)

√
c1

, (46)

which is a periodic singular solution, as shown in Figure 17.

Figure 17. 3D surface of Equation (46), which is a singular soliton solution plotted when β = 3, c1 = 5,
c = 0.03, λ = 0.1, μ = 0, κ = 0.1, and t = 2 for 2D.

5. Conclusions

In this research, the new dark, singular, bright singular combo soliton, and periodic singular
solutions of the cubic-quantic nonlinear Schrödinger equation and the cubic-quantic resonant nonlinear
Schrödinger equation were shown. Figures 1, 6, 8, 10, 12 and 15 are dark soliton solutions,
Figures 2–4, 11, 14 and 17 are singular soliton solutions, Figures 5, 7, 13 and 16 are periodic singular
solutions, and Figure 9 is bright singular combo soliton solution. The (m + G′/G ) expansion and
exp(−ϕ (ξ)) expansion methods were utilized to study these two models with the parabolic law.
The new solutions verified the main equations after we substituted them into Equations (3) and (4) for
the existence of the equation.

Conte and Musette introduced that wave transformation, which we considered in this paper, protects
the Painleve conditions and its properties [48]. Therefore, it can be seen that all results verified their
physical properties and presented their estimated wave behaviors. Therefore, one can observe that the
wave transformation considered in this paper in Equation (17) satisfies these conditions. We substituted
all solutions to the main equations Equations (3) and (4), and they verified it; the constraint conditions
Equations (20) and (29) were also used to verify this existence. The optical soliton solutions obtained
in this research paper may be of concern and useful in many fields of science, such as mathematical
physics, applied physics, nonlinear science, and engineering.
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Abstract: The grounded electrical-source airborne transient electromagnetic (GREATEM) system is
widely used in mineral exploration. Meanwhile, the induced polarization (IP) effect, which indicates
the polarizability of the earth, is often found. In this paper, the Maxwell equations in the frequency
domain are transformed into fictitious wave domain, where Maxwell equations are solved by the
time domain finite difference method. Then, an integral transformation method is used to convert
the calculation results back to the time domain. A three-dimensional (3D) numerical simulation in
a polarizable medium is presented. The accuracy of this method is proven by comparing it with
the analytical solution and the existing method, and the calculation efficiency is increased five-fold.
The simulation results show that the GREATEM system has a higher response amplitude in the
conductive region, while IP effects cannot be identified in the conductive area. The GREATEM system
has a higher response amplitude in the low-resistance region, but IP effects cannot be identified
in the low-resistance area, and the detection of IP effects is more suitable for the high-resistance
area. Therefore, it is necessary to improve the detection ability of the GREATEM system in the
low-resistance area.

Keywords: wave field transformation; finite difference method; Cole–Cole model

1. Introduction

Electromagnetic technology has a wide range of applications in various fields. Nasim (2019)
proposed a metamaterial platform for solving integral equations using a monochromatic electromagnetic
field [1]. The application of electromagnetic technology in medical diagnosis equipment realizes the
measurement of blood glucose and the detection of cancer stage [2,3]. In addition, it is necessary to
consider electromagnetic fields in plasma electronics [4,5].

Here, we apply electromagnetic technology to geophysics. Grounded electrical-source airborne
transient electromagnetic (GREATEM) is a useful detection geophysical method where the transmitter
is set on the ground and the receiver is installed on the aircraft [6]. Combining the ground and airborne
electromagnetic systems, GREATEM has the advantages of large detection depth, high resolution,
wide range, and fast speed. In particular, it has unique superiority in mountains, forest-covered areas,
swamps, and other special areas [7,8]. Ji (2013) used an airship as the carrier and the two-dimensional
finite difference method to calculate the time-domain GREATEM response with a long wire source [9].

Appl. Sci. 2020, 10, 1027; doi:10.3390/app10031027 www.mdpi.com/journal/applsci25
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Ren (2017) investigated a three-dimensional time-domain airborne electromagnetic model based on the
finite volume method, and then used the strategy of separating the primary field from the secondary
field, which significantly saved on calculation time [10]. For airborne transient electromagnetic
measurement, a three-dimensional forward simulation method which considered attitude change was
proposed, and the electromagnetic response of a shallow surface was analyzed in Reference [11]. Later,
the spectral element method (SE) was used to carry out three-dimensional modeling of GREATEM,
effectively improving the modeling accuracy [12].

To interpret GREATEM, researchers often make the assumption that the earth is just conductive
or resistive. However, there is an induced polarization (IP)effect in the earth, which is usually
reflected as a reverse signal. The existence of the IP effect has a great impact on the electromagnetic
response [13,14]. The IP effect is related to conductivity and frequency, and its dispersion characteristics
can be expressed by the Debye model and the Cole–Cole model [15,16]. At present, numerical
simulations of the polarization effect are mainly conducted in the frequency domain. Most of the
early studies simulated the IP effect by converting the electromagnetic field from the frequency
domain to the time domain [17,18]. Unfortunately, when broadband frequency content is considered,
the methods are not so efficient [19]. In order to simulate the IP effect in the time domain, Kang
(2015) proposed a method to generate a three-dimensional pseudo charge distribution using airborne
time-domain electromagnetic data and effectively extracted the polarization signal [20]. Wu (2017) used
the FDTD (finite difference time-domain) method to simulate the IP effect with a small loop source [21].
Commer (2017) expanded the finite difference time-domain scheme, modeled and analyzed the IP
effect, and developed a simple calculation of the Cole–Cole model [22].

However, three-dimensional (3D) numerical simulations of IP effects based on FDTD require a
high computation load, when including the air layer. In addition, it is difficult to calculate the source
in the FDTD method; thus, the upward continuation method is often used to avoid directly loading the
emission source. Mittet (2010) put forward the theory of wave field transformation and successfully
applied it to marine CSEM (controllable source electromagnetic method), increasing the calculation
efficiency by nearly 10-fold [23]. Mittet (2018) used the least squares fitting method to calculate the
IP response of sea water in the fictitious wave field [24]. Ji (2017) improved the emission source,
applied the wave field transformation method to the ground transient electromagnetic simulation,
and realized a three-dimensional transient electromagnetic numerical simulation including the air
layer [25]. However, it did not consider the IP effect of the earth. Therefore, here, we perform the
wave field transformation in GREATEM, and we realize a three-dimensional numerical simulation in
polarizable media using the Cole–Cole model. In addition, the computing efficiency is also improved.

The wave field transformation method is proposed for the grounded electrical-source airborne
transient electromagnetic system in this paper. The Maxwell equations in the real diffusion field are
transformed into the fictitious wave field by using the transformation relationship between the diffusion
field and fictitious wave field. The fractional order Cole–Cole model is introduced into the fictitious
wave field, and the Maxwell equations with the Cole–Cole model are solved using the finite difference
time-domain method. Finally, an integral transformation method is used to transform the calculation
results back to the real diffusion field. In the case of including polarized media, the two-field numerical
simulation of the induction field and polarization field is realized. In addition, the computing efficiency
is also improved.

2. Wave Field Transformation Theory Based on Fractional-Order Cole–Cole Model

2.1. Transformation from Real Diffusion Field to Fictitious Wave Field

The Maxwell equation in the frequency domain of the real diffusion field is written as follows:

−∇×H(x,ω) + σ(ω)E(x,ω) = −J(x,ω), (1)

∇× E(x,ω) − iωμH(x,ω) = −K(x,ω), (2)
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where E and H are the electric and magnetic fields in the real diffusion field, respectively, J denotes
the current density, and K denotes the magnetic current density. ω is the angular frequency, μ is
permeability tensor, and σ is conductivity, while x is the direction.

The IP effect can be described by the Cole–Cole model [16].

σ(ω) = σ∞(1− η

1 + (−iωτ)c ), (3)

where σ∞ is the conductivity corresponding to infinite frequency, τ is the characteristic time constant,
and c and η are the frequency dependence and chargeability, respectively.

Applying Equation (3) to the frequency-domain Maxwell equation (Equation (1)), we can get

−∇×H(x,ω) + σ∞E(x,ω) − σ∞η
1 + (−iωτ)c E(x,ω) = −J(x,ω). (4)

A fictitious dielectric constant is defined by the conductivity tensor (Mittet, 2010).

σ∞ = 2ω0ε∞′, (5)

where ω0 = 2π× f0 is the scaling parameter, f0 = 1Hz, and ε∞′ is the fictitious dielectric permittivity
tensor. Substituting Equation (5) into Equation (4), we can get

−∇×H(x,ω) + 2ω0ε∞′E(x,ω) − η

1 + (−iωτ)c 2ω0ε∞′E(x,ω) = −J(x,ω). (6)

Multiplying both sides of Equation (6) by
√
−iω
2ω0

gives

−∇×
[√

−iω
2ω0

H(x,ω)
]
+
[√

−iω
2ω0

2ω0ε∞′E(x,ω)
]
−
[

η

1+(−iωτ)c

√
−iω
2ω0

2ω0ε∞′E(x,ω)
]
= −

√
−iω
2ω0

J(x,ω). (7)

Equation (2) can be rewritten as

∇× E(x,ω) − √−2iωω0μ

√−iω
2ω0

H(x,ω) = K(x,ω). (8)

The relationship between the real diffusion field and fictitious wave field was given by
Reference [23].

− iω′ =
√−2iωω0, (9)

E′(x,ω′) = E(x,ω), (10)

H′(x,ω′) =
√−iω

2ω0
H(x,ω), (11)

J′(x,ω′) =
√−iω

2ω0
J(x,ω), (12)

K′(x,ω′) = K(x,ω), (13)

where ω0 = 2π is the scaling parameter, ω′ is the angular frequency in the fictitious wave field, J′ and
K′ are the current and magnetic current densities in the fictitious wave field, and E′ and H′ are the
electric and magnetic fields in the fictitious wave domain.

Using Equations (9)–(13), Equations (7) and (8) can be written in terms of fictitious wave fields.

−∇×H
′
(x,ω′) − iω′ε∞′E

′
(x,ω′) +

ηiω′ε∞′

1 +
(
τ

2ω0

)c
(iω′)2c

E
′
(x,ω′) = −J

′
(x,ω′), (14)
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∇× E′(x,ω′) + iω′μH′(x,ω′) = K′(x,ω′). (15)

Because the appropriate kernel used to decompose the spectra is closer to a Cole–Cole function
with an exponent c of 0.5 [26], then

−∇×H
′
(x,ω′) − iω′ε∞′E

′
(x,ω′) +

ηiω′ε∞′

1 +
√
τ

2ω0
iω′

E
′
(x,ω′) = −J

′
(x,ω′), (16)

∇× E′(x,ω′) + iω′μH′(x,ω′) = K′(x,ω′). (17)

Assuming A′(x,ω′) = ηiω′ε∞′

1+
√
τ

2ω0
iω′

E
′
(x,ω′), the time-domain expressions (Equations (16) and (17))

can be obtained through inverse Fourier transform.

−∇×H′(x, t′) − ε∞′(x)∂t′E′(x, t′) + A′(x, t′) = −J′(x, t′), (18)

∇× E′(x, t′) + μ∂t′H′(x, t′) = K′(x, t′). (19)

By combining Equations (18) and (19), the electric and magnetic field x-components can be
found as

En+1
xi+1/2, j,k

= En
xi+1/2, j,k

+ Δt
2ω0

σ∞
(∂−y Hn+1/2

z1+1/2, j+1/2,k
− ∂−z Hn+1/2

yi+1/2, j,k+1/2
) + Δt

2ω0

σ∞
A′(x, t′) − Δt

2ω0

σ∞
Jx, (20)

Hn+1/2
xi, j+1/2,k+1/2

= Hn−1/2
xi, j+1/2,k+1/2

− Δt
μ
(∂+y En

zi, j,k+1/2
− ∂+z En

yi, j+1/2,k
), (21)

where

A′(x, t′) =
√

2ω0

τ
e−

√
2ω0
τ t′

∫ t′

0
e
√

2ω0
τ t′′ ηε∞′[∂t′′ E

′(x, t′′ )]dt′′ . (22)

Equation (22) can be solved by iteration, as shown in Equation (23).

A′(x, tn+1) = A′(x, tn)e
√

2ω0
τ Δt − ηε∞′E′(x, tN)(1− e

√
2ω0
τ Δt), (23)

where tn = nΔt, and the forward staggered time step is tN = (n + 1
2 )Δt.

2.2. Electrical Source Loading in Fictitious Wave Field

As shown in Figure 1, Tx is the long wire source and Rx is the receiver. The fictitious emission
source is only related to x- and y-components of the electric field, and the z-component is zero.

Here, the first-order Gaussian pulse is selected as the fictitious emitter, as shown in Equation (24).

J′( t′) = −2β( t′ − t0)

√
β

π
e−β( t′−t0)

2
, (24)

where β = π f 2
max, fmax is the maximum frequency in the fictitious wave field.
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Figure 1. Loading mode of fictitious wave field long wire source.

2.3. The Transformation from Fictitious Wave Field to Real Diffusion Field

It should be noted that the fictitious wave field is only used for the convenience of calculation,
and it does not exist in reality. Therefore, we need to transform it back to the real diffusion field. The
transformations are as follows [23]:

J(ω) =
∫ T

0
J′(t′)e−

√
ωω0t′ei

√
ωω0t′dt′, (25)

E(ω) =

√−iω
2ω0

∫ T

0
E′(t′)e−

√
ωω0t′ei

√
ωω0t′dt′, (26)

H(ω) =

∫ T

0
H′(t′)e−

√
ωω0t′ei

√
ωω0t′dt′, (27)

K(ω) =

√−iω
2ω0

∫ T

0
K′(t′)e−

√
ωω0t′ei

√
ωω0t′dt′, (28)

where T is the total calculation time in the fictitious wave field, and t′ is the sample time.

2.4. Loading Complex Frequency Shifted Perfectly Matched Layer (CFS-PML) in Fictitious Wave Field

Roden (2000) proposed CFS-PML (complex frequency shifted perfectly matched layer) boundary
conditions, which significantly saved on memory [27]. The CFS-PML boundary conditions are
introduced into the fictitious wave field to improve the absorption effect of the boundary on the
low-frequency wave [28].

In x-components, Maxwell’s curl equations are as follows:

∇s ×H′(ω′) + iω′ε′E′(ω′) = 0, (29)

∇s =
1
ŝx

∂
∂x

i +
1
ŝy

∂
∂y

j +
1
ŝz

∂
∂z

k. (30)

It should be noted that i is the imaginary unit in Maxwell equations, and i, j, and k are the
three direction vectors of the coordinate system.

�
s x,

�
s y, and

�
s z are the coordinate stretching factors,

�
s (x′y′z) = k(x,y,z) +

σ(x,y,z)
α(x,y,z)+iωε′ α(x,y,z) > 0, σ(x,y,z) > 0, and k(x,y,z) ≥ 1. By setting α(x,y,z) = σ(x,y,z) = 0,

k(x,y,z) = 1, we can get the original stretched coordinate metrics, which is the PML boundary condition.
Taking E′x as an example, and using Equations (29) and (30), we can get

iω′ε′E′x(ω′) = −
(

1
ŝy

∂H′z(ω′)
∂y

− 1
ŝz

∂H′y(ω′)
∂z

)
. (31)
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Applying Laplace transform to (31) to the time domain, the iterative solution can be obtained.

E′n+1
xi+1/2, j,k

= E′nxi+1/2, j,k
+ Δt′ 2ω0

σ [∂−1
y H′n+1/2

zi+1/2, j+1/2,k
− ∂−1

z H′n+1/2
yi+1/2, j,k+1/2

] + Δt′ 2ω0
σ (Ψn+1/2

exyi+1/2, j,k
−Ψn+1/2

exzi+1/2, j,k
), (32)

Ψn+1/2
exyi+1/2, j,k

= e
−( σyky

+αy)
Δt′
ε′ Ψn−1/2

exyi+1/2, j,k
+

σy

(σyky+k2
yαy)

(e
−( σyky

+αi)
Δt′
ε′ − 1)(H′n+1/2

zi+1/2, j+1/2,k
−H′n+1/2

zi+1/2, j−1/2,k
)/Δy, (33)

Ψn+1/2
exzi+1/2, j,k

= e−(
σz
kz
+αz)

Δt′
ε′ Ψn−1/2

exzi+1/2, j,k
+ σz

(σzkz+k2
zαz)

(e−(
σz
kz
+αz)

Δt′
ε′ − 1)(H′n+1/2

yi+1/2, j+1/2,k
−H′n+1/2

yi+1/2, j−1/2,k
)/Δz. (34)

On the boundary parameters, σi and ki, which depend on the relative positions of nodes and
target areas, are not fixed, whereas Ψn+1/2

exyi+1/2, j,k
and Ψn+1/2

exzi+1/2, j,k
are two discrete variables.

σi = σmax
|k− k0|m

dm , (i = x, y, z), (35)

ki = 1 + (kmax − 1)
|k− k0|m

dm , (i = x, y, z), (36)

where k0 indicates the intersection of the boundary and the target area boundary, d is the boundary
thickness, and m is the polynomial parameter.

3. Accuracy and Efficiency Verification of the Calculation Method

3.1. Half Space Model with IP Effect

In the field measurement with GREATEM, only the change of the underground secondary field
is considered. In the process of numerical simulation, people usually divide the real space into two
parts (air and ground), without considering the interface between the ground and air. Therefore, in the
research process of this paper, the ground and the interface are not considered. In order to verify the
effectiveness of this method, we design a half-space model incorporating the IP effect, as shown in
Figure 2. Let the conductivity of the air layer σair= 10−6 S/m, conductivity at the infinite frequency
of the half-space model σ∞ = 0.1 S/m, chargeability η= 0.6, characteristic time constant τ= 1 s, and
frequency dependence c = 0.5 . Tx represents the transmitter, Rx is the receiver, the horizontal distance
between Tx and Rx (offset distance) is 300 m, and the flight altitude is h= 0 m. In Figure 3, the calculation
results are compared with Reference [29]. We can see that the solution of the fictitious domain finite
difference method (FW-FDTD) is in good agreement with that of the transformed frequency domain
method. The average relative error of both methods is less than 10%.

 
Figure 2. The half-space model with induced polarization (IP) effect.
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Figure 3. The response curve of the half-space model.

When the earth contains the IP effects, the polarization parameters have great influence on
the induced-polarization (IP) effects. In order to analyze the influence of polarization parameters
on IP effects, we take the uniform half space model (Figure 2) as an example. Set the air layer
conductivity 10−6 S/m, a 200-m-long wire source is selected as the transmitter, and the offset distance
is r = 300 m. Furthermore, chargeability η= 0.6, conductivity at infinite frequency σ∞= 0.1 S/m,
frequency dependence c = 0.5, and flight altitude h = 25 m. The characteristic time constant is
selected as τ= 1 s, τ= 0.1 s, and τ= 0.01 s. The IP response under different characteristic time constants
is calculated as shown in Figure 4. Other parameters remain unchanged. The characteristic time
constant is set to τ= 0.01 s, and η= 0.5. The conductivity at infinite frequency is σ∞= 0.01 S/m,
σ∞= 0.05 S/m, and σ∞= 0.1 S/m. The IP response under different conductivity is calculated as shown
in Figure 5. Furthermore, σ∞= 0.01 S/m, τ= 0.01 s, and the chargeability is η= 0.3, η= 0.5, and η= 0.7.
The response curves under different chargeability are calculated as shown in Figure 6.

Figure 4. Influence of characteristic time constant on IP effect.

From Figures 4–6, it can be seen that characteristic time constant, chargeability, and conductivity
at infinite frequency affect the occurrence time of negative response, and all responses are monotonic.
Compared with the conductivity at infinite frequency, the effect of characteristic time constant and
chargeability on the IP response is lower, mainly in the late stage, and the change trend of the early
induction field is basically the same. With the decrease in characteristic time constant, the time of
minus response is gradually advanced. With the decrease in chargeability, the time of minus response
is delayed. The conductivity at infinite frequency has a great influence on the IP effect. In addition to
the minus response at the later stage, it also has a great influence on the early induction field. In the
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early stage, the response amplitude of the induction field increases gradually with the increase in
conductivity at infinite frequency. In the later period, a smaller conductivity at infinite frequency
results in the minus response appearing earlier.

 
Figure 5. Influence of conductivity at infinite frequency on IP effect.

 
Figure 6. Influence of chargeability on IP effect.

3.2. Three-Dimensional Model

In addition, we calculated a three-dimensional model with a chargeable anomaly and compared
the result with Reference [30]. The dimensions of the cell mesh were 70× 70× 70 , and the minimum
grid size was 25 m. The modeling volume was 3500 × 3500 × 3500 m3. The size of the chargeable
anomaly was 100 × 100 × 80 m 3, while the distance from the top to the bottom of the chargeable
anomaly was 40 m. The parameters of the Cole–Cole model were σ∞= 0.1 S/m, τ= 0.1 s, η= 0.3,
and c = 0.5. The background conductivity was σ∞= 0.001 S/m. A vertical point dipole emitter, which
was located 30 m above the surface, was used, and the receiver and transmitter were at the same
location. The calculation results are shown in Figure 7, from which it can been seen that the two IP effect
curves were consistent. The relative error was less than 10%, which further verifies the correctness of
the method.

In terms of computation load, the iterations in the fictitious wave field are as follows:

Nt =

√
3Rmax

Δx
×
√
σmax

σmin
, (37)

where Nt represents the number of iteration steps, Rmax is the maximum transceiver distance, σmax

and σmin are the maximum and minimum conductivity, respectively, and Δx is the minimum grid
size. Using Equation (37), the number of iteration steps was 76,681. It should be noted that only
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one transmitter rather than an array was selected in this work. Compared with Reference [30], the
calculation efficiency was improved by about five-fold.

 

Figure 7. Comparison of this study with that of Reference [29].

4. Calculation Results of the Three-Dimensional Chargeable Body Model

The phenomenon of the inverse sign (IP effect) often appears in GREATEM. Most researchers
focused on the influence of the IP parameters. However, in addition to the IP parameters, the system
parameters of GREATEM also have an impact on the IP effect. In this section, we mainly analyze the
effect of the system parameters, and we provide a theoretical basis for the field measurements.

4.1. Forward Modeling Results of 3D Chargeable Body

In order to analyze the influence of system parameters on the IP effect, we build a three-dimensional
model with the consideration of a chargeable body, as shown in Figure 8. The ground conductivity
was σ∞= 0.001 S/m, the air layer conductivity was σair= 10−6 S/m, Tx was the long wire source,
the length was LTx= 400 m, Rx represents the receiving point, the height from the ground was
h = 25 m, and the offset distance was r = 200 m. The dimensions of the chargeable body were
400 × 400 × 300 m3, which was 100 m below the surface. The model parameters of the chargeable
body were selected as follows: chargeability η= 0.5, frequency dependence c = 0.5, and characteristic
time constant τ= 0.01 s. The conductivities at infinite frequency were σ∞= 0.01 S/m, σ∞= 0.5 S/m,
and σ∞= 0.1 S/m. The calculation results are shown in Figure 9. The snapshots of the induced current
system in the fictitious wave field are shown in Figure 10a,b.

 

Figure 8. Three-dimensional (3D) model with IP effect.
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Figure 9. Response curves under different conductivities.

  

Figure 10. The snapshots of the induced current system in the fictitious wave field (a) early time; (b)
late time.

It can be seen from Figure 9 that, with the increase in conductivity at the infinite frequency,
the attenuation of the early induction field gradually decreased, the attenuation of the late IP response
gradually quickened, and the occurrence time of the inverse sign gradually delayed. This is because the
influence of the induction field of the low-resistance body was greater than that of the high-resistance
body. Therefore, the second field decayed slowly, and the negative response appeared later. Thus,
the polarization phenomenon was more easily observed on the high-resistance body. The chargeable
body position can be clearly observed from Figure 10, and the method of wave field transformation
could effectively identify the polarizable body. Since we set the air layer as a finite high-resistance
body, the conductivity was not zero, and the propagation of induced current in the air layer was not
zero. In the fictitious wave field, due to the influence of the chargeable body, the propagation mode of
the electromagnetic field changed, and it no longer propagated in the form of symmetry.

After setting σ∞= 0.1 S/m, as well as the ground conductivity σground = 0.001 S/m, σground =

0.01 S/m, and σground = 0.1 S/m, which are associated with high-, medium-, and low-resistance areas,
the IP effects were calculated as shown in Figure 11.

With the increase in ground conductivity, the amplitude of the early induction field and the late
polarization field increased. In the high- and middle-resistance regions, the negative responses occurred
at 1.7 ms and 3.3 ms. On the other hand, in the low-resistance region, the negative response could
not be observed. When the negative value reached the minimum, the curve decayed approximately
exponentially. The GREATEM had better resolution in the low-resistance region, but it is more suitable
for the high-resistance region when measuring the IP effect.
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Figure 11. IP effects under different background conductivities.

4.2. The Influence of System Parameters on IP Response

In the field measurements of GREATEM, due to the influence of airflow and environment, the flight
height was not a constant. Therefore, it was necessary to analyze the influence of flight altitude on
the IP effect. We take the 3D model (Figure 8) as an example. The air layer conductivity was set to
σair= 10−6 S/m and the earth conductivity was set to 0.001 S/m, while the size of the chargeable body
was 400× 400× 300 m. The model parameters of the chargeable body were as follows: chargeability
η= 0.5, frequency dependence c = 0.5, characteristic time constant τ= 0.01 s, conductivity at the
infinite frequency σ∞= 0.1 S/m, offset distance r = 200 m, and flight altitude h = 25 m, h = 50 m,
h = 75 m, and h = 100 m. The induced polarization (IP) effect at different flight altitudes was calculated
as depicted in Figure 12. In order to understand the influence of the parameters of GREATEM on the
IP response, other parameters remained unchanged, while the flight height was set to h = 25 m, and
the emission source length was LTx= 50 m, LTx= 100 m, and LTx= 200 m. The responses of different
emission source lengths are shown in Figure 13. Taking LTx= 400 m and the offset distance r = 100 m,
r = 200 m, and r = 400 m, the responses of different offsets are shown in Figure 14.

Based on Figure 12, flight altitude mainly affected the amplitude of the response. The effect on the
time of sign reversal was not obvious, and the sign reversal phenomenon was mainly concentrated
in the range 1.5–2 ms. With the increase in flight altitude, the received electromagnetic response
decreased gradually. It can be seen from Figure 13 that the length of the emission source mainly
affected the amplitude of the response. The length of emission source increased gradually, and the
amplitude of response increased gradually, which also shows that a longer emission source resulted in
a higher resolution of the polarizable body. In Figure 14, with the decrease in offset distance, the time
of the sign reversal appeared earlier, and the polarization response became easier to observe at a short
offset distance.

Next, we set the air layer conductivity to σ = 10−6 S/m and earth conductivity to 0.001 S/m. The
size of the chargeable body was 400× 400× 100 m3. The model parameters of the chargeable body were
chosen as η= 0.5, c = 0.5, τ= 0.01 s, σ∞= 0.1 S/m, offset distance r = 200 m, emission source length
LTx= 400 m, and flight altitude h = 25 m. The chargeable body was buried 25 m and 50 m below
the surface. The response curves of the chargeable body at different depths are shown in Figure 15.
Moreover, we changed the size of the chargeable body to 300× 300× 200 m3 and the chargeable body
depth to 100 m, while keeping other parameters the same, and setting the distance from the left
boundary of the chargeable body to the emission source as 0 m, 50 m, and 100 m. The response curves
at different source positions are shown in Figure 16.
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Figure 12. IP effects at different flight altitudes.

Figure 13. The response curves under different emission source lengths.

 
Figure 14. The response curves under different offset distances.

From Figures 15 and 16, it can be seen that all the amplitudes decreased, while the depth of
chargeable body increased. However, the time of the reversal sign did not change. In the early stage,
as the distance between the emitter source and the chargeable body decreased, the amplitude of the
induced field increased, the attenuation of the curve was delayed. In the later stage, the time of sign
reversal appeared later when the distance between the emitter and the chargeable body decreased.
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Figure 15. The influence of chargeable body depth on response curve.

 

Figure 16. The influence of different emitter locations on IP effect.

5. Conclusions

Three-dimensional numerical simulations are the basis of data interpretation and imaging. In this
paper, a three-dimensional numerical simulation of underground polarized media was realized,
which achieved simulation results closer to the actual mineral resources. In the actual measurement
process with GREATEM, the geodetic model could be established using this method, and the optimal
configuration structure of the equipment was obtained using the numerical simulation method. This not
only provides the basis for the exploration of underground mineral resources, but also provides
theoretical guidance for the design of detection instruments. Wave field transformation was proposed
to calculate the response of the GREATEM system using the Cole–Cole model. The electromagnetic
wave was absorbed by the boundary condition of CFS-PML in the fictitious wave field. Compared with
the analytical solution and the transformed FD method, the relative error was less than 10%, satisfying
the standard calculation requirements. Compared with the existing method, the calculation time was
reduced five-fold. According to the simulations, the flight altitude, electrical source length, electrical
source position, and the offset distance all affected the electromagnetic response monotonically. In the
homogeneous half-space model, when the characteristic time constant (τ > 1 s) and conductivity at
the infinite frequency (σ∞ > 1 S/m) were too large, the negative response was likely overwhelmed by
the noise; thus, the negative response could not be observed. Therefore, the occurrence time of the
negative response could be enhanced by reducing the offset distance. Low-altitude flights can facilitate
the recognition ability of the chargeable body, but they are often limited by geological conditions. The
response of the GREATEM system had good recognition ability in the low-resistance area; however, the
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chargeable body could hardly be detected. Therefore, it is necessary to improve the detection accuracy
of the GREATEM in low-resistance areas.

This paper realized a three-dimensional numerical simulation of polarized media based on the
Cole–Cole model, and improved the calculation efficiency. However, in the actual measurement
process, the underground medium is diverse. It is not comprehensive to only use the Cole–Cole model
to describe the characteristics of polarized medium; the existence of the GEMTIP model in particular is
a major problem in the field of geophysics. In future work, we need to consider the GEMTIP model in
the numerical simulation, so as to improve the universality of this method.
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Abstract: The conductivity and percolation concentration of the composite material filled with
randomly distributed carbon nanotubes were simulated as a function of the mechanical deformation.
Nanotubes were modelled as the hard-core ellipsoids of revolution with high aspect ratio. The evident
anisotropy was observed in the percolation threshold and conductivity. The minimal mean values
of the percolation of 4.6 vol. % and maximal conductivity of 0.74 S/m were found for the isotropic
composite. Being slightly aligned, the composite demonstrates lower percolation concentration and
conductivity along the orientation of the nanotubes compared to the perpendicular arrangement.

Keywords: Monte Carlo simulations; percolation; conductivity; carbon nanotubes composite

1. Introduction

The macroscopic properties of the randomly organized media has attracted research interest
for many decades. Nowadays, the the critical study points are the determination of the properties
of composites filled with the carbonaceous fillers, like carbon nanotubes (CNT) [1–4], or graphene
nanoplatelets (GNP) [5–8]. All these objects have high aspect ratios, and there is an interest to develop
anisotropic composites using the partially oriented fillers [9–11]. There are several ways to reach
the anisotropy in case of a CNT-filled composite, for instance: mechanical deformation, curing the
CNT-filled polymer in external fields, or template-based techniques (see [12] and Refs therein).

Currently, there are different ways to model the macroscopic properties of carbon composites.
Among them are: general effective media model [13], excluded volume theory [14], Monte Carlo
models [15,16], finite and boundary element methods [17,18]. For the conductive properties modelling,
the Monte Carlo based techniques are one of the most interesting due to their simplicity, extremely
high tunability and good agreement with the experimental results (See [19] and Refs therein).

However, Monte Carlo models for the aligned CNT composites lack in several aspects. Firstly,
many studies introduce the cut-off zenith angle as an anisotropy parameter (AP) and investigate the
dependencies of the macroscopic properties on the cut-off values [20–22]. In case of the real systems,
one can measure the deformation degree or the externally applied field, but not the cut-off angle.

Appl. Sci. 2020, 10, 1315; doi:10.3390/app10041315 www.mdpi.com/journal/applsci41



Appl. Sci. 2020, 10, 1315

Secondly, there is some contradiction in conductivity data for the partially oriented composites. Many
report on the descent of conductivity with the increase of the AP [22–24], and several demonstrate
a maximum of the conductivity with the small values of the AP [20,21,25]. To figure out the
conductivity dependence, the critical concentration dependence on the anisotropy parameters should
be investigated. Finally, the properties of the aligned composite should be studied along different
directions, while most of the studies usually report on the behaviour along one direction [21–23].

In this paper, the CNT-filled composite after mechanical deformation, which in our model is
introduced as non uniformity in angular coordinate distribution, is investigated. The percolation
threshold and conductivity are computed as a function of the mechanical deformation. Two main
directions (along and perpendicular to the deformation axis) are studied.

2. Model and Simulation Details

The CNTs are modelled as the ellipsoids of revolution with high aspect ratio, their semi axes are
b1 = b2 � b3. For the calculation the similar ellipsoids with semi axes b1 = 2.5 nm and b3 = 37.5 nm
were taken. The representative unit cell with the volume of (nb3)

3, where n > 1, is used.
The particles are introduced one by one into the unit cell by randomly generating Cartesian

coordinates X for the centre of the ellipsoid and two spherical angular coordinates θ and φ for the
orientation of the longest axis of the ellipsoid. Each time the non-overlap condition is checked, and the
new ellipsoid is stored only if it does not intersect the walls of the unit cell and does not penetrate into
any of the already existing particles. After the predefined number of particle is reached, the connectivity
is checked along the selected direction using the Dijkstra’s protocol [26].

The algorithm for the percolation computation is organised as a Tabu search method and it stops
when the percolation is achieved [27–29]. Until the percolation is reached, the number of particles
increases in each cycle. The detailed modelling procedure is described in our previous paper [30].
The periodic boundary conditions are applied for the calculation of the percolation concentration
and conductivity.

The connection criteria for the nanotubes is obtained as follows. The dependence of the tunnelling
resistance on the distance between the nanotubes given as [8,31]:

ρ =
h2

e2
√

2mb
exp
(

4πd
h

√
2mb

)
(1)

where b is the potential barrier, and d is the distance, e and m denote the elementary change and
electron mass, respectively. The reciprocal value 1/ρ is the tunnelling conductivity. The conductivity
drastically decreases with the distance increment and reaches already small values of 10−4 S/m for
2 nm separation. Thus, for the percolation computations the separation of 2 nm is considered as the
connection criteria, while for the piezoresistivity computation direct values obtained from Equation (1)
were used. In the last case, the tunnelling barrier of b = 0.75 eV.

To introduce anisotropy, the composite was considered as mechanically stretched. The probability
density function (PDF) for the CNT angular distribution was derived using the following assumptions:
(i) the mechanical deformation oriented along the z-axis, (ii) the centre of the ellipsoid keeps its position
after the deformation, and (iii) the Poison’s shrinkage in the perpendicular directions was neglected.
The last assumption is justified, since the independence of the percolation value on the unit cell volume
was demonstrated previously [30].

Thus, after the deformation, X and ϕ remain unchanged. The PDF for the θ angle was obtained as
the modified function for the mechanically deformed composite filled with cylinders [32]:

ψ(θ) =
k2

[k2 cos2 θ + sin2 θ]3/2
(2)
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where k is the deformation coefficient introduced as the ratio of the final and initial lengths of the unit
cell, k = l

l0
. For k = 1, the PDF function (2) will return uniform distribution, while for k > 1 some non

uniformity will appear (see Figure 1). In order to apply the function to spherical coordinates, the final
distribution will be given taking into account the Jacobian as ψ(θ)sin(θ).

Figure 1. Probability density function (PDF) for the zenith angle for different deformations (k) for
the carbon nanotubes (CNTs).

The conductivities are computed according to the following protocol. Firstly, the resistance of the
nanotubes is taken as infinite, so the total conductivity of the composite is governed by the inter-tube
tunnelling (Equation (1)). Next, the direction for the conductivity computation is selected and the
nanotubes near the initial and final boarders are collected. The Dijkstra algorithm is used to trace the
paths of the minimal resistance between the initial and final tubes. The array R(t, l) (where t and l
stand for the initial and final indexes of the tube, respectively) is computed. To implement the periodic
boundary conditions the array B(l, t) of the boundary resistances was introduced. The total resistance
for the selected fixed l is follows:

Tot(l) =

(
∑

t

1
R(t, l)

)−1

+

(
∑
t′

1
B(l, t′)

)−1

(3)

And finally the total conductivity of the composite is computed as

σ =

(
∑

l

1
Tot(l)

)
(4)

The algorithm is implemented using PGI CUDA FORTRAN standards [33]. The big enough
number of the realizations (500–600) was collected for each particular case.

3. Results and Discussion

3.1. Percolation Computations

The comparison of the nanotubes angular distribution for the isotropic and heavily deformed
composite is presented on Figure 2. For the visualisation purposes, the ellipsoids with small aspect
ratio of 5 and the cubic unit cell with side length of 60 nm were used.
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Figure 2. Visualisation of the CNT-filled composite with k = 1 and k = 10.

For the computations of the percolation threshold, the cubic unit cell with n = 3 was considered.
Firstly, the system with uniform and fully aligned (θ = 0, k = ∞) angular distribution of the
ellipsoids was studied. The empirical cumulative probability distribution (CDF) for the percolation
concentration pc in non-deformed and aligned composites is presented in Figure 3. As it was expected,
the distribution of the uniform composite coincides in different directions. Upon deformation,
the percolation concentration increases in both directions, and the slope of CDF changes as well.

Figure 3. Empirical cumulative probability function for the percolation concentration in deformed
and non-deformed composites (symbols), and Weibull cumulative probability distributions (CDFs) (5)
(solid curves).

Obtained distribution follows the Weibull law [34]:

CDFW(pc, λ, m) = 1 − e−(pc/λ)m
(5)
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where λ is the scale factor, and m is the slope or Weibull modulus. The mean value of percolation
concentration is < pc >= λΓ(1 + 1/m) ≈ λ, where Γ is the Euler gamma function. The values for λ

of 0.12 and 0.079, and k of 53.69 and 6.00 were obtained for fully oriented composite in the x− and
z−directions, correspondingly.

The dependencies of λ and m parameters on the deformation coefficient were also studied.
The results were collected in Figure 4. For both directions, the Weibull scale factor λ increases with the
deformation, so the minimal concentration is achieved for non deformed composite. This conclusion is
supported with the measurement results [22–24].

Figure 4. Scale factor (a) and Weibull modulus (b) as a functions of the deformation.

Anisotropic properties of the deformed composite are confirmed by distinct behaviour of λ and m
along the x− and z−directions. For low values of k (up to 3), the dependencies of λ versus k demonstrate
linear increase both along x and z with the lower slope along the z−direction. In contrast to the scale
factor λ, the Weibull modulus m demonstrates the decrease in the direction of the deformation and
increase in the perpendicular one. This can be understood in terms of very different dimensionality of
the inclusions network. Being isotropically distributed, the network of ellipsoids has 3D dimensionality,
and, upon the deformation, the dimensionality changes toward 1D along the z−direction and 2D
along the perpendicular one. As a result, a very small number of the particles (three, in the studied
situation) may percolate with non-zero probability along z for fully aligned system. It is expected that
both λ and k will asymptotically approach the above mentioned values for k = ∞.

3.2. Piezoresistivity Computations

Firstly, the dependence of the conductivity distribution on the unit cell size and the isotropy of the
non deformed composite were investigated checked (see Figure 5). The peak values of the conductivity
coincide for different cell sizes, while the distribution becomes broader with the decrease of the cell
size. The conductivity distributions for the composites above the percolation threshold are close to
lognormal in agreement with literature [35]. We conclude, that the usage of the periodic boundary
conditions (PBC) in Equations (3) and (4) allowed us to obtain the independence on the unit cell size.
For further computations, the cell with n = 4 was used.

The conductivity dependence on the concentration p and deformation k is presented in Figure 6.
The concentration dependencies of σ (Figure 6a) follows the power law [36]. After the deformation, σ

decreases both along x− and z−directions, and this is supported by the experimental data [37–39].
Significant anisotropy (more than the order of magnitude) was observed for the deformed composite. It
was previously shown, that the z−direction is preferable for the percolation in the deformed composites
in comparison with x. But, being percolated, the composite has lower conductivity along z, than one
along the perpendicular direction. In contrast to the percolation, where the appearance of only one

45



Appl. Sci. 2020, 10, 1315

conductive path is necessary, the conductivity strongly depends on the number of conductive paths
through the unit cell and the total tunnelling distance.

Figure 5. (a) Empirical PDF of the conductivity of the isotropic composite with 5 vol. % of CNTs with
different cell size n. (b) Empirical CDF of the conductivity in different directions for the isotropic
composite with 5 vol. % of CNTs with n = 4. 1500 realisations were collected.

Figure 6. Conductivity dependence (a) on the concentration for the initial and deformed composite in
different directions, and (b) on the deformation for the samples with 6 vol. % of the CNTs. Symbols
stands for the mean values, and lines denote the 95 % confidence interval width.

Note that in the microwave and THz frequency regions the partial alignment of the nanotubes
will lead to the increase of the conductivity and imaginary part of the permittivity along the
deformation [32,40]. But in studied case the situation is opposite. That is related to very different
mechanisms of the interaction of the electromagnetic radiation with the media at different frequencies.
At microwave frequencies, the mechanism is the polarisation of the CNT [41]. In case of the
direct current and quasistatic frequency range, where the tunnelling mechanism is dominant [42],
the conductivity decreases due to the tunnelling distance increase.

Boundary Conditions Impact

In the introduction part it was mentioned, that there is the contradiction in the modelling results
presented in literature, and several authors observe the maximum of the conductivity in the z-direction
for slightly aligned composites. In our case the maximum is observed, if the conductivity is calculated
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without the PBC in Equations (3) and (4) (see Figure 7). The maximum is reached for k ≈ 1.5.
The conductivity along the x-direction decreases, similarly to presented in Figure 6b.

Figure 7. Conductivity dependence on the deformation for the samples with 4 vol. % of the CNTs,
computed without boundary conditions. Symbols stands for the mean values, and lines denote the
95% confidence interval width.

Both models with and without PBC should provide similar results for the infinitely large unit cell.
But in the case of the PBC model, the independence of the conductivity on the cell size is demonstrated.
Thus, the appearance of the maximum of the conductivity is the cell size related effect of the non-PBC
model. Both PBC and non-PBC models are suitable for applications. For the thin films filled with
aligned nanotubes the non-PBC model is preferable, while with the composite size increase, the PBC
model should be used.

4. Conclusions

The composite filled with carbon nanotubes after the mechanical deformation was simulated.
The nanotubes were modelled as randomly distributed non-overlapping ellipsoids. The mechanical
stretching of the composite was introduced as the non uniformity of the angular distribution of
the ellipsoids. It was shown that the uniform composite provides the higher conductivity and its
percolation concentration is the lower, than that of the aligned composite. The anisotropy of the
macroscopic properties was investigated. The percolation concentration and conductivity are lower
along the direction of the partial orientation of the nanotubes in comparison with the perpendicular
one. That can be understood in terms of the conductive paths tunnelling distance and the total number
of the conductive paths formed in different directions.

The impact of the periodic boundary conditions was cleared. It was demonstrated, that
very different behaviour of the conductivity upon the CNT alignment presented in literature
may be explained by the boundary conditions. It was proved, that the model with the periodic
boundary conditions provide more relevant conductivity results since the conductivity becomes unit
cell size-independent.

The presented model may be used for strain sensor development. The utilisation of the model as
pre-experimental step allows to find out the optimal conditions for the composite synthesis, taking
into account the nanotube aspect ratio, concentration, the matrix-related properties (in terms of the
tunnelling barrier value). At the same time, it allows to predict the behaviour of the main macroscopic
parameters on the deformation.
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Abstract: The goal of this paper is to show that super-gain optical parametric amplification can be
achieved even in a small micro-resonator using high-intensity ultrashort pump waves, provided that
the frequencies of the ultrashort pulses are tuned to maximize the intracavity magnitude of the wave
to be amplified, which we call the stimulus wave. In order to accomplish this, we have performed a
dispersion analysis via computational modeling of the electric polarization density in terms of the
non-linear electron cloud motion and we have concurrently solved the electric polarization density
and the wave equation for the electric field. Based on a series of non-linear programming-integrated
finite difference time-domain simulations, we have identified the optimal pump wave frequencies
that simultaneously maximize the stored electric energy density and the polarization density inside a
micro-resonator by using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) optimization algorithm.
When the intracavity energy and the polarization density (which acts as an energy coupling coefficient)
are simultaneously high, an input wave can be strongly amplified by efficiently drawing energy from
a highly energized cavity. Therefore, we propose that micrometer-scale achievement of super-gain
optical parametric amplification is possible in a micro-resonator via high-intensity ultrashort “pump
wave” pulses, by determining the optimal frequencies that concurrently maximize the stored electric
energy density and the polarization density in a dielectric interaction medium.

Keywords: optical parametric amplification; non-linear wave mixing; micro-resonator; optimization

1. Introduction

Electromagnetic wave amplification by non-linear wave mixing has been studied for decades
with most of the research focusing on the field of non-linear optics. It has been well-established that a
low power input wave can be amplified via mixing with a high-intensity pump wave, in a medium
that demonstrates a high degree of non-linearity. The fundamental theory of intra-cavity non-linear
optical amplification is about the energy transfer from the pump wave-energized resonator to the input
wave as a consequence of non-linear optical coupling [1–3]. The more elaborate theory of non-linear
wave amplification involves a dispersion analysis that takes into account the frequency dependence of
the non-linearity of the interaction medium. However, based on our in-depth investigations, a direct
gain factor maximization approach via a non-linear constrained optimization algorithm is lacking.
The background research about the theory of non-linear wave mixing has been mostly experimental
rather than computational, especially for the purpose of optical amplification. The major reason of this
tendency is that this topic is usually studied in the micrometer- or nanometer-wavelength range, but
the required interaction medium length to observe a strong non-linear effect is in the millimeter or
centimeter range [4]. This requires a tremendous computational cost for acquiring meaningful results,
particularly for wave amplification purposes.
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Another incentive for the experimental investigation of the topic is the desire to discover new
materials that exhibit unusually high non-linearity under excitation. More recently, researchers focus
on determining the resonance frequencies of the non-linear electrical response of commonly used
materials in photonics such as graphene and gallium nitride. This approach has been mostly successful
and resulted in an improvement of efficiencies in many applications in photonics. However, for the
purpose of optical amplification, achieving a resonant non-linear optical response usually fails as
the dielectric absorption around any non-linear resonance peak is quite strong to prevent significant
amplification. Moreover, the well-established concept of optical parametric amplification yields a
negligible gain factor in a few micrometers-long resonator. The required interaction medium length for
high-gain optical parametric amplification is usually in the order of centimeters. Therefore, optical
amplification by non-linear wave mixing is not so feasible for utilization in micro-resonators, optical
transistors, micro-modulators, and many other device models in integrated photonics such as those
mentioned in [5,6]. However, if one can perform super-gain optical parametric amplification in
the micrometer scale, much more powerful macroscale devices can be produced for high-power
applications, by engineering the individual micro-scale devices to operate in an array form to maximize
optical interference, such as high-power welding machines and super-intensity lasers that are employed
in particle accelerators and fusion reactors. A major scientific advancement can be in the field of optical
antennas via supercontinuum generation for achieving ultra-wideband operation.

In this article, we have performed a numerical analysis that provides evidence for the high-gain
amplification of a low-power stimulus wave, via intense pump waves of ultrashort duration, inside
a several micrometers long micro-resonator, by maximizing the electric energy density of the pump
wave in the resonator.

Since the order of amplification that can be achieved via non-linear wave mixing depends on the
amount of stored electric energy density and the pump wave-initiated polarization density, which
acts as a non-linear coupling coefficient, we will first present the energy storage dynamics for a
resonator and we will recall the definitions of the electric polarization density and the gain factor of an
amplification process. Then we will present the basic background for wave propagation in non-linear
dispersive media and we will formulate our energy maximization (optimization) problem based on
the partial differential equations given to express wave propagation in non-linear dispersive media.
Finally, we will present two numerical experiments and analyze their results.

2. Polarization Density and the Cavity Quality (Q) Factor

The Q factor indicates the amount of the stored energy inside a resonator for a given round trip
loss. A high Q value usually signifies that the resonator is low loss, i.e., has a low loss factor, which
means that high energy can be trapped efficiently in the resonator. The Q factor depends on the
resonator length, the reflectivities of the resonator walls, the frequency of the propagating wave, the
total absorption coefficient of the interaction medium between the resonator walls, and any sort of
diffraction or scattering loss that may take place inside a resonator. The Q factor of a resonator is
defined as:

CAVITY QUALITY (Q)FACTOR = 2π
Stored energy

Energy dissipated per round trip
= f Trt

2π
ζ

=
4 f Lπ
ζc

. (1)

Trt : Round trip time, f : Wave f requency, ζ : Fractional power loss per round trip c : Speed o f light, L :
Cavity length

The electric energy density in a resonator depends on the magnitude of the electric field and the
polarizability of the interaction medium. For a given resonator configuration, the stored electric energy
density in a homogenous isotropic interaction medium is given as [7]:

We = Stored energy density =
1
2

ED =
1
2

E(ε∞E + P) =
1
2
ε∞E2 +

1
2

EP. (2)
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D : Electric f lux density, P : Polarization density, E : Electric f ield intensity, ε∞ :
Background (in f inite spectral band)permittivity

The electrical polarization density (P) in an interaction medium is a microscopic parameter that
indicates both the volume density of electrons and the displacement of an electron with respect to the
position of the nucleus [3]. For a given electron density of a medium, the more an electron is allowed to
displace from its initial position (and the nucleus) the higher the polarization density becomes. It is a
measure of the electrical excitability of a material by an incident electromagnetic wave [1]. Polarization
density is an important parameter for energy storage in a resonator as more energy can be stored in a
cavity with a highly polarizable interaction medium. This is because, as each electron displaces further
from the nucleus, their potential energy becomes higher, and an abundance of electrons in the medium
will lead to a higher potential energy being stored in the medium [4]. For a highly non-linear medium,
the polarization density itself depends on the magnitude of the electric field [1,4]. For these reasons,
we will frequently use the term polarization density in our analyses.

3. Wave Propagation in Non-Linear Dispersive Media

As previously stated, non-linear interaction takes place when a wave that propagates in a medium
have a very high intensity. This degree of non-linearity inducing high intensities is usually possible
with ultra-short duration pulses and can be practically generated from a mode locked laser or a
Q-switched laser, which have durations on the scale of picoseconds or femtoseconds. Since such
high-intensity pulses have ultra-short durations, we must perform a dispersion analysis.

Impulse response of the polarization density of many dielectric media last much longer in duration
than the pulse durations of such high intensity pulses [8,9].

The inclusion of dispersion in the analysis means that we need to solve for the polarization density
of the interaction medium separately. In fact, it is much more accurate to solve the wave equation in
parallel with the non-linear electron cloud motion equation for a non-linear dispersive medium, since
parameters such as the resonance frequency, damping rate, atom density, and atomic diameter have
typical values for most solid media, which makes the simulation results more realistic. To determine
the time variation of the electric field in a non-linear dispersive medium, we need to solve the following
equations (see Figure 1) [1]:

∇2E− μ0ε∞
∂2E
∂t2 = μ0σ

∂E
∂t

+ μ0
∂2P
∂t2 . (3)

∂2P
∂t2 + γ

∂P
∂t

+ω0
2P− ω0

2

Ned
P2 − ω0

2

N2e2d2 P3 =
Ne2

m
E. (4)

P : Polarization density , e : Electron charge, m : Electron mass, E : Electric f ield (V/m)

 

Figure 1. An interaction medium placed inside a cavity.
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In Equation (4) we have accounted up to the third order of the polarization density as higher
order terms are negligibly small. For a dielectric medium, the electric conductivity is almost zero
(σ ≈ 0). Some typical values for solid dielectric media are [1]; Resonance f requency : f0 = 1.1× 1015Hz,
Damping rate : γ = 1 × 109 Hz, Electron density : N = 3.5 × 1028/m3, Atomic diameter : d =

0.3 nanometer
Electromagnetic wave amplification by non-linear wave mixing involves two waves, namely the

low intensity stimulus (input) wave to be amplified, and the high-intensity pump wave. Let us first
consider the high-intensity pump wave E2 without the presence of the low intensity stimulus wave E1.
In this case, the pair of equations that model the propagation of E2 is given as:

∇2(E2) − μ0ε∞
∂2(E2)

∂t2 = μ0σ
∂(E2)

∂t
+ μ0

∂2P2

∂t2 . (5a)

∂2P2

∂t2 + γ
∂P2

∂t
+ω0

2(P2) − ω0
2

Ned
(P2)

2 − ω0
2

N2e2d2
(P2)

3 =
Ne2

m
(E2) (5b)

P2 : Polarization density due to the electric f ield E2, P1 : Polarization density due to the electric f ield E1

Now assume that E1 and E2 are simultaneously propagating in the same medium, in that case the
pair of equations that describe the total electric field propagation is written as:

∇2(E1 + E2) − μ0ε∞
∂2(E1 + E2)

∂t2 = μ0σ
∂(E1 + E2)

∂t
+ μ0

∂2(P1 + P2)

∂t2 . (6a)

∂2(P1+P2)

∂t2 + γ
∂(P1+P2)
∂t +ω0

2(P1 + P2) − ω0
2

Ned (P1 + P2)
2 − ω0

2

N2e2d2 (P1 + P2)
3

= Ne2

m (E1 + E2).
(6b)

Our aim is to solve for the low amplitude wave E1 in the presence of the high-amplitude wave E2,
i.e., we want to solve for the stimulus wave E1 when there is an energy coupling from E2. To model
this problem, we subtract Equation (5a,b) from Equation (6a,b) respectively [1], which yields:

∇2(E1) − μ0ε∞
∂2(E1)

∂t2 = μ0σ
∂(E1)

∂t
+ μ0

∂2(P1)

∂t2 . (7a)

∂2(P1)

∂t2 + γ
∂(P1)

∂t
+ω0

2(P1) − ω0
2

Ned

{
P1

2 + 2P1P2
}
− ω0

2

N2e2d2

{
P1

3 + 3P1
2P2 + 3P1P2

2
}
=

Ne2

m
(E1) (7b)

Equations (5a,b) and (7a,b) show that E2 and E1 are coupled to each other. The pump wave E2

acts as a source field distribution for electromagnetic wave propagation, with the stimulus wave E1

acting as the carrier distribution in reference to the model presented in [10]. Based on Equation (7a,b),
we will examine if it is feasible to amplify the low-intensity electric field E1, via energy coupling from
the microresonator that is energized by the high-intensity electric field E2(see Figure 2).

 
Figure 2. Concurrent propagation of the stimulus and the pump waves in a micro-resonator.
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From Equation (7a), we can see that the stimulus wave E1 has a source term P1, which is the
polarization density of the stimulus wave. The source term P1 is also dependent on the source term
(polarization density) of the high-intensity pump wave P2. This means that in order to solve for the
stimulus wave E1, we need to solve for the pump wave E2 as the equations for the stimulus wave and
the pump wave are coupled to each other via the coupling term P2. Therefore, the stimulus wave can
be solved by simultaneously solving all these four equations (Equations (5a,b) and (7a,b)).

Our goal is to maximize the stimulus wave magnitude at a given stimulus wave frequency;
max(

∣∣∣E1( fst = f ′)
∣∣∣). In order to achieve this, we will make a dispersion analysis that is based on the

high-intensity pump wave frequency. By sweeping the excitation frequency of the pump wave ( fp) in a
large spectral interval that extends from the far-infrared region to the near-ultraviolet region, we can
investigate the pump wave frequency dependent variation of the maximum stimulus wave magnitude
for fst = f ′, and we can select the optimal pump wave frequency value that maximizes the magnitude
of the stimulus wave for fst = f ′. Mathematically our optimization problem can be stated as:

Given that fmin < fp < fmax ; max
∣∣∣E1( fst = f ′)

∣∣∣ based on the f ollowing equations

∇2
(
E2
(

fp
))
− μ0ε∞

∂2
(
E2
(

fp
))

∂t2 = μ0σ
∂
(
E2
(

fp
))

∂t
+ μ0

∂2P2

∂t2 (8a)

∂2P2

∂t2 + γ
∂P2

∂t
+ω0

2(P2) − ω0
2

Ned
(P2)

2 − ω0
2

N2e2d2
(P2)

3 =
Ne2

m

(
E2
(

fp
))

(8b)

∇2
(
E1
(

fp
))
− μ0ε∞

∂2
(
E1
(

fp
))

∂t2 = μ0σ
∂
(
E1
(

fp
))

∂t
+ μ0

∂2(P1)

∂t2 (8c)

∂2(P1)

∂t2 + γ
∂(P1)
∂t +ω0

2(P1) − ω0
2

Ned

{
P1

2 + 2P1P2
}
− ω0

2

N2e2d2

{
P1

3 + 3P1
2P2 + 3P1P2

2
}

= Ne2

m

(
E1
(

fp
)) (8d)

where

E2
(
x = xinput, t

)
= Ap cos

(
2π fpt +ψp

)(
u(t) − u

(
t− ΔTp

))
V/m (u(t) : Unit step f unction)

E1
(
x = xinput, t

)
= Ast cos(2π fstt +ψst)(u(t) − u(t− ΔTst))

V
m

, Ap � Ast, ΔTp 	 ΔTst

If we are using N ultrashort high-intensity pulse excitations to amplify the low-intensity
stimulus wave,

E2
(
x = xinput, t

)
=

N∑
i=1

Ai cos(2π fit +ψi)(u(t) − u(t− ΔTi)) V/m (u(t) : Unit step f unction)

E1
(
x = xinput, t

)
= Ast cos(2π( fst)t +ψst)(u(t) − u(t− ΔTst)) V/m

where Ai � Ast, ΔTi 	 ΔTst, i = 1, 2, . . . , N

Then the dispersion analysis-based optimization problem is stated as follows:

fp =
{

f1 , f2 , . . . , fN
}

fmin =
{

fmin,1 , fmin,2 , . . . , fmin,N
}
, fmax =

{
fmax,1 , fmax,2 , . . . , fmax,N

}
Given that fmin < fp

< fmax ; max
∣∣∣E1( fst

= f ′)
∣∣∣ based on the f ollowing equations
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∇2
(
E2
(
fp

))
− μ0ε∞

∂2
(
E2
(
fp

))
∂t2 = μ0σ

∂
(
E2
(
fp

))
∂t

+ μ0
∂2P2

∂t2 (9a)

∂2P2

∂t2 + γ
∂P2

∂t
+ω0

2(P2) − ω0
2

Ned
(P2)

2 − ω0
2

N2e2d2
(P2)

3 =
Ne2

m

(
E2
(
fp

))
(9b)

∇2
(
E1
(
fp

))
− μ0ε∞

∂2
(
E1
(
fp

))
∂t2 = μ0σ

∂
(
E1
(
fp

))
∂t

+ μ0
∂2(P1)

∂t2 (9c)

∂2(P1)

∂t2 + γ
∂(P1)
∂t +ω0

2(P1) − ω0
2

Ned

{
P1

2 + 2P1P2
}
− ω0

2

N2e2d2

{
P1

3 + 3P1
2P2 + 3P1P2

2
}

= Ne2

m

(
E1
(
fp

)) (9d)

Note that in this case the pump wave comprises N ultrashort pulses instead of a single ultrashort
pulse. Therefore, we have a multiparameter optimization problem.

The physics behind the efficient amplification of the stimulus wave involves the simultaneous
maximization of the stored electric energy density and the polarization density originated by the pump
wave in the resonator (see Figure 3). This can be explained in two steps, first we need to maximize the
stored energy in the cavity in order to transfer a high amount of energy to the stimulus wave. Second,
we need to maximize the polarization density of the pump wave, which acts as the energy coupling
coefficient based on Equation (7b).

Figure 3. Configuration of the cavity.

Even if we maximize the stored electric energy density in a resonator, if the non-linear coupling
coefficient P2 is not high, then we cannot efficiently transfer the accumulated energy into the stimulus
wave and high-gain amplification of the stimulus wave does not occur.

In order to perform the optimization of the stimulus wave magnitude at a given stimulus wave
frequency

(
max

∣∣∣E1( fst = f ′)
∣∣∣), we need an efficient optimization algorithm. In the next section, we will

use the computationally efficient quasi-Newton Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm
to perform the maximization of the stimulus wave magnitude at a desired frequency.

4. Optimization of Optical Parametric Amplification Gain Factor in a Micro-Resonator

Assume that we are using N ultrashort high power pulses to amplify the stimulus wave. These
ultrashort pulses have similar pulse energies so that each of them affects the amplification performance
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in the same degree. The ultrashort high-power pulses are summed up to form the pump wave. At a
given spatial input point, the pump wave and the stimulus wave are given as:

Ep
(
x = xinput, t

)
=

N∑
i=1

Ai cos(2πνit +ψi)(u(t) − u(t− ΔTi)) V

/m (u(t) : Unit step f unction)

Est
(
x = xinput, t

)
= Ast cos(2π(νst)t +ψst)(u(t) − u(t− ΔTst)) V/m

where Ai � Ast, ΔTi 	 ΔTst, i = 1, 2, . . . , N

We want to tune the frequencies (ν1, ν2, . . . , νN) of these ultrashort pulses so that the gain factor
is maximized. In order to do that, we use the BFGS algorithm, so that the Hessian matrix of each
iteration is recursively updated. The BFGS algorithm is one of the quasi-Newton methods that are
used to compute the Hessian matrix. Recursive computation reduces the computational cost of the
optimization by eliminating the need to compute the second derivative at each iteration. We will use
the BFGS algorithm because of its accuracy and simplicity. The most general form of the quasi-Newton
method is given as [11]:

x(k) = x(k−1) − αk
(
H(k−1)

)−1
(∇ f

(
x(k−1)

)
, k = 1, 2, 3, . . . (10)

f
(
x(k−1)

)
: Cost f unction, x(k) : Optimization parameters, H(k−1) : Hessian matrix, αk : Step size

Quasi-Newton methods, like steepest descent, require only the gradient of the objective function
to be supplied at each iteration. The Hessian is updated by analyzing successive gradient vectors. The
whole BFGS algorithm is as described below [11].

Given a starting point x0, convergence tolerance ε > 0, inverse Hessian approximation H0;
k← 0;

while ∇ fk > ε;
Compute search direction

pk = − Hk ∇ fk;
Set xk+1 = xk + αk pk, where αk is computed from a line search procedure to satisfy the Wolfe conditions.
Define sk = xk+1− xk and yk = ∇ fk+1− ∇ fk;
Compute Hk+1 using;
Hk+1 =

(
I − ρkskyk

T
)
Hk

(
I − ρkyksk

T
)
+ ρksksk

T (BFGS)
Where ρk =

1
yk

Tsk

k← k + 1;
end (while)

The step size αk can be computed from a line search procedure to satisfy the Wolfe conditions:

f (xk+ αk pk) ≤ f (xk)+ c1 αk∇ fkTpk (11)∣∣∣∣∇ f (xk + αk pk)
Tpk

∣∣∣∣ ≤ c2
∣∣∣∇ fkTpk

∣∣∣0 <c1 < c2 < 1 (12)

Alternatively, the step size αk can be computed from the so-called backtracking approach [11]:
Choose α > 0, ρ ε (0, 1), c ε (0, 1)

repeat until f (xk+ α pk) ≤ f (xk)+ cα∇ fkTpk
α← ρα
end

Since our problem is the amplification of a stimulus (input) wave via non-linear wave mixing
with a high-power pump wave, for this problem, the optimization parameters are the frequencies of
the N ultrashort pulses ν1, ν2, . . . , νN that constitute the total pump wave. Assume that E1 is the low
power stimulus wave to be amplified, and E2 is the high-power pump wave, which is the combination
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of N ultrashort pulses. The general formulation for the maximization of the stimulus wave magnitude
(gain factor) is summarized as follows:

Optimization parameters: ν = [ν1, ν2, . . . , νN], Cost function to be maximized: f =
∣∣∣E1(ν)

∣∣∣
Constraints: g1(ν) ≤ c1, g2(ν) ≤ c2, . . . , gN(ν) ≤ cN

Equations:

∇2(E2(ν)) − μ0ε∞
∂2(E2(ν))

∂t2 = μ0σ
∂(E2(ν))

∂t
+ μ0

d2P2

∂t2 (13)

d2P2

dt2 + γ
dP2

dt
+ω0

2P2 − ω0
2P2

2

Ned
− ω0

2P2
3

N2e2d2 =
Ne2(E2(ν))

m
(14)

∇2(E1(ν)) − μ0ε∞
∂2(E1(ν))

∂t2 = μ0σ
∂(E1(ν))

∂t
+ μ0

d2(P1)

∂t2 (15)

d2(P1)

dt2 + γ
d(P1)

dt
+ω0

2(P1) − ω0
2(P1

2 + 2P1P2)

Ned
− ω0

2(P1
3 + 3P1

2P2 + 3P1P2
2)

N2e2d2 =
Ne2(E1(ν))

m
(16)

This problem is a constrained optimization problem, we can convert this problem into an
unconstrained optimization problem by modifying the cost function via the addition of penalty
functions. In the case of a maximization problem, these penalty functions yield a decrease in the cost
function when the constraints are violated. In our case, the penalty for violating the constraints is
adjusted to yield a quadratic decrease:

Augmented cost function: (penalty function method)

f =
∣∣∣E1(ν)

∣∣∣− L
{∑N

i=1
δi(gi(ν) − ci)

}q
, δi =

{
0 i f gi(ν) ≤ ci
> 0 i f gi(ν) > ci

}
(17)

q: positive valued penalty exponent, L: Positive valued penalty constant, δi: penalty coefficients
Optimization process:

νk+1 = νk + αkpk

pk = −Hk∇fk

sk = νk+1−νk

yk =∇fk+1−∇fk

Hk+1 =
(
I− ρkskyk

T
)
Hk

(
I− ρkyksk

T
)
+ ρksksk

T (BFGS)

∇f =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f (ν1+ε,ν2,...,νN)− f (ν1,ν2,...,νN)
ε

f (ν1,ν2+ε,...,νN)− f (ν1,ν2,...,νN)
ε
.
.
.

f (ν1,ν2,...,νN+ε)− f (ν1,ν2,...,νN)
ε

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, ρk =

1
yk

Tsk

The convergence rate of the BFGS algorithm is super-linear, but our formulated problem is
a non-linear optimization problem (non-linear programming). Therefore, the convergence is not
reached immediately. Furthermore, the recursive computation of the Hessian matrix slows down the
convergence rate. For these reasons, the computation of the optimum frequency values takes a great
amount of time.

5. Finite-Difference Time-Domain Solution of the Gain Factor Optimization Problem in Optical
Parametric Amplification

Equations (5a,b) and (7a,b) can be discretized using the finite-difference time-domain (FDTD)
method as stated in Equations (18a,b) and (18c,d), for every iteration k of our optimization problem.
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Our initial goal is to discretize Equation (5a,b) in order to get E2,k(i, j + 1) i.e., the value of E2,k at a
certain spatial coordinate at the next time step. Since E2,k and P2,k are coupled to each other, initially we
attempt to solve for P2,k(i, j + 1) and then substitute its value into the wave equation for E2,k(i, j + 1).
These two equations are solved recursively for every time step and for all spatial points in a given
one-dimensional solution domain. In order to increase the accuracy of our obtained solution, we
should select Δt and Δx as small as we can [12,13]. Then we may proceed on the discretization of
Equation (7a,b) and substitute the previously obtained value of P2,k(i, j) from Equation (5a,b), for the
solution of E1,k(i, j + 1) in Equation (7a,b). Finally, we update the values of the optimization parameters
based on the BFGS algorithm, and we repeat the entire procedure for every iteration of the optimization
process until the desired gain factor is achieved (see Figure 4).

Figure 4. Flowchart diagram of Broyden–Fletcher–Goldfarb–Shanno (BFGS)-based non-linear
programming integrated in finite-difference time-domain (FDTD) analysis.

FDTD Equations:

E2,k(i+1, j)−2E2,k(i, j)+E2,k(i−1, j)
Δx2 − μ0ε∞(i, j)

E2,k(i, j+1)−2E2,k(i, j)+E2,k(i, j−1)
Δt2 =

μ0σ(i, j)
E2,k(i, j)−E2,k(i, j−1)

Δt + μ0
P2,k(i, j+1)−2P2,k(i, j)+P2,k(i, j−1)

Δt2

(18a)

P2,k(i, j+1)−2P2,k(i, j)+P2,k(i, j−1)
Δt2 + γ

P2,k(i, j)−P2,k(i, j−1)
Δt + 4π2 f02

(
P2,k(i, j)

)
−

4π2 f02

Ned

(
P2,k(i, j)

)2 − 4π2 f02

N2e2d2

(
P2,k(i, j)

)3
= Ne2

m

(
E2,k(i, j)

)
.

(18b)

E1,k(i+1, j)−2E1,k(i, j)+E1,k(i−1, j)
Δx2 − μ0ε∞(i, j)

E1,k(i, j+1)−2E1,k(i, j)+E1,k(i, j−1)
Δt2 =

μ0σ(i, j)
E1,k(i, j)−E1,k(i, j−1)

Δt + μ0
P1,k(i, j+1)−2P1,k(i, j)+P1,k(i, j−1)

Δt2

(18c)

P1,k(i, j+1)−2P1,k(i, j)+P1,k(i, j−1)
Δt2 + γ

P1,k(i, j)−P1,k(i, j−1)
Δt + 4π2 f02

(
P1,k(i, j)

)
− 4π2 f02

Ned

{(
P1,k(i, j)

)2
+ 2P1,k(i, j)P2,k(i, j)

}
− 4π2 f02

N2e2d2

{(
P1,k(i, j)

)3
+3

(
P1,k(i, j)

)2
P2,k(i, j) + 3P1,k(i, j)

(
P2,k(i, j)

)2}
= Ne2

m

(
E1,k(i, j)

)
.

(18d)

x: spatial coordinate, t: time, k: iteration number, Ek(x, t) = Ek(iΔx, jΔt) → Ek(i, j) E2,k :
High intensity pump wave at iteration k, E1,k : Stimulus wave at iteration k

Constraints

b1(ν) = a1g1(ν) ≤ c1

b2(ν) = a2 g2(ν) ≤ c2

bN(ν) = aN gN(ν) ≤ cN

Cost function:
∣∣∣E1(ν)

∣∣∣
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Augmented cost function: (penalty function method)

f =
∣∣∣E1(ν)

∣∣∣+ L1

⎧⎪⎪⎨⎪⎪⎩
N∑

i=1

δi(gi(ν) − ci)
2

⎫⎪⎪⎬⎪⎪⎭+ L2

⎧⎪⎪⎪⎨⎪⎪⎪⎩
M∑

j=1

ζ j
(
bj(ν) − aj

)2⎫⎪⎪⎪⎬⎪⎪⎪⎭
δi =

{
0 i f gi(ν) ≤ ci
> 0 i f gi(ν) > ci

}

Iterations:
νk+1 = νk + αkpk

pk = −Hk∇fk

sk = xk+1−xk

yk =∇fk+1−∇fk

Hk+1 =
(
I− ρkskyk

T
)
Hk

(
I− ρkyksk

T
)
+ ρksksk

T (BFGS)

ρk =
1

yk
Tsk

Wolfe conditions for αk: f (xk+ αk pk) ≤ f (xk)+ c1 αk∇ fkTpk∣∣∣∣∇ f (xk + αk pk)
Tpk

∣∣∣∣ ≤ c2
∣∣∣∇ fkTpk

∣∣∣ 0 < c1 < c2 < 1

6. Numerical Experiments

6.1. Double-Frequency Tuning for Gain Factor Optimization

Assume that a 250 THz (λ f ree space = 1.2 μm) infra-red stimulus wave Est and a high power pump
wave Ehp that is composed of two high-intensity ultrashort pulses (frequencies are to be determined)
are propagating inside a low-loss (high Q) cavity that has two reflecting walls (see Figure 5). The wall
on the left side can be thought as an optical isolator, which fully transmits from its left side and almost
fully reflects from its right side. The wall on the right side represents an optical band-pass filter with a
frequency-dependent reflection coefficient Γ( f ). Both waves are generated at x = 0 μm, at the time
instant t = 0 s. The waves and the parameters of the gain medium are as given below:

Ehp(x = 0μm, t) =
∑2

i=1
Ai cos(2π fit +ψi)(u(t) − u(t− ΔTi)) (u(t) : Unit step f unction)

Where A1 = 2× 108, A2 = 1.5× 108, ψ1 = 0, ψ2 = 0, ΔT1 = 0.5ps, ΔT2 = 1ps

Est(x = 0μm, t) = 1× sin
(
2π
(
2.5× 1014

)
t
)

V/m, f or 0 ≤ t ≤ 10ps

Dielectric constant o f the gain medium = ε∞ = 1 + χ = 12 (μr = 1)

Resonance f requency o f the gain medium : f0 = 500THz

Damping coe f f icient o f the gain medium : γ = 1× 109Hz

Time interval and duration o f simulation : 0 ≤ t ≤ 10ps

Spatial range o f the gain medium : 0μm < x < 10μm

Right cavity wall location : x = 10μm; Le f t cavity wall location : x = 0μm

Electron density o f the gain medium : N = 3.5× 1028/m3; Atomic diameter : d = 0.3 nm
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Figure 5. Configuration of the cavity and the parameters for Section 6.1.

Our problem: find the optimal pump wave pulse frequencies fp1, fp2 that maximize the magnitude
of the monochromatic stimulus wave in the cavity (

∣∣∣Est( fst = 250 THz)
∣∣∣), for 10 THz <

{
fp1, fp2

}
<

1000THz (THz to UV), and for 0μm < x < 10μm, 0 ≤ t ≤ 10ps, such that

∇2Ehp
(

fp1, fp2
)
− μ0ε∞

∂2Ehp
(

fp1, fp2
)

∂t2 = μ0σ
∂Ehp

(
fp1, fp2

)
∂t

+ μ0
∂2Php

∂t2

∂2Php

∂t2 + γ
∂Php

∂t
+ω0

2
(
Php

)
− ω0

2

Ned

(
Php

)2 − ω0
2

N2e2d2

(
Php

)3
=

Ne2

m
Ehp

(
fp1, fp2

)
.

∇2Est
(

fp1, fp2
)
− μ0ε∞

∂2Est
(

fp1, fp2
)

∂t2 = μ0σ
∂Est

(
fp1, fp2

)
∂t

+ μ0
∂2Pst

∂t2

∂2(Pst)

∂t2 + γ
∂(Pst)
∂t +ω0

2(Pst) − ω0
2

Ned

{
Pst

2 + 2PstPhp
}
− ω0

2

N2e2d2

{
Pst

3 + 3Pst
2Php + 3PstPhp

2
}

= Ne2

m Est
(

fp1, fp2
)

Our aim is to maximize the magnitude of the stimulus wave at its original frequency fst = 250THz
(monochromatic form). This is a precaution against any degree of spectral broadening that the stimulus
wave may go through while being amplified. Therefore, our cost function is chosen as (at any spatial
point x = x′ inside the cavity):

Q =
∣∣∣Est( fst = 250THz)

∣∣∣
=

∣∣∣∣∣∫ 2.5×1014+Δ f
2.5×1014−Δ f

{∫ ΔT
0 {Est(x = x′, t)e−i(2πΩ)t}dt

}
ei(2πΩ)tdΩ

∣∣∣∣∣
where ΔT = 10ps, 0 ≤ t ≤ 10ps,

(
2.5× 1014 − Δ f

)
< Ω <

(
2.5× 1014 + Δ f

)
, Δ f = 1THz

Initial conditions:

Php(x, 0) = Php
′(x, 0) = Ehp(x, 0) = Ehp

′(x, 0) = Pst(x, 0) = Pst
′(x, 0) = Est(x, 0) = Est

′(x, 0) = 0

Boundary and excitation conditions:

Ehp(x = 0 μm, t) =
2∑

i=1

Ai cos(2π fit +ψi)(u(t) − u(t− ΔTi))
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where A1 = 2× 1014, A2 = 1.5× 1014, ψ1 = 0, ψ2 = 0, ΔT1 = 0.5ns, ΔT2 = 1ns

Est(x = 0μm, t) = 1×
sin

(
2π
(
2.5× 1014

)
t
)

V

m
, f or 0 ≤ t ≤ 10ps

Ehp(x = 15μm, t) = Est(x = 15μm, t) = 0 f or 0 < t < 10ps

Absorbing boundary condition (perfectly matched layer):

σ(x) =
{
(x− (L− Δ))σ0 , (L− Δ) ≤ x < L

}
, f or L = 15μm, Δ = 2.5μm, σ0 = 4.5× 108S/m

Optical isolator condition: full reflection at x = 0μm

Γ(x = 0μm, t) = 1 (Re f lection coe f f icient is equal to 1)

Optical bandpass filter condition: frequency dependent reflection at x = 10μm

∣∣∣Γ( f ′)
∣∣∣ = 1− e

−( ( f ′−250THz)√
2THz

)
2

Cost function to be maximized:

Q
(

fp1, fp2
)
=
∣∣∣Est( fst = 250THz)

∣∣∣− δ1
(

fp1 − fmax
)2 − δ2

(
fmin − fp1

)2 − δ3
(

fp2 − fmax
)2 − δ4

(
fmin − fp2

)2
where

δ1 =

⎧⎪⎪⎨⎪⎪⎩ 0 i f fp1 ≤ fmax
|Est( fst=250THz)|

1027 i f fp1 > fmax

⎫⎪⎪⎬⎪⎪⎭, δ2 =

⎧⎪⎪⎨⎪⎪⎩ 0 i f fp1 ≥ fmin|Est( fst=250THz)|
1027 i f fp1 < fmin

⎫⎪⎪⎬⎪⎪⎭
δ3 =

⎧⎪⎪⎨⎪⎪⎩ 0 i f fp2 ≤ fmax
|Est( fst=250THz)|

1027 i f fp2 > fmax

⎫⎪⎪⎬⎪⎪⎭, δ4 =

⎧⎪⎪⎨⎪⎪⎩ 0 i f fp2 ≥ fmin|Est( fst=250THz)|
1027 i f fp2 < fmin

⎫⎪⎪⎬⎪⎪⎭
Optimization algorithm (BFGS):

Set H1 =

[
1 0
0 1

]
, fp1,0 = 100THz, fp1,1 = 102THz,

fp2,0 = 100THz, fp2,1 = 103THz, α1 = 0.5

∇Qk =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
Q( fp1,k, fp2,k)−Q( fp1,k−1, fp2,k)

fp1,k− fp1,k−1
Q( fp1,k, fp2,k)−Q( fp1,k, fp2,k−1)

fp2,k− fp2,k−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
pk = − Hk∇Qk

fp, k+1 = fp,k + αkpk, fp,k =

[
fp1,k
fp2,k

]

sk = fp,k+1−fp,k

∇Qk+1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
Q( fp1,k+1, fp2,k)−Q( fp1,k, fp2,k)

fp1,k+1− fp1,k
Q( fp1,k, fp2,k+1)−Q( fp1,k, fp2,k)

fp2,k+1− fp2,k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
yk =∇Qk+1−∇Qk
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ρk =
1

yk
Tsk

Hk+1 =
(
I− ρkskyk

T
)
Hk

(
I− ρkyksk

T
)
+ ρksksk

T (BFGS)

I : Identity matrix

In order to satisfy the Wolfe conditions, the step size at each iteration is chosen as:

αk = C
( log | Q(fp,k)

Q(fp,k)−Q(fp,k−1)
| ) / ( | Q(fp,k)

Q(fp,k)−Q(fp,k−1)
| )

(19)

where C is just a constant (1 < C < 1.5) and αk is the step size at iteration k. This formula (Equation
(19)) was determined by trial and error and was found to satisfy Wolfe’s conditions automatically
at each iteration. This saves us from the huge computational cost of running another iteration loop
to determine the step size at each iteration of the optimization process. In this simulation C = 1.445.
Based on the above formulations, the maximum stimulus wave amplitude that has been reached in the
cavity (for 0 < t < 10 ps) is determined as Gainmax =

∣∣∣Est( fst = 250THz)
∣∣∣
max = 4.67× 108V/m, which

corresponds to the frequencies fp1 = 387.2 THz, fp2 = 319.4 THz (see Table 1), or to the free space
wavelengths λp1 = 0.939 μm,λp2 = 0.775 μm as the ultrashort pulses can be practically generated
outside the resonator. In this simulation, the gain factor of the amplification is defined as:

Gainmax =
∣∣∣Est( fst = 250THz)

∣∣∣
max

=
Amplitude o f the stimulus wave at t=tmax f or x=x′

Amplitude o f the stimulus wave at t=0 f or x=x′ .

where x′ is chosen as an intra-cavity point (x′ = 5.73μm) and tmax = 10 picoseconds.

We,p = Stored electric energy density via pump wave =
1
2
ε∞Epump

2 +
1
2

EpumpPpump.
(

Joules
m3

)

Ppump : Polarization density created by the pump wave
(

Coulomb
m2

)
, Epump : Pump wave electric f ield intensity

ε∞ : Background (in f inite spectral band)permittivity

Table 1. BFGS algorithm-based optimization process.

fp1 fp2 Gainmax We,p (
J

m3 ) Ppump(
C

m2 ) k (Iteration #)

100 THz 100 THz 0.84 1.29 × 107 0.08 1
107.2 THz 115.7 THz 6.23 1.80 × 107 0.09 4
154.9 THz 156.6 THz 4.44 3.36 × 107 0.08 7
218.6 THz 199.5 THz 313.52 4.48 × 107 0.10 10
198.3 THz 214.5 THz 37.16 1.67 × 107 0.10 13
229.5 THz 243.0 THz 240.58 5.97 × 107 0.09 16
263.1 THz 227.2 THz 646.72 5.54 × 107 0.10 19
322.7 THz 278.9 THz 1.57 × 103 6.12 × 107 0.12 22
396.0 THz 299.8 THz 4.28 × 104 9.39 × 108 0.15 25
391.6 THz 293.4 THz 9.16 × 104 1.76 × 108 0.16 28
380.7 THz 311.7 THz 3.85 × 105 1.26 × 108 0.20 30
383.4 THz 317.2 THz 8.11 × 104 6.40 × 107 0.20 32
386.0 THz 318.4 THz 6.32 × 106 2.89 × 108 0.23 34
386.8 THz 318.8 THz 9.79 × 107 2.63 × 108 0.27 36
387.2 THz 319.3 THz 3.96 × 108 2.51 × 108 0.29 38
387.2 THz 319.4 THz 4.67 × 108 2.95 × 108 0.29 39
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As we can see from Table 1, the optimal ultrashort pulse frequencies correspond to very high
stored electric energy density and high polarization density. The stored electric energy density and the
polarization density must be simultaneously high for a significant stimulus wave amplification. The
stored electric energy density indicates the achievable order of stimulus wave amplification [14,15],
and the polarization density acts as a coupling coefficient, which is a measure of how much stored
electric energy can be coupled to the stimulus wave.

The time variation of the spectrally broadened (polychromatic) stimulus wave between t = 6.6
picoseconds and t = 10 picoseconds is shown in Figure 6. From the figure, we can see that the
polychromatic stimulus wave reaches an amplitude of approximately 8× 108 V/m.

 

Figure 6. Stimulus wave amplification (in polychromatic form) inside the cavity at x = 5.73 μm.

6.2. Triple-Frequency Tuning for Gain Factor Optimization

Assume that a 300 THz (λ f ree space =1 μm) infra-red stimulus wave Est and a high-power pump
wave Ehp that is composed of three ultrashort pulses (frequencies are to be determined), are generated
to propagate in a micro-resonator with two reflecting walls. The wall on the left side can be thought as
an optical isolator, which fully transmits from its left side and almost fully reflects from its right side.
The wall on the right side represents an optical band-pass filter with a frequency-dependent reflection
coefficient Γ( f )(see Figure 7). Both waves are generated at x = 0 μm and at the time instant t = 0 ps.
The waves and the parameters of the gain medium are as given below:

Ehp(x = 0μm, t) =
∑3

i=1
Ai cos(2π fit +ψi)(u(t) − u(t− ΔTi))(u(t) : Unit step f unction)

where A1 = 1.5× 108, A2 = 2× 108, A3 = 2.5× 108, ΔT1 = 4ps, ΔT2 = 2ps, ΔT2 = 1ps

Est(x = 0μm, t) = 1× sin
(
2π
(
3× 1014

)
t
)

V/m, f or 0 ≤ t ≤ 40ps

Dielectric constant o f the gain medium = ε∞ = 1 + χ = 10 (μr = 1)

Resonance f requency o f the gain medium : f0 = 600THz

Damping rate o f the gain medium : γ = 1× 1010Hz

Duration o f simulation : 0 ≤ t ≤ 40ps; Range o f the gain medium : 0μm < x < 10μm

Right cavity wall location : x = 10μm; Le f t cavity wall location : x = 0μm

Electron density o f the medium : N = 3.5× 1028/m3; Atomic diameter : d = 0.3 nm
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Figure 7. Configuration of the cavity and the parameters for Section 6.2.

Our problem: Find the optimal pump wave pulse frequencies fp1, fp2, fp3 that maximize the
magnitude of the monochromatic stimulus wave in the cavity (

∣∣∣Est( fst = 300THz)
∣∣∣), for 50 THz

<
{

fp1, fp2, fp3
}
< 500 THz, 0μm < x < 10μm, 0 ≤ t ≤ 40 ps, such that

∇2Ehp
(

fp1, fp2, fp3
)
− μ0ε∞

∂2Ehp
(

fp1, fp2, fp3
)

∂t2 = μ0σ
∂Ehp

(
fp1, fp2, fp3

)
∂t

+ μ0
∂2Php

∂t2

∂2Php

∂t2 + γ
∂Php

∂t
+ω0

2
(
Php

)
− ω0

2

Ned

(
Php

)2 − ω0
2

N2e2d2

(
Php

)3
=

Ne2

m
Ehp

(
fp1, fp2, fp3

)
.

∇2Est
(

fp1, fp2, fp3
)
− μ0ε∞

∂2Est
(

fp1, fp2, fp3
)

∂t2 = μ0σ
∂Est

(
fp1, fp2, fp3

)
∂t

+ μ0
∂2Pst

∂t2

∂2(Pst)

∂t2 + γ
∂(Pst)
∂t +ω0

2(Pst) − ω0
2

Ned

{
Pst

2 + 2PstPhp
}
− ω0

2

N2e2d2

{
Pst

3 + 3Pst
2Php + 3PstPhp

2
}

= Ne2

m Est
(

fp1, fp2, fp3
)

It is important to emphasize that our aim is to maximize the magnitude of the stimulus wave at
its original frequency fst = 300 THz (monochromatic form). This is a precaution against any degree of
spectral broadening that the stimulus wave may go through while being amplified. A plain attempt to
maximize the magnitude of the stimulus wave (|Est|) independent of the original excitation frequency
( fst), may result in an amplified stimulus wave with different frequency components. In fact, these
different frequency components might be even much more dominant than the original excitation
frequency of the stimulus wave. Therefore, our cost function is chosen as (at any spatial point x = x′)

Q =
∣∣∣Est( fst = 300THz)

∣∣∣
=

∣∣∣∣∣∫ 3×1014+Δ f
3×1014−Δ f

{∫ ΔT
0 {Est(x = x′, t)e−i(2πΩ)t}dt

}
ei(2πΩ)tdΩ

∣∣∣∣∣
where ΔT = 40ps, 0 ≤ t ≤ 40ps,

(
3× 1014 − Δ f

)
< Ω <

(
3× 1014 + Δ f

)
, Δ f = 0.5THz

Initial conditions:

Php(x, 0) = Php
′(x, 0) = Ehp(x, 0) = Ehp

′(x, 0) = Pst(x, 0) = Pst
′(x, 0) = Est(x, 0) = Est

′(x, 0) = 0
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Boundary and excitation conditions:

Ehp(x = 0μm, t) =
3∑

i=1

Ai cos(2π fit +ψi)(u(t) − u(t− ΔTi))

where A1 = 1.5× 108, A2 = 2× 108, A3 = 2.5× 108, ΔT1 = 4ps, ΔT2 = 2ps, ΔT2 = 1ps

Est(x = 0μm, t) = 1× sin(2π(3×1014)t) V
m , f or 0 ≤ t

≤ 40ps, Ehp(x = 15μm, t) = Est(x = 15μm, t) = 0 f or 0 < t
< 40ps

Absorbing boundary condition (perfectly matched layer):

σ(x) =
{
(x− (L− Δ))σ0 , (L− Δ) ≤ x < L

}
, f or L = 15μm, Δ = 2.5μm, σ0 = 4.5× 108S/m

Optical isolator condition: full reflection at x = 0μm; Γ(x = 0μm, t) =

1(Re f lection coe f f icient = 1)
Optical bandpass filter condition: frequency-dependent reflection at x = 10μm;

∣∣∣Γ( f ′)
∣∣∣ = 1− e

−( ( f ′−300THz)√
2THz

)
2

, f or x = 10μm, 0 < t < 40ps

Augmented cost function to be maximized:

Q
(

fp1, fp2, fp3
)

=
∣∣∣Est( fst = 300THz)

∣∣∣
− 3∑

i=1

{
δi,1

(
fp,i − fmax

)2
+ δi,2

(
fmin − fp,i

)2}

δi,1 =

⎧⎪⎪⎨⎪⎪⎩ 0 i f fp,i ≤ fmax
|Est( fst=300THz)|

1027 i f fp,i > fmax

⎫⎪⎪⎬⎪⎪⎭, δi,2 =

⎧⎪⎪⎨⎪⎪⎩ 0 i f fp,i ≥ fmin|Est( fst=300THz)|
1027 i f fp,i < fmin

⎫⎪⎪⎬⎪⎪⎭
Optimization algorithm (BFGS):

Set H1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0 0
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦, fp1,0 = 200THz, fp1,1 = 205THz

fp2,0 = 150THz, fp2,1 = 153THz, fp3,0 = 100THz, fp3,1 = 102THz, α1 = 0.5

∇Qk =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q( fp1,k, fp2,k, fp3,k)−Q( fp1,k−1, fp2,k, fp3,k)
fp1,k− fp1,k−1

Q( fp1,k, fp2,k, fp3,k)−Q( fp1,k, fp2,k−1, fp3,k)
fp2,k− fp2,k−1

Q( fp1,k, fp2,k, fp3,k)−Q( fp1,k, fp2,k, fp3,k−1)
fp3,k− fp3,k−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

pk = − Hk∇Qk, fp, k+1 = fp,k + αkpk, fp,k =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
fp1,k
fp2,k
fp3,k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦, sk = fp,k+1−fp,k

∇Qk+1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q( fp1,k+1, fp2,k, fp3,k)−Q( fp1,k, fp2,k, fp3,k)
fp1,k+1− fp1,k

Q( fp1,k, fp2,k+1, fp3,k)−Q( fp1,k, fp2,k, fp3,k)
fp2,k+1− fp2,k

Q( fp1,k, fp2, fp3,k+1)−Q( fp1,k, fp2,k, fp3,k)
fp3,k+1− fp3,k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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yk =∇Qk+1−∇Qk ρk =
1

yk
Tsk

BFGS update Hk+1 =
(
I− ρkskyk

T
)
Hk

(
I− ρkyksk

T
)
+ ρksksk

T

I : Identity matrix

In order to satisfy the Wolfe conditions, the step size at each iteration is chosen as:

αk = C
( log | Q(fp,k)

Q(fp,k)−Q(fp,k−1)
| ) / ( | Q(fp,k)

Q(fp,k)−Q(fp,k−1)
| )

where C is just a constant (1 < C < 1.5) and αk is the step size at iteration k. In this simulation C = 1.45.
Based on the above formulations, the maximum stimulus wave amplitude that has been reached in the
cavity (for 0 < t < 40 ps) is determined as Gainmax =

∣∣∣Est( fst = 300THz)
∣∣∣
max = 6.34× 108V/m, which

corresponds to the frequencies fp1 = 290.8THz, fp2 = 410.6THz, fp3 = 209.7THz (see Table 2), or to the
free-space wavelengths λp1 = 1.032μm,λp2 = 0.731μm,λp3 = 1.431μm as the ultrashort pulses can be
practically generated outside the resonator. In this simulation, the gain factor of the amplification is
defined as:

Gainmax =
∣∣∣Est( fst = 300THz)

∣∣∣
max

=
Amplitude o f the stimulus wave at t=tmax f or x=x′

Amplitude o f the stimulus wave at t=0 f or x=x′

where x′ is chosen as an intra-cavity point (x′ = 5μm) and tmax = 40picoseconds.

We,p = Stored electric energy density via pump wave =
1
2
ε∞Epump

2 +
1
2

EpumpPpump.
(

Joules
m3

)

Ppump : Polarization density created by the pump wave
(

Coulomb
m2

)

Epump : Pump wave electric f ield intensity, ε∞ : Background permittivity

Table 2. BFGS algorithm-based optimization process.

Gainmax fp1 fp2 fp3 We,p (
J

m3 ) Ppump(
C

m2 ) k (Iteration #)

2.84 200 THz 150 THz 100 THz 1.41 × 107 0.07 1
5.47 205 THz 153Hz 102 THz 1.32 × 107 0.09 2
4.43 216.2 THz 165.4 THz 115.1 THz 2.13 × 107 0.06 5
9.28 239.5 THz 189.8 THz 133.5 THz 3.76 × 107 0.08 8
57.78 297.2 THz 228.3 THz 168.8 THz 6.61 × 107 0.09 11
129.51 296.0 THz 344.1 THz 159.2 THz 6.18 × 107 0.10 14
396.63 284.1 THz 392.0 THz 202.5 THz 7.98 × 107 0.10 17
3049.7 287.6 THz 399.3 THz 204.6 THz 8.53 × 107 0.12 20

4.2 × 104 289.6 THz 403.4 THz 206.1 THz 1.07 × 108 0.17 23
7.6 × 105 290.7 THz 408.7 THz 208.9 THz 1.72 × 108 0.19 26
1.4 × 107 291.9 THz 410.2 THz 209.4 THz 1.49 × 108 0.23 31
2.9 × 108 291.1 THz 410.8 THz 209.9 THz 2.36 × 108 0.22 34
6.3 × 108 290.8 THz 410.6 THz 209.7 THz 2.94 × 108 0.23 36

As we can see from Table 2, the optimal ultrashort pulse frequencies correspond to a very high
stored electric energy density and a high polarization density. If we have a look at Table 2, we can see
that the stored electric energy density and the polarization density must be simultaneously high for a
significant stimulus wave amplification. The stored electric energy density indicates the achievable
order of stimulus wave amplification. The polarization density serves as an energy-coupling coefficient
and is a measure of the stored electric energy that can be coupled to the stimulus wave.
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7. Verification of Our Computational Model

Our numerical model is verified by using the experimentally validated formulas of the topics
sum frequency generation via non-linear wave mixing and optical amplification via non-linear wave mixing as
described in the examples below.

Example 1. Sum frequency generation via non-linear wave mixing (frequency up-conversion)
This example is about the generation of a higher frequency component (ω3), by mixing of two monochromatic

waves with frequencies ω1 and ω2 via non-linear coupling, such that ω3 = ω2 +ω1.

The pump wave E2 is originated at x = 2.5 μm, with an amplitude of A2 V/m and a frequency of
180 THz.

E2(x = 2.5μm, t) = A2 × sin
(
2π
(
1.8× 1014

)
t + ϕ2

)
V/m

The input wave E1 is originated at x = 2.5 μm, with an amplitude of A1 V/m and a frequency of
120 THz (see Figure 8).

E1(x = 2.5μm, t) = A1 × sin
(
2π
(
1.2× 1014

)
t + ϕ1

)
V/m (assume ϕ1 = 0, ϕ2 = 0 )

Spatial and temporal simulation parameters 0 ≤ x ≤ 10μm, 0 ≤ t ≤ 60ps

Resonance f requency o f the medium : f0 = 1.1× 1015Hz

Damping rate o f the medium : γ = 1× 1012Hz

Dielectric coe f f icient o f the medium (ε∞) = 1 + χ = 10 (μr = 1)

Le f t PML (le f t absorption layer) is f rom x = 0 to x = 2.25μm

Right PML (right absorption layer) is f rom x = 7.75μm to x = 10μm

 

Figure 8. Configuration for the frequency up-conversion in example 1.

The experimentally verified theoretical formula for frequency up-conversion efficiency is given
as [1,4]

ηtheoretical = ω3
ω2
( sin

√
2d2n3ω32(cnε0A22)L2 )

2
= ω3
ω2
( sin

√
2d2n4ω32cε0A22L2 )

2

ω2 = Frequency o f the pump wave , ω1 = Frequency o f the input wave
d = Material non− linearity coe f f icient, n = Re f ractive index

A2= Pump wave amplitude A1 = Input wave amplitude, L = Length o f the non− linear media
ω3 = ω1 +ω2 = Frequency o f the upconverted wave

(20)
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Our computational model, which is based on the non-linear electron motion equation, is
implemented via FDTD discretization. Coupled with the wave equation, the total wave E = E1 + E2 is
computed from:

E(i+1, j)−2E(i, j)+E(i−1, j)
Δx2 − μ0ε∞(i, j)E(i, j+1)−2E(i, j)+E(i, j−1)

Δt2

= μ0σ(i, j)E(i, j)−E(i, j−1)
Δt + μ0

P(i, j+1)−2P(i, j)+P(i, j−1)
Δt2 .

(21a)

P(i, j+1)−2P(i, j)+P(i, j−1)
Δt2 + γ

P(i, j)−P(i, j−1)
Δt +ω0

2(P(i, j)) − ω0
2

Ned (P(i, j))2

− ω0
2

N2e2d2 (P(i, j))3 = Ne2

m (E(i, j)).
(21b)

For a time interval of 0 ≤ t ≤ tmax, the computational formula for frequency up-conversion
efficiency is:

ηcomputational =
Intensity of the ω3 frequency component of the total wave at t = tmax

Intensity of the ω2 frequency component of the total wave at t = 0
(22)

In this example, we have used the following values for each efficiency formula:

ω2 = (2π× 180)THz,ω1 = (2π× 120)THz

L = length of the interaction media = 3.33 μm (from x = 3.33 μm to 6.66 μm)
ω3 = f requency o f the upconverted wave = 2π× 300THz, n= Re f ractive index =

√
10

d =material non-linearity coefficient = 6.3× 10−22 (The theoretical and the computational results
agree for this value of d for a sample pump wave amplitude of A2 = 109V/m (see Figure 9). Our aim is
to see if the results also agree for all the other pump wave amplitudes for this value of d)

Figure 9. Comparison of the frequency up-conversion efficiencies for f3 = 300 THz and d = 6.3× 10−22,
versus the pump wave amplitude.

A2 = pump wave amplitude (varied from 5× 107V/mto 2× 109V/m )
A1 = input wave amplitude = A2/100 (A1 	 A2)

Example 2. Optical amplification via non-linear wave mixing (parametric amplification).
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The high-intensity pump wave E2 is generated at x = 2.5 μm. It has an amplitude of A2 V/m and
a frequency of 220 THz.

E2(x = 2.5μm, t) = A2 × sin
(
2π
(
2.2× 1014

)
t + ϕ2

)
V/m

The input wave E1 is generated at x = 2.5 μm. It has an amplitude of A1 V/m and a frequency of
140 THz (see Figure 10)).

E1(x = 2.5μm, t) = A1 × sin
(
2π
(
1.4× 1014

)
t + ϕ1

)
V/m (assume that ϕ1 = 0, ϕ2 = 0)

Figure 10. Configuration for optical parametric amplification in example 2.

Range of independent simulation variables: 0 ≤ x ≤ 13μm, 0 ≤ t ≤ 60ps
Resonance f requency o f the interaction medium : f0 = 3× 1014Hz
Damping coe f f icient o f the interaction medium : γ = 1× 1011Hz
Dielectric constant o f the interaction medium (ε∞) = 1 + χ = 10 (μr = 1)
Spatial range o f the interaction medium : 4μm < x < 9μm
Le f t per f ectly matched layer (le f t absorption layer) is f rom x = 0 to x = 2.25μm
Right per f ectly matched layer (right absorption layer) is f rom x = 10.75μm to x = 13μm
Our goal is to amplify the input wave via energy coupling from the high-power pump wave.

The computational results are obtained by solving (21a,b) and by computing the ratio of the spectral
intensity of the input wave for ω = ω1 at t = tmax to the input wave intensity for ω = ω1 at t = 0:

ηcomputational =
Intensity of the ω1 frequency component of the total wave at t = tmax

Intensity of the ω1 frequency component of the total wave at t = 0
(23)

The experimentally verified theoretical formula for parametric amplification, which is derived
from the solution of the non-linear wave equation that is based on material non-linearity coefficient, is
given as [1,4]:

ηtheoretical = cos h2
(
Ld

√
ω1(ω2 −ω1)η3

√
0.5cnε0Epump2

)
(24)

L : Length o f the interaction medium = 5μm, d : Nonlinearity coe f f icient = 1.2× 10−21C/V2
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η = Intrinsic impedance = 119.2Ω (ohm)

The resulting amplification of the input wave (gain factor) is plotted with respect to the pump
wave amplitude based on both the theoretical and the computational formulations (see Figure 11).
Notice that the gain factor increases quadratically with the pump wave amplitude. The resulting gain
is quite small, as parametric amplification practically requires an interaction medium length on the
order of centimeters [16–20], whereas in this example we have an interaction medium length of 5 μm.

Figure 11. Comparison of the parametric amplification rates with respect to the pump wave amplitude.

8. Discussion

It is important to note that although the presented algorithm is very accurate in obtaining the
highest gain factor and determining the optimal frequencies for the ultrashort pump wave pulses,
the parameters of the gain medium may limit the maximum achievable gain factor. For example, in
our presented numerical experiments, the background permittivity values were set as ε∞ = 10 and
ε∞ = 12 respectively, these values correspond to the background permittivity of many solid dielectric
media in the near infra-red and the visible frequency range. A very large gain factor is also achievable
for smaller values of the background permittivity at the expense of a slight increase in ultrashort pump
wave intensity to compensate for the decreased stored energy in the micro-resonator. Similarly, for a
gain material with a higher background permittivity, the required pump wave intensity can be lowered
in order to achieve the same gain factor. Another important parameter that heavily influences the gain
factor is the polarization damping rate or simply the damping rate γ. A damping rate that is greater
than γ = 1011 slows down the rate of amplification via non-linear wave mixing and results in a lower
gain factor [21].

The frequencies of the ultrashort pump wave pulses can be practically tuned from the far
IR (infrared) range to the near UV (ultraviolet) range. Commercial IR laser sources such as the
Neodymium-YAG laser, or the Helium-Neon laser can be used in the near IR range and also in the
visible range via frequency doubling. A visible laser light can be used in combination with a near IR
laser light to generate a UV laser light via the process of sum frequency generation. A far IR laser
light and even a THz laser light can be generated using two near IR laser lights of slightly different
frequencies, through difference frequency generation process.
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Optical amplification via non-linear wave mixing offers the advantage of wide-band amplification
of a monochromatic stimulus wave, practically in a frequency interval ranging from the far IR to the
near UV part of the spectrum [1,4,19]. Hence, the numerical algorithm presented in Figure 4, can be
used to amplify a monochromatic stimulus wave of any frequency that lies between the far IR to the
near UV part of the spectrum.

Our main aim in this article is to show that super-gain optical parametric amplification can be
achieved in a simple fabry-perot type micro-resonator. For more complicated resonators including
microring and microdisc resonators, the one-dimensional model presented in this article must be
extended to a two-dimensional model. Our algorithm, which is presented in Figure 4, can be extended
to a two-dimensional or a three-dimensional micro-resonator analysis using the technique that is
presented in the article referenced in [22]. This article explains how, using FDTD, Maxwell’s 2-D and
3-D curl equations in vector form can be effectively stepped in time simultaneously with a system of
auxiliary differential equations, in order to create an integrated model that is capable of accurately
simulating a medium involving instantaneous non-linearity, dispersive non-linearity, and multiple
linear dispersions. Concerning implementation, the Greene-Taflove algorithm given in [22] can easily
be incorporated into our algorithm during the discretization of the equations via finite difference time
domain method. Hence the algorithm presented in this article can be employed in the analysis of
arbitrary-shaped 2-D and 3-D micro-resonators.

9. Conclusions

For high-gain stimulus wave amplification via non-linear coupling in a micro-resonator, a high
stored energy and a high polarization density is required. In order to maximize the intracavity energy
and the polarization density, for a given resonance frequency (f0 ), the frequencies of the high-intensity
ultrashort pulses that comprise the pump wave must be tuned accordingly. This can be accomplished
via a computationally cost-efficient optimization algorithm such as the quasi-Newton BFGS algorithm.
The optimization algorithm must be embedded in the numerical discretization method by choosing the
stimulus wave magnitude as the cost function and by modifying it according to the problem constraints.

If the optimal frequencies of the high-intensity ultrashort pulses are set, it is possible to amplify a
low-intensity stimulus wave with a very large gain coefficient even inside a micrometer-scale resonator.
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Abstract: A novel analytical solution for the designing of the birdcage RF coil has been demonstrated
in this paper. A new concept of dominant resonance path has been introduced in this paper which is
used to identify the specific closed current loop in the birdcage RF coil which is responsible for the
dominant resonance frequency mode. This concept is used to determine the precise numerical values
of the lumped capacitance deployed in the legs and/or end-rings of the birdcage RF coil for its proper
operation at the desired resonance frequency. The analytical solution presented in this paper has been
established by performing the two-port network based equivalent circuit modeling of the birdcage
RF coil. The proposed analytical solution uses T-matrix theory and develops a relationship between
the input impedance of the birdcage coil and the impedances of its leg and end-ring segments. The
proposed analytical solution provides the information about the resonance frequency spectrum of
the birdcage RF coil and solves the issue of its interfacing with external circuits without affecting
its resonance characteristics. Based upon the proposed analysis and designing strategy presented
in this paper, the low pass, high pass and band pass configurations of the birdcage RF coil were
successfully implemented with FPCB (Flexible Printed Circuit board) technique for small volume
NMR imaging applications at 1.5 T and 3.0 T MRI system. The results obtained for the implemented
birdcage coils using the proposed analysis and designing technique are in closed agreement with
already established methods.

Keywords: MRI system; birdcage coil; birdcage configurations; coil capacitance; analytical solution;
equivalent circuit modelling; T-matrix theory; 3D-EM simulation; small volume RF coil

1. Introduction

NMR imaging is highly in demand for the medical diagnostics and various other nonclinical
and research applications due to its ability of providing very high-quality anatomical images
non-invasively [1–3]. A highly sensitive and sophisticated radio frequency (RF) coil (or resonator) is
responsible for obtaining these high-quality images only in a highly uniform magnetic field environment
of an MRI system [4,5]. One such resonator is known as birdcage RF coil which is a popular choice for
the nuclear magnetic resonance (NMR) based volume imaging for medical diagnostics [6]. Having the
features like excellent magnetic field homogeneity, high signal-to-noise ratio, design flexibility and the
ability to be designed for multi-resonance operation, the birdcage coil is a widely used RF resonator
for whole volume NMR imaging applications at high as well as ultra-high field MRI systems [7–13].

The birdcage coil is a closed ladder network which is composed of identical cascaded segments of
inductive and capacitive elements [14]. There exist multiple closed current loops in a birdcage coil which
are responsible for the simultaneous existence of a definite number of resonance frequency signals. In
general, a birdcage coil with N number of cascaded segments can be used to support maximum N/2 + 2
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resonance frequency modes [15]. Several analytical and numerical solutions have been presented
which explain the working of birdcage RF coil quite efficiently and provide the information about its
resonance frequency spectrum [15–20]. Most of the existing solutions either involve some tedious
techniques with complex mathematical formulation or limited to the determination of the resonance
characteristics of the birdcage coil. However, in practical applications, it is required to connect the
external circuits like impedance matching circuit (with the input/output ports) and detuning circuits
(in the end-ring and/or leg segments) with the birdcage RF coil. This process can seriously affect its
resonance frequency spectrum [9]. The existing methods however do not address this fundamental
issue of external circuit interfacing with the birdcage coil.

In this paper, we have introduced a new concept of the dominant resonance path for the birdcage
RF coil which is a simple and intuitive designing technique. The method works by identifying the
closed current loop in the birdcage RF coil who is responsible of causing the dominant resonance
frequency which is used for NMR imaging applications [21]. The proposed strategy provides rather
convenient way to determine the lumped capacitances for the leg and end-ring segments of the
birdcage RF coil for its proper operation at desired dominant resonance frequency. We have also
devised a simple analytical solution for the birdcage RF coil by establishing it equivalent circuit
model which is based upon the transmission matrix theory [21,22]. The proposed analytical solution
provides the mathematical expression for the input impedance Zin of the birdcage RF coil as seen
from the port in terms of the impedances of its leg and end-ring segments. Along with explaining
the resonance frequency characteristics of the birdcage RF coil, the proposed analytical solution also
provides the impedance at any desired position in the coil for the desired resonance frequency. This
methodology solves the problems of external circuit interfacing with birdcage coil without disturbing
its resonance characteristics.

The paper is divided into two main sections. The first section is about the analytical solution for
the birdcage RF coil which explains the concept of dominant resonance path in the birdcage RF coil.
It is then followed by a novel analytical solution which is derived using simple equivalent circuit
modeling-and T-matrix theory. Second section is the design and analysis of the birdcage RF coil which
contains the results (analytical, simulated and measured) of the successful implementation of the low
pass, high pass and band pass configurations of the birdcage RF coil for small volume NMR imaging
applications at 1.5 T and 3 T MRI systems by using the proposed analytical solution.

2. Analytical Solution for Birdcage RF Coil

2.1. Configuration of the Birdcage RF Coil

The line diagram of a conventional N-segments birdcage RF coil structure and the block diagram
for its equivalent circuit model are shown in the Figure 1.

 
(a) 

Figure 1. Cont.
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(b) 

Figure 1. N-segments birdcage RF coil: (a) Line diagram; (b) Block diagram of the equivalent
circuit model.

A conventional birdcage RF is a three-dimensional cylindrical structure which is composed of N
(even) number of segments which are connected to each other and are precisely arranged in the axial
and azimuthal plans as shown in Figure 1a. The axial element of a segment is known as leg (or rung)
which is connected to the conductor segments known as end-ring on both sides in the azimuthal planes.
Each segment of a birdcage RF coil contains identical legs with impedance Zl and identical end-rings
with impedance Zer as shown in Figure 1b. The impedances Zl and Zer are composed of inductive and
capacitive elements with negligible resistance (practically less than 1 ohm). The inductive elements
of a segment can be the cylindrical wires or the rectangular conductors (of finite thickness or thin
foils). These are arranged in the axial and azimuthal planes. The capacitive elements in a segment
are the lumped capacitors (with non-magnetic characteristics) which can be inserted in its leg or/and
end-rings. Based on the capacitor position in a segment, three configurations of the birdcage RF coil
can be realized. These are known as low pass (LP), high pass (HP), and band pass (BP) [14]. A single
segment of each configuration is shown in Figure 2.

 
 

 
 

 
(a) 

 
 

 
 

 
(b) 

 
 

 
 

 
(c) 

Figure 2. Equivalent circuit diagrams of a single segment of the birdcage RF coil configurations: (a) Low
pass (LP); (b) High pass (HP); (c) Band pass (BP).
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Due to circular ladder structure with multiple cascaded identical segments, there does exist multiple
resonance frequencies (some time referred as resonance modes) simultaneously in a conventional
birdcage RF coil. The total number of these resonance frequencies mainly depend upon the number of
legs (N), the inductances of leg (L1) and end-ring segment (L2), and the lumped capacitance in the
leg (C1) and in the end-ring segment (C2). The first generalized analytic solution to determine the m
possible resonance frequency modes (fm) of an N leg birdcage RF coil was developed by Hayes C.E. in
1985 with the aid of its equivalent circuit analysis is given in Equation (1) [14].

fm =
1

2π

√√
2

C1
sin2 πm

N + 1
C2

L1 sin2 πm
N + L2

(m = 0, 1, 2, . . . , N/2) (1)

The above equation is although for a band pass configuration which however can be converted
for low pass and high pass configurations by removing the terms containing C1 and C2 respectively.
The numerical values of all possible resonance frequency modes of a birdcage coil obtained using
Equation (1) are approximate as the terms L1 and L2 in Equation (1) represents the self-inductances of
leg and end-ring segments. A more accurate but rather complex solution was provided by Jiaming J. in
1991 who also included the mutual inductance effect in the calculations of L1 and L2 [23].

2.2. Dominant Resonance Path

Basic principal behind the establishment of the birdcage coil was the development of a circular
ladder structure which should be composed of the phase delay lines who can establish a unique phase
pattern of the axial current on each coil leg [14]. The inductance (L) and capacitance (C) parameters
of leg and end-ring segments are adjusted in such a manner that an ideal sinusoidal distribution of
currents in terms of their intensities is realized on the legs of birdcage coil. An ideal sinusoidal intensity
profile of currents along with their respective direction in different legs for the dominant resonance
mode of an 8-leg birdcage RF coil is shown in Figure 3.

Figure 3. Sinusoidal legs currents distribution on an 8-legs birdcage coil in dominant resonance mode.

This sinusoidal legs currents distribution is responsible of producing the homogeneous non-zero
magnetic field everywhere inside the birdcage RF coil [24]. The resonance caused by this current
distribution is known as the dominant resonance mode. The direction of currents in different legs
of the birdcage RF coil as shown in Figure 3 provides the idea of the closed current loop which is
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responsible for the dominant resonance mode. The total path length of such closed current loop in the
birdcage RF coil can be given by the following Equation (2).

P = 2(πr + l) (2)

where r is radius of the coil and l is the length of its leg. The above path length equation provides the
information about the segments of the birdcage RF coil which are involved in the creation of the closed
current loop whose resonance frequency is used for NMR imaging operation. A dominant resonance
closed current loop consists of two coil legs which are joined by N/2 consecutive end-ring segments on
each end-ring as shown in Figure 4a.

 
 

(a) 

 
 

(b) 
Figure 4. A closed current loop in the birdcage RF coil representing: (a) The dominant resonance path;
(b) Total lumped inductance and capacitance of end-rings and legs in the dominant resonance path.

There exists total N/2 closed current loops of path length P in birdcage RF coil. Any leg of the
birdcage RF coil which is involved in the establishment of a closed current loop dose not involved in
the other simultaneously existing N/2-1 closed current loops under dominant resonance condition. The
desired dominant resonance mode required in the birdcage coil is the resonance of this closed current
loop which can be determined as

f =
1

2π
√

LT ·CT
(3)

where LT and CT are the total inductance and capacitance of the dominant resonance current loop. The
total inductance LT is the sum of the inductances of two rungs and N end-ring segments which are
connected in series as shown in Figure 4b. It can be given as follows.

LT = 2Ll + N·Ler (4)

Here the Ll and Ler are the total inductances of the legs and end-ring segments of a birdcage coil
respectively. The numerical value of the self-inductance of a conductor with cylindrical or rectangular
geometry can be determined by using the already established following relationships [23].
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For a cylindrical conductor of length s and radius r,

L =
μ0 s
2π
·
[
ln

2s
r
− 1

]
(5)

For a rectangular strip conductor of length s and width w,

L =
μ0 s
2π
·
[
ln

2s
w

+
1
2

]
(6)

The total inductance LT of the dominant resonance loop for all three configurations of the birdcage
RF coil which is determined by using Equation (4) remains unchanged. However, a single generalized
equation cannot be established to determine the total capacitance CT of the dominant resonance loop
for all three configurations of the birdcage coil. As for the low pass coil, capacitors are present only in
the legs, for high pass only in the end rings while for the band pass in both locations, so the relationship
to determine the total capacitance in each case can be given as follows,

Band Pass CT =
CL · CER

NCL + 2CER
(7)

Low Pass CT =
Cl
2

(8)

High Pass CT =
Cer

N
(9)

The lumped capacitors required in the legs and end-rings of the low pass and high pass birdcage
RF coil can easily be determined using Equations (8) and (9) respectively for the given coil dimensions
and required resonance frequency. However, for the band pass birdcage coil, the end-ring capacitor
value is usually needed to be assumed while the leg capacitor value is calculated using Equation (7).
Moreover, there exist different combinations of leg and end-ring capacitors for the band pass birdcage
coil and the one which causes more homogeneous magnetic field distribution is selected.

2.3. Equivalent Circuit Analysis

Most of the analytical solutions for the birdcage RF coil which are commonly developed by
using the basic circuit analysis, transmission line theory, numerical electromagnetics or any other
mathematical technique are limited to the determination of the resonance frequency modes only.
However, the analytical solutions proposed in this paper provide a comprehensive mathematical
formulation for the input port impedance in the leg or end-ring segment of the birdcage RF coil
(regardless of its configuration) as a function of frequency. This is used to compute the numerical value
of the impedance at any desired position for any desired frequency. This solves the problem of external
circuit interfacing with the birdcage coil without effecting its resonance characteristics. The proposed
method is based upon the determination of a single equivalent transmission matrix (Te-matrix) for the
total equivalent circuit of the birdcage RF coil.

A conventional birdcage coil is an RF resonator which is composed of identical cascaded segments
of inductive and capacitive elements. The conductor segments are the sources of inductance in the
birdcage coil. The numerical value of the equivalent inductance (self and mutual) of the conductor
segments with respect to its geometry (cylindrical wires or rectangular strips) which is determined by
using mathematical equations is used as the lumped inductance [24]. While the lumped capacitors are
the capacitive elements of the birdcage coil circuit. The block diagram of a unit segment of the birdcage
RF coil consisting of the leg impedance Zl and the end-ring impedance Zer is shown in Figure 5a. The
two ports equivalent circuit of the unit segment which is required to compute the T-matrix of the single
segment of birdcage RF coil is also shown in Figure 5b.
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(a) (b) 

Figure 5. The block diagrams of: (a) The unit segment of a conventional birdcage RF coil; (b) Two port
equivalent circuit of the unit segment.

The impedance of leg segments Zl and the impedance of the end-ring segments Zer can be given
as follows,

Zl = Rl + j
(
2π f ·Ll − 1

2π f ·Cl

)
(10)

Zer = Rer + j
(
2π f ·Ler − 1

2π f ·Cer

)
(11)

The input and output voltage and currents of the two-port network of Figure 5b can be related to
each other via following matrix equation.

[
Vk
Ik

]
= T

[
Vk+1
Ik + 1

]
(12)

where T represents the transmission (ABCD) matrix of a unit segment of the birdcage RF coil that can
be obtained by using the following matrix Equation (13).

T =

[
A B
C D

]
=

⎡⎢⎢⎢⎢⎢⎣ 1 + Zer
Zl

2Zer +
Zer

2

Zl
1
Zl

1 + Zer
Zl

⎤⎥⎥⎥⎥⎥⎦ (13)

In a conventional birdcage RF coil, N number of such identical segments as shown if Figure 5
are connected in cascade with each other. As the symmetry conditions prevail in this circuit, a single
transmission matrix Te can be defined for the equivalent circuit of birdcage RF coil which can represent
its overall transmission characteristics. However, the equivalent transmission matrix Te is a product of
the N-1 identical transmission matrices T because the Nth segment (which can be chosen arbitrarily) of
the birdcage RF coil is used to establish an interface with the receiver port of the MRI apparatus. Thus,
its transmission matrix is not included in the computation of Te. The single equivalent transmission
matrix Te can be expressed by Equation (14).

Te = T(N−1) =

[
Ae Be

Ce De

]
(14)

Since an arbitrary transmission matrix can be converted to a two-port network, the block diagram
of the equivalent circuit of a birdcage RF coil containing two-port equivalent circuit model of the N−1
segments connected in cascade with the two-port equivalent circuit model of the Nth segment is shown
in Figure 6.
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Figure 6. Equivalent circuit model of N segments birdcage RF coil by converting each segment into a
two-port network.

The equivalent circuit impedances Z ER and Z L can be determined by using the elements of the
equivalent transmission matrix Te with the help of following Equations (15) and (16) respectively.

ZL =
1

Ce
(15)

ZER =
Ae − 1

Ce
(16)

In a birdcage RF coil port can be established by interfacing the external circuit across any leg or
end-ring segment but it exhibits the similar frequency characteristics. However, the port impedance
as viewed from the external circuit would be different at both positions which results in different
expressions for the general analytical solution. By considering the port connected across the end-ring
segment Zer/2, the general analytical solution can be developed by calculating the equivalent impedance
of the circuit model shown in Figure 6 as follows.

Za =
(Zer + ZER)

2
(17)

Zb =
(Zer + ZER)

4
(18)

Zc =
(Zer + ZER)

4
+ (Zl + ZL) (19)

Zeq =
(Z1· Z3)

(Z1 + Z3)
=

(Zer + ZER)· [4(Zl + ZL) + (Zer + ZER)]

8(Zl + ZL) + 6(Zer + ZER)
(20)

The final expression of the general analytical solution for the case when the port is created in the
end-ring segment is given by the Equation (21).
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ZER_p =
1
2
·

Zer ·
(
ZER + 2Zeq

)
Zer + ZER + 2Zeq

(21)

In a similar way the general analytical solution for the case when the port is created in the leg
segment can be derived and the final expression is given by the Equation (22).

ZL_p =
Zl · (2ZL + Zer + ZER)

2(Zl + ZL) + (Zer + ZER)
(22)

The proposed method allows the input impedance to be obtained directly from the leg or end-ring
of the birdcage RF coil. Precisely speaking, unlike the existing solutions for analyzing the relationship
between the components values and the resonant frequency, the input impedance can be easily obtained
at any point of the birdcage coil. Therefore, the method is not only useful to determine the resonance
frequencies of the birdcage RF coil, but also to provide the port impedance which is an essential
parameter to be known for interfacing any external circuitry like impedance matching circuit, detuning
circuit etc. to the birdcage RF coil.

3. Design and Analysis of the Birdcage RF Coil

3.1. Design Based on Analytical Solution

Birdcage RF coils are designed in various sizes with respect to their length and diameter in
according with the specified applications. The main tasks in the designing of a birdcage RF coil is
the choice of coil configurations, number of legs, dimensions of legs and end-ring segments, lumped
capacitance, and port impedance matching at desired resonance frequency. Legs and end-ring segments
conductors are the sources of inductance in the birdcage coil. Their count and dimensions are the
controlling factors of the magnetic field homogeneity as well as SAR inside the coil. While on the
other hand, the lumped capacitors are responsible for producing the resonance at required radio
frequency without effecting the magnetic field distribution. A balance between the conductor size
and lumped capacitance value is quite necessary for an appropriate design of the birdcage RF coil. In
order to validate the proposed analytical technique, we designed the low pass, high pass and band
pass configurations of the linearly polarized birdcage RF coil for 1H NMR imaging in small volume
applications at 1.5 T and 3 T MRI systems as shown in Figure 7.

 

Figure 7. Configurations of the birdcage RF coil for the reception of 1H NMR signal at 1.5 T and 3 T
MRI systems: (a) Low pass; (b) high pass; (c) band pass. (All dimensions are in mm).
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The designed birdcage RF coils are linearly polarized having 8 legs and 2 end-rings which are
made of 35 μm thick and 5 mm wide rectangular copper strips etched on a flexible FR4 substrate
(εr = 4.4) of 0.2 mm thickness. A 2 mm gap is created in the respective conductor segments of the
legs and/or end-rings for SMT lumped capacitors. Total length of a single leg of the birdcage RF
coil including capacitor gap is 162 mm. In order to keep the permanent 3D symmetry, the birdcage
conductor pattern etched flexible FR4 was further attached on a solid acryl (εr = 3.2) cylinder of 5 mm
thickness and 40 mm internal diameter. The length and diameter of the coil along with the dimension
of the legs and end-rings segments are assumed to be constant for all three configurations of the 1.5 T
and 3 T birdcage RF coils.

The self-inductance (referred as calculated inductance Lcal in this paper) of the leg and end-rings
segments which is constant for all designed coils is determined using Equation (6). However, in the
actual scenario there also exist very strong mutual inductance between the parallel conductor segments
of the birdcage RF coil which affects the self-inductances of the coil. The self-inductance of the leg and
end-ring segment which includes the effect of mutual-inductance was computed using the methods
described by the birdcage builder [25]. This self-inductance is referred as effective inductance Leff in
this paper. For the given dimensions of the birdcage RF coil the inductance Lcal and Leff for the leg and
end-ring segment respectively are given in the Table 1 below.

Table 1. Birdcage coil segments dimensions and inductances.

Parameters Leg End-Ring

Length (l) 162 mm 19.8 mm
Width (w) 5 mm 5 mm

Calculated Inductance (Lcal) 151.4 nH 10.2 nH
Effective Inductance (Leff) 147.5 nH 12.9 nH

These calculated and effective inductance values were further used to compute the lumped
capacitances required in the legs and/or end-rings for all three configurations of the birdcage RF coil at
the desired frequencies of 63.8 MHz and 127.7 MHz (for 1.5 T and 3 T MRI systems respectively) by
using the Equations (7)–(9). In order to prove the validity of the proposed method, we also computed
the lumped capacitances for all three configurations by using the conventional method described
by Equation (1), 2D circuit simulation and 3D electromagnetic simulation. The actual values of the
lumped capacitance used in the implementation of the prototypes of low pass, high pass and band pass
configurations of 1.5 T and 3 T birdcage RF coils were also measured. A comparison among lumped
capacitor values determined through different techniques for 1.5 T and 3 T birdcage coils are given
below in the Tables 2 and 3 respectively.

Table 2. Lumped capacitor values in pF for 1.5 T birdcage coils.

Method Low Pass High Pass
Band Pass
(Cer = 200)

Cl %Error Cer Error Cl Error

Proposed C cal 32.4 −0.034 129.7 −0.107 92.2 −0.052
C eff 31.3 −0.023 125.3 −0.063 84 0.03

Conventional
C cal 33.4 −0.044 114 0.05 77.8 0.092
C eff 32.4 −0.034 111 0.08 72.7 0.143

2D Simulation
C cal 33.5 −0.045 111 0.075 73 0.161
C eff 32.5 −0.035 108 0.11 72.4 0.146

3D Simulation C 3D 29.4 −0.004 120 −0.01 88 −0.01
Measured C mes 29 119 87
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Table 3. Lumped capacitor values in pF for 3 T birdcage coils.

Method Low Pass High Pass Band Pass (Cer = 50)

Cl %Error Cer Error Cl Error

Proposed C cal 8.1 −0.01 32.4 −0.034 22.9 −0.023
C eff 7.8 −0.007 31.3 −0.023 20.9 −0.003

Conventional
C cal 8.35 −0.0125 28.5 0.005 19.4 0.012
C eff 8.11 −0.0101 27.7 0.013 18.2 0.024

2D Simulation
C cal 8.35 −0.0125 27.7 0.013 18.8 0.018
C eff 8.12 −0.0102 26 0.03 17.8 0.028

3D Simulation C 3D 7 0.001 29.5 −0.005 20.5 0.001
Measured C mes 7.1 29 20.6

The comparison provided in above Tables 2 and 3 concludes that the numerical technique does
only provide an approximate value of the lumped capacitor which is quite close to the actual value
that is deployed in the prototype implementation. The measured capacitance value for the desired
dominant resonance frequency is obtained by slightly tuning the numerically obtained capacitance. It
is evident from the information provided in Tables 2 and 3 that in comparison to the conventional
methods, the effective lumped capacitance obtained through the proposed method exhibits least
numerical error and requires lesser tuning to meet the desired resonance condition. Furthermore, the
proposed analytic method described in this paper is quite simple and it does not require the hit and try
method for capacitance computation which is commonly adopted in conventioanl 3D EM simulations.
The results obtained through such analytical technique can directly be used in the coil implementation
engineering which also includes the impedance matching operation at the desired resonance frequency.

3.2. Resonance Frequency

The proposed analytical solution given in Section 1 does also provide the information about the
resonance frequency modes for all three configurations (low pass, high pass and band pass) of the
birdcage RF coil by plotting its input impedance ZER_p against frequency. We assumed the case where
the receiver port is connected across the half end-ring segment and then determined the resonance
frequencies spectrum of all three coil configurations using Equation (21). The effective inductance
values of the leg and end-ring segments along with their corresponding effective capacitance values
(with respect to the coil configuration) were used to compute the impedances Zl and Zer. A comparison
between the input impedance obtained though the analytical solution proposed in this paper and
the input impedance plot obtained through 2D circuit simulation with effective inductance and their
corresponding capacitance values in ANSYS [26] for each configuration of 1.5 T and 3 T birdcage RF
coils are given in the Figure 8 below.

 
 

(a) 

 

(b) 

Figure 8. Cont.
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(e) 
 

(f) 

Figure 8. Input impedance obtained using proposed analytical solution and conventional 2D simulation
for the different configurations of the birdcage RF coil: (a) 1.5T low pass, (b) 1.5 T high pass, (c) 1.5 T
band pass, (d) 3 T low pass, (e) 3 T high pass, (f) 3 T band pass.

3.3. Impedance Matching

It can be observed in all cases of Figure 8 that the pattern of variations in the input impedance (at the
dominant resonance mode as well as the higher order resonance modes) provided by the proposed
analytical solution does perfectly coincide with the one which was obtained using conventional 2D
circuit simulation technique. The numerical values of the input impedance Zin at the desired resonance
frequency is further used to design the impedance matching circuit which serves as an interface
between the RF coil and receiver circuit. A conventional “L-matching” network with lumped (series)
inductance and (parallel) capacitance can be used to accomplish this task. The input impedance Zin
serves as the load impedance which is used to obtain the required values of the lumped components of
the impedance matching network connected between the desired segment (end-ring in this case) of the
birdcage RF coil and the 50 ohm port of the receiver. The numerical values of the input impedance
ZER_p as obtained via proposed analytical solution along with the corresponding values of the lumped
components of the matching circuit for all configurations of the designed 1.5 T and 3 T birdcage RF
coils are provided in the Table 4.
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Table 4. Input impedance ZER_p of the designed birdcage RF coils at dominant resonance frequency
and the corresponding lumped components of the matching circuit for 1.5 T and 3T MRI systems.

MRI System Coil Configuration ZER_p (Ohm) Cm (pF) Lm (nH)

1.5 T
Low Pass 34.42 − j10.86 33.7 85.6
High Pass 439.88 − j37.44 15.3 350
Band Pass 68.65 − j29.33 10.8 98.2

3.0 T
Low Pass 131.74 − j54.57 8.3 90
High Pass 13.23 + j137.45 13.5 333
Band Pass 82.20 + j130.45 16.3 136.3

The reflection coefficient S11 which is a core parameter to explains the impedance matching
of an RF circuit can easily be determined with the help of input impedance by using the following
Equation (23).

S11 =

(
ZERp − 50

)
(
ZERp + 50

) (23)

A comparison between the reflection coefficients obtained by using the proposed analytical
solution in the absence as well as presence of the impedance matching circuit for all configurations of
the implemented 1.5 T and 3 T birdcage RF coils is provided in Figure 9.
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Figure 9. Cont.
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(f) 

Figure 9. Reflection coefficient S11 for the different configurations of the birdcage RF coil without and
with impedance matching circuit: (a) 1.5 T low pass, (b) 1.5 T high pass, (c) 1.5 T band pass, (d) 3 T low
pass, (e) 3 T high pass, (f) 3 T band pass.

3.4. Magnetic Field Homogeneity

Homogeneity of the magnetic field at the desired dominant resonance frequency (63.8 MHz
for 1.5 T and 127.7 MHz for 3 T) everywhere inside the designed birdcage coils using the proposed
analytical solution can be observed via 3D electromagnetic simulation. The simulation models of the
birdcage RF coils were created in according with the dimensional information provided in Section 3.1
using 3D electromagnetic simulation software ANSYS HFSS [26]. The magnetic field distribution
inside the coil under no load conditions (assuming air inside the coil) as determined in the transverse
plans at different positions for each coil configuration is shown in Figure 10 below.

Figure 10. Magnetic field distribution at dominant resonance frequency in transvers planes at various
positions for all configurations of 1.5 T and 3 T birdcage RF coils.
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It can be observed in Figure 10 above that each coil configuration causes quite homogeneous
magnetic field distribution at the dominant resonance frequency while the bandpass configuration
produces rather strong magnetic field than others for both 1.5 T and 3 T cases.

4. Conclusions

A simple technique for the designing and analysis of the birdcage RF coil based upon dominant
resonance path and a novel analytical solution was demonstrated in this paper. We introduced a
new concept of the dominant resonance path in the birdcage RF coil that identifies the specific closed
current loop which is responsible of causing the dominant resonance frequency that is desired for
NMR imaging. The concept is used to determine the numerical values of the lumped capacitances
for the leg and/or end-ring segment of the birdcage RF coil using simple mathematical formulations.
We also provided the analytical solutions for the birdcage RF coil in terms of its input impedance Zin
by converting each of its section into a two-port network. The transmission parameters are used to
determine the final analytical solution with the help of an equivalent Te matrix for the N-1 identical
cascaded segments of the birdcage RF coil. Two separate analytical solution were developed by
considering the feed port or external circuit location in the end-ring segment and leg segment. Both
analytical solutions efficiently explain the characteristics of the birdcage RF coil, however the commonly
used end-ring feed based analytical solution was mainly discussed in this paper. We implemented the
birdcage RF coil in low pass, high pass and band pass configurations with FPCB etched conductor
pattern technique for small volume NMR imaging applications at 1.5 T and 3.0 T MRI system. The
numerical values of the lumped capacitance for the different configurations of the birdcage RF coil
provided by the dominant resonance path method were found more accurate in comparison to those
which were obtained through the conventional methods. The analysis of the implemented birdcage
RF coils performed with the proposed analytical solution were also in complete agreement with the
conventional methods.
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Abstract: The method of auxiliary sources (MAS) is utilized in the analysis of Transverse Magnetic
(TM) plane wave scattering from infinite, conducting, or dielectric cylinders, including curved
wedges. The latter are defined as intersections of circular arcs. The artificial surface, including the
auxiliary sources, is shaped in various patterns to study the effect of its form on the MAS accuracy.
In juxtaposition with the standard, conformal shape, several deformations are tested, where the
auxiliary sources are forced to approach the tip of the wedge. It is shown that such a procedure
significantly improves the accuracy of the numerical results. Comparisons of schemes are presented,
and the optimal auxiliary source location is proposed.

Keywords: method of auxiliary sources (MAS); electromagnetic scattering; wedge; numerical
methods; accuracy

1. Introduction

Computational Electromagnetics techniques have traditionally been utilized in the mathematical
modeling of problems related to radiation and the propagation of electromagnetic waves.
Standard applications involve antennas, diffraction, scattering, waveguides, propagation in
complex environments, etc., while boundary surfaces are typically either perfectly conducting or
dielectric. Recently, important technological advances have been based on the electromagnetic
properties of Near-Zero Index (NZI) materials [1,2], plasmonics [3], metasurfaces [4], graphene [5],
nanoparticles [6], etc.

Analytical and asymptotic methods were originally the only mathematical tool to perform relevant
calculations, naturally being restricted to canonical geometries. However, computers demonstrated
explosive progress over the last few decades, thus rendering numerical techniques indispensable in
extracting approximate results of controllable accuracy for arbitrary geometries. In general terms,
numerical techniques discretize either integral [7,8] or differential equations [9,10] involved in the
mathematical simulation of physical problems. A variant of differential equation techniques is based
on the construction of equivalent circuit or transmission line models [11–13]. Each group of the
aforementioned techniques is characterized by advantages and disadvantages, and therefore their
suitability and efficiency depend on the particular configuration. For example, in scattering problems,
where the Radar Cross Section (RCS) of a target must be calculated, differential equation methods
should ideally discretize the entire space all the way to infinity, which is obviously impossible. Mesh
truncation is a complicated task that needs to be resolved in order to obtain accurate results. On the
contrary, integral equation methods are usually more complicated in terms of calculations, and the
computational cost may be exceedingly high due to dense matrices involved in the resulting linear
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system of equations. However, field behavior at infinity is automatically incorporated into the Green’s
function, and therefore modeling the entire space is easily tractable. Integral equation solutions and
their procedure optimization is an important research topic, which recently triggered some especially
unconventional approaches [14].

The method of auxiliary sources (MAS) [15] is an integral equation technique that has successfully
been used in computational physics, including a wide range of electromagnetic radiation and scattering
applications [16]. MAS is superficially similar to the point matching version of the method of moments
(MoM) [7]; however, the auxiliary current sources are located at a distance from, and not right on
the surface boundaries. Moreover, the MAS basis functions set, used in the field expansions, has
been proven to be complete [17], which is not always easy to prove in MoM, therefore the method is
mathematically rigorous. Finally, unlike MoM, MAS is free of singularity complications, it does not
require any time-consuming numerical integrations and is much easier to implement algorithmically.
A quantitative assessment of MAS performance is given in [18], where a detailed comparison is
carried out between the computational costs of MAS and MoM. It is demonstrated that for the same
discretization density, MAS is always more efficient than MoM, but even if a higher number of
unknowns is required for MAS, the latter is still less computationally intensive than MoM under
certain conditions.

Although MAS has been invoked in several problems with various configurations and material
properties, further research is necessary to determine the optimal source location for arbitrary geometry
layouts. Particular difficulties arise when the outer boundary of the scatterer contains wedges, i.e., when
the analytical expression of the boundary curve is not differentiable. In that case, the solution accuracy
deteriorates because the boundary condition close to the wedge tip is hard to satisfy sufficiently well.
To apply MAS to such configurations, a set of auxiliary sources (ASs) is positioned on a fictitious surface,
which is generally conformal to the physical boundary, except in the vicinity of the tips. In the areas
surrounding the wedges, the ASs are densely packed, simultaneously approaching the tips, to account
for the edge effects, as suggested in [19]. Similar strategies were employed in the case of a scattering
problem associated with coated perfectly electric conducting (PEC) surfaces including wedges [20],
where the surface was modeled via the standard impedance boundary condition (SIBC) [21].

While this deformation of the auxiliary surface has proven efficient for straight wedges, especially
when the latter form right angles, no evidence is known from the literature about its applicability
to arbitrarily shaped wedges. The aim of this paper is to investigate whether MAS accuracy
improves through this deformation, when the wedge is shaped as an intersection of circular arcs with
non-coincident centers. Moreover, as an improvement over the heuristic approaches in [19,20], explicit
algorithms should be developed for the definition of the deformed auxiliary surface. The scatterer is
thus defined as an infinite cylinder, either conducting or dielectric, with an eye-shaped cross-section.
The auxiliary surface is generally retained as conformal to the scatterer’s boundary, except in the
neighborhood of the wedge tips, where various deformation schemes are employed and accuracy
comparisons are drawn.

The format of this paper, which is an extension of [22], including additional data on perfectly
conducting case, lossless, and lossy dielectrics, is as follows: Section 2 briefly presents the mathematical
formulation of MAS for 2D scatterers, illuminated by a transverse magnetic (TM) polarized plane
wave. Furthermore, in Section 3 various algorithms are proposed for the deformation of the auxiliary
surfaces close to the wedge tips. Section 4 includes a variety of data for the eye-shaped scatterer and
checks the satisfaction of the boundary condition. Finally, the method is summarized and discussed,
whereas useful conclusions are drawn.

A + jωt time variation convention is assumed and suppressed throughout the paper.

2. MAS for Eye-Shaped Scatterers

We assume an infinitely long cylinder with a cross section that resembles an eye (Figure 1).
We investigate two separate cases: perfect electric conductor (PEC) or linear- homogeneous-isotropic
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dielectric. The geometry of the scatterer, depicted by a solid line, comprises two circular arcs with
identical radii equal to ρ, but with different centers. In particular, the Cartesian coordinates of the
upper arc are given by (1):

xu = ρ cosϕ, yu = ρ sinϕ− d, (1)

whereas those of the lower arc are given by (2):

xl = ρ cosϕ, yl = ρ sinϕ+ d, (2)

where ϕ is the azimuth angle and ±d is the vertical displacement of each arc center, taken equal to the
arc apothem (see Figure 2). Obviously, ϕ does not span the entire [0, 2π) interval, but it is limited by
the arc width itself, which is given by (3):

ϕarc = 2arccos
d
ρ

. (3)

 
Figure 1. Geometry of the scatterer (solid line), including inner auxiliary sources (ASs) (diamonds)
and outer auxiliary sources (ASs) (squares). The dots stand for collocation points (CPs) and circles for
midpoints (MPs).

 
Figure 2. Construction of the geometry.

The scatterer is illuminated by a TM plane wave impinging from an azimuth angle equal to ϕinc.
Therefore, the incident electric field Einc is given by (4):

Einc(x, y) = E0 exp
{
jk0(x cosϕinc + y sinϕinc)

}
ẑ, (4)
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where E0 is the amplitude of the incident electric field, k0 is the free space wavenumber, and a hat
denotes a unit vector along the corresponding direction. The incident magnetic field Hinc is given
by (5):

Hinc(x, y) = −E0

ζ0
(sinϕincx̂− cosϕincŷ) exp

{
jk0(x cosϕinc + y sinϕinc)

}
, (5)

where ζ0 is the free space intrinsic impedance. To solve the scattering problem via MAS, two sets of ASs
are generally defined, each one of multitude N, as shown in Figure 1. In the PEC case, only the inner
set is used; the outer set is necessary only in the dielectric configuration. In standard MAS formulation,
both inner and outer auxiliary surfaces are conformal to the scatterer boundary. The electric field due
to the nth inner AS, located at point rn and radiating in the outer space, is as follows:

Esn(r) = ẑEnH(2)
0 (k0|r− rn|), (6)

where En is the corresponding unknown weight, (n = 1, 2, . . . , N), and H(2)
0 is the Hankel function

of the zero order and second kind (2D Green’s function). The corresponding magnetic field of the
nth auxiliary source is obviously proportional to the curl of (6), given explicitly in [20]. Similar
expressions hold for the outer ASs, radiating in the inner space of the dielectric scatterer, except for k0

and ζ0, which have to be replaced by k and ζ, respectively, corresponding to the scatterer’s dielectric
properties. The total scattered E field is expressed as the superposition of the fields in (6) and the H
field accordingly. By applying the boundary conditions for both fields at the N collocation points (CPs)
(xm, ym) (m = 1, 2, . . . , N) of the scattering boundary (blue solid dots in Figure 1), we cast a linear
system of equations as in (7):

[Z]{I} = {V}, (7)

where {I} is the column vector of the unknown weights En. In the PEC case, [Z] is a square matrix of
size N ×N with elements determined by the interaction between ASs and CPs, and {V} is the column
vector of the incident E fields calculated at the CPs. In the dielectric case, the [Z] interaction matrix is
of size 2N × 2N and {V} is the column vector of both the incident E and H fields calculated at the CPs.

3. Improvement of the Auxiliary Surface Layout

As mentioned in [19,20], MAS becomes less accurate when the auxiliary surfaces are conformal to
boundaries encompassing wedges. In particular, satisfaction of the boundary condition at midpoints
(MPs) (see Figure 1) close to the tips is no longer sufficiently good. To overcome this complication, the
auxiliary surface, defined by radius ρaux and using expressions analogous to (1-3), may be deformed so
that ASs not only approach the tips closely, but become denser in the tip neighborhood as well. ASs
may approach CPs following several patterns. In this work, two basic patterns were tested. Let M
be the number of ASs to be moved. Let ρm be the polar radius of the mth AS (m = 1, 2, . . . , M),
and let g be the maximum polar radius difference between the mth AS and the mth CP. Finally, let s
be the proximity factor, defined in [0, 1], so that 0 corresponds to no approach and 1 corresponds to
the maximum approach (resulting in coincident ASs and CPs). Then, the schemes proposed for the
auxiliary surface deformation are defined in (8) as follows:

ρ′m = ρm + gs
(m

M

)ν
, (8)

where ν = 1 for simple and ν = 2 for progressive reach. The deformation effect is graphically described
in Figure 3.

Furthermore, in a way similar to [20], ASs and CPs, accordingly, should become denser close to the
wedge tip. Again, there is no unique way to accomplish this. In this work, the scheme implemented
multiplies the polar angle ϕm of the mth AS location by a factor Dm, 0 < Dstart ≤ Dm ≤ 1, where Dstart

is user-defined. For example, in the first quadrant of the ‘eye’, Dm is defined as being close to 0 for
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ASs near the wedge tip, and close to 1 for ASs close to the vertical axis. For progressive densification,
the scheme proposed is: ϕ′m = ϕmD2

m. Moreover, additional ASs may be superimposed to the already
existing ones close to the tips if necessary. The combined effect of the tip approach and densification is
depicted in Figure 4.

 
Figure 3. Polar radius decrease from 1.5 to 1 according to the proposed schemes.

 
Figure 4. Deformation of the auxiliary surface, combined with densification in the vicinity of the tips:
all inner ASs are allowed to approach the CPs, whereas only 1/4 of the outer ASs are allowed to do so.

4. Results

4.1. PEC Scatterer

To test the efficiency of the method, a PEC scatterer is initially defined by radius ρ = 3λ, arc
displacement d = 0.5ρ = 1.5λ, incidence angle ϕinc = 0, auxiliary surface radius ρaux = ρ− 0.075λ, and
originally 136 CPs and therefore 136 inner ASs. The solution to the problem without any deformation
yields the results of Figure 5a, which depicts the quantified error in the generic boundary condition
(BC) of the E field along the boundary stretch, i.e.,:

ΔEbc =

∣∣∣n̂× (Ein − Eout)
∣∣∣

|Einc|max
, (9)

where in (9) n̂ is the normal unit vector on the boundary, pointing outwards, and Ein, Eout are the
electric fields just inside and just outside the scatterer, respectively, the former obviously vanishing for
the PEC case.
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(a) (b) 

Figure 5. Plots of E field boundary condition error for a perfectly electric conducting (PEC) scatterer
with initial ρaux = ρ− 0.075λ using: (a) the standard, conformal auxiliary surface; and (b) the deformed
auxiliary surface.

To improve the satisfaction of the BC, the deformation scheme proposed above was implemented.
After several trials, the following parameters were finally invoked: All ASs were displaced as well
as densified and the proximity factor was set equal to s = 0.88, whereas Dstart = 0.9. No extra ASs
were added since their presence proved to achieve only incremental improvement. The results are
displayed in Figure 5b, which shows that the overall E field error at MPs was substantially reduced.

It is worth noting that the proper placement of the auxiliary surface is of great importance in order
to avoid caustics exclusion by the auxiliary surface or any potential resonance effects, as presented
in [23]. To illustrate the possibly detrimental influence on the BC error, specifically, in this case,
keeping the multitude of CPs consistent (and thus the multitude of ASs consistent) but moving the
auxiliary surface further away from the scattering boundary (ρaux = ρ− 0.15λ) produced the results in
Figure 6a,b, before and after applying the deformation scheme, respectively. Severe complications are
revealed in Figure 6a, while it may be deduced from Figure 6b that utilizing an improved auxiliary
surface layout, compared to a conformal one, may be much less prone to accuracy degradation,
presumably because caustics are still retained within the auxiliary surface.

 
(a) (b) 

Figure 6. Plots of E field boundary condition error for a PEC scatterer with initial ρaux = ρ − 0.15λ
using: (a) the standard, conformal auxiliary surface; and (b) the deformed auxiliary surface.

4.2. Lossless dielectric scatterer

Next, a lossless dielectric scatterer was considered, with radius ρ = 3λ, arc displacement
d = 0.5ρ = 1.5λ, relative permittivity εr = 2.56, incidence angle ϕinc = 0, inner and outer auxiliary
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surface radius ρaux in = ρ− 0.3λ and ρaux out = ρ+ 0.45λ, and, originally, 160 CPs (hence 160 inner and
160 outer ASs). Like in the PEC case, the efficiency of MAS was initially tested using a conformal
auxiliary surface and the extracted results of the BC error are presented in Figure 7a, where the upper
subplot depicts the quantified error for the E field (ΔE %) and the lower one for the H field (ΔH %),
both being relatively significant near the wedge tips.

 
(a) (b) 

 
(c) 

Figure 7. Results for lossless dielectric scatterer: (a) E and H field boundary the condition error by
employing a conformal auxiliary surface; (b) E and H field boundary the condition error by employing
a deformed auxiliary surface; (c) the Radar Cross Section (RCS) acquired by utilizing the auxiliary
surface deformation scheme.

Afterwards, the improvement of the BC was examined by employing the aforementioned
deformation scheme with the following parameters, obtained through multiple trials: the portion of
ASs to be displaced was 1/5 for the inner and 1/8 for the outer ones, with a proximity factor of s = 0.75
and s = 0.65, respectively, while all of them were densified with Dstart = 0.80. The addition of extra ASs
offered no further refinement and was skipped once more. Figure 7b depicts the considerably decreased
quantified BC error, and the corresponding radar cross section (RCS) is displayed in Figure 7c.

4.3. Lossy Dielectric Scatterer

Finally, a lossy dielectric scatterer of radius ρ = 5λ, arc displacement d = 0.5ρ = 2.5λ, relative
permittivity εr = 2.56 − 0.102 j, incidence angle ϕinc = 0, inner and outer auxiliary surface radius
ρaux in = ρ− 0.5λ and ρaux out = ρ+ 0.75λ, and originally 180 CPs (hence 180 inner and 180 outer ASs)
was analyzed. Similar BC tests were conducted for conformal auxiliary surface, once again resulting in
a relatively sizable BC error in the neighborhood of the wedge tips (Figure 8a).
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(a) (b) 

 
(c) (d) 

 
(e) 

Figure 8. Results for lossy dielectric scatterer: (a) error in the generic boundary condition (BC) of
the E and H field via conformal auxiliary surface placement; (b) error in the generic BC of the E
and H field via improved auxiliary surface placement; (c) computed RCS for conformal auxiliary
surfaces; (d) computed RCS for improved auxiliary surfaces; (e) RCS compared for both auxiliary
surface placements (conformal shown in red, improved shown in blue), focused in angles near the
backscattering direction.

The deformation scheme proposed above was also implemented in order to enhance the satisfaction
of the boundary condition. The parameters found to produce the lowest BC error, shown in Figure 8b,
are as follows: 1/5 of the inner ASs and 1/8 of the outer ones were displaced, with a proximity factor
set equal to s = 0.75 and s = 0.65, respectively, whereas all of them were included in the densification
with Dstart = 0.80. Adding extra ASs did not prove to be beneficial and, therefore, was not employed.
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The maximum E field error at MPs was reduced from 5.13 ∗ 10−2 to 7.27 ∗ 10−3 and the maximum H
field error from 5.11 ∗ 10−1 to 4.14 ∗ 10−2.

The computed RCSs, using conformal and deformed auxiliary surface layouts, are depicted
in Figure 8c,d, respectively. Although not visually discernible in these plots due to their wide
dynamic range, comparing their values at angles close to the scatterer’s wedges exhibits an observable
improvement, e.g., from 300◦ to 360◦ in Figure 8e, in the azimuthal direction where ΔE and ΔH obtain
their greatest values.

It is worth mentioning that placing ASs too close to the wedge tip is not advisable. Indeed, an AS
right on the wedge tip causes severe ill-conditioning of the linear system matrix, whereas proximity
factor s = 0.99 for both inner and outer ASs lead to inadequate error reduction, namely 3.16 ∗ 10−2 for
the E field and 4.43 ∗ 10−1 for the H field.

Furthermore, the symmetry of the geometry should be accompanied by symmetry in the ASs/CPs.
As a counterexample, the same lossy dielectric scatterer was experimentally analyzed via unequal CP
densities in the two arcs, namely 45 for the upper and 90 for the lower one, leading to excessively high
errors and completely wrong RCS plots, as demonstrated in Figure 9.

 
(a) (b) 

 
(c) 

Figure 9. (a) Symmetric geometry with non-symmetric auxiliary points allocation, (b) RCS, and (c) ΔE
and ΔH error.

4.4. Investigation of the Solution Behavior for Various Geometry Modifications

To check the robustness of the method described above, several modifications of the geometry
were carried out and the respective results were extracted. In all cases below, lossy dielectric material
with relative permittivity εr = 2.56 − 0.102 j is considered, whereas the incidence angle is always
ϕinc = 0 with an arc radius of ρ = 3λ.

First, a scatterer that deviates only slightly from a circle was studied, i.e., a layout with small arc
displacement d = 0.1ρ = 0.3λ, followed by a scatterer with a moderate deviation from a circle, i.e.,
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a layout with mediocre arc displacement d = 0.5ρ = 1.5λ, and, finally, a scatterer with a significant
distortion with respect to a circle, which, therefore, encompasses sharp wedges, i.e., a layout with
large arc displacement d = 0.7ρ = 2.1λ. All three geometries and their computed results are depicted
in Figures 10–12, respectively, while their MAS parameters and the quantified error in the generic
boundary condition of the electromagnetic field are presented in Table 1.

 
(a) (b) 

 
(c) (d) 

 
(e) (f) 

Figure 10. Small arc displacement d = 0.1ρ = 0.3λ : (a) geometry and conformal auxiliary surfaces;
(b) geometry and improved auxiliary surfaces; (c) conformal ΔE and ΔH error; (d) improved ΔE and
ΔH error; (e) conformal RCS; and (f) improved RCS.
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(a) (b) 

 
(c) (d) 

 
(e) (f) 

Figure 11. Mediocre arc displacement d = 0.5ρ = 1.5λ: (a) geometry and conformal auxiliary surfaces;
(b) geometry and improved auxiliary surfaces; (c) conformal ΔE and ΔH error; (d) improved ΔE and
ΔH error; (e) conformal RCS; and (f) improved RCS.

As a verification of the broad applicability of the technique, an asymmetric scatterer was also
analyzed. Namely, two unequal circular arcs were connected, forming a “sorrowful” eye. The geometry
parameters were chosen as follows: radius ρ = 4λ and arc displacement d = 0.5ρ = 2λ for the upper
arc, radius ρ = 5λ and arc displacement d = 0.5ρ = 2.5λ for the lower arc, originally 160 CPs (hence
160 inner and 160 outer ASs), 1/2.5 of the inner ASs and 1/4 of the outer ones were displaced, with
proximity factor set equal to s = 0.6 and s = 0.6, respectively. No densification was implemented and
no extra ASs were added. The maximum E field error at MPs was reduced from 4.19 ∗ 10−2 to 1.57 ∗ 10−2

and the maximum H field error from 4.36 ∗ 10−1 to 1.38 ∗ 10−1. The results are depicted in Figure 13.
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(a) (b) 

 
(c) (d) 

 
(e) (f) 

Figure 12. Large arc displacement d = 0.7ρ = 2.1λ : (a) geometry and conformal auxiliary surfaces;
(b) geometry and improved auxiliary surfaces; (c) conformal ΔE and ΔH error; (d) improved ΔE and
ΔH error; (e) conformal RCS; and (f) improved RCS.

Judging from the outcome of the aforementioned tests, the method proposed herein is very robust,
producing reliable results for blunt, acute, or non-symmetric wedges.
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(a) (b) 

 
(c) (d) 

 
(e) (f) 

Figure 13. Non-symmetric scatterer: (a) geometry and conformal auxiliary surfaces; (b) geometry
and improved auxiliary surfaces; (c) conformal ΔE and ΔH error; (d) improved ΔE and ΔH error;
(e) conformal RCS; and (f) improved RCS.

Table 1. Geometry definition, method of auxiliary sources (MAS) parameters, and computed BC error
of the electromagnetic field.

Arc displacement d 0.1ρ = 0.3λ 0.5ρ = 1.5λ 0.7ρ = 2.1λ

number of points (ASs, CPs) 160 160 156
displaced inner ASs fraction 1/2 1/5 1/6
displaced outer ASs fraction 1/2 1/8 1/2

inner proximity factor s 0.55 0.75 0.74
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Table 1. Cont.

outer proximity factor s 0.15 0.65 0.8
densification factor Dstart 0.94 0.8 0.8

maximum ΔEbc
1, conformal 1.89 ∗ 10−3 1.81 ∗ 10−2 7.58 ∗ 10−2

maximum ΔEbc
1, improved 5.06 ∗ 10−4 3.68 ∗ 10−3 4.09 ∗ 10−3

maximum ΔHbc
1, conformal 3.31 ∗ 10−2 2.64 ∗ 10−1 1.09

maximum ΔHbc
1, improved 2.16 ∗ 10−2 1.96 ∗ 10−2 5.04 ∗ 10−2

1 Boundary condition error at midpoints (MPs).

5. Discussion

The applicability range of the approach presented above may span various aspects of computational
electromagnetics. MAS has already been used in the literature to simulate practical problems, such as
scattering by a raindrop [24], although that particular geometry is smooth, without wedges. Wedge
treatment, as discussed in this paper, enhances MAS accuracy for applications such as jet engine
inlet modeling [25–27], where interior blades contain sharp edges, or even further military aircraft
scattering simulation, such a stealth design. Moreover, additional possible applications may include
automotive modeling, for example, the functionality of a telecommunications antenna in the presence
of the vehicle surface. Furthermore, the algorithm may be used in the design of absorbers and cloaking
materials [28–30], or generally wave manipulation [31] when the geometry layout contains wedges.

Although the numerical results presented were very good, they are limited to wedges formed by
intersecting circular arcs only. It is anticipated that analogous techniques would be equally efficient
in more general cases (i.e., arbitrarily shaped curved wedges); however, this is yet to be proven in
future research. Likewise, other issues to be investigated include TE (Transverse Electric) incidence,
the three-dimensional counterpart of this problem, unconventional materials, as well as a robust
methodology to choose the optimal deformation parameters.

Furthermore, by studying various geometries, proposing schemes for wedge treatment and
obtaining solutions by choosing alternative configurations for the incident wave, material properties,
etc., an extensive data set can be acquired. The latter, a combination of input variables and their
respective exported results may be used as training data for building a mathematical model via
Machine Learning algorithms. Machine Learning, the usage of computational methods in order to
produce/”learn” information directly from data without relying on explicit instructions, improves its
accuracy and performance proportionally to the amount of available training data. A larger data set is,
therefore, required to find hidden patterns or intrinsic properties that can be utilized in the procedure
of determining the optimal settings for the scattering problem and, hopefully, automating it.

6. Conclusions

The method of auxiliary sources (MAS) was applied to scattering from a PEC or dielectric cylinder
whose geometry contains curved wedges, formed by intersections of circular arcs. The BC error in
the vicinity of the wedge tips is significant for standard, conformal auxiliary surfaces due to field
singularities. To overcome such a complication, the deformation of the auxiliary sources was proposed.
When close to the tips, both inner and outer (when applicable) ASs approached the CPs, and their
distribution was also forced to become denser. The BC error was shown to decrease significantly for
both the E and the H fields, resulting in more accurate RCS results.
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Abstract: Reluctance coil guns are electromagnetic launchers having a good ratio of energy transmitted
to actuator volume, making them a good choice for propelling objects with a limited actuator space.
In this paper, we focus on an application, which is launching real size soccer balls with a size
constrained robot. As the size of the actuator cannot be increased, kicking strength can only be
improved by enhancing electrical to mechanical energy conversion, compared to existing systems.
For this, we propose to modify its inner structure, splitting the coil and the energy storage capacitor
into several ones, and triggering the coils successively for propagating the magnetic force in order to
improve efficiency. This article first presents a model of reluctance electromagnetic coil guns using
a coupled electromagnetic, electrical and mechanical models. Four different coil gun structures are
then simulated, concluding that splitting the kicking coil into two half size ones is the best trade-off
for optimizing energy transfer, while maintaining an acceptable system complexity and controllability.
This optimization results in robust enhancement and leads to an increase by 104% of the energy
conversion compared to a reference launcher used. This result has been validated experimentally on
our RoboCup robots. This paper also proves that splitting the coil into a higher number of coils is not
an interesting trade-off. Beyond results on the chosen case study, this paper presents an optimization
technique based on mixed mechanic, electric and electromagnetic modelling that can be applied to any
reluctance coil gun.

Keywords: coil gun; reluctance; electromagnetic launcher; mechatronics; electronics; mechanics;
simulation; RoboCup

1. Introduction

Propelling projectiles with a controlled speed and trajectory is a technological challenge having
lots of applications ranging from kicking soccer balls to launching rockets or satellites, including
testing military ammunitions. In this introduction, we focus on propulsion techniques having strong
accelerations, so that an important speed can be obtained in a short distance. Common propulsion
techniques of this type are among the following ones:

• Chemical propulsion: mainly used for propelling weapons or rockets; chemical propulsion
uses the product of a chemical explosive or expanding reaction to push out a projectile [1].
The benefit of this propulsion is to have a high density of energy stored in a small size as a
chemical product leading to strong accelerations, without the need of being connected to a power
supply. Its drawback is that the propulsion is a single shot one due to the chemical reaction.
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• Mechanical propulsion: there are many types of mechanical propulsion systems. Among the
solutions allowing a strong acceleration of the payload are the inertial launchers. They are mostly
using an energy storage in heavy high speed rotating mechanical parts such as iron cylinders.
These parts are accelerated slowly by a standard motor and part of the stored energy is transferred
in a very short amount of type to a projectile by friction. These systems are very simple but their
size is much more important than the size of chemical or electromagnetic launchers for a given
propelling strength. An example is presented later in this paper.

• Rail Gun propulsion: a rail gun is composed of a pair of conductive parallel rails connected to
a direct current (DC) power supply. The electrical circuit is a closed sliding conductor where a
payload is placed. Once current flows through the rails, a Lorentz force is created, accelerating the
payload to launch it. This propulsion technique is very efficient, and output speed can be higher
than using a conventional chemical propulsion as shown in [1], for a launching structure having
the same overall size. Compared with chemical propulsion, this solution can be far less expensive
than chemical propulsion for launching limited size payloads such as small satellites [2]. However,
the presence of a mechanical contact between the rails and the payload propeller can lead to
several issues reducing the energy transfer, such as friction losses [3] and plasma phenomena at
very high speeds [2,4].

• Coil Gun propulsion: a coil gun is an electromagnetic launcher (EML) converting electricity
into kinetic energy using coils [5,6]. There are two types of coil guns. The first one is based
on induction to accelerate a conductive non-magnetic projectile using eddy currents induced
in a conductive/non-magnetic moving rod inside a magnetic field created by a fixed coil [7].
This solution has an important drawback due to magnetic losses leading to heat generation and
controllability loss. The second one is based on accelerating a magnetic projectile by minimizing
the reluctance between the projectile and a magnetic field generated by a current flowing through
a fixed coil [8]. This type of coil gun, also named reluctance accelerator is simpler to drive than
induction coil guns and is very compact.

1.1. Comparison of Existing Soccer Ball Launching Systems

In this article, we focus on a case study having strong constraints: a real size soccer ball kicking
system embedded in robots participating in the RoboCup (the autonomous robot soccer World Cup) in
Middle Size League (Figure 1). This competition puts strong constraints on the robot size and weight,
requiring to choose the launcher having the highest ratio of energy transmitted to launcher volume
(Figure 2).

The balls used for the competition are real soccer balls (diameter 22 cm) having a weight equal
to 450 g. Size constraints on the robots are a maximum width and length L = W = 52 cm and a
maximum height H = 80 cm. Considering these robots are all using omnidirectional propulsion with
3 or 4 wheels, the space for embedding the kicking system is very small and cannot exceed a length of
30 cm and a width of 20 cm, as shown in Figure 3. Moreover, its height must be limited because the
mass centre of the robot must be as low as possible in order to allow high accelerations.

A comparison of existing soccer ball launchers is first proposed in this section. Chemical propulsion
has not been considered because they are dangerous and not reusable. Moreover, Ref.[1] shows that the
size of a chemical launching system is equivalent to an electromagnetic one. The only advantage is that
it does not need any power supply, but it is not a problem in our case considering that the robot has one.

The reference for understanding ball kicking systems is the human. Professional soccer players
shots can reach 130 km·h−1 = 36 m·s−1, corresponding to an kinetic energy equal to EK = 290 J.
As shown in Figure 4, the surface swept by the leg during a kick is important and approximately equal
to one third of the surface of a circle having a radius R = 80 cm. The mass of a soccer player leg is
approximately equal to m = 20 kg.
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Figure 1. RoboCup 2019—Sydney—Australia.

Figure 2. RoboCup RCT robot 2020.

Figure 3. Cut view of RCT robot 2020.
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Figure 4. Human kicking sequence.

Mechanical propulsion is also one of the most commonly used methods for propelling a soccer
ball. A commercial system, shown in Figure 5, is able to launch soccer balls at a maximum speed of
105 km·h−1 = 29 m·s−1 corresponding to an kinetic energy equal to EK = 190 J, using two 10 kg
cylinders coated with rubber. The propulsion part (cylinders and motors) of the system weighs 15 kg
and its dimensions are W = 65 cm and L = 25 cm and H = 25 cm.

Figure 5. Mechanical inertial rotating launcher.

Another mechanical system that can be used for propelling a soccer ball is a robotic leg powered
by a motor as shown in the kicking from Adidas [9] or as described in [10]. These solutions, using
a robotic arm, have multiple degrees of freedom [10] or a set of rotary and linear spring-loaded
actuators [9]. The Adidas solution shown in Figure 6 is composed of a 0.6 m robotic thigh rotating at
85 RPM and 0.6 m shank rotating at a maximum speed of 165 RPM, leading to a maximum ball speed
of 21 m·s−1 corresponding to an kinetic energy equal to EK = 100 J. However, the whole system is
heavy (more than 50 kg) and its dimensions are important as it sweeps a 1.2 m radius cylinder.

These mechanical systems are interesting for simulating a football player leg [9,10] and for training
humans in real conditions. However, embedding them in a RoboCup robot is very difficult. This is
probably the reason why the RoboCup research community is mainly focused on electromagnetic
launchers, and more especially on variable reluctance coil guns. Authors in [11] introduced a design
of a variable reluctance coil gun (Figure 7) that is used in the RoboCup robots of the 2019 World
Champion team. This actuator’s dimensions are L = 30 cm, W = 9 cm and H = 9 cm, its weight
is 4.5 kg and ball maximum speed can reach 11.4 m·s−1, corresponding to a kinetic energy equal to
EK = 29 J. Output speed is smaller than mechanical design, but volume has been divided by factor 20
compared with an inertial rotating launcher.
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Figure 6. Mechanical robot leg.

Figure 7. Tech United Reluctance Coil Gun.

Table 1 shows a comparison between existing ball launchers, including humans. These solutions
are very different. This comparison is done considering the weight and size for each system, as it is
a strong constraint in our case study. It is important to note that the energy transferred to the ball is
close to the maximum value for all systems, except for the robot leg. This one is based on an industrial
actuator able to carry heavy loads, and largely oversized for launching a soccer balls in terms of torque
and power. Because it is not used at full power, its ratio of energy transmitted to launcher volume is
very low compared to other solutions. However, this solution takes too much space due to the rotation
of the leg and is not relevant for a small size launcher.

Table 1. Existing ball launchers comparison.

Launcher
Length Width Height Volume Weight Ball Speed Ball Energy

Energy
Volume

(cm) (cm) (cm) (cm3) (kg) (m·s−1) (J) (J·dm−3)

Soccer player leg 160 20 80 133 × 103 20 36 290 2.18

Rotating inertial launcher 25 65 25 40 × 103 25 29 190 4.75

Robot arm [9] 240 240 30 1360 × 103 50 21 100 0.07

Reluctance coil gun [11] 30 9 9 2.4 × 103 4.5 11.4 29 12.08

In conclusion of this section, the most relevant launching systems in terms of energy transferred
to the ball for a given actuator volume are reluctance coil guns, with a ratio of energy transmitted to
launcher volume better than rotating inertial launchers by a factor 2.5, and better than most humans
by a factor 5.

Since these electromagnetic coil guns seem to be the most promising solution for launching balls,
this paper will only focus on improving that solution in order to maximize this energy transfer without
changing the volume and the weight of the actuator.
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1.2. Reluctance Coil Guns: A Ball Launcher That Can Be Optimized

Even if reluctance coil guns are a relevant solution for kicking soccer balls efficiently, it is important
to note that they are not very efficient in terms of energy conversion. In [11], electrical energy for the
coil gun is stored in a capacitor having a capacitance value C = 4700 μF under 425 V. Stored electrical
energy is equal to:

EC =
1
2

CU2
C = 424 J

Consequently, the ratio of ball kinetic energy to the input electrical one is only 7%, and the ratio
of the overall mechanical transmitted energy (including the kinetic energies of the iron rod, the lever
and the ball as explained later) to the input electrical one is 12%. However, the energy necessary for
kicking like human soccer players is already stored in the capacitor. This means that if a robot’s kick
is 10 times less powerful than a human one, it is not an issue related to available energy, but it is a
problem of inefficiency of energy transfer in reluctance coil guns.

Optimizing this energy transfer can be done in two main ways without changing the size and the
weight of the launcher. The first one is to adjust the initial position of the plunger, and the length of
its non-magnetic extension. [12] shows that energy transmission can be increased by 70% using this
technique compared to the reference case presented in [11]. This optimization is interesting because
nothing is changed on the coil gun structure and size; it is only an optimization of initial conditions
and a plunger parameter adjustment.

A second way of improving the energy transfer of a coil gun is to modify its inner structure by
splitting the coil and the energy storage capacitor into several ones [7,13], without changing the overall
quantity of coil copper and the overall capacitance value. Instead of sending an energy pulse to a single
coil, a sequence of smaller energy pulses will be sent to the different coils propagating the magnetic
force along the coil as the plunger enters it. The number of coils and the triggering sequence are the
parameters to be optimized.

This paper focuses on this second method for optimizing the energy transfer in a reluctance coil
gun. It is divided into three sections:

• Section 2 recalls the principles of coil guns.
• Section 3 describes 4 mechatronic coupled models of reluctance coil guns. All these coil guns use

the same coil copper quantity and have the same overall electrical energy storage capacitance,
but they have, respectively, one, two, three and four coils. The electromagnetic part of each
model has been implemented using FEMM 4.1, a finite element electromagnetic simulation tool,
and Matlab Simulink is used for modelling the electrical and mechanical parts.

• Section 4 presents results, which are discussed in order to conclude on the most relevant coil
structure for maximizing the ball speed and the energy transfer of the reluctance coil gun, while
maintaining a high level of robustness.

2. Principles of Coil Guns

2.1. Physical Concept

Magnetic field in a looped circuit composed of magnetic material and air gap tends to be maximized
when a current is applied. Hopkinson law used in magnetic circuits tells that: NI = RΦ, with:

• I: current in the coil (A)
• N: number of turns of the coil
• Φ: flux (Wb)
• R: reluctance (H−1)

Increasing the magnetic field is similar to an increase of Φ. For a given current and number of coil
turns, this increase can be done by reducing the reluctance R of the magnetic circuit. Its expression is

R =
1

μ0μr

l
S

, with:
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• μ0 = 4π10−7 H·m−1: permeability of vacuum
• μr: relative magnetic permeability
• S: cross-sectional area of the circuit (m2)
• l: length of the magnetic circuit (m)

The way to reduce reluctance is to minimize the air gap in the magnetic circuit, replacing it
by a portion of the iron plunger (having a relative magnetic permeability equal to 5000 or more).
Thus, under a strong coil current, the plunger will be propelled in order to reduce the air gap, with an
important force dependent on the coil current and the number of coil turns. Figure 8 shows a three-stage
coil gun. In this case, coil 1 is powered first, then coil 2, then coil 3. This is the principle of a multi-stage
variable reluctance actuator.

Figure 8. Three Coils Electromagnetic Launcher Principle [14].

Our case study focuses on coil gun implementations having one, two, three or four coils, with a
fixed overall size and quantity of copper, as shown in Figure 9. It is important to note that between
each coil, an iron plate has been placed in order to close the magnetic circuit around each coil.

Figure 9. Coil gun configurations with 1, 2, 3 and 4 coils sharing the same quantity of copper.
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In our case study, each coil is powered by an identical capacitor. These capacitors have an global
overall capacitance equal to (4700 μF). This capacitance is split into n smaller equal ones, where n is the
number of coils. Each capacitor can be discharged, one at a time, in its corresponding coil producing
a strong current which generates a magnetic force. The iron rod, mobile part of the magnetic circuit
slides in a stainless steel tube in order to reduce the air gap of the magnetic circuit. This iron rod is
attracted and accelerated as long as the air gap can be minimized. It is slowed down if the plunger
goes to far and the air gap increases again. To avoid that, the duration of the current pulse in each coil
has to be limited in time.

Discharge from the capacitor to the coil inductor can be described by a second order RLC
differential equation. This equation has non-constant coefficients because the value of the inductor
highly depends on the value of the current in the coil and on the plunger position in the sliding tube.
This mixed non-linear model combining electrical and mechanical inputs will be presented in the
following sections.

2.2. Electromagnetic Theory and Simulation Software

The model of an electromagnetic actuator has to take into account many non-linearities such as:

1. The saturation of magnetic materials under high currents [15] as shown in Figure 10.
2. The impact of the plunger position leading to change locally the relative magnetic permittivity by

a factor 5000 or more.

Figure 10. Example of magnetic field saturation [15].

Considering this, it is diffficult to find a theoretical solution to calculate the strength of the force
applied to the rod. For taking non-linearities into account, the model used is a finite elements one
obtained using an open-source simulation tool called FEMM 4.2. It has been developed by D.C. Meeker.
This tool calculates force and inductance values under different conditions [16]. More precisely,
magnetic field

−→
B and potential vector

−→
A are calculated everywhere using a successive approximation

finite element solver on an axisymmetric model with a spherical boundary as shown in Figure 11.
The mesh used for this computation is determined using an heuristic approach having the

following characteristics: a maximum allowable mesh size is then computed as 1% of the length of
the diagonal of the bounding box of any region, leading to generate a default mesh with about 4200
elements in an empty square region as shown in Figure 12. Fine meshing is also forced in all corners
and a five-degree default discretization is used for arc segments.
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Figure 11. FEMM 4.2 model: flux density.

Figure 12. FEMM 4.2 mesh with its boundary.

Evaluating force and inductance value which are integral values on the mesh is also done by
FEMM 4.2 on pre-defined specific parts of the system such as the iron plunger or the inductance of the
coil. Computation needs approximately 5 s on a standard Intel Core I7 processor.

In order to compute force and inductance for all combinations of currents and plunger position,
a LUA script is used in FEMM 4.2. Simulations have been done for 30 different positions of the plunger
and 6 different currents for each coil: 0 A, 40 A, 80 A, 120 A, 160 A and 200 A. Simulation times are as
follows:

• One coil: 180 combinations—15 min
• Two coils: 1080 combinations—90 min
• Three coils: 6480 combinations—9 h
• Four coils: 38,880 combinations—54 h

Considering the high computational cost of the electromagnetic simulations, our study has been
limited to four coils, but we will show later that it is not necessary to go further.

2.3. Electrical Model

At each stage of the coil gun, a
4700

n
μF, 450 V capacitor C is discharged in the inductance L using

a controlled switch based on a MOSFET Transistor as shown in Figure 13. In this LC circuit, resistor
R must be considered because its value is not negligible at all due to the important number of loops

in the coil. R =
ρL
S

can be evaluated or measured, where ρ is the resistivity of copper, L the total
length of the coil wire and S the surface of a wire section. This leads to the differential Equation (1)
where L is not constant, but depends on the plunger position and on the coil current. Considering that,
Equation (1) must be solved by numerical simulation.

d2UC
dt2 +

R
L

dUC
dt

+
1

LC
UC = 0 (1)
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Figure 13. Electric circuit.

As shown in Figure 14, FEMM 4.2 simulations shows that L inductance varies by a factor 20 from
L = 13 mH to L = 253 mH in a 1 coil kicking system.

Figure 14. Variation of the inductance value depending on the plunger position and the coil current.

The inductance value depends on the plunger position and the saturation of the magnetic circuit
due to the current in the coils. In Figure 14, discrete values of the inductance are calculated for positions
of the plunger (Figure 15) varying from x = −100 mm to 60 mm by increment of 5 mm, and for coil
currents varying from 1 A to 200 A by increment of 50 A.

It is important to note that:

• Inductance value L increases as the plunger enters the coil, is maximized when the plunger centre
is aligned with the coil centre, and decreases after that. This is because the magnetic field is well
guided when the plunger is inside the coil with a low air gap.

• The inductance value is highly dependent on the coil current. For a current I = 1 A, L varies,
depending on plunger position, from L = 13 mH to L = 253 mH whereas for a current I = 100 A,
L varies only from L = 13 mH to L = 24 mH. There is an important difference between maximal
values because at a low current, magnetic material is not saturated, leading to a high inductance
value. In contrast, there is no difference between minimal values because when the plunger is
outside the coil, the air gap is so important that it leads to a huge reluctance in the air gap part
which prevents saturation of the magnetic circuit.
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Figure 15. RoboCup reluctance coil gun kicking system.

2.4. Mechanical Model

The mechanical model has been defined following the coil gun structure described in [11].
However, our kicking system is very similar in terms of dimensions and weight to that one which
serves as a reference design for most RoboCup teams. Consequently, this model will be reusable for
other teams, and can be adapted for other use cases by changing the content of some blocks according
to the chosen mechanical design. However, changing parameters of the coil requires to simulate again
the electromagnetic part, as force depends on coil gun geometry, current and plunger position.

As for the electrical model, an analytical calculation of the force is not possible. The finite elements
model using FEMM 4.2 shows that force varies in our case study from −1900 N to 19,000 N for the
same coil depending on the plunger position and on the coil current (Figure 16). Discrete values of the
force are calculated for positions of the plunger (Figure 15) varying from x = −100 mm to 60 mm by
increment of 5 mm, and for coil currents varying from 1 A to 200 A by increments of 50 A.

It is important to note that:

• Force F is almost linear with coil current in any situation.
• Force F is highly dependent on the plunger position. For a current I = 100 A, F varies, depending

on plunger position, from F = −954 N to F = 954 N, with F = 0 N when the plunger is exactly
aligned with the centre of the coil. This is because magnetic flux tends to be maximized in a
magnetic circuit, leading to reduce the air gap. Consequently, as shown in Figure 16, the magnetic
force on the plunger is symmetrical around the point where the centre of the plunger is aligned
with the centre of the coil. Thus, it is important to stop powering the coil as soon as the plunger
has crossed the coil.

• Force is very small if the plunger is outside the coil. This is normal considering the important
length of the air gap replacing the plunger for looping back the magnetic circuit. We can also note
that when the plunger is at the centre of the coil, force is null for any value of the current because
magnetic flux can not be maximized.

117



Appl. Sci. 2020, 10, 3137

Figure 16. Variation of the force on the plunger depending on its position and the coil current.

3. Mixed Electrical and Mechanical Model of the Reluctance Coil Gun

Implementation has been done using Matlab Simulink for this mechatronic model. Simulated
inductance and magnetic force values using FEMM 4.2 are implemented in look-up tables interpolating
data in order to have a force and inductance value for any position of the plunger and any coil
current. Figure 17 shows the model of a single coil electromagnetic launcher used for simulations.
Figure 18 shows the model of a four-coil electromagnetic launcher used for simulations. The mechanical
simulation part is unique in both models, whereas the electrical part is replicated by the number of
coils present in the electromagnetic launcher.

Figure 17. Mechatronic model of a 1 coil electromagnetic launcher.
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Figure 18. Mechatronic model of a 4 coils electromagnetic launcher.

3.1. Electrical Model

A model of the electrical part of the first coil of the electromagnetic launcher is described in
Figure 19 in the case of a single coil launcher, and in Figure 20 in the case of a four-coil launcher.
Electrical differential Equations (1) are implemented using discrete blocks because coefficients of
the equation are not constant due to the dependence of inductance L on the current and position of
the plunger.

Figure 19. Electrical model of the first coil of an electromagnetic launcher with 1 coil.

As shown in Figures 19 and 20, the only difference between both models is the number of inputs
of the inductance look-up table (LUT) block interpolating linearly the value of L using the simulations
performed with FEMM 4.2. In the case of a four-coil EML, there are five inputs: plunger position,
and the currents on each of the four coils.
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It is important to note that there is a trigger input in each block. This input corresponds to an
electronic trigger supplied by a pilot board and used for piloting the MOS transistor commutating the
capacitor on the coil. There is one trigger input per coil, so that it is possible to drive them independently.

Figure 20. Electrical model of the first coil of an electromagnetic launcher with 4 coils.

3.2. Mechanical Model

The reluctance coil gun mechanical system shown in Figure 15 has been described in a former
work [12]. This model takes into account the transmission of the movement from the plunger to the
ball through an aluminium lever. Movement can be split into three phases as shown in Figure 21:

Figure 21. Plunger speed in m·s−1 over the time in s.

• Phase 1: Acceleration of the plunger without contact on the lever, due to the magnetic force as shown
in Equation (2) without contact on the lever. Force Fmagneto depends non-linearly on plunger position
and current I. A look-up table (LUT) interpolates linearly the value of F using the simulations
performed with FEMM 4.2.

mpẍ = FMagneto(x, I) (2)

• Phase 2: Impact on the lever corresponding to an elastic shock when plunger hits it at a distance
R1 from its rotation centre. Kinetic energy is conserved as described in Equation (3).

1
2

mp ˙xInit
2 =

1
2

mp ˙xFinal
2 +

1
2
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R2

2
R2

1
˙xFinal

2 +
1
2
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˙xFinal

2

R2
1
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where JLever is the inertial moment of the lever, R1 and R2 the distances between the lever axis
and respectively the plunger impact point and the ball impact point as shown in Figure 15. This
leads to a plunger speed just after the shock equal to the x f inal given in Equation (4).

˙xFinal =

√√√√√
mp

mp + mB
R2

2
R2

1
+

JLever

R2
1

˙xInit (4)

• Phase 3: the plunger is accelerated in contact with the lever, which is also in contact with the ball.
This means that the lever applies a force on the plunger in subtraction of the magnetic force as
shown in Equation (5). This force is an inertial one due to the acceleration of the ball and the lever
as shown in Equation (6). It is important to note that theoretically, the speeds of the ball, lever and
plunger are not equal after the shock, but in reality they are due to the elastic deformation of the
ball as shown in the slow motion picture in Figure 22.

mpẍ = FMagneto(x, I)− FLever (5)

where

FLever =
JLever + mBR2

2
R1

θ̈ (6)

with:

JLever =
mLeverR2

2
3

For small θ angles, θ̈ 
 ẍ
R1

, this leads to :

mpR2
1 + JLever + mBR2

2

R2
1

ẍ = FMagneto(x, I) (7)

Figure 22. Ball deformation after phase 2.

Implementation of this three-phase mechanical model has been done using Matlab Simulink.
Figure 23 shows the mechanical part model of a 1 coil electromagnetic launcher, whereas Figure 24 shows
the mechanical part model of a 4 coils electromagnetic launcher. It is important to note that, as shown in
Figure 22, plunger, lever and ball are in contact after the shock. This is due to the softness of the ball,
and because the ball is close to be in contact with the lever before the impact. Thus, the hypothesis of a
perfect elastic shock is almost verified except for a transitional short period of less than one millisecond
after the shock of the rod on the lever.
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Figure 23. Mechanical part model of a 1 coil electromagnetic launcher.

Figure 24. Mechanical part model of a 4 coils electromagnetic launcher.

However, in order to understand more accurately what is going on during this transition, impact
of the plunger on the lever and impact of the lever on the soft ball will be modelled in another work
(for example using MSC ADAMS software), but this is out of the scope of this paper.

As shown in Figures 23 and 24, the only difference between both models is the number of inputs
of the force look-up table (LUT) block interpolating linearly the value of F using the simulations
performed with FEMM 4.2. In the case of a four-coil EML, there are five inputs: plunger position,
and the currents on each of the four coils.

4. Reluctance Coil Gun Simulations

4.1. Hypothesis

The reluctance coil gun previously described and used in robots at the RoboCup has been
simulated using Matlab Simulink. In this study, we focus on optimizing the inner structure of the coil
gun and especially we aim at finding the optimal number of coils and the optimal instant and duration
of triggering for each coil in a sequence.

Optimality is not only focused on the ball speed which must be as important as possible, but also
on the reliability and robustness of the triggering system, which can be very sensitive to a small change
in the triggering delay when several coils (especially 3 or 4) are used.
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This last point is important because we have decided of not adding an observer of the plunger
position in the system such as a set of infrared light barriers. This choice has been done considering
the mechanical difficulties for inserting sensors inside the coil gun structure, and the issues about
robustness it can raise due to the huge impacts and vibrations on the EML structure. Instead of that, a
simple and robust open loop driving has been chosen, each coil being commutated during a fixed time
and with a fixed delay from the start of the sequence. Considering that the initial conditions of the
plunger position are always the same ones (this is true because the plunger is returned to its initial
position by an elastic restoring force), the ball speed has been measured to be almost the same at each
shooting sequence.

This paper does not focus on optimizing the initial position xinit of the plunger, and the length
Lext of the non-magnetic extension of the plunger, as done in [12]. In this study, we started using the
results presented in [12]. However, in a final step, a fine optimization has been done for getting the
best possible solution on both parameters.

4.2. Model Parameters

In order to compare results with other previous studies, the kicking system simulated is identical
to the Tech United Team one described in [11]. However, geometry of our coil gun is very similar to this
reference design. Parameters of the model are as follows:

• Distance from lever axis to plunger touch point: R1 = 13 cm
• Distance from lever axis to ball touch point: R2 = 24 cm
• Coils number (each coil as been chosen identical): nbCoils = 1, 2, 3, 4
• Coils length (for each coil): LCoil = 11.5/nbCoils cm
• Coils number of turns (for each coil): NCoil = 1000/nbCoils turns
• Coils resistance (for each coil): 2.5/nbCoilsΩ
• Capacitors number: nbCapacitors = nbCoils
• Capacitors value (for each capacitor): 4700 μF/nbCoils
• Capacitors charge voltage: 425 V
• Plunger iron rod diameter: DPlunger = 25 mm
• Plunger iron rod length: LPlunger = 11.5 cm
• Plunger iron rod mass: mPlunger = 690 g
• Plunger extension diameter: DExt = 18 mm
• Plunger extension length: LExt cm
• Plunger extension mass: mExt = 0.68 ∗ LExt (in m)
• Distance from coil to lever: DLever = 4 cm
• Vertical lever mass: mLever = 80 g
• Ball mass: mBall = 450 g

4.3. Simulations

Simulations have been done using coil guns having one, two, three and four coils. As explained
before, the overall quantity of copper and the global number of coil turns is a constant, as is the sum of
the capacitors value. Delays and durations of each trigger pulses for each coil have been optimized
manually in order to maximize the ball speed.

Results of simulation for an EML having one coil are presented in Figure 25. Coil1 is triggered
during 25 ms. Optimal initial position of the plunger is −92 mm. Ball speed reaches 13.45 m·s−1.

Results of simulation for an EML having two coils are presented in Figure 26. Coil1 is triggered
during 15 ms, Coil2 is triggered during 14 ms with a delay of 10 ms. Optimal initial position of the
plunger is −82 mm and optimal plunger extension length is 104 mm. Ball speed reaches 16 m·s−1.
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Figure 25. Simulation of one coil EML used in an optimal way.

Figure 26. Simulation of a two-coil EML used in an optimal way.

Results of simulation for an EML having three coils are presented in Figure 27. Coil1 is triggered
during 10 ms, Coil2 is triggered during 15 ms with a delay of 7 ms, Coil3 is triggered during 12 ms with
a delay of 11 ms. Optimal initial position of the plunger is −82 mm and optimal plunger extension
length is 90 mm. Ball speed reaches 16.1 m·s−1.

Results of simulation for an EML having 4 coils are presented in Figure 28. Coil1 is triggered
during 10 ms, Coil2 is triggered during 10 ms with a delay of 7 ms, Coil3 is triggered during 12 ms with
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a delay of 11 ms, Coil4 is triggered during 14 ms with a delay of 15.5 ms. Optimal initial position of the
plunger is −92 mm and optimal plunger extension length is 104 mm. Ball speed reaches 16.4 m·s−1.

Figure 27. Simulation of a two-coil EML used in an optimal way.

Figure 28. Simulation of a four-coil EML used in an optimal way.
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5. Results and Discussion

5.1. Discussion on Simulation Results

5.1.1. Impact of the Coil Gun Structure

As presented in the results section, increasing the number of coils allows to transfer more power
to the ball as shown in Table 2:

Table 2. Optimal ball speed depending on the number of coils in the EML.

Number of Coils 1 2 3 4

Optimized Ball Speed (m·s−1) 13.5 16 16.1 16.3

Kicking Range (m) 18.6 26.1 26.4 27

Increasing the number of coils from one to two allows to increase the speed by 18%, corresponding
to an energy transfer optimization of 40%. However, increasing the number of coils from two to three
or four allows to increase the speed by only respectively 0.6% and 1.8%, corresponding to an energy
transfer optimization of respectively 1.2% and 3.6%. This result is not intuitive and is important.
Consequently, considering the impact of adding a coil to the EML in terms of mechanical and electrical
integration, the two-coil EML seems to be the best configuration in our case.

5.1.2. Comparison between the Reference Case and the Chosen Configuration

Comparing the reference situation described in [11], optimization of the number of coils of the EML,
the initial position and the extension length leads to increase the ball speed by 42%, from 11.2 m·s−1 to
16 m·s−1. This corresponds to an energy transfer improved by 104% compared to the reference situation,
without complicating the coil gun structure too much.

Shooting range, which is defined as the distance of the first rebound in case of a 45◦ kick, without
considering air friction, increases from 12.5 m in the reference situation described in [11] to 26 m in the
optimal configuration.

5.1.3. Impact of a Variation of the Coil Triggering Instants

Having a powerful coil gun is important, but its behaviour robustness is also a key factor. This is
especially true for the triggering instants which are important parameters for optimizing power
transmission and have to be tuned carefully.

In the case of a two-coil EML, simulations show that the second coil optimal triggering instant is
10 ms after the first coil. Table 3 shows that a variation of this triggering instant of ±1 ms has a very
limited impact on the ball speed, which is only reduced by less than 2%, leading to a good robustness
of this system.

Table 3. Impact of a variation of the second coil triggering instant in the case of a 2 coils EML.

Triggering Instant (ms) 7 8 9 10 11 12 13

Optimized Ball Speed (m·s−1) 14.4 15.2 15.8 16.1 16 15.8 15.6

In the case of a four-coil EML, the fourth coil optimal triggering instant is 15.5 ms after the first
coil. Table 4 shows that a variation of this triggering instant of ±1 ms has an important impact on the
ball speed which is reduced by 11% or more. Consequently, the EML using four coils is far less robust
than the EML using two coils in terms of sensitivity to the coil-triggering instants.
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Table 4. Impact of a variation of the fourth coil triggering instant in the case of a four-coil EML.

Triggering Instant (ms) 13.5 14.5 15.5 16.5 17.5

Optimized Ball Speed (m·s−1) 13.3 14.6 16.4 14.3 13.9

5.2. Experimental Results

In order to validate the simulation results, experiments have been done using a two-coil reluctance
coil gun corresponding to the optimal configuration (as explained in Section 5.1). This launcher is
shown in Figure 29. It is part of our new RoboCup robot presented in Figure 30.

Figure 29. 2 coils optimized reluctance coil gun.

Figure 30. RoboCup robot for testing the optimized coil gun.

A custom four-channel coil gun driver has been designed but is not in the scope of this paper.
It includes four MOSFET for capacitor commutation with a 160 A current peak under 450 V on each
coil. A safety system for dissipating energy stored in the capacitors when the system is switched off or
stopped has been implemented in this driver, justifying the aluminium ventilated power heat sink that
can be seen on the right board of Figure 31. For triggering the coils in a very accurate time sequence
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(and for controlling DC motors and low level sensors), a micro-controller board has been designed
and can be seen on the left side of Figure 31. In our test corresponding to the chosen optimal case,
the second coil has been triggered exactly 10 ms after the first one.

Figure 31. Four-channel reluctance coil gun driver (on the right).

Ball speed measurements have been done using a high speed camera on 20 successive tests.
Average measured ball velocity is equal to VBall = 15.5 m·s−1. This is consistent with the theoretical
value (16 m·s−1). Error is only 3.1% and dispersion is low (σ = 0.2 m·s−1). These results show that the
simulation model used in this paper is accurate, despite many strongly non-linear effects, and that the
structure of a reluctance coil gun can be optimized very efficiently without changing the amount of
copper used and the size of the actuator.

6. Conclusions

In this paper, a method for optimizing the structure of a reluctance coil gun has been proposed.
Kicking real soccer balls used at the RoboCup in the Middle Size League has been chosen as a case
study. After having presented the principles of coil guns, a mechatronic model coupling mechanic,
electromagnetic and electric ones has been proposed and implemented. Simulation results have
been explained and discussed so that this optimization method can be easily reproduced in
another application.

Results show that the output speed of the non-magnetic object propelled by the EML highly
depends on the structure of the coil gun, the sequence for triggering it, the initial position of the iron
plunger and the size of its non-magnetic extension. Among the results of this paper, we show that

• Using a two-coil EML is 104% energetically more efficient than the reference situation of an
existing coil gun [11], without adding too much mechanical, electrical and algorithmic complexity
to the EML. As shown in Table 5, it is also ten times more efficient than a human considering the
ball energy to launcher volume ratio.

• Having a high number of coils is not necessary for optimizing the energy transfer. In our case,
having two coils in the EML is an excellent trade-off between energy transfer optimization and
system complexity.

• Robustness in terms of sensitivity to the coil triggering instants decreases with the number of coils.
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Table 5. Ball launchers comparison including optimized launcher.

Launcher
Length Width Height Volume Weight Ball Speed Ball Energy

Energy
Volume

(cm) (cm) (cm) (cm3) (kg) (m·s−1) (J) (J·dm−3)

Soccer player leg 160 20 80 133 × 103 20 36 290 2.18

Rotating inertial launcher 25 65 25 40 × 103 25 29 190 4.75

Robot arm [9] 240 240 30 1360 × 103 50 21 100 0.07

Reluctance coil gun [11] 30 9 9 2.4 × 103 4.5 11.4 29 12.08

Optimized coil gun 30 9 9 2.4 × 103 4.5 16.4 60.5 25.21
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Abstract: A high-voltage AC double-circuit 400 kV overhead power transmission line runs from the
city of Elk (Poland) to the city of Alytus (Lithuania). This international 400 kV power transmission
line is potentially one of the strongest magnetic field-generating sources in the area. This 400 kV
voltage double-circuit overhead transmission line and its surroundings were analyzed using the
mathematical analytical methods of superposition and reflections. This research paper includes the
calculation of the numerical values of the magnetic field and its distribution. The research showed
that the values of the magnetic field strength near the international 400 kV power transmission line
exceed the threshold values permitted by relevant standards. This overhead power line is connected
to the general (50 Hz) power system and generates a highly intense magnetic field. It is suggested
that experimental trials should be undertaken in order to determine the maximum values of the
magnetic field strength. For the purpose of mitigating these values, it is suggested that the height of
the support bars should be increased or that any individual and commercial activities near the object
under investigation should be restricted.

Keywords: magnetic field strength; magnetic flux density; magnetic potential; current density;
power transmission line

1. Introduction

The institutions involved in electric power transmission in Lithuania and Poland have decided to
implement the electricity link “LitPol Link”. This link is designed to connect the power systems of
the Baltic States to those in Western Europe and also contributes to the development of the general
European electricity market as well as boosting the reliability of the power supply. In pursuit of
increasing the capacities of electric power transmission, the decision was made to supplement the
LitPol Link by installing an extra 400 kV high-voltage AC double-circuit transmission line.

Recently, there has been increasingly widespread concern over the influence of the electromagnetic
field (50 Hz) on the health of residents. One of the fundamental challenges is ensuring safe conditions
for those living in locations where such an electromagnetic field is present.

The recently adopted Hygiene Standard HN 104:2011 “Human protection against electromagnetic
fields caused by overhead power lines” is currently valid in the European Union (EU) and states
that the effective values of the magnetic field strength must never exceed exceed 32 A/m or 40 μT
(magnetic flux density) in residential environments, or 16 A/m or 20 μT (magnetic flux density) within
residential and public service buildings. These values should never be exceeded irrespective of the
duration of a person’s exposure to an electromagnetic field.

The double-circuit 400 kV power transmission line is one of the most powerful electrical
installations in the entire power system; at a frequency of 50 Hz, it generates an intense magnetic field.
Therefore, it is necessary to focus on the installation and safe operation of the 400 kV double-circuit

Appl. Sci. 2020, 10, 3266; doi:10.3390/app10093266 www.mdpi.com/journal/applsci131



Appl. Sci. 2020, 10, 3266

overhead transmission line in order to prevent the magnetic field generated by this power transmission
line from exceeding the requirements set by the European Union (EU) Hygiene Standard HN 104:2011.

2. Extra High-Voltage Double-Circuit Electric Power Transmission Line

As the strongest magnetic field in the electrical power system can be generated by the
double-circuit 400 kV power transmission line, it is necessary to determine how the magnetic field is
distributed in the surroundings of this overhead power transmission line.

This paper determines a three-bundled, double-circuit 400 kV AC power transmission line.
Figure 1 shows a power transmission line of the low-reactance orientation type. The height of
conductors shown in the figure is the maximum sag position. The lowest conductors are C1 and C2

at the height of 10 m above the ground surface level [1]. Each phase conductor is 0.04 m in diameter.
The overhead ground wire has a diameter of 0.015 m.

Figure 1. High-voltage double-circuit: three-bundled transmission line.

The height of the 400 kV transmission line supports is 54 m. In this particular case, the lower-phase
wires (C1 and C2) (see Figure 1), including their insulators, should be arranged at a height of at least
26 m to the ground surface. The sag of the transmission line amounts for 16 m. Adjacent support-bars
are spaced by 350 to 550 m [2].

The magnetic field generated by the 400 kV overhead transmission line can be approached as the
superposition of the magnetic fields of six long, thin current leads. It is also possible to calculate this
magnetic field analytically. As the current leads of the 400 kV overhead transmission line are very
long and thin wires, difficult mathematical equations are derived for the purpose of calculating the
magnetic field they generate.

Moreover, as regards the effect on humans and the environment, the distribution of these current
leads is of utmost importance. However, typical analytical mathematical equations for the calculation
of this magnetic field are also missing. Thus, digital modeling should be selected as the main
method for the investigation of the magnetic field generated by the 400 kV overhead transmission
line [3–6]. Besides the multitudes of advantages it possesses, modeling also enables the simple
assessment of the change in the magnetic field when varying the structure and dimensions of the
installation. It also allows the different irregularities and variations of the surroundings to be taken
into account. Analytical mathematical equations for the calculation of the magnetic field generated
by the double-circuit 400 kV overhead transmission line were derived with the aim of verifying the
results of modeling [7–16].

132



Appl. Sci. 2020, 10, 3266

3. Magnetic Field Generated by the Single Thin Current Lead

As the double-circuit 400 kV transmission line is comprised of six long, thin current leads,
the magnetic field generated by it can be calculated using the method of superposition. We therefore
analyze how the magnetic field generated by a single current lead can be calculated. When the
magnetic permeability of all points in the space is the same and equal to the permeability of free space
μ0, the calculation of the magnetic field of the given symmetric current system uses the LaPlace–Poisson
equations. When current is passed through the current lead with the element idl, the length is li if r
represents a radius-vector pointing from the current element idl to the point of observation, and the
electrical current is distributed within the volume of the current lead Vj, the vectors of the magnetic
field strength H and of the magnetic field density B at the point of observation M are calculated as
follows [17–22]:

H =
∫

Vj
dH; dH =

(rJ)dV
4πr3 ; dH =

JdV
4πr2 sin � r, J; B = μrμ0H. (1)

The magnetic field generated by the current lead can be calculated using a vector potential.
When the electric current flows through the lead, making a circuit li, and the element dl and electric
current density J within the volume of the current lead Vj are known, the vector potential A is expressed
as follows:

A =
∫

Vj

μrμ0JdV
4πr

. (2)

The density of the magnetic field generated by all the current elements idl of the current lead is
expressed based on the superposition principle by summing up the constituents of the flux generated
by individual current elements [7–15,23].

Due to axial symmetry, the magnetic field strength line of a long and thin current lead with an
electric current passing through it have a circular shape, with their centers on the geometrical axis of
the current lead, and they are located in planes that are perpendicular to this axis. At any point of such
a circle, the directions of the magnetic field strength vector H and distance element dl match.

4. Analysis of Magnetic Field from 400 kV AC Power Transmission Line

In this challenging task regarding magnetic fields, the vectors of magnetic flux density B or
magnetic field strength H are found to be functions of coordinates when the dependency of the current
density vector J on coordinates is known. As the magnetic field strength or magnetic flux density is to
be found in areas in which there are no currents, LaPlace’s equation is solved for the scalar magnetic
potential. Such a magnetic field will also be of a potential nature [7–15,23].

For the purpose of solving this task, the method of reflections is used. The magnetic field of
the conductor system in the double-circuit 400 kV overhead transmission line is examined when the
conductor system is comprised of long, thin, round cylindrical conductors running in parallel and
with flat conductive surfaces with the symmetrical current systems ii1 (i1 = A1, B1, C1) and ii2 (i2 = A2,
B2, C2) (see Figure 2). The radii of current leads ri � hi are significantly lower than the distance from
the ground surface to the current leads. The sag of the double-circuit overhead power line is not taken
into consideration.

Following the method of reflections, the magnetic field in which the distribution of currents over
the flat surface of the conductor is known is replaced with the magnetic field of currents iin and that
of their reflections-iin. It is assumed that the distances from the conductors iin to their respective
reflections-iin are equal; i.e., yin (i = A, B, C) (n = 1, 2).

With the values of the currents iA1, iB1, iC1, iA2, iB2, iC2 being known, the values of reflections of
these loads-i∗A1, -i∗B1, -i∗C1, -i∗A2, -i∗B2, -i∗C2 are assumed to have the opposite signs.

In order to determine how the values of currents change in a single period of sinusoidal quantity,
calculations are made by varying the angle of the phase current at steps of 100; i.e., wt = 100.
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Instantaneous phase current values of a symmetrical current system are interconnected, as follows:

⎧⎪⎪⎨
⎪⎪⎩

iA=Im sin(wt),

iB=Im sin(wt-1200),

iC=Im sin(wt+1200);

(3)

where Im is the maximum amplitude value of the phase current, in A.
The 400 kV double-circuit power transmission line has a maximum effective linear current

Il = If = 2500 A; thus, the value of the amplitude phase current Imf is as follows: Im = Il ·
√

2 = 3540 A.
Using Equation (3), instantaneous current values are calculated at steps of wt = 100.

Hin =
±iin

2πrin
; (4)

where iin (i = A, B, C) (n = 1, 2) shows the phase current flowing through the conductor, which is
calculated with Equation (3), A, rin (i = A, B, C) (n = 1, 2) are the lengths of distances from phases and
their reflections to the reference point M, in m., which are calculated from Figure 2, and Hin is the
magnetic field strength, in A/m.

Figure 2. Components of the magnetic field vectors at the point M.

The magnetic field strength generated by the double-circuit three-phase 400 kV overhead
transmission line in the plane in Figure 2 is calculated as follows:

HM =
√

H2
Minx + H2

Miny; (5)

where HMinx and HMiny are the constituents of the magnetic field strength vectors with respect to x
and y axes.

Next, we must examine how the values of H vary with the measurement point M moving between
the phase conductors of the power line. The location of point M with respect to the ground is y0 = yM.
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The vectors of the magnetic field strength generated at point M are Hin and H∗
in (i = A, B, C) (n = 1, 2).

After distributing the directions of x and y axes, the following is obtained:

Hx = HA1x + HB1x + HC1x + HA2x + HB2x + HC2x + H∗
A1x + H∗

B1x + H∗
C1x + H∗

A2x + H∗
B2x + H∗

C2x, (6)

Hy = HA1y + HB1y + HC1y + HA2y + HB2y + HC2y + H∗
A1y + H∗

B1y + H∗
C1y + H∗

A2y + H∗
B2y + H∗

C2y. (7)

Assuming that constituents of the magnetic field strength vectors at the observation point M are
as follows,

EMinx =

√
1
T

n

∑
i=1

E2
Minx max, (8)

EMiny =

√
1
T

n

∑
i=1

E2
Miny max, (9)

the effective value of magnetic field strength at observation point M HM is calculated using Equation (5).
One millionth of a Tesla (1 μT) corresponds to 0.8 A/m.

As initial phases of conductors in the double-circuit symmetric 400 kV overhead power line are
different by 1200, the total magnetic field will be a rotating one, and for the magnetic field vector, at any
observation point M, the time course will define an ellipse in a general way. The normal value of the
rotating magnetic field strength is assumed to be the effective value of the sinusoid, the amplitude of
which is equal to the semi-major axis of the ellipse orbited by the strength vector at the given point.

To express respective constituents of the magnetic field strength (see Figure 2), the following
markings are introduced: coordinate y of point M, yM; height of the conductors above the ground
surface, yA1 = yA2, yB1 = yB2, yC1 = yC2. The phase reflections A∗

1, B∗
1, C∗

1, A∗
2, B∗

2, C∗
2 are situated

at the same distances above the ground surface in the direction of the y axis. The distances from the
conductors to the point M in the direction of the x axis are as follows:

1. xA1M = xA1 + xM is the distance from phase A1 to point M;
2. xB1M = xB1 + xM is the distance from phase B1 to point M;
3. xC1M = xC1 + xM is the distance from phase C1 to point M;
4. xA2M = xM − xA2 is the distance from phase A2 to point M;
5. xB2M = xM − xB2 is the distance from phase B2 to point M;
6. xC2M = xM − xC2 is the distance from phase C2 to point M.

The conductors’ phase reflections A∗
1, B∗

1, C∗
1, A∗

2, B∗
2, C∗

2 are situated at the same distances in the
direction of the x axis.

Figure 2 shows that magnetic field strength vector Hin is distributed into two vectors as follows:
vector Hiny, which varies following the law of sines; and vector Hinx, which varies following the law
of cosines. The magnetic field strength reflection vector H∗

in is distributed analogically. The numerical
values of the constituents Hinx, H∗

inx, Hiny, and H∗
iny (i = A, B, C) (n = 1, 2) are found as follows:

Hinx = Hin cos αin, (10)

H∗
inx = H∗

in cos α∗in, (11)

Hiny = Hin sin αin, (12)

H∗
iny = H∗

in sin α∗in. (13)

The values of the angles αin and α∗in (i = A, B, C) (n = 1, 2) are used to consider the positions of the
conductor phases and their reflections of the double-circuit 400 kV overhead power line as well as the
position of the reference point M with respect to the ground surface and their distances. The values of
these trigonometric functions are found from Figure 2. In the general case, these angles αin, α∗in are
calculated in the following sequence:
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1. The angle αin or α∗in is deducted from the conductor phase under investigation or its reflection’s
magnetic field vector Hin and measurement point M’s position with respect to the ground surface.

2. The arctan function of the angle αin or α∗in (i = A, B, C) (n = 1, 2) is calculated as follows:

αin = arctan
yin − yM

xinM
, (14)

α∗in = arctan
yin + yM

xinM
. (15)

3. The functions cosαin and sinαin of angles αin or α∗in are calculated with the sign “±” depending
on the trigonometric function cosαin and sinαin quarter in which the phase load electric field vector
Hin is calculated.

For the purpose of the mathematical calculation of the magnetic field strength, a 400 kV
double-circuit three-phase AC conductor system was selected, which was laid out vertically starting
from the ground surface as follows: 1. C1(C2) is at a height of 10 m; 2. C1(C2) and B1(B2) are at a
height of 18 m; 3. B1(B2) and A1(A2) are at a height of 26 m.

The following are the horizontal distances between the different link phases of the conductor:
1. 12 m between A1 and A2; 2. 16 m between B1 and B2; 3. 13 m between C1 and C2.

Measurement point M is located 1.5 m vertically from the ground surface. In order for the
obtained results of the mathematical calculations to be as precise as possible, 15 total positions of the
measurement point M were selected, which were spaced by 5 m and located at 1.5 m vertically from
the ground surface (see Figure 3).

Figure 3. Positions of the measurement point M.

In this paper, extra high-voltage, double-circuit power transmission lines are studied; all six groups
with six types of conductor transmission line transpositions are included in the case of long-distance
distribution. For 400 kV AC lines, there are six types of first group transposition. There are 36 different
transposition layouts possible of the phases in 400 kV double-circuit overhead power lines. For these
six different groups of phase conductor transpositions, changes in their transposition sequences
influence the results of mathematical calculations [1,24]. The six groups of transposition are as follows
(see Figure 1):

Group 1 (A1 − C2, B1 − B2, C1 − A2);
Group 2 (B1 − C2, A1 − B2, C1 − A2);
Group 3 (A1 − C2, C1 − B2, B1 − A2);
Group 4 (C1 − C2, A1 − B2, B1 − A2);
Group 5 (B1 − C2, C1 − B2, A1 − A2);
Group 6 (C1 − C2, B1 − B2, A1 − A2).
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5. Discussion

The results obtained from mathematical calculations of the magnetic field in the selected locations
of point Mi are presented mathematically in Table 1. The mathematical calculation results in Table 1
suggest that the magnetic field strength achieves its maximum values at points M6 and M11, and these
values are grouped into six categories with six types of conductor transposition.

Table 1. The mathematical calculation of the effective values of the magnetic field strength at 1.5 m
above the ground.

Point Distance Group 1 Group 2 Group 3 Group 4 Group 5 Group 6
No. [m] [A/m] [A/m] [A/m] [A/m] [A/m] [A/m]

M1 0 2.63 2.85 3.14 2.76 2.76 2.95
M2 5 4.51 4.66 5.23 4.75 4.94 5.42
M3 10 8.84 9.12 9.41 8.74 9.79 9.6
M4 15 18.18 19.67 19.95 19.48 21.38 22.33
M5 20 35.72 37.05 35.63 40.38 40.85 41.8
M6 22 39.48 41.33 38.48 46.08 44.65 47.5
M7 25 32.9 35.15 31.83 43.7 41.33 45.6
M8 30 18.8 18.53 9.5 35.63 30.88 38.0
M9 35 37.13 31.35 31.83 43.7 41.33 45.6
M10 38 42.3 38.0 38.48 46.08 44.65 47.5
M11 40 37.6 34.2 35.63 40.38 40.85 41.8
M12 45 19.72 18.81 19.95 19.49 21.38 22.33
M13 50 9.21 8.74 9.41 8.74 9.79 9.6
M14 55 4.8 4.37 5.23 4.75 4.94 5.42
M15 60 3.01 2.47 3.14 2.76 2.76 2.95

These points of observation are situated near phases B1 and B2 and between phases C1 and C2 of
the double-circuit 400 kV overhead power line conductor system. The observation point M8 is at the
very centre of the 400 kV overhead power line (see Figure 3). At this particular point, the magnetic
field strength values are lower.

These points of observation are situated near phases B1 and B2 and between phases C1 and C2 of
the double-circuit 400 kV overhead power line conductor system. The observation point M8 is at the
very centre of the 400 kV overhead power line (see Figure 3). At this particular point, the magnetic
field strength values are also lower.

The obtained analytical results were also verified through a simulation using the software package
COMSOL Multiphysics 3.5. The model simulation additionally assessed the marginal and ambient
conditions [6]. Results obtained from a finite element method (FEM) simulation of the magnetic field
in the selected locations of point Mi are presented mathematically in Table 2. The FEM simulation
results in Table 2 suggest that the magnetic field strength reaches its maximum values at points M6 and
M11, and these values are also grouped into six categories with six types of conductor transposition.

The results of the simulation (see the upper curve of Figure 4) were found to be close to the
analytical results; consequently, the proposed methodology can be used to investigate the relevant
magnetic field. The assessment of our findings and the obtained results lead us to the following
suggestions: the mean error between the analytical findings and simulation results is below 4%.
The methodology described here allows the calculation of the magnetic field strength at any point
under the three-phase double-circle power transmission line.

The graph in Figure 4 shows that as the measurement point Mi gets farther from the outside
phases of the double-circuit 400 kV overhead power line conductor system, the magnetic field strength
decreases proportionally. However, at the distance of 12 m from phases B1 and B2, the magnetic field
strength still exceeds 16 A/m (i.e., B is more than 20 μT).

The assessment of the calculation results revealed that values of the magnetic field strength exceed
the numerical values established in the EU Hygiene Standard HN 104:2011. The regulation on the
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hygienic norms of the European Union and of the Republic of Lithuania states that the numerical
values of the electromagnetic field parameters of electric power transmission lines in residential and
public buildings—as well as in residential areas—should never exceed the permissible values provided
for in EU HN 104:2011.

Table 2. The finite element method (FEM) simulation of the effective values of the magnetic field
strength at 1.5 m above the ground.

Point Distance Group 1 Group 2 Group 3 Group 4 Group 5 Group 6
No. [m] [A/m] [A/m] [A/m] [A/m] [A/m] [A/m]

M1 0 2.8 3.0 3.3 2.9 2.9 3.1
M2 5 4.8 4.9 5.5 5.0 5.2 5.7
M3 10 9.4 9.6 9.9 9.2 10.3 10.1
M4 15 20.0 20.7 21.0 20.5 22.5 23.5
M5 20 38.0 39.0 37.5 42.5 43.0 44.0
M6 22 42.0 43.5 40.5 48.5 47.0 50.0
M7 25 35.0 37.0 33.5 46.0 43.5 48.0
M8 30 20.0 19.5 10.0 37.5 32.5 40.0
M9 35 39.5 33.0 33.5 46.0 43.5 48.0
M10 38 45.0 40.0 40.5 48.5 47.0 50.0
M11 40 40.0 36.0 37.5 42.5 43.0 44.0
M12 45 21.0 19.8 21.0 20.5 22.5 23.5
M13 50 9.8 9.2 9.9 9.2 10.3 10.1
M14 55 5.1 4.6 5.5 5.0 5.2 5.7
M15 60 3.2 2.6 3.3 2.9 2.9 3.1

When locations are identified in which the magnetic field strength values are exceeded,
the regulation on the hygienic norms of the European Union and of the Republic of Lithuania obliges
operators of the power transmission system, who are responsible for the power transmission lines
in operation, to ensure that the permissible values of the electromagnetic field parameters provided
for in EU Hygiene Standard HN 104:2011 are adhered to. If the electromagnetic field parameters are
found to exceed permissible values, it is compulsory to undertake appropriate actions and to reduce
the values of the electromagnetic field parameters to the levels allowed.

Figure 4. Distribution of the six groups of effective values of magnetic field strength at 1.5 m above the
ground, obtained through calculation and FEM simulation.

With the aim of reducing the potential hazards to human health and to ensure safe living
conditions in residential areas, it is suggested that experimental measurements of electromagnetic
fields should be undertaken in locations or areas with the maximum exposure to electrical or magnetic
fields. To mitigate the values of such magnetic fields, it is also recommended that the height of support
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bars should be increased or that any individual or commercial activities in their surroundings should
be restricted.

6. Conclusions

The magnetic field strength of this power line was found to exceed the numerical values permitted
by the Hygiene Standard HN 104:2011 HN, revealing that any person living or working in these areas
was in serious danger. Any individual or commercial activities performed by the residents closer than
15 m to the double-circuit 400 kV overhead power line must be restricted.

For these reasons, the magnetic field in these locations must be reduced by installing higher support
bars, and persons must wear appropriate personal protective equipment to protect them from exposure
to electromagnetic field. For the purpose of more comprehensive analysis, it is recommended that
experimental measurements should be made.

The distribution of the magnetic field strength at the high-voltage, double-circuit transmission
line could be calculated using the methods of the magnetostatic field or by simulation using the
finite element method (FEM). The difference is less than 5% between the results of the mathematical
calculation and FEM simulation.

This paper has studied the magnetic field distribution resulting from all six groups with six types
of long-distance distributing transposition. As a result, we can see how the impact of the calculation of
the six groups’ long-distance distribution transposition changes the magnetic field surrounding the
transmission line.

The developed mathematical model for the calculation of the magnetic field generated by the
conductors in the double-circuit 400 kV overhead power line can be used for the identification of
hazardous areas and cases of electromagnetic pollution.
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6. Deltuva, R.; Lukočius, R. Electric and magnetic field of different transpositions of overhead power line.
Arch. Electr. Eng. J. Pol. Acad. Sci. 2017, 66, 595–605. [CrossRef]

7. Olsen, R.G.; Deno, D. Magnetic fields from electric power lines: theory and comparison to measurements.
IEEE Trans. Power Deliv. 1998, 3, 2127–2136. [CrossRef]

8. El Dein, A.Z. Magnetic Field Calculation Under EHV Transmission Lines for More Realistic Cases. IEEE Trans.
Power Deliv. 2009, 24, 2214–2222. [CrossRef]

9. Begamudre, R.D. Extra High Voltage AC. Transmission Engineering, 3rd ed.; Wiley Press: New York, NY, USA,
2006; pp. 172–205.

139



Appl. Sci. 2020, 10, 3266

10. Brandão Faria, J.A.; Almeida, M.E. Accurate Calculation of Magnetic Field Intensity Due to Overhead Power
Lines with or without Mitigation Loops with or without Capacitor Compensation. IEEE Trans. Power Deliv.
2007, 22, 951–959. [CrossRef]

11. Havas, M. Intensity of electric and magnetic fields from power lines within the business district of 60 Ontario
communities. Sci. Total Environ. 2002, 298, 183–206. [CrossRef]

12. Peric, M.; Ilic, S.; Aleksic, S. Electromagnetic field analysis in vicinity of power lines. Elektrotech. Elektron.
2008, 1112, 51–56.

13. Iyyuni, G.B.; Sebo, S.A. Study of transmission line magnetic fields. In Proceedings of the Twenty-Second
Annual North American, IEEE Power Symposium, Auburn, AL, USA, 15–16 October 1990; pp. 222–231.

14. Abdel-Salam, M.; Abdallah, H.; El-Mohandes, M.T.; El-Kishky, H. Calculation of magnetic fields from electric
power transmission lines. Electr. Power Syst. Res. 1999, 49, 99–105. [CrossRef]

15. Ege, Y.; Kalender, O.; Nazlibilek, S. Electromagnetic Stirrer Operating in Double Axis. IEEE Trans.
Ind. Electron. 2010, 57, 2444–2453. [CrossRef]

16. Nicolaou, Ch.P.; Papadakis, A.P.; Razis, P.A.; Kyriacou, G.A.; Sahalos, J.N. Measurements and predictions of
electric and magnetic fields from power lines. Electr. Power Syst. Res. 2011, 81, 1107–1116. [CrossRef]

17. Li, L.; Yougang, G. Analysis of magnetic field environment near high voltage transmission lines. In Proceedings
of the International Conferences on Communication Technology, Beijing, China, 22–24 October 1998;
pp. S26-05-1–S26-05-5.

18. Dahab, A.A.; Amoura, F.K.; Abu-Elhaija, W.S. Comparison of magnetic field distribution of noncompact and
compact parallel transmission line configurations. IEEE Trans. Power Deliv. 2005, 20, 2114–2118. [CrossRef]

19. Sadiku, M.N.O. Numerical Techniques in Electromagnetics; CRC Press: New York, NY, USA, 2001; pp. 743–793.
20. Stewart, J.R.; Dale, S.J.; Klein, K.W. Magnetic field reduction using high phase order lines. IEEE Trans.

Power Deliv. 1993, 8, 628–636. [CrossRef]
21. Jin, J.-M. The Finite Element Method in Electromagnetics, 3rd ed.; Wiley-IEEE Press: New York, NY, USA, 2014;

pp. 661–735.
22. Mamishev, A.V.; Nevels, R.D.; Russell, B.D. Effects of conductor sag on spatial distribution of power line

magnetic field. IEEE Trans. Power Deliv. 1996, 11, 1571–1576. [CrossRef]
23. Chari, M.V.K.; Salon S.J. Numerical Methods in Electromagnetism; Academic Press: New York, NY, USA, 2000;

pp. 1–61.
24. Hunt, R.W.; Zavalin, A.; Bhatnagar, A.; Chinnasamy, S.; Das, K.C. Electromagnetic biostimulation of living

cultures for biotechnology, biofuel and bioenergy applications. Int. J. Mol. Sci. 2009, 10, 4515–4558. [CrossRef]
[PubMed]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

140



applied  
sciences

Article

3-D Integral Formulation for Thin Electromagnetic
Shells Coupled with an External Circuit

Tung Le-Duc 1,* and Gerard Meunier 2

1 Department of Power Systems, School of Electrical Engineering, Hanoi University of Science and Technology,
Hanoi City 100000, Vietnam

2 Université Grenoble Alpes, CNRS, Grenoble INP, G2Elab, F-38000 Grenoble, France;
gerard.meunier@g2elab.grenoble-inp.fr

* Correspondence: tung.leduc1@hust.edu.vn

Received: 11 May 2020; Accepted: 19 June 2020; Published: 22 June 2020

Abstract: The aim of this article is to present a hybrid integral formulation for modelling structures
made by conductors and thin electromagnetic shell models. Based on the principle of shell elements,
the proposed method provides a solution to various problems without meshing the air regions,
and at the same time helps to take care of the skin effect. By integrating the system of circuit
equations, the method presented in this paper can also model the conductor structures. In addition,
the equations describing the interaction between the conductors and the thin shell are also developed.
Finally, the formulation is validated via an axisymmetric finite element method and the obtained
results are compared with those implemented from another shell formulation.

Keywords: electromagnetic modelling; integral formulation; skin effect; thin shell approach; mutual
inductance; finite element method; partial element equivalent circuit method

1. Introduction

All of the electromagnetic phenomena occurring in the electrical systems are described by
Maxwell’s equations, together with the constitutive material laws. It is a set of partial differential
equations associated with the relationships of electromagnetic field (E, H) distributing into space and
varying into time, the distribution of currents and charges (J, ρ) and material properties (μ, σ) [1,2].

In order to compute the electromagnetic field (i.e., solutions to Maxwell’s equations), an analytical
method or a numerical method can be used. For these devices with simple geometries, a correct analytical
solution can be identified. However, in some general cases, especially for the complex structure of
electrical devices, the numerical methods are used as a sole solution. The numeric methods applied
in modelling of electromagnetic fields can be divided into two categories: finite methods like FEM
(Finite Element Method), FVM (Finite Volume Method) and the numerical integration methods such
as BEM (Boundary Elements method), MoM (Methods of Moments), PEEC method (Partial Element
Equivalent Circuit) [3–13]. The choice of an appropriate method totally depends on the physical
phenomena that need modelling such as the physical phenomena in high or low frequencies, with or
without magnetic material, considering the effect of inductance or capacitance, external excitation
source. However, there is no universal, optimal method for these problems, and the choice of the most
suitable method depends on the nature of the electrical devices and their operation range.

Generally, the electromagnetic modelling of structures including thin shell model and thin wires is a
complex problem in the fields of electrical engineering. Its geometry is characterized by a high ratio of the
length and the thickness. Thus, the use of a volume mesh leads to a large number of elements and/that
makes this method expensive and time consuming to apply to practical devices. Furthermore, due to the
skin effect, when the skin depth δis thinner than the thickness e, the size of the studied meshes must be
smaller than that of the skin depth. This leads to the difficulties when the thickness of some parts of the
structures is very small in comparison with the overall size of the actual devices.
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The shell element formulations have recently been developed by many authors in order to cope
with difficulties in thin plate models, e.g., with the boundary element method (BEM) [3], with the finite
element method (FEM) [5] and with the integral methods [11,14–16]. In [11], we presented a coupling
method between the Partial Element Equivalent Circuit (PEEC) and an integro-differential method
to model the devices that include thin electromagnetic shells and complicated conductor systems.
However, this coupling formulation cannot be applied to problems when the skin depth is low in
comparison with the thickness of the thin shell. In [14], the authors presented a hybrid of volume and
surface integral formulations for the eddy current solution of the conductive regions with arbitrary
geometry. However, this formulation cannot be used for the magnetic material and as in [11], the skin
effect is not yet considered. In [16], we developed a general shell element formulation for modelling
of thin magnetic and conductive regions. The thin shell is modelled by an integral method to avoid
meshing the air region. As in [3,5,15], the field variation through the thickness is considered. Based on
a simple discretization of the shell averaged surface, the number of unknowns is greatly reduced.
However, this formulation is not suitable for model systems with complex conductive structures.

In this paper, a hybrid integral formulation is proposed to allow the modelling of an inhomogeneous
structure constituted by conductors and thin magnetic and conductive shells in the general case (δ > e or
δ ≈ e or δ < e). The modelling of thin magnetic and conductive shell regions is determined thanks to
the integral formulation in [15,16]. A method that allows the modelling of the contributions of the
inductors fed with the alternating currents will be presented in Section 3. The coupling formulations
for integrating the interaction between conductors and thin shells material will be fully developed
in Section 4. Finally, two numerical examples are presented in Section 5. The results obtained from
this formulation are compared with those obtained from the FEM. Strong and weak points of our
formulation are also analyzed.

2. Thin Shell Equation

A thin electromagnetic shell (Ω) with thickness e, conductivity σ and linear permeability μr in this
study is illustrated in Figure 1, where Г1 and Г2 are the surface boundaries of the shell with the air region.

r∝σ e

e

e

Figure 1. Thin region and associated notations [16].

The electromagnetic behavior for the side “1” of the shell regions is represented by [15,16]:∫
Γ1

gradsw · (αH1s − βH2s)dΓ + jω
∫

Γ1

w ·B1 · n1dΓ = 0, (1)

where δ is the skin depth associated to the shell; a = (1 + j)/δ; α = a/σth(ae), β = a/σsh(ae); w is a
set of nodal surface weighting functions; H1s and H2s are the tangential magnetic fields on both sides
Г1, Г2 and n1 is the normal vector of the side Г1.

The symmetrical equation corresponding to the other side of the shell is obtained by simply
exchanging the indices “1” and “2”:∫

Γ2

gradsw · (αH2s − βH1s)dΓ + jω
∫

Γ2

w ·B2 · n2dΓ = 0, (2)

where n2 is the normal vector corresponding the side “2” of the shell.
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Equations (1) and (2) are written on the averaged surface Г of the thin shell region. Subtracting
Equations (2) and (1) leads to:

(α+ β)

∫
Γ

gradsw(H2s −H1s)dΓ + jω
∫

Γ
w(2 ·Ba · n)dΓ = 0, (3)

where Ba = (B1 + B2)/2 is defined as the averaged induction and n denotes the normal vector of the
surface Г (Figure 1).

The expressions related to the tangential magnetic fields on both sides and the outside of the shell
are:

H1s = H01s − gradsφ1; H2s = H02s − gradsφ2 (4)

where H01s and H02s are the tangential fields generated by the inductors at side Г1, Г2 and φ1, φ2

denote the corresponding reduced scalar magnetic potentials.
By using (4) and assuming the small variations of H0s through the thickness of the thin shell,

Equation (3) becomes:

(α+ β)

∫
Γ

gradsw · gradsΔφdΓ + 2 jω
∫

Γ
w ·Ba · ndΓ = 0, (5)

where Δφ = φ1 −φ2 is the scalar magnetic potential discontinuity.
Using magnetization law of the linear material, equation (5) can be rewritten as:

(α+ β)

∫
Γ

gradsw · gradsΔφdΓ + 2 jω
μ0μr

μr − 1

∫
Γ

w ·Ma · ndΓ = 0, (6)

where Ma = (M1 + M2)/2 is defined as the averaged magnetization.
On the averaged surface Г, the total magnetic field Ha is the sum of the inductor field H0, the field

created by magnetization HM and the field created by the eddy currents flowing in the shell HEC:

Ha(P) = H0(P) + HM(P) + HEC(P) (7)

where P is a point located in the surface region Г.
The field HM is equal to [10]:

HM(P) = −grad
1

4π

∫
Ω

(M · r)
r3 dΩ (8)

where r is the vector between the integration point on Ω and the point P.
By using Biot and Savart law, the field HEC can be written as:

HEC(P) =
1

4π

∫
Ω

J× r

r3 dΩ, (9)

where J denotes the eddy current density of the thin shell.
The integration of the tangent magnetization through the depth of the thin shell is written as

follows [3,5,16]:
+e/2∫
−e/2

Mdz =
G(M1 + M2)

2
= GMa, (10)

where G = th[(1 + j)e/2δ]/[(1 + j)e/2δ].
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Using (10), Equation (8) becomes:

HM(P) = −grad
G
4π

∫
Γ

(Ma · r)
r3 dΓ. (11)

The equivalent shell current K is defined as [3]:

K =

+e/2∫
−e/2

Jdz = n× gradΔφ. (12)

Using (12), Equation (9) becomes:

HEC(P) =
1

4π

∫
Γ

n× gradΔφ× r

r3 dΓ. (13)

Combining (11) with (12), Equation (7) is rewritten as:

Ha(P) = H0(P) − grad
G
4π

∫
Γ

(Ma · r)
r3 dΓ +

1
4π

∫
Γ

n× gradΔφ× r

r3 dΓ. (14)

Let us consider a linear magnetic law for the material Ma(P) = (μr − 1)Ha(P), then Equation (14)
becomes [10,11]:

Ma(P)
μr − 1

= H0(P) − grad
G
4π

∫
Γ

(Ma · r)
r3 dΓ +

1
4π

∫
Γ

n× gradΔφ× r

r3 dΓ, (15)

In [16], Equations (6) and (15) have been resolved and validated by the comparison with the
axisymmetric FEM and the FEM 3D with the shell elements. Let us note that in the proposed
equations, the integrals are determined only by the surface numerical integration. Therefore, the 3D
implementation is simple and reliable. The comparison results with different ratios (e/δ) have
demonstrated the ability and the advantages of the method.

3. Conductor System Modelling

We now consider m volume conductors fed with alternating sources placed in an air region.
The external electric field incident at point P can be written [7–9]:

Eext(P) =
Jc(P)
σ

+ jωA(P) + gradV(P), (16)

where A(P) is the vector potential and V(P) is the scalar potential.
The magnetic vector potential generated by the current density Jc is:

A(P) =
m∑

k=1

μ0

4π

∫
Ωck

Jc
r

dΩ, (17)

where Ωck is the volume of the conductor k; r is the distance between the integration point on Ωck and
the point P.

In the context of the quasi-stationary regime operated at the frequency range up to ten MHz, it is
possible to neglect the capacitive effect. Equation (16) is written in the form:

Eext(P) =
Jc(P)
σ

+ jω
m∑

k=1

μ0

4π

∫
Ωck

Jc
r

dΩ. (18)
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The PEEC method is particularly pertinent and reliable to solve this kind of problem. Let us
assume that the current density in each conductor is uniform. For each conductor, Equation (18) can be
associated to the electrical equivalent circuit presented by the self and mutual inductances in series with
the resistances [8,9]. In most respects, what we know about this approach is difficult to the magnetic
material or the magnetic conductive material. However, the mesh of the air region can be neglected
and some conventional SPICEs-like or Saber circuit solvers can be employed to analyze the equivalent
circuit. As a result, the behavior of several electrical devices that have electrical interconnections can
be studied in only one system. With all of the advantages described above, the PEEC is well-suited for
modelling real industrial devices [17–21].

Despite these clear advantages, this technique has a major drawback due to the necessity to
store a fully dense matrix inherent to the use of the integral formulation in Maxwell’s equation.
Consequently, this approach is strongly limited in modelling large-scale electrical devices requiring
substantial meshes. Let us denote N as the number of unknown then the needed memory for
the fully dense matrix storage leads to O(N2) and the computational costs of a direct solver
(LU-decomposition) increases in proportion to O(N3). For example, a large size modelling problem
containing 50,000 unknowns requires at least 50,000 × 50,000 × 8 bytes or approximately 20 GB in the
memory to store a fully dense matrix and the computational costs of finding one solution by direct
solver are roughly several weeks. In order to study the characteristic of the devices in a frequency
range or in a period of time by the PEEC method, the total computational costs must be multiplied
with the number of frequency or the time steps. Moreover, none of the circuit solvers can handle
the equivalent circuit composing of 50,000 × 50,000 basic circuit elements RLMC (resistor, inductor,
partial inductor, and capacitor). Overall, in both cases the computational time tends to infinity, or it
is impossible to solve. To solve this problem, the algorithms coupling different matrix compression
algorithms or the model order reduction technique with integral methods have been developed with
the purpose of limiting matrix storage [19,21].

In addition, the expansion of the PEEC method for more general problems has been
investigated [11,18,20]. However, this method is still difficult for considering special structures such as a
circular coil, thick circular coil, and thin disk coil. This drawback can be easily improved by using the
semi-analytic methods developed in [22,23].

4. Coupling Thin Shell with Circuit Equation

We now consider a general system composed of m conductors and thin magnetic conductive shell
(volume Ω and average surface Γ) (Figure 2). Let us assume that the current density in each conductor
is uniform.

Figure 2. Representation of a general problem with conductors and thin electromagnetic shell.
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4.1. Influence of the Conductor Current on the Thin Region

The term H0 in Equation (15) can be computed by using Biot and Savart law:

H0(P) =
m∑

k=1

1
4π

Ik
Sk

∫
Ωck

lk × r

r3 dΩ, (19)

where Ik and Sk are respectively the current and the cross section of the conductor k; Ωck is the volume
of conductor k; lk is the vector unit of current direction in the conductor k and r is the vector between
the integration point on Ωck and the point P where the field is expressed.

Equation (15) is then rewritten as:

Ma(P)
μr − 1

=
m∑

k=1

1
4π

Ik
Sk

∫
Ωck

lk × r

r3 dΩ − grad
G
4π

∫
Γ

(Ma · r)
r3 dΓ +

1
4π

∫
Γ

n× gradΔφ× r

r3 dΓ. (20)

4.2. Influence of Thin Shell Magnetization on the Conductor

In order to take into account the influence of the field created by the thin shell magnetization,
we have to integrate the magnetic vector potential AM generated by the magnetized thin shell on the
conductor. This magnetic vector potential is expressed as [11,24]:

AM(P) =
μ0

4π

∫
Ω

M× r

r3 dΩ, (21)

where r denotes the vector between the integration point and the point P.
Using (10), Equation (21) can be rewritten as:

AM(P) =
μ0G
4π

∫
Γ

Ma × r

r3 dΓ (22)

4.3. Influence of Thin Shell Eddy Current on the Conductor

The eddy current J in the thin shell generates a magnetic potential vector on the conductor:

AEC(P) =
μ0

4π

∫
Ω

J

r
dΩ, (23)

where r is the distance between the integration point on Ω and the point P.
Using (12), Equation (23) can be rewritten as:

AEC(P) =
μ0

4π

∫
Γ

n× gradΔφ
r

dΓ. (24)

Combining (17), (22), (23), Equation (18) is rewritten as:

Eext(P) =
J(P)
σ + jω

m∑
k=1

μ0
4π

∫
Ωck

Jc
r dΩ + jωμ0G

4π

∫
Γ

Ma×r
r3 dΓ

+ jωμ0
4π

∫
Γ

n×gradΔφ
r dΓ.

(25)

4.4. Final System of Equations

Equations (6), (20) and (25) are solved by using a numerical method. The most suitable way is to
mesh the averaged surface Γ into n triangular elements and p nodes. Let us assume that the tangential
component of the eddy current and the magnetization in each element are uniform.
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The Galerkine projection method is then applied to Equation (6), and we get the following matrix
system [11,15,16]:

[A]·[M] + [B]·[ΔΦ] = 0, (26)

where:
[M] is a complex vector of dimension 3n; [ΔΦ] is a complex vector of dimension p;
[A] is a (p × 3n) matrix expressed as follows:

A(i, k) = 2 jω
μ0μr

μr − 1

∫
Γ

wi · nkdΓ = 0, (27)

[B] is a (p × p) sparse matrix and can be written as:

B(i, k) = (α+ β)

∫
Γ

gradswi · gradswkdΓ. (28)

A matrix system representing Equation (20) can also be determined thanks to a point matching
approach at the element centroids. This linear matrix system is expressed as [10,11,16]:(

[Id]

μr − 1
+ [F]

)
·[M] − [C]·[ΔΦ] − [D]·[I] = 0, (29)

where [Id] represents the identity matrix; [F] is a (3n × 3n) dense matrix; [C] is a (3n × p) also dense
matrix; [D] is a (3n × m) matrix and [I] is a (m × 1) vector. The coefficients of these matrices are
expressed as follows:

F(i, j) =

⎡⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎝ G

4π
grad

∫
Γ j

u j·ri

r3
i

dΓ

⎞⎟⎟⎟⎟⎠, ui

⎤⎥⎥⎥⎥⎦ (30)

where [,] is defined as the scalar product operator and ui is the vector basis of the element i and ri is the
vector between the integration point on Γj to the centroid of the element i.

C(i, j) =
1

4π

∫
Γ

n j × gradwi × ri

r3
i

dΓ. (31)

D(i, j) =
1

4π
1
S j

∫
Ωc j

l j × ri

r3
i

dΩ. (32)

By integrating Equation (25) on each conductor, we have the link between the partial voltages
of the conductors to the currents flowing in them. Thus, the voltage appearing on the conductor k is
given by:

Uk = RkIk + jω
m∑

i=1

mikIi + jω
n∑

i=1

m f
ikMai + jω

p∑
i=1

mq
ik·φi, (33)

where Rk is the resistance of the kth conductor; mik is the mutual inductance between the two conductors
k, i; m f

ik is defined as the mutual inductance between the magnetization Mai of the shell element
and the conductor k; mq

ik is defined as the mutual inductance between the scalar magnetic potential
discontinuity Δφ of the shell node and the conductor k. These mutual inductances are expressed
as follows:

mik =
μ0

4π
1

SiSk

∫
Ωck

∫
Ωci

lilk
r

dΩcidΩck, (34)

m f
ik =

μ0G
4π

1
Sk

∫
Ωck

∫
Γi

ui × r

r3 dΓlkdΩck, (35)
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mq
ik =

μ0

4π
1
Sk

∫
Ωck

∫
Γi

ni × gradwi

r
dΓlkdΩck, (36)

where ui is a basis vector of magnetizations; ni is the normal vector of the element Γi and lk is the
vector unit of the current direction in the conductor k. Let us note that the mutual inductance terms
mik can be calculated by the well-known semi-analytic formulas in [7–9,22,23]. Whereas, the terms m f

ik,
mq

ik are computed with a standard numerical integration.
Writing Equation (33) for all conductors, we get a matrix system known as the impedance matrix

system:
[U] = [Z]·[I] +

[
L f
]
·[M] + [Lq]·[ΔΦ], (37)

where [Z] is a (m ×m) matrix; [U] is a (m × 1) vector;
[
L f
]

is a (m × 3n) matrix and [Lq] is a (m × p) matrix.
Finally, the algebraic linear systems (26), (29) and (37) is considered as p + 3n + m complex

unknowns: ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
A B 0

MoM −C −D

L f Lq Z

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦×
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

M

ΔΦ

I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
U

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (38)

where MoM =
[Id]
μr−1 + [F] is usually called the magnetic moment method matrix.

Let us note that Equation (29) has a disadvantage when the permeability of the material is
high. Indeed, in such cases, the matrix term [Id]/(μr − 1) becomes very small in comparison with
the [F] matrix. This can lead to the singularity of matrix [MoM]. It should be noted that for the
linear case, the simpler formulations can be developed. In such cases, Laplace equation is applied
in the whole electromagnetic thin shell regions. Formulation (30) can be determined by a surface
integral equation generated by charge distributions (Coulombian approach) or current distributions
(Amperian approach) located on the surface area bounding the volume Ω of the thin shell region.
In such configuration, only this surface area must be discretized. Consequently, the degrees of freedom
of the obtained matrix system is lower. Moreover, Newton-Raphson algorithm can be easily used for
the non-linear case [25].

Besides, in order to solve the equation system (38) with a reduced number of degrees of freedom,
a Kirchhoff’s mesh rule is introduced. Consequently, the current and the voltage values become
associated to each of the independent circuit mesh. The coupling formulation has been implemented
for 3D geometry.

5. Numerical Examples

In this section, we consider two numerical examples. To valid our formulation, three numerical
methods are compared. The first one is a 3D shell element FEM coupled with the circuit equations [5].
In this modelling, a special care is proposed for the mesh around the conductor to ensure accurate
results. The second one is a 2D FEM formulation. This approach has already shown its good precision
with a few numbers of elements and is considered as the reference. The last one is our coupling
integral formulation.

5.1. Validation Through an Academic Example

In the first example, a thin magnetic conductive disk is considered with the circular conductor fed
by a voltage of 1V and a frequency of 10Hz (Figure 3).
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e
σ∝r

Figure 3. Thin magnetic conductive disk and conductor.

The device parameters are presented as below:

– Thin disk:

� Electrical conductivity σdisk = 6 × 107 S/m
� Permeability μr = 200
� R = 1 m, e = 50 mm
� The skin depth δ = 1.45 mm is smaller than the disk’s thickness

– Conductor:

� Electrical conductivity σ conductor = 5.79 × 107 S/m
� h = R/4 = 0.25 m

This academic example is solved by three numerical methods, where the first one is the
axisymmetric FEM, the second one is a shell element formulation implemented in 3D FEM method [5]
and the last one is the proposed integral method with the surface elements. In order to valid our method
and to compare different approaches, we mainly focus on the computed current in the conductor and
the magnetic field in the air region close to the device (calculated on the path AB, for A (0.25; 0; 0.1)
and B (0.25; 0; 0.25)).

Let us note that the problem must be meshed very finely to have an accurate result with the FEM
3D (Table 1 and Figure 4) because of the high variations of the fields around the conductor. The current
values greatly vary according to the number of the elements.

If the axisymmetric FEM is considered as our reference, the coupling integral method leads to
an error of 0.1% (Table 1). Our method leads to more accurate results than the same shell element
formulation but considering the air region treated with the 3D FEM.

Table 1. Current values in the conductor, where j is an imaginary unit.

FEM Axisymmetric

Number of elements 15,000 30,000 55,000

Current values (A) 1905.95 − j493.12 1905.78 − j492.87 1905.75 − j492.86

FEM 3D with shell elements

Number of elements 130,000 500,000 950,000

Current values (A) 1866.75 − j460.52 1841.78 − j505.48 1839.23 − j509.75

Integral method

Number of elements 300 800 1000

Current values (A) 1908.21 − j495.44 1907.85 − j495.37 1907.76 − j495.35
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Figure 4. Magnetic field on path AB.

5.2. A Pratical Device Example

The second test problem is the modelling of a practical device proposed by the EDF (Electricité de
France) [26]. The power station “Folies” is equipped with a three-phase reactance to limit short-circuit
currents. In this case, the current in each reactance is 1000 A phase-shifted with 120 degrees,
the frequency is 50 Hz (Figure 5).

 

Figure 5. Three phase reactance in the power station “Folies”.

150



Appl. Sci. 2020, 10, 4284

The parameters are presented as below (Figure 6):

– Outside diameter: ∅e = 1.6 m
– Inside diameter: ∅i = 0.74 m
– Winding thickness: ep = 0.5 m
– Center distance: Ent = 1.4 m

  

∅

∅

Figure 6. Parameters of three reactances.

In nominal conditions, a three-phase reactance generate a leakage induction in the neighborhoods.
In order to minimize this electromagnetic disturbance, an electromagnetic shielding and a passive loop
are added between the magnetic field source and the protected area (Figure 7). The device parameters
are presented as below:

– Passive loop:

� Permeability μr = 1,
� Electrical conductivity σ = 3.03 × 107 S/m
� Section radius rs = 9.25 mm
� Zloop = 3.85 m

– Shielding:

� Permeability μr = 20,000,
� Electrical conductivity σ = 2.2 × 106 S/m
� Thickness = 3.5 mm
� Zshielding = 5.15 m
� The skin depth δ = 0.339mm is thinner than the shielding’s thickness.

The last case is tested by our integral method and the FEM 3D with shell elements. Let us note
that this example is in 3-dimensional space and cannot be modelled by the 2D FEM. The current values
in the passive loop and the current distribution in the shells are also compared.

The obtained results from the coupling method converge quite close to the current values presented
in Table 2. Figure 8 also shows that the surface distribution of the current in the shell is quite similar
to the two methods. The results achieved by the coupling integral method are very encouraging.
The convergence is reached with few elements (about 1000 elements).
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Figure 7. Geometry of the test case “Folies”.

Table 2. Current values in the passive loop, where j is an imaginary unit.

FEM 3D with Shell Elements

Number of elements 450,000 800,000 1,100,000

Current values (A) 619.14 + j1946.05 602.72 + j1878.72 606.87 + j1870.24

Integral method

Number of elements 430 850 1020

Current values (A) 615.21 + j1742.30 619.86 + j1745.98 621.38 + j1746.60

 
Figure 8. Surface distribution of the current (A/m) in the thin shell for the test case “Folies”: (a) FEM
3D with shell elements; (b) Integral method.

However, some matrices of Equation (38) are fully populated and compression algorithms must
be applied if there is a large number of elements. The coupling of the model order reduction techniques
or the matrix compression algorithms with some integral methods clearly demonstrates its efficiency.
For example, the coupling of a matrix compression algorithm like the FMM and the MoM or the PEEC
method has reduced the computation time and the memory requirements down to more than 10 times
and the compressed ratio is more than 80 percent [18,27]. Moreover, the acquired model can be reused
to build a real circuit, which is easy to employ in all conventional SPICEs-like circuit solvers [28,29].
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6. Conclusions

In this paper, we have presented a coupling integral method in order to model thin magnetic and
conductive regions which can be coupled with an external electric circuit. This coupling enables the
model of conductors with complex shapes, and various skin effects across the thickness of the thin
shell are taken into account. Two numerical examples have been presented and the results highlighted
the accuracy of the solution provided by our proposed method. In our suggestions, the problem dense
matrix and the full memory need could be solved with the compression algorithms.
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Abstract: Conventionally, observation (yearly breast imaging) is preferred to therapy to manage
small-sized fibroadenomas because they are normally benign tumors. However, recent reports
of increased cancer risk coupled with patient anxiety due to fear of malignancy motivate the
need for non-aggressive interventions with minimal side-effects to destroy such tumors. Here,
we describe an integrated approach composed of experiments and models for photothermal therapy
for fibroadenomas destruction. We characterized the optical and structural properties and quantified
the heat generation performance of Fe3O4 nanoparticles (NPs) by experiments. On the basis of the
optical and structural results, we obtained the optical absorption coefficient of the Fe3O4 NPs via
predictions based on the Mie scattering theory and integrated it into a computational model to predict
in-vivo thermal damage profiles of NP-embedded fibroadenomas located within a multi-tissue breast
model and irradiated with near-infrared 810 nm laser. In a series of temperature-controlled parametric
studies, we demonstrate the feasibility of NP-mediated photothermal therapy for the destruction
of small fibroadenomas and the influence of tumor size on the selection of parameters such as NP
concentration, treatment duration and irradiation protocols (treatment durations and laser power).
The implications of the results are then discussed for the development of an integrated strategy for a
noninvasive photothermal therapy for fibroadenomas.

Keywords: magnetite nanoparticles; Mie scattering theory; near infrared laser; photothermal therapy;
finite element method; bioheat transfer; diffusion approximation; Arrhenius integral; breast cancer

1. Introduction

Fibroadenoma is one of the commonest benign female breast diseases. Histologically, it is a
well-circumscribed homogeneous biphasic solid lump with distinct imaging features made up of
epithelial and stromal tissues [1]. Definitive diagnostic techniques include ultrasound, mammography,
magnetic resonance imaging or stereotactic guided needle biopsy [2]. Their sizes are normally small
(<2.5 cm), but can become giant juvenile tumors (>10 cm) during puberty or pregnancy [3] causing
considerable pain and cosmetic deformity of the breast. Although it accounts for 25% of all breast
masses in women [4], the numbers are higher in adolescents: 68% of all breast masses and 44–94% of
biopsied breast lesions [5,6]. Furthermore, available data seem to suggest that incidence and recurrence
rates are common in black race [7–9], who are more likely to develop breast cancer at a younger
age [10].
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Management of fibroadenomas can take two forms: observation and therapy. For fibroadenomas
that cause pain, deform the breast, persist without any regression and are histologically complex,
therapy is warranted [2]. Available options include open surgical excision as well as several modern
minimally invasive probe-based thermal therapies including cryotherapy, radiofrequency ablation
(RFA), microwave ablation (MWA), focused ultrasound (FUS) and laser-induced thermotherapy
(LITT) [11,12]. On the other hand, observation, which involves yearly breast imaging, is usually
recommended when the tumor is asymptomatic, small and not rapidly increasing in size to cause
cosmetic deformity and pain. However, there are situations when patients who qualify for observation
agitate due to the fear of malignancy leading to significant anxiety [12]. Furthermore, a recent study
reported a 41% increase in cancer risk for women diagnosed with fibroadenomas compared to those
without them [13]. Issues related to superficial skin burns, hemorrhage and hematoma, cost and
complexity of technique that are associated with options stated earlier limit their use for small-sized
fibroadenoma [11,14]. An ideal treatment will be one that is noninvasive with no side-effects. Recent
advances in nanomedicine offer the opportunity for the design of smart strategies that can potentially
overcome drawbacks with conventional techniques to reduce invasiveness and complexity.

Nanomedicine involves the use of nanomaterials—metallic and ceramic (iron-oxide) nanoparticles
(NPs)—for theranostic purposes in living organisms. Photothermal therapy (PTT) is an emerging
localized cancer treatment whereby NPs embedded in the tumor convert near-infrared light, which
is minimally absorbed by biological tissue, to heat leading cell death. Traditionally, metallic NPs
such as gold, silver, copper as well as carbon-nanotubes or graphene have been used for PTT [15].
Although several promising results have been reported in the literature for both in-vitro (cells) and
in-vivo (animals), issues related to NP biocompatibility and stability have limited their progression
to the clinics [15]. Unlike their metallic counterparts, ceramic NPs—Fe3O4 and γ-Fe2O3—have been
used in human trials for magnetic hyperthermia treatment of brain [16] and prostate [17] cancers.
Furthermore, these ceramic NPs have very recently been tested for photothermal therapy in both
in-vitro and in-vivo studies. Chu et al. [18] showed that various shapes of Fe3O4 nanoparticles
(NPs) were able to kill cancer cells and tumors in in-vitro (esophageal cancer cell) and in-vivo (mouse
esophageal tumor) models, respectively. In another study, Espinosa and co-workers [19], demonstrated
the ability of the iron-oxide NPs to act as magnetic and photothermal agents simultaneously—so called
magnetophotothermal approach—and showed their unprecedented heating powers and remarkable
heating efficiencies (up to 15-fold amplifications).

Here, we describe an integrated approach composed of experiments for NP characterization
and models for optical property predictions and computational treatment planning. Our long term
goal is to develop a noninvasive but highly efficacious treatment method for the destruction of
fibroadenomas. The feasibility of such integrated approaches for photothermal therapies have
been previously reported for different application in the literature [20,21]. We characterized the
material properties and quantified the photothermal heat generation of Fe3O4 NPs by experimental
measurements, obtained their optical absorption coefficient via experimentally guided Mie scattering
theory and integrated it into a computational—finite element method (FEM)—model to predict in-vivo
thermal damage of a NP-embedded tumor located in a multi-tissue breast model during irradiation by
a near-infrared (NIR) 810 nm laser. Using a temperature-controlled parametric study, we explored
the feasibility of NP-mediated photothermal therapy for the destruction of fibroadenomas and the
influence of tumor size on parameters such as NP concentration, treatment duration and irradiation
protocols (laser power and duration). The implications of the results are discussed for the development
of an integrated strategy for photothermal therapy for the destruction of fibroadenomas.

2. Results

Optical and structural characterization of Fe3O4 NPs. Structural characterization of the Fe3O4

NPs—purchased commercially—were done to verify the specification provided by the manufacturer
and also predict the optical absorption coefficient. X-ray diffraction spectra of the Fe3O4 NPs
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revealed the presence of peaks at 2θ = 31.5◦, 35.8◦, 38.35◦, 42.75◦, 47.2◦, 54.04◦, 57.24◦, and 62.75◦

(Figure 1a). The observed peaks correspond to diffraction planes: (220), (311), (222), (400), (110), (422),
(511), and (440), which have been attributable to cubic spinel phase of Fe3O4 (space group, Fd-3m,
JCPDS-#19-0629). Since no other prominent phase was detected, the result implied that the NPs are
essentially crystalline Fe3O4. Transmission electron method (TEM) confirmed the morphology of the
NPs to be spherical (with agglomerations) and size distribution to be between 15 and 20 nm in diameter
as indicated by the manufacturer (Figure 1b). The agglomeration revealed in the TEM image have
been attributed to dipolar coupling between the NPs [22,23]. For any NP, its NIR photothermal effects
are controlled by their NIR optical absorbance. UV-vis-NIR spectra of the NPs showed an extended
optical absorption that slowly increased in the NIR region relative to the visible light region (Figure 1c).
The absorbance intensity at 810 nm increased linearly with concentration, from 0.35 ([Fe3O4] = 6 mM)
to 1.51 ([Fe3O4] = 24 mM) (Figure 1d). The absorbance band in the NIR region of UV-vis-NIR optical
spectra is consistent with the results in the literature and has been attributed to multiple charge
(electron) transfer [24]. Furthermore, the linear increase of absorbance for the range of concentration
tested in this work has been previously reported elsewhere [19,25]. Shen and co-workers [25] showed
that saturation starts occurring at high concentration (100 mM, absorbance values > 3 at 808 nm).
In an effort to translate the experimentally measured photothermal heat generation capabilities of
the Fe3O4 NPs tested in this study, we followed the flow-chart shown in Figure 1e to obtain the
extinction cross sections of the MNPs, which was then used in Equation (2) to predict absorbance,
Apred. The validity of Apred was tested by evaluating its agreement with the experimentally measured
absorbance, Aexp, for the different concentrations of Fe3O4 (6, 12, 24 mM). We observed that the
predictions agreed reasonably well with experiments to within 2% for all concentrations when the
sample size, n, in Equation (5) was equal to 5 (see Figure 1f).

(a) (b)
(c) (d)

(e)
(f)

Figure 1. Structural and optical characterization results. (a) X-ray diffraction spectra at a power
of 45 kV × 40 mA. (b) Transmission electron microscopy at magnification of 0.5 mm, Scale
bar: 50 nm. Absorbance as a function of (c) wavelength (λ) and (d) concentration ([Fe3O4]) at
λ = 810 nm. (e) Flow-chart for the comparison of theoretical predictions and experiment measurements.
(f) Comparison of the Apred and Aexp for different [Fe3O4] (6, 12, 24 mM).

Photothermal effects of Fe3O4 NPs. The influence of laser power (P0 = 0.5 and 1.0 W) and NP
concentration ([Fe3O4] = 0–24 mM) on photothermal effects was accessed in aqueous solution (deionized
water) to quantify their heat generation capabilities under an irradiation duration of 5 min. Pure
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deionized water—containing no Fe3O4 nanoparticles—was used as a control. The rate of change of the
temporal curves increased with concentration at 5 min independent of the laser power that was used
(Figure 2a,b). For P0 = 0.5 W, the temperature change, ΔT, increased approximately by 44.4% (from
≈9 to 13 ◦C) when concentration was increased from 0 to 24 mM (Figure 2c). When the power was
increased to 1.0 W, ΔT increased by approximately 83.3% (from ≈12 to 22 ◦C) for the same concentration.
Photothermal conversion efficiency, ηexp, decreased with concentration and laser power (Figure 2d).
For instance, ηexp for the 6 mM solution decreased from approximately 66% to 51% when P0 was
increased from 0.5 to 1.0 W. Furthermore, when the concentration was increased from 6 to 24 mM, ηexp

decreased from 46% to 39% using the same power regimes. Generally, the trend of ΔT recorded in
this study was in agreement with measured absorbance properties and also consistent with previously
reported studies [18,19,26]. For small NPs (<30 nm) and low concentrations, absorption dominates
scattering leading to high ηexp. On the other hand, scattering dominates the extinction efficiency as
nanoparticle size or concentration is increased. As [Fe3O4] increases, clusters are formed due to the
high surface area to volume ratio of nanoparticles [27]. These clusters act as large particles to enhance
scattering leading to the reduction in ηexp [28]. Several approaches are available for the prevention
of clusters.

(a) (b)

(c) (d)
Figure 2. Photothermal characterization results. Temporal response curves for different concentrations
after 5 min of irradiation with laser powers: (a) P0 = 0.5 W and (b) P0 = 1.0 W. Comparison of the
corresponding (c) temperature change (ΔT) and (d) experimental photothermal conversion efficiency
(ηexp) as a function of laser power. Error bars: s.d.
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Computational modeling of NP-mediated photothermal heating of breast tumor. The use
of computational model as quantitative frameworks enables assessment and customization of the
treatment parameters (NP concentration, treatment duration and irradiation protocols: duration and
laser power) to potentially enhance efficacy. Thus, FEM simulations were applied to approximate
photothermal heating of a Fe3O4-containing tumor embedded within a female breast using the optical
diffusion approximation of the transport theory [29] and the Pennes bioheat transfer equation [30].

Figure 3 shows a schematic of 2D representation of the axisymmetric geometry of the computational
model. It was configured as a heterogeneously dense [31] multi-layer block of tissue with proportions
assigned according to the Breast Imaging Reporting and Data System (BIRADS) developed by
American Cancer Research [32]. It consisted of various layers of normal tissue with unequal thickness.
The dimensions of the model were chosen to represent a “heterogeneously dense” breast model [31],
which consists of 20% muscle layer, 60% glandular layer and 20% fat layer. Also, a tumor is located at
55 mm from the base. The laser source was assumed to be a diode laser 810 nm placed close to the top
surface of the breast model. The inset is a fragment of geometry showing control points P1−P4, where
temperatures were recorded. The assigned optical, thermal and physical properties of different tissue
layers were approximate values obtained from the literature [31,33–36]. Nanoparticles were assumed to
be intravenously injected and uniformly distributed throughout the tumor.

Figure 3. FEM geometry. Schematic of the photothermal therapy consisting of a normal multi-tissue
breast domain with an embedded spherical tumor (blue sphere) and NIR (810 nm) laser source. Inset:
Fragment of geometry showing controls point P1−P4, where temperature were recorded.

To characterize the temperature and thermal damage profiles, we simulated temperature-
controlled heating at a maximum tumor temperature, Tmax = 85 ◦C, for t = 15 min. The radius
of the tumor, R, and P0, were chosen to be 2.5 mm and 1 W respectively. The predicted temperature
distribution (Figure 4a) was revealed to be non-uniform with the maximum temperature occurring
within the tumor and decreasing radially outwards into the surrounding tissue. The latter suggests that
the heat transfer was predominantly conductive. For the case of the predicted thermal damage shown
in Figure 4b,c, it can be seen that the entire tumor area, plus margins of up to 1 mm around it, was
completely destroyed (Ω = 100%). A comparison of temporal response curves for temperatures
(Figure 4d) at different control points (Figure 3) within the tumor (P1)and at the tumor-gland
boundaries (P2–P4) revealed that the temperature rise as well as the final value was higher at (P1)
relative to the boundaries: P2 (top), P3 (bottom) and P4 (side). This phenomenon can be attributed to
factors such as relatively low blood perfusion and high metabolic heat of the tumor leading to high
retention of heat within the tumor [37]. However, at all the locations, the temperature plateaued after
about 2–3 min. The consequence of the high temperature within the tumor is revealed in corresponding
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predicted temporal curves for the thermal damage (Figure 4e), which shows that 100% thermal damage
occurs faster in the innermost part of tumor (P1)—≈3 min—compared to the peripherals, which take
up to about ≈10 min (P4). Consistent with the literature [33,38], the model predictions showed the
dependence of thermal damage spatial profile on the temperature distribution, which decreased with
distance away from center of the tumor (see Figure 4f).

(a) (b)

(c)

(d) (e) (f)
Figure 4. Simulation results. Cross-sectional view of the (a) temperature distribution, (b) thermal damage,
(c) thermal damage showing the lesion parameter. Temporal response curves for (d) temperature and
(e) thermal damage at the control points (P1–P4, cf. Figure 3). (f) Temperature and thermal damage as a
function distance from P1. Simulation settings: P0 = 1 W, t = 15 min and Tmax = 85 ◦C.

Ablative temperatures between 60 and 100 ◦C cause irreversible damages to key cytosolic and
mitochrondrial enzymes [39,40]. For any tumor ablation therapy to be considered successful and thus
reduce the chance of recurrence, it is critical to ensure that the entire volume of the tumor reaches
therapeutic temperatures that ensures complete thermal damage (Ω = 100%). Such a goal can be
achieved through the use of an appropriate maximum temperature, which takes into consideration
the tumor dimensions. For NP assisted photothermal therapies such as the one being proposed in
this study, maximum ablative tumor temperatures, Tmax, can be controlled by varying parameters
such as NP number density, N (or volume fraction, φv), the laser power, and treatment duration,
t. To demonstrate this, a parametric study was used to determine N required to achieve a given
Tmax (70, 85, 100 ◦C) and the corresponding volume of the lesion VL for different tumor sizes, R (1,
2.5, 5 mm). VL, was assumed to be spherical [41,42]; its radius, RL, was calculated as half the axial
length of the predicted cross-sectional area where Ω = 100% (see Figure 4c). A summary of the
results is presented in Table 1. The simulations were run with P0 = 1 W and t = 15 min. Generally,
it can be observed that Tmax required to achieve complete thermal damage increased with size of the
tumor. For instance, Tmax = 70 ◦C produced a lesion with VL = 2.95 mm3, which was insufficient
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to completely ablate the entire volume of tumor with RT = 1 mm (VL = 4.19 mm3). On the other
hand, Tmax = 85 produced a lesion with VL = 2.95 mm3, which was big ensure to ensure complete
thermal damage. Since P0 was held constant for all simulation, it meant that N had to be increased to
achieve the given Tmax. The results reveal that N required to achieve Tmax = 70 ◦C decreased with
tumor size. For instance, N required to achieve Tmax = 70 ◦C decreased from 112.37 × 1014 mL−1

to 5.54 × 1014 mL−1 when RT was increased from 1 to 5 mm. Lastly, the nanoparticle concentrations
that were required to achieve the different values of Tmax corresponded to volume fractions in the
range between 0.004% and 10.6%. A review of the nanoparticle delivery to tumors in the literature
between 2006 and 2016 by Wilhelm et al. [43] revealed that only approximately 1% of administered
nanoparticle dose reached the tumor. Therefore, it is important that the φv is kept at the low value
for practical applications. This can be achieved by through several means such as increasing the laser
power or exploiting the capability of the Fe3O4 NPs to generate synergistic heat during simultaneous
exposure to NIR laser and alternating magnetic field as previously reported elsewhere [19].

Table 1. Comparison of volume, VL, of predicted lesions and the number density, N, of nanoparticles (or
volume fraction, φv) used to achieve maximum tumor temperatures, Tmax (70, 85, 100 ◦C) in different
tumor sizes, R (1, 2.5, 5 mm). RL is the radius of the lesion.

Tmax
R = 1 mm R = 2.5 mm R = 5 mm

(◦C)
N(φv) VL(RL) N (φv) VL(RL) N ((φv)) VL(RL)

(×1014/mL) (mm3) (×1014/mL) (mm3) (×1014/mL) (mm3)

70 112.37 (5.68%) 2.95 (0.89) 19.36 (0.06%) 20.94 (1.71) 5.54 (0.002%) 44.00 (2.19)
85 166.11 (8.17%) 15.30 (1.54) 27.60 (0.09%) 128.45 (3.13) 7.18 (0.003%) 347.17 (4.36)
100 221.34 (10.6%) 24.43 (1.80) 36.72 (0.13%) 256.20 (3.94) 9.26 (0.004%) 998.31 (6.20)

These predictions are consistent with previously reported experimental and computational results
in the literature. Kannadorai et al. [44], developed a treatment planning model for the optimization
to parameters such as laser power density, nanoparticle concentration and exposure time in an effort
aimed at potential enhancement of treatment outcome. Their predictions showed that any change
made to any of the parameters can be compensated by altering the remaining parameters. Using
an integrated strategy that combined x-ray computed tomography or ex-vivo with a 4-dimensional
FEM model, Maltzahn and co-workers [20] simulated photothermal heating with polyethylene glycol
PEGylated gold nanorods (PEG-NR) and used the results to guided pilot therapeutic studies on human
xenograft tumors in mice. Their simulations revealed the extension of thermal flux vectors from the
region where PEG-NRs were located as well as the expected thermal profile.

3. Discussion

Generally, the efficacy and safety of NP-mediated PPTT depend on several independent factors
such as the properties of nanomaterial (e.g., morphology, size distribution, optical absorption
coefficient), biological identity (e.g., in-vivo circulation time, stability, tumor-homing) and irradiation
protocols (e.g., laser beam power, shape, duration, cross-section, direction). Therefore, it requires
an integrated strategy that combines experiments and models to optimally select and customize
these parameters towards the realization of a reliable and efficient treatment outcome. Clearly,
we acknowledge that the strategy we describe here is not exhaustive; however, our intention was
to emphasize the need for a structured procedure that allows a quantitative assessment of the heat
generation capabilities and predict critical optical properties of the nanoparticles that can be used in
computational modeling.

We show that Fe3O4 NPs exhibit photothermal effects when irradiated with NIR (810 nm) light
leading to photothermal generation, which increases with NP concentration and laser power. On the
basis of the optical (Figure 1c) and structural (Figure 1b) properties, the absorption coefficient that
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was used in the computational model was predicted with the Mie scattering theory. It is worth noting
here that we used the Mie theory because the NPs were spherical [45], however, the photothermal
effect is not unique to only spherical iron-oxide NPs but also cubic [19], hexagonal and wire-like [18].
For such non-spherical geometries, discrete dipole approximation—a discrete solution method of
the integral form of Maxwell’s equations, should be used [46]. Qin et al. [47] used a combination of
the two methods to perform quantitative comparison of photothermal heat generation between gold
nanospheres and nanorods. Estimation of ηexp, which describes how the NPs dispose (scattering plus
absorption) the incident electromagnetic energy, has implications for NP concentration and laser beam
power to be used. Although, it was beyond the scope of this work because it has been extensively
studied previously [20,48], the biodistribution and effective tumor-homing following intratumoral
or i.v. administration is key to the efficacy of treatment. To this end, techniques such as PEGylation
and ligand-conjugation of the NPs have been shown to enhance and modulate their performance
for biomedical applications and, thus, must be considered as part of efforts to fully characterize the
nanoparticles for in-vivo applications.

Due to the complexities of multi-tissue breast tissue and different characteristics of tumors (size,
location, shape), coupling of experimental measurements with computational modeling allows for
the progressive selection, optimization and customization of parameters including NP concentration,
irradiation protocols and treatment duration for in-vivo applications. This approach is essential
for mitigation or prevention of collateral damage to healthy tissue surrounding the tumor. Here,
we used optical absorption coefficient obtained via Mie theory predictions to develop a FEM model
and used a temperature-controlled parametric study to demonstrate that the temperatures of different
sized fibroadenomas can reach ablative levels leading to complete thermal damage (Ω = 100%)
during irradiation with different laser powers. Several investigators have shown that the accuracy
of FEM models for thermotherapy can be enhanced by using realistic geometries and material
properties [20,21,34,44]. Although our model accounted for temperature dependence and blood
perfusion effects, the multi layer geometry based on BIRADS [31] is generic and the distribution of the
NPs was an assumption. Such simplification can have an adverse effect on integrity of the predicted
values. Several reports have shown that using geometries that correlate with real anatomic datasets
and include biodistribution data [20,34] have the potential to improve the accuracy of predictions.
Elsewhere, such datasets have been obtained via noninvasive techniques such as X-ray computed
tomography, sonography and ex-vivo spectrometry [20,34].

Finally, we acknowledge that Au NPs have been the prime candidates for photothermal therapy,
however, it still remains an experimental cancer treatment due to issues related to their bio-persistent,
which makes them potentially toxic and the use of high irradiation doses to achieve therapeutic
temperatures due to the turbidity of biological tissues [28,49]. These issue have led to the recent
interest in the photothermal properties of Fe3O4 NPs, which have been approved by the food and
drugs administration (FDA). Furthermore, recent studies that have explored the simultaneously
application (DUAL-mode) of both NIR laser and alternating magnetic field (AMF) to the Fe3O4 NPs
have shown promising and interesting results. The studies found that the amount of heat generated
with DUAL-mode equaled the sum of the heating for NIR laser or AMF only [19,26]. The essence of
these results is that the use of the DUAL-mode can be used to overcome the challenges associated with
the individual techniques.

4. Materials and Methods

4.1. Materials

The following materials were used in this study: Fe3O4 (99.5%, 15–20 nm) NPs (US Research
Nanomaterials Inc., Houston, TX, USA).
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4.2. Experiments

4.2.1. MNP Characterization

Fe3O4 NPs were characterized by TEM (Philips CM10, Philips Electron Optics, Eindhoven,
The Netherlands) and XRD (D8 FOCUS X-ray, Bruker AXS GmbH, Karlsruhe, Germany) for crystal
structure and morphology and then UV-vis-NIR spectroscopy (GENESYS 10S UV-vis, Thermo Fisher
Scientific, Madison WI, USA) in the wavelength range of 400–900 nm for absorption spectra.

4.2.2. Photothermal Measurement in Water

The sample (Fe3O4 NPs in 0.5 mL of deionized water) contained in a 1.5 mL Eppendorf tube was
irradiated by a NIR continuous laser at 810 nm (Photon Soft Tissue Diode Laser, Zolar Technology &
MFG, Canada) with an external adjustable power, P0 (0–3 W). The distance between the sample and
the laser was 1–2 cm and the laser spot size was about 1 mm. The laser powers that were used was
0.5 and 1.0 W. Each sample was identically irradiated for 5 min. The resulting temperature rise was
recorded by thermocouples (J-type, National Instrument, Austin, TX, USA) connected to a portable
data acquisition system (NI USB-9222A, National Instruments, Austin, TX, USA) and recorded every
30 s with NI-DAQmx (National Instruments, Austin, TX, USA) and software (LabVIEW 8.6, National
Instruments, Austin, TX, USA). All measurements were obtained in triplicate except stated otherwise.

The experimental photothermal conversion efficiency (ηexp) of the NPs was calculated directly
from steady-state temperature increase as follows:

ηexp =
Qexp

P(1 − 10−Aexp)
(1)

where Qexp (W) was calculated with previously reported expression [47]: 16.855ΔT (mW), ΔT is the
temperature change, P is the incident laser power and Aexp is the absorbance of the Fe3O4 nanoparticles
at 810 nm.

4.3. Models

4.3.1. Optical Properties Predictions

The experimentally measured absorbance, Aexp, of a colloidal solution can be expressed in terms
of predicted extinction cross section, σext as:

Apred = N
σext

2.303
d0 (2)

where N (m−3) is the number density of the NPs, d0 (cm) is the path length of the spectrometer.
For spherical, homogeneous and isotropic NPs, the “Mie scattering theory” [45,50] can be used to
compute the exact values of the Qext, absorption (Qabs) and scattering (Qsca) efficiency as well as the
anisotropy factor (g) as follows [46]:

Qext =
2
k2

∞

∑
n=1

(2n + 1)Re(an + bn) (3a)

Qsca =
2
k2

∞

∑
n=1

(2n + 1)[(|an|2 + |bn|2)] (3b)

Qabs = Qext − Qsca (3c)

g =
4

k2Qsca

∞

∑
n=1

[
n(n + 2)

n + 1
Re(ana∗n+1 + bnb∗n+1) +

2n + 1
n(n + 1)

Re (anb∗n)
]

(3d)
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where k is the NP size parameter (= 2πa/λ). an and bn, the scattering coefficients in terms of the
spherical Ricatti-Bessel functions, ψn and ηn, respectively, are defined as:

an =
ψ′

n(mx)ψn(x)− mψn(mx)ψ′
n(x)

ψ′
n(mx)ηn(x)− mψn(mx)η′

n(x)
(4a)

bn =
mψ′

n(mx)ψn(x)− ψn(mx)ψ′
n(x)

mψ′
n(mx)ηn(x)− ψn(mx)η′

n(x)
(4b)

where m is the ratio of complex refractive index (nS =
√

εS) of the sphere to that of the surrounding
medium (nm) asterix (∗) and prime (′) indicate complex conjugate and derivative with respect to x and
mx, respectively. The numerical calculations were performed with a python code implementation of
the original algorithm published by Wiscombe [51]. The wavelength dependent complex refractive
index, n(λ), was obtained from Ref. [52].

To account for polydispersity, the size range of the nanoparticle was discretized into a varying
number of terms (nt) and then number-averaged to obtain the ensemble optical properties,

σk =
1
nt

Ru

∑
r=Rl

σk(r + i) k = ext, abs, sca, nt = 2, 3, 4, . . . , N (5)

where Ru and Rl are the upper and lower limits of the NP size range, respectively. i is the step size
which is calculated as: i = Ru − Rl/(n − 1) and σk is the mean k (i.e., extinction, absorption, scattering)
cross sections of the NP.

4.3.2. In-Vivo Predictions

The computational model is a multiphysics FEM model, thus, it took into account optical and
thermal effects. Light distribution was based on the diffusion approximation of the transport theory [29]
and temperature distribution by Pennes bio-heat transfer equation [30], which takes into account the
effect of cell death on blood perfusion and the dependence of cell death and properties of the tissue.
Cell death was determined by an Arrhenius based integral injury model [53].

Light Distribution. The optical diffusion approximation of the transport theory [29] was used to
describe light distribution due to the dominance of scattering over absorption in biological tissues.
It is defined by:

1
cn

∂

∂t
ϕ = D∇2 ϕ − μa ϕ + S (6)

cn (m s−1) is the speed of light in a medium, ϕ (W m−2) is the fluence rate, μa (m−1) is the absorption
coefficient, S (W m−3) is the light source term and D = μa/μ2

eff (m) is the diffusion coefficient.
μeff =

√
3μa(μa + μ′

s) (m−1) is the effective attenuation coefficient and μ′
s (m−1) is the reduced

scattering coefficient. Assuming that the light source was a continuous wave Gaussian NIR laser beam
that was incident onto the breast model, the ϕ can be defined by

φ(�r) =
P0 exp(−μeff�r · n̂)

4πDr
(7)

where P0 is the laser power and n̂ is the direction of the beam. A summary of the values of the optical
properties of the tissue used in the simulation is presented in Table 2.
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Table 2. Optical properties of the biological domains that were used in the simulations. The values
were obtained from Refs. [34–36].

Tissue
Coefficients, (m−1) Refractive Index, (1)

Absorption, μa Reduced Scattering, μ′
s n

Fat [35] 3 950 1.455
Gland [35] 6 1100 1.4
Muscle [34] 23 130 1.37
Tumor [36] 7 1400 1.37

Temperature Distribution. The Pennes bio-heat transfer equation [30] was used to estimate the
temperature distribution. An additional term was added to account for the external heat source.
The resulting equation is given by:

ρcp
∂T
∂t

= λ(T)∇2T + ρbcbωb(Ω)(Tb − T) + Qmet + Q (8)

where ρ (kg m−3) is the density, cp (J kg−1 K−1) is the specific heat capacity at constant pressure. λ(T)
(W m−1 K−1) is the temperature dependent thermal conductivity, which is assumed to be a linear
function defined by [54]:

λ(T) = λ(37 ◦C)[1 + 0.0028(T − 293.15K)] (9)

where T (K) and Tb (K) are the normal body and arbitrary temperatures, respectively. ρb is the density
of blood, cb, the specific heat capacity of blood and ωb(Ω) is the coefficient of blood perfusion assumed
to be dependent on the cell damage, Ω, and defined by [33,38]:

ωb(Ω) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ω0
b if Ω = 0

(1 + 25Ω − 260Ω2)ω0
b , if 0 < Ω ≤ 0.1

(1 − Ω)ω0
b , if 0.1 < Ω ≤ 1

0, if Ω > 1

(10)

ω0
b (s−1) is the baseline coefficient of blood perfusion. Qmet (W m−3) is the metabolic heat. Q accounts

for external heat sources, which varies for the different domains of geometry. The heat generated after
the absorption of NIR light is defined as μa ϕ(r) (W m−3) and Nσa ϕ(r) (W m−3) for the tissue and
tumor domains respectively. N is the number volume of Fe3O4 NPs and σa (m2) is the absorption
cross-section of nanoparticles. Table 3 presents a summary of the values of the thermo-physical
properties that were used in the simulation.

Table 3. Thermo-physical properties of the biological domains that were used in the simulation.
The values were obtained from Refs. [31,33]

Tissue
Specific Capacity Heat Thermal Conductivity Density Metabolic Heat Blood Perfusion

c [J (kg K)−1] λ [W (mK)−1] ρ [kg m−3] Qmet [W m−3] ωb [s−1]

Fat 2348 0.21 911 400 0.0002
Gland 2960 0.48 1041 700 0.0005
Muscle 3421 0.48 1090 700 0.0008
Tumor 3770 0.48 1050 8720 0.0001
Blood 3617 - 1050 - -
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Thermal Damage. The Arrhenius injury model was used to estimate tissue destruction. The model,
which relates temporal temperature to cell death, is defined by [53]:

Ω(τ) = A
∫ τ

0
exp
( −Ea

RT(t)

)
dt (11)

where Ea (J mol−1) is the activation energy, A (s−1) is a scaling factor and R = 8.3 (J mol−1K−1) is the
gas constant. The values for Ea and A were obtained from Ref. [33] as 302 kJ mol−1 and 1.18 × 1044 s−1

respectively. Ω = 1 corresponds to the 100% irreversible cell damage.
Model Implementation. This FEM model was developed with the COMSOL Multiphysics 5.2

software package (Comsol, Inc. Burlington MA, USA). All properties and dimensions were added
explicitly to the FEM model as parameters and variables under the “Global Definition” and “Model”
nodes, respectively. Equations (9) and (10) were added as analytic functions under the “Global
Definition” node. The 2D axisymmetrical model was used to reduce simulation time.

The light distribution was achieved by implementing Equation (5) as an analytic function.
The temperature distribution was achieved using the bio-heat heat transfer application mode.
Each tissue was represented with a separate “biological tissue” node. The boundary and initial
conditions were specified as follows: a Dirichlet condition, T = 37 ◦C, at Γ1; a Neumann condition,
n·(λ∇T) = h·(Text − T) at Γ2 where the heat transfer coefficient, h was equal to 13.5 Wm−2K−1 and
Text = 25 ◦C and continuity, n·(λ1∇ T1 − λ2∇ T2) = 0 at all interior boundaries. A temperature of
37 ◦C (for the normal body) was used as the initial temperatures in all domains of the model. The heat
source was added to the bio-heat transfer application mode as a user-defined heat source.

The cell death model was implemented with the “Coefficient Form PDE” application mode.
To achieve a time integration, the coefficients da and f were set to 1 and Equation (11), respectively.
All other coefficients were set to zero. The initial conditions were: S = ∂S/∂t = 0.

In order to enhance the accuracy of results, we resolved the model with successively smaller
element sizes and compared results, until an asymptotic behavior of the solution emerged.
The comparison was done by analyzing the temperature at the interface between tumor and the
tissue. The choice of 2D-axisymmetric model allowed for the use of a physics-controlled mesh with
the triangular element with sizes: maximum = 0.24 cm and minimum = 0.0024 cm for the tumor region
and element sizes: maximum = 0.42 cm and minimum = 0.018 cm for the other regions. This resulted in
2656 domain elements and 277 boundary elements. The numerical solutions were obtained using the
time-dependent solver “GMRES” with its default settings. The simulations were run on a mid-range
workstation with Intel(R) Xeon(R) E5-1620 CPU and 8 GB of RAM.

5. Conclusions

Recent developments in imaging techniques have led to early detection of small fibroadenomas.
Although observation is recommended for such cases, the agitations by some women due to fear of
malignancy [12] coupled with recent report of 41% increase in cancer risk for women diagnosed with
fibroadenomas [13] justify the need to develop techniques that can destroy these tumors with minimal
or no side effects. We believe our findings demonstrate the potential of NP-mediated photothermal
therapy for destroying fibroadenomas. However, we acknowledge the limitations of the study and
understand that a future study should incorporate the important aspects discussed earlier so that a
proper assessment can be made. Our long term goal is to develop a non-aggressive and noninvasive
treatment method for such benign tumors, which is becoming a growing public health concern.
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Featured Application: The electromechanical analysis of full 3D interacting devices is often

necessary. This paper presents such an analysis applied to the system constituted by a rail

launcher and its feeding generator. The adopted numerical tool has general validity and can be

used in other contexts.

Abstract: Multiphysics problems represent an open issue in numerical modeling. Electromagnetic
launchers represent typical examples that require a strongly coupled magnetoquasistatic and
mechanical approach. This is mainly due to the high velocities which make comparable the
electrical and the mechanical response times. The analysis of interacting devices (e.g., a rail launcher
and its feeding generator) adds further complexity, since in this context the substitution of one device
with an electric circuit does not guarantee the accuracy of the analysis. A simultaneous full 3D
electromechanical analysis of the interacting devices is often required. In this paper a numerical 3D
analysis of a full launch system, composed by an air-core compulsator which feeds an electromagnetic
rail launcher, is presented. The analysis has been performed by using a dedicated, in-house developed
research code, named “EN4EM” (Equivalent Network for Electromagnetic Modeling). This code is
able to take into account all the relevant electromechanical quantities and phenomena (i.e., eddy
currents, velocity skin effect, sliding contacts) in both the devices. A weakly coupled analysis,
based on the use of a zero-dimensional model of the launcher (i.e., a single loop electrical equivalent
circuit), has been also performed. Its results, compared with those by the simultaneous 3D analysis of
interacting devices, show an over-estimate of about 10–15% of the muzzle speed of the armature.

Keywords: air-core pulsed alternator; electromagnetic rail launcher; coupled analysis; computational
electromagnetics; integral formulations

1. Introduction

The ElectroMagnetic Launch (EML) technology uses electric propulsion to accelerate objects at
high speeds. Because of its superior performance it is substituting several launch systems. Coil and
rail launchers are the most used alternative solutions [1,2].

Induction launchers are substantially linear tubular motors, usually air cored. They consist of a
barrel formed by an array of (stator) coils and a conductive cylinder moving inside them. Induction
launchers are operated as travelling wave induction launchers or as pulsed induction launchers. In the
first operation mode, the stator coils are grouped in sections that are energized in a polyphase fashion
in order to create a traveling wave of flux density in the region occupied by the sleeve. In the second
one the stator coils are fed in sequence by a set of capacitor driven circuit [3–7].

The Electro-Magnetic Aircraft Launch System (EMALS) is another important example of
application of the electromagnetic launch technology. It has been introduced in substitution of
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the steam catapults for the take-off of airplanes from the new class of carriers of the US Navy [8–11].
With respect to the steam catapult EMALS is able to produce a smooth and controllable acceleration
profile with a consequent reduction of the stress on the aircrafts. Moreover it is able to accelerate
heavier aircrafts with reduced weight, cost and maintenance requirements. EMALS has been recently
proposed for civil aircrafts [12]. Ambitious programs for space application of electromagnetic launchers
are under investigation [13,14].

A rail launcher is constituted by two conductive rails with a conductive armature (slab or c-shaped)
free to slide inside them. At the beginning of the launch the armature is located near the breech of the
launcher where a feeding generator is connected between the rails. The current flowing in the rails (and
in the armature) produces a flux density distribution in correspondence of the armature, where the
interaction with its current produces a thrust force that accelerates the armature. The main drawbacks
affecting the rail launchers are a consequence of the Velocity Skin Effect (VSE) which is caused by the
limited diffusion rate of the current in the rails as the armature moves; VES produces a concentration of
the current in the rear portion of the armature near the rails [15–18]. The importance of VSE increases
with the speed and it is one of the causes which may prevent the use of rail launchers at very high speed.
The availability of numerical tools for the investigation of VSE and for the design of countermeasures
to limit its effects on the launcher performance are of paramount importance [17,19,20].

When considering a solid armature rail launcher, the choice of an air-core compensated pulsed
alternator (compulsator) as the feeding device seems to be one of the most promising technology [21].
The absence of ferromagnetic materials allows achieving a very low value of internal inductances.
The addition of compensating windings or conductive shields further reduce the internal inductance,
so increasing the peak value of the output pulsed current. Moreover, by proper positioning of
compensating components, it is possible to shape the current pulse to improve the performance of the
launchers, both in terms of muzzle speed and efficiency. As reported in the scientific literature, the
maximum speed of an air-core rotor can reach higher values than those in an iron-core one, increasing
the stored energy [22,23].

Many papers, based on analytical or numerical models, have been published in the past years to
investigate the performance of the air-core compulsator [24–26]. However, the majority of these studies
are focused on the performance of the compulsator as a stand-alone device and adopt a simple time
varying equivalent circuit to model the rail launcher. Similarly happens for rail launchers, where often
the waveforms produced by the feeding devices are assigned, especially when the rotating machines
are considered.

Accurate model identification and parameters extraction of the lumped equivalent circuit for
these devices may be difficult to achieve since both rail launchers and compulsators are inherently
time-varying and nonlinear electromechanical devices and consequently the parameters that identify
the equivalent circuit of one device may depend on the operating conditions of the whole system
and on the characteristics of the other device. A strong-coupled 3D electromechanical analysis of the
interacting devices seems to be the only option able to provide accurate results. This paper discusses
the coupled electromechanical analysis of the whole launch package by using the research code EN4EM
previously developed by the authors.

In order to avoid confusion, in the remaining of the paper the phrase “strong coupling” will
be reserved to the magnetoquasistatic-mechanical problems, arising when analyzing a device with
conductors in relative motion. “Strong coupling” is necessary when analyzing high speed devices
and it is inherently provided by underlying formulation of EN4EM. The phrase “strong-interaction”
is reserved to indicate a simultaneous full 3D “strong coupled” analysis of the rail launcher and its
feeding compulsator. Moreover, the phrase “weak-interaction” is reserved for those analyses where
one of the devices is substituted with a lumped equivalent circuit and the other is analyzed by a 3D
“strong coupled” model. The “equivalent circuit” is reserved for zero-dimensional voltage-current
dependencies at the terminals of a device. A lumped “equivalent circuit” is usually unable to provide
information about the spatial distribution of the electromechanical quantities inside the device. Finally,
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the phase “equivalent network” is related to EN4EM and, as it will be shown in the next section, is
used to indicate the internal procedure of the code which builds an electric network whose currents
are uniquely related to the current density distribution in a device.

To best of the authors’ knowledge, scientific literature does not report any “strong interaction”
analysis between rail launcher and compulsator capable to consider two mechanical degrees of freedom
(one rotation for the compulsator and one translation for the launcher) together with high speed sliding
contacts. Considering that the components and the materials used in EML technology are heavily
stressed from the electrical, mechanical and thermal point of view, a tools which allows an accurate
coupled analysis represents a valuable resource.

The manuscript is organized as follows. Section 2 briefly summarizes the adopted numerical
formulation. Section 3 shows two examples of the “weak interaction” analysis and further justifies
the motivations of the research by discussing the results of these analyses. In Section 5, the “strong
interaction” analysis of the whole system is carried on and its results are compare with those by a
“weak interaction” analysis. Finally, some concluding remarks are reported.

2. Numerical Formulation

The 3D numerical analysis of multi degrees of freedom electromechanical devices represents a
challenging, still open problem, which poses several critical issues. Several commercial codes, typically
based on the Finite Elements Method (FEM), provide packages for coupled electro-mechanical analysis,
but they seem to be not very effective with multiple degrees of freedom and with sliding contacts.
Moving conductors and sliding contacts usually require remeshing of the domains with consequent
increase of computational times and potential numerical instabilities.

Integral Formulations (e.g., the Method of Moments) seem to work quite well with moving
domains since they require the discretization of the active regions only (namely conductors and
ferromagnetic materials), so avoiding the problem of coupling meshes with different speeds. Integral
formulations implicitly enforce the far field boundary conditions, and are able to produce accurate
results by using coarse discretization (when compared with those required by FEM).

The numerical investigation of the complete launch system has been performed by the research
code EN4EM. It is based on an integral formulation, and it is under continuous development by the
authors for investigating electromechanical systems [27–34].

EN4EM applied to the launch package is able to simulate the whole system considering the
characteristics of the two devices and taking into account their “strong interaction”. Figure 1 shows the
steps of a conceptual flow chart of the numerical formulation: discretization in elementary volumes,
writing and integration of Ohm’s law, arrangement in an electric network and writing of the governing
electro-mechanical equations. The usual notations for the electromagnetic quantities in Figure 1 are
adopted according to the Table 1.

With reference to the inset in the bottom right of Figure 1, Ohm’s law is written in the conductive
elementary volumes where a uniform current distribution is assumed (row #1 of the inset). The additive
properties of the integrals with respect to the integration domain allows expressing the fields and
potentials in the k-th conductive elementary volume as a summation of contribution due to the currents
in the other volumes (row #2 of the inset). Finally integration on the k-th elementary volume leads to
an equation that can be seen as the voltage-current relationship of a branch that is a series connection
of a resistor, an inductor coupled with other inductors, and a voltage generator controlled by the
currents in other elementary volumes (row #3). The equivalent network of the device is built by
connecting the terminals of the branches so obtained. In case of a multi-device system, the code is able
to model separately the different devices by their equivalent networks. Then, all these networks are
connected together according to the relative positions of the corresponding elementary volumes and to
the presence of electrical contacts between them. The described procedure has been applied to model
the launcher and the compulsator, obtaining a whole model composed of thousands of branches.
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Figure 1. Conceptual flow chart of the numerical formulation. (Reproduced with permission from [30],
IEEE, 2017).

Table 1. Notations.

Symbol Description

Jk Current density in the k-th conductive element
Ek Electric field in the k-th conductive element
Vk Electric potential in the k-th conductive element
Ak Vector potential in the k-th conductive element
Bk Flux density in the k-th conductive element
vk Velocity of the k-th conductive element
ik Current in the k-th conductive element
uk Voltage drop across the k-th conductive element
Lk, j Mutual induction coeff. between conductive elem.
Kk, j Motional voltage coeff. between conductive elem.
Rk Resistance of the k-th conductive element

Mesh analysis yields to the governing equations written in matrix form:

L(C(t))
di
dt

+
(
R + K

(
C(t),

.
C(t)

))
i = e(t) (1)

The values of the elements of the matrices in (1) are function of the system configuration C(t)
and its derivative

.
C(t) (i.e., the relative positions and velocities of the elementary volumes used to

discretize the devices respectively). Coupling between electrical and mechanical equations is achieved
by the terms vk(t) ×Bk(t) that, once integrated on the elementary volumes, are assembled to form the
matrix of the motional terms K, and by the terms jk(t) × Bk(t) which are integrated to provide the
forces and the torques on the moving parts of the device. The mechanical equation for the armature of
the launcher is:

m
..
xG = F(i, C(t)) (2)

while the equation for the compulsator are:

IG
.
ω+ ω̂IGω = MG(i, C(t)) (3)

In the above equations F represents the resultant force on the launcher armature and m is its mass,
MG is the resultant torque on the rotor of the compulsator and IG is its inertia tensor. The coupled
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differential equations for electrical and mechanical equilibrium are time varying, and the resulting
system is nonlinear; integration is carried out as described in [27,28].

It is worth to mention that the currents in the branches of the equivalent network are not fictitious
currents. The current in a branch of the equivalent network is in correspondence with one component
of the current density of an elementary volumes as shown by the insets in the upper right and in the
lower left corners in Figure 1. By the above described equivalent network the distribution of all the
relevant electromechanical quantities can be evaluated everywhere in the whole system. In particular,
the expression of the force by the term jk(t)×Bk(t) allows to evaluate its distribution in each elementary
volumes and to determine the contribution to the total dynamical action in materials that are usually
heavily stressed when used in EML technology.

Simultaneous analysis of interacting devices simply requires building a bigger equivalent network
constituted by the properly connected equivalent networks of the components. This implements a
“strong interaction” between devices for which a “strong coupled” analysis is performed.

If the devices can be assumed magnetically uncoupled (i.e., leakage magnetic fluxes from a device
that links the others are negligible) independent networks are built, linked together at the common
terminals and simultaneously solved. It is worth to remark that the topology of the resultant network
is the same than that of the more general case of magnetically coupled devices. The only difference lies
in the filling of the inductance matrix L and of the motional terms matrix K, which are more densely
populated in the latter case.

Coupling of the equivalent network so far described with external circuits is straightforward
and this will be performed in the next section to investigate the “weak interaction” between the rail
launcher and the compulsator.

The presence of sliding contacts has been taken into account by introducing an auxiliary
network [20]. Considering that the motion in the rail launcher is characterized by a straight trajectory,
all the possible contacts between elementary volumes on the rails and on the armature are known a
priori. A new branch is set for each couple of volumes (one on the inner parts of the rails and the other
on the faced outer surfaces of the armature) that can have a contact during the motion.

Figure 2 shows an example of a set of auxiliary branches that take into account the sliding contacts.
The circuit elements in the auxiliary branches are function of the shared portion of the faces (if any)
between the two volumes. When the shared portion is zero, the auxiliary branch opens. The proposed
model of the sliding contacts is coherent with the adopted formulation based on an equivalent network
of the entire system.

(a) (b)

Figure 2. Example of the auxiliary network used for taking into account the presence of sliding contacts.
(a) All the branches are shown. (b) Only the branches that are not open circuits are evidenced.

Finally the introduction of the equivalent network allows the use of advanced analysis techniques
for the evaluation of the sensitivity of the response with respect to parameter variation [35].
This represents an important tool in gradient based optimization processes.

EN4EM was validated by comparison with results produced by other numerical codes and with
experimental data [5,6,27,28,31,32].
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3. Weak Interaction Analysis

In this section the analysis based on the “weak interaction” between rail launcher and compulsator
will be critically reviewed and the difficulties of the equivalent circuit extraction will be discussed.

Figure 3 shows the active parts of a single-phase, two-pole compulsator with selective passive
compensation provided by a discontinuous conductive shield. The inner part of the device consists
of two stationary field coils which produce a magnetic flux density distribution whose axis is in the
vertical direction (Figure 3b). The two series connected armature windings are located on the rotor
which is the outer part of the machine. Figure 3c shows the stationary compensating shields that are in
the central part of the machine. Figure 3a shows a 3D view of the device. A more detailed description
is reported in [29].

(a) (b) (c)

Figure 3. An example of the modeling of a compulsator by EN4EM. Snapshot of (a) the 3D view;
(b) cross section of the machine; (c) discretization of the compensating shield. (Reproduced with
permission from [29], IEEE, 2017).

When using a compulsator to feed a rail launcher, its rotor has to be preliminarily driven to
a proper angular speed at no load conditions; part of the stored kinetic energy of the rotor will be
delivered to the railgun armature. At the firing instant, the armature windings of the compulsator
are connected to the rails of the launcher. During the launch, the rail armature accelerates and at the
same time, the rotating part of the compulsator decreases its angular speed. The rates of change of
the speeds of both the moving parts (and consequently their positions) are not known a-priori and
substantially depend on the delivered current.

Since the simultaneous 3D analysis of the two electromechanical devices can be very time
consuming, a common practice is to substitute one or both the device with equivalent circuits.
This procedure may lead to significant error in the current flowing in the devices because of the
difficulties in the determination of the topology and of the parameter extraction of the equivalent circuit.

Referring to the compulsator, when looking for a lumped equivalent circuit, we have to distinguish
between the two compensation techniques usually adopted. When compensation is achieved by the
use of shorted discrete coils, we can consider the self and mutual inductances of all windings (field,
armature and compensating ones). Considering that the values of the mutual inductances depend
on relative angular positions only, the lumped equivalent circuit of the compulsator is able to give
accurate results; its building is a matter of evaluation (experimental or by computations) of self and
mutual coefficients and EN4EM can be used as an extraction tool.

Things go in a different way when non-uniform (discontinuous) compensating shields are
used. In these devices, the extraction of the values of the equivalent internal inductance L is not as
straightforward as with shorted discrete coils, since it is function of the position of the rotor, as well as
of the speed of the rotor, which is not known and varies during the system operation.

In fact, the speed of the rotor imposes the frequency of the electrical quantities in the shield,
which in turn determines the path and the amplitude of the induced currents and their shielding
effects which contribute to the internal equivalent inductance. Figure 4 shows an example of eddy
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currents distribution on one of the discontinuous compensating shields of the compulsator above
described whose operating conditions are reported in [29]. In particular the compulsator was loaded
with a simple lumped R-L equivalent circuit representing the rail launcher. The rectangle in Figure 4
represents the flattened cylindrical surface shown Figure 3c.

Figure 4. Eddy current distribution on the conductive compensating shield. (Reproduced with
permission from [29], IEEE, 2017.)

The equivalent internal inductance of the compulsator, as well as the electromotive force at the
terminals of the machine, are functions of the distribution of the currents on the shields. Expressing
these functional dependencies represents a challenging problem.

Similar difficulties arise when looking for an equivalent circuit of the rail launcher. Figure 5 shows
a rail launcher fed by an ideal voltage source whose waveform is given by e(t) = 50

(
1− e

−t
τ

)
V. Details

about the geometry are in Table 2. In this figure, 20 elementary volumes located near the launcher
breech are shown. The device was analyzed by EN4EM and the current density waveforms in the
evidenced volumes are reported in Figure 6. The solid curves are associated with the labelled sections
in reported in the inset of Figure 5; the greatest current density occurs in the section #5 in the inner
part of the rail. The peak values became smaller as the outer boundary of the rail is approached.
The reported waveforms put into evidence the uneven current density distribution in the rail section
for most of the launch time, the ratio between the maximum and the minimum value is greater than
two. This behavior is a consequence of the skin and proximity effects; also, the velocity skin effect has
an heavy impact on the current distribution, which is a function of the rate of change of the electrical
quantities imposed by the generator and the rate of change of the mechanical quantities i.e., the speed
of the armature [36,37]. Both these quantities change during the launch.
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Figure 5. A sketch a rail launcher. The inset put into evidence the cross section of half of the upper rail.
The labelled rectangles represent the cross section of the inner layer of the elementary volumes, i.e.,
those involved in the sliding contacts with the armature.

Table 2. Description of the devices.

Symbol Description Value

rin, f . c. internal radius of field coils 10.0 cm

Δr f . c. width of the conductors of field coils in radial direction 1.0 cm

S f . c. section of the conductors of the field coils 30.6 mm2

rin, a. c. internal radius of armature coils 14.0 cm

Δra. c. width of the conductors of armature coils in radial direction 1.0 cm

Sa. c. section of the conductors of the armature coils 330 mm2

rin, shield internal radius of the shield 12.0 cm

Δrshield width of the shield in radial direction 0.5 cm

Jz inertia moment of the rotor 1.58 kg·m2

Ω 0 initial speed of the rotor 12000 rpm

Δzrail length of the rails of the launcher 40.0 cm

Srail cross section of the rails 1.5 × 0.75 cm2

Δzarm. length of the launcher armature 1.4 cm

Drail distance between the rails 2.0 cm

Mtotal total launched mass: armature + payload 40 + 130 gr

The basic equivalent circuit of the railgun, here shown in Figure 7, is usually composed of three
elements. A resistor and an inductor, both varying with the distance travelled by the armature,
and another resistor, that takes into account the motional induced electromagnetic force, is related to
the inductance gradient and its resistance depends on the speed of the armature.

In the light of the above discussion, these circuital components should be function of the frequency
which influences the effective current density distributions in both the rails and the armature, as well as
of the time, because of the speed and of the distance travelled by the armature. Some lumped equivalent
circuits of the rail launchers adopt simplified expressions of the form: R(z, f ) = Ra + R0 + R′z and
L(z, f ) = L0 + L′z, where R′ = dR

dz is the rail resistance gradient, L′ = dL
dz is the rail inductance gradient,

Ra is the armature resistance and R0 and L0 are the resistance and the inductance due to the connection
wires [1]. All these expressions discard the dependence of these parameters on the frequency and are
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not able to take into account the velocity skin effect. On the other hand, the formal definition of the
parameters as shown in Figure 7 and their estimate pose complex problems.

Figure 6. Time waveforms of the z-axis component of current density in the rail at the feeding end.
Uneven distribution occurs for about 80% of the launch time.

Figure 7. Basic equivalent lumped parameter circuit of a rail launcher. The presence of f (frequency)
among the independent variables means that the circuit parameters are function of the rate of change
of the electromagnetic phenomena.

4. Strong Interaction Analysis

The considerations developed in the previous section have driven us to consider the strong
interaction analysis of a full 3D coupled system constituted by the rail launcher and its feeding
compulsator in the time domain. We also considered the weak interaction analysis of the same system
where the rail launcher is substituted by its lumped equivalent circuit as in Figure 7. The obtained
results have been compared to evaluate the accuracy of the weak interaction analysis.

4.1. Description of the Devices

Figure 8 shows a snapshot of the graphical interface of EN4EM showing a 3D view of the whole
system taken at the instant of firing. Figure 9 focuses on the discretization of the rail launchers; for the
sake of readability, only a limited number of the branches used to model the sliding contacts (i.e., those
related to elements in effective contact) are shown.

179



Appl. Sci. 2020, 10, 5903

Figure 8. Snapshot of 3D view of the complete launch system: compulsator plus launcher at the instant
of firing.

Figure 9. Screenshot of a planar lateral view of the launcher showing the discretization adopted for the
strong interaction analysis. Only the active auxiliary branches used to model the sliding contacts are
shown. The leftmost segments represent the connections to the compulsator terminals.

The details of the geometries of both the devices are reported in Table 2. The compulsator is
a two-poles, single-phase machine. The stationary exciting coils have 25 turns each; they are fed
with a direct current of 36 kA, capable to produce a magnetic flux density of 3T in correspondence of
the armature coils. The discontinuous stationary shield is aluminum made. The axial length of the
compulsator is 50 cm. The two armature coils are copper made, series connected and constituted of
four turns each. They are positioned on the rotor. All the active components (field coils, armature coils,
and shield) span an angle of 150◦.

The snapshots of the 3D views of the active parts of the compulsator are shown in Figure 10.
The whole device is built by arranging two items of each of the shown components according to the
layout in Figure 3b.

(a) (b) (c)

Figure 10. Screenshots of a the active parts of the compulsator: (a) field coil (stationary inner part);
(b) compensating shield (stationary part just outside the field coils); (c) rotating armature (outer part).
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At the instant of firing the magnetic axis of the field and of the armature coils are aligned, while
the center of the shield is rotated (with respect to the scheme shown in Figure 3 of 60◦ in the direction
of the motion of the rotor [29]. The launcher has copper rectangular rails and a C-shaped armature.
The oblique side of the armature forms an angle of 45◦ with the direction of the rails as shown in
Figure 9.

In the light of the discussion in Section 2, the numerical model is able to take into account the
relevant components and phenomena in both the compulsator and the rail.

In particular, for the air-core compulsator: (1) the complex armature winding scheme; (2) the
presence of excitation/control circuits; (3) the eddy currents in all the conducting parts of the machine
(the shield, the shaft, and so forth); (4) the compensating windings of different shapes and arrangements
(aluminum sheet, single shorted turns, and so forth.); (5) real winding turns connections; (6) end-turn
effects; (7) relative angular velocity between conductors [29]. For the rail launcher: (8) the sliding
contacts and the related the velocity skin effect; (9) the current distribution in the solid armature and in
the rails [20].

Finally, the numerical formulation can model centrifugal forces and vibrations acting on the shaft
of the compulsator due to electric and mechanical unbalances or to misalignments of the shaft from its
centered position, as well as the full 3D electromechanical transient behavior of the machine during
the real operating conditions.

4.2. Results

By using the proposed numerical formulation we are able to obtain the simultaneous evolution
of the both the electrical and mechanical dynamics of the compulsator and of the rail launcher.
The results of the strong interaction analysis are compared with those of a weak interaction where the
launcher is substituted by a lumped equivalent network whose topology is shown in Figure 7 and
parameters are characterized by the simplified expressions discussed in Section 3. These parameters
have been evaluated by running EN4EM on a model of the rail launcher characterized by a very
coarse discretization which subdivides the rails along the direction of the motion only; this implies
that the current is uniformly distributed in the cross section of the rails. As far the discretization of
the armature we assumed that the current was concentrated in its most backward quarter (i.e., in the
width Δz = 3.5 mm). We choose this value analyzing the current distribution (affected by the VES) in
the armature of the standing alone rail launcher as described in Section 3 in the range of the speeds
obtained by the strong interaction analysis.

Figure 11 shows the current delivered to the railgun. As known, the pulse shape can be adjusted
by properly varying the angular position and the extension of the shield. It is important that the zero
crossing of the current waveform occurs at the end of the launch, i.e., when the armature exits the
launcher. This allows obtaining an increased efficiency in the electromechanical conversion and at the
same time to avoid arcing between the armature and the muzzle. In fact, if, at the end of the launch,
the current in the system is zero also the magnetic energy stored at the same instant is zero, this means
that all the energy delivered from the generators t is converted in kinetic energy of the armature (plus,
of course, the energy losses in the resistance). Residual energy stored in the magnetic fields of the
system (i.e., in the launcher and in the compulsator) is lost in the arch at the muzzle of the launcher.

The weak interaction analysis predicts a greater current delivered by the compulsator, which in
turn produces greater thrust force and speed; the acceleration time is reduced and the zero crossing
of the current changes accordingly. As observed, the accurate prediction of the zero crossing allows
improving the performance of the system.

The thrust force waveforms on the armature by the two analyses are shown in Figure 12. The
ripple superimposed to the thrust force profile predicted by the strong iteration analysis is an artifact
due to the commutation at discrete times of the branches of auxiliary network used for the sliding
contacts modelling. It is worth noting that the currents do not present this ripple. This is due to the
total inductance of the system, i.e., the equivalent inductance of the compulsator and the one of the
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launchers. A further insight to the cause of the ripple shows that it is due to the discrete variation
of the “active” length of the rails, i.e., the portion of the rails behind the armature. Considering the
configuration as schematized in Figure 2b, we see that as soon as the contact between element (a) in the
rail and element (a’) on the armature is interrupted, the current in (a) instantaneously loses its transverse
component. Similarly, at some later instant, a contact is set between element (e) in the rail and element
(c’) in the armature and the current in element (d) of the rail will assume a longitudinal component.
The magnitude of the flux density in the armature accordingly changes; also, the terms jk(t) ×Bk(t),
related to the elementary volumes of the armature, suddenly change and produce the discontinuity in
the trust force. The ripple is absent in the force profile predicted by the weak interaction analysis since
the parameters of the lumped equivalent vary with continuity.

Figure 11. Time waveforms of the current delivered by the compulsator to the launcher in the strong
and weak interaction.

Figure 12. The thrust force on the armature in the strong and weak interaction. The ripple is an artifact
due to the commutations that happen in the auxiliary network used to manage the sliding contacts in
the strong interaction analysis.
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Let us now consider the dynamic quantities on the compulsator. Figure 13 shows the torque
acting on the rotor. As expected the torque is mostly negative, producing a decrease of the speed of the
rotor. The figure shows that in the last portion of the launch time, the torque assumes positive values
so increasing the velocity and the kinetic energy of the rotor, with respect to their minima.

Figure 13. The torque on the rotor of the compulsator. The portion of the curve with positive value
corresponds to recovering of magnetic energy as kinetic energy.

The instant when the torque changes its sign is roughly the same as the one when the delivered
current reaches its maximum. A decreasing current implies a reduction of the magnetic energy stored
in the system. Part of this magnetic energy is converted in mechanical energy by increasing the speeds
of the rotor of the compulsator and of the armature of the launcher. The remainder increases the
temperature of the conductors. The weak interaction analysis produces a smoother waveform than
that of the strong interaction one.

The comparison of the speeds of the armature obtained by the two models is reported in Figure 14.
The weak interaction analysis overestimates the speed of about 10%. The ripple in the thrust force
is cancelled by the integration and does not affect the speed waveform produced by the strong
interaction analysis.

If a lumped equivalent circuit was used for the compulsator, further errors would appear.
These errors will be more relevant if components made up of massive conductors are present in the
compulsator (e.g., a conductive shield). In this case, the actual distribution of the currents cannot be
predicted a priori. Anyhow, the errors are expected to be lower when compensating concentrated
windings are used.

The errors in the exit speed, lead to a wrong estimate of the launch time and therefore on
the length of the current pulse. If this happens, the exit of the armature from the launcher could
occur in correspondence of a non-zero value of the current, with consequent reduction of the system
performance (low efficiency and arcing between armature and rail at the muzzle).

Despite the complexity of the problem EN4EM was able to complete the strong interaction analysis
in about 150 min on a desktop computer based on an intel i7 6 core and equipped with 20 GB RAM.
The maximum allocated memory was about 6 GB. The weak interaction analysis took about 45 min
and required about 3 GB.
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Figure 14. Comparison of the armature speed during the launch as predicted by weak and the strong
interaction analysis.

5. Conclusions

The use of lumped equivalent circuits in modeling the coupled electro-mechanical behavior of a
rail launcher and its feeding compulsator may produce results whose accuracy is not always satisfactory.
The causes are due to the presence of eddy currents in the compensation shield of the compulsator
and in the uneven current distribution in the rails and in the armature of the launcher. Coupled 3D
electro-mechanical analysis is needed if accurate results are required. The paper has compared the
results by the strong and the weak interaction analysis by the research code EN4EM. The availability
of such a numerical tool could represent a valuable resource in the design of the launcher and of its
feeding compulsator since it allows to determine the more important parameters of the launch.

In particular, it will be possible to prepare a look-up table to arrange the operative parameters of
the compulsator (e.g., the excitation current, the initial speed of the rotor, its angular position at the
instant of firing) to achieve a designed muzzle speed on a given payload.
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