
Self-Modeling Neural Systems

Gregory D. Wayne

Submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

under the Executive Committee

of the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2013

© 2013

Gregory D. Wayne

All rights reserved

ABSTRACT

Self-Modeling Neural Systems

Gregory D. Wayne

Goal-directedness is a fundamental property of all living things, but it is perhaps most

easily identified in the movement patterns of animals. Ethologists have divided the basic

forms of animal behavior into three categories: reproductive, defensive, and ingestive, all

of which depend on the complex orchestration of motor control. In this dissertation, we

use the framework of optimal control theory to model goal-directed behavior and repur-

pose it in new ways. We demonstrate a method for creating a hierarchical control network

in which higher levels of the control hierarchy deal with tasks of increased abstractness.

In a two-level system, the lower-level deals with short time-scale, low-dimensional motor

control, and the higher-level is charged with longer time-scale, higher-dimensional plan-

ning. Central to our approach to joining the levels is the construction of a forward model

of the behavior of the lower-level by the higher-level. Thus, we extend ideas of optimal

control theory from controlling a “plant” to controlling a controller. We apply our method

to the example problem of guiding a semi-truck in reverse around a field of obstacles.

The lower-level controller drives the truck, and the higher-level detects obstacles and plans

routes around them. In other work, we consider whether it is possible for a neural system

that obeys certain biological constraints to solve optimal control problems. We exhibit a

simple method to train a different kind of internal model, a neural network model of the Ja-

cobian of the plant, and we integrate the internal model in a forward-in-time computation

that produces an optimal feedback controller. We apply our method to two well-known

model problems in optimal control, the torque-limited pendulum and cart-pole swing-up

problems.

Contents

Acknowledgements vi

Dedication x

Prologue xi

1 Introduction 2

1.1 Introduction . 3

1.1.1 Motor Flexibility . 5

1.1.2 Conceptual Foundations of Optimal Control 9

Bellman’s Approach . 9

Pontryagin’s Approach . 12

1.1.3 Mathematical Foundations of Optimal Control 13

Bellman’s Approach . 13

Pontryagin’s Approach . 16

i

Deriving the Minimum Principle from the Hamilton-Jacobi Bell-

man Equation . 19

1.1.4 Neural Network Models of Control 20

Equivalence of Backpropagation and Optimal Control 20

Using Neural Networks to Control Other Systems 22

REINFORCE . 24

1.1.5 Overview of this Dissertation . 25

2 A Design Procedure For Hierarchical Neural Control 29

3 Sensitivity Models for Local, Error-Driven Control 61

3.1 Introduction . 63

3.2 Discounted Optimal Control . 65

3.3 Methods of Computing Gradients . 66

Perturbation . 66

Backward Accumulation . 67

Forward Accumulation . 69

3.3.1 Planning versus Acting . 70

3.3.2 Models . 72

Forward Model . 72

3.3.3 Sensitivity Models . 73

ii

System Sensitivities . 73

Controller Sensitivities . 76

Cost Function Sensitivities . 76

3.3.4 The Planning Cycle . 76

3.4 Simulations . 78

3.4.1 Torque-Limited Pendulum Swing-up 78

Problem Formulation . 78

Network Structure . 82

Examining the Forward Model . 82

Examining the Sensitivity Model 84

Optimizing the Controller . 85

3.4.2 Cart-Pole Swing-Up . 87

Problem Formulation . 87

Building the Models . 89

3.5 Discussion . 90

3.6 Appendix . 91

3.6.1 Derivation of Backward Accumulation 91

3.6.2 Derivation of Forward Accumulation 93

3.6.3 Pendulum Problem . 95

3.6.4 Cart-Pole Problem . 96

iii

3.6.5 Network Learning . 97

Setting the Radial Basis Function Parameters 97

A Normalized Version of Amari’s Natural Gradient 97

Nesterov’s Accelerated Gradient 101

4 Conclusion 102

4.1 What Should We Look For? . 103

5 Bibliography 105

6 Appendix on Lagrange Multipliers 110

6.1 A Simple Derivation of Lagrange Multipliers 111

iv

List of Figures

1.1 Dynamic Programming. 11

1.2 The Variational Approach to Optimization. 13

1.3 Forward Model and Controller. 23

3.1 Flow Diagram of the Forward Accumulation Computation. 70

3.2 Learning a Forward Model. 72

3.3 Learning a Sensitivity Model. 75

3.4 The Outputs of the Sensitivity Model. 76

3.5 Torque-Limited Pendulum Swing-Up. 80

3.6 The Learning Curve for the Forward Model. 83

3.7 The Learning Curve for the Sensitivity Model. 85

3.8 Finite-Differences Computation of Sensitivity Model Error. 86

3.9 Key Frames of Pendulum Swing-Up. 87

3.10 Cart-Pole Swing-Up. 88

3.11 Key Frames of Cart-Pole. 90

v

Acknowledgements

There’s an expression in Washington D.C., known as a “Washington read,” which refers

to flipping through a book or article only to find out if the author mentions your name. If

you’ve come here first, shame on you!

I first want to thank my family. My parents, Ellen and Peter, are also two of my closest

friends. I still catch myself bragging about you. I have pride in your morals and your

minds, and I would do well in life to try to inhabit the world as you do. My siblings, Teddy,

Elizabeth, and Geoffrey, you are also role models for me. It’s been exceptionally satisfying

as I’ve grown up to see what kinds of adults you’ve become, to see how we are refracted

in one another and how not. I wish I could see you more. My grandma, Bess! You’ll

soon be 100 years old. How the world has changed since 1913! Do you remember, when

babysitting me as a child, telling me about a radio program you had heard on mnemonists

and the method of loci? We practiced for hours; this was probably the first awakening in

me of an interest in mentality.

My good friends, Ross, Jess, Karan, Jared, Alex, Ryan, Kiel, Rachael, Antonio, Jonathan,

Anna I am just going to add extra names, so no one has to feel left out. You’ve been

the source of so many good feelings and good times. You keep the meanness in the news

at bay. You share your fascinations and let me share mine with you.

My good friends at work, you are also good friends . . . period. Saul, Clay, Drew, Armen,

vi

Zev, David, Yashar, Baktash, Carl, Tim, Irene, Ann, Wujie, Mattia, Burcin, Misha, Brian,

Patrick, Merav, and Claudia, I am sorry for starting collaborations with so many of you that

I had nary a moment to work on (especially you, Mattia and Claudia). Clay and Drew, we

finished ours! How fun was that?

To the program administrators, Alla and Cecil, there is no one I would rather be yelled at

by than you.

To the program directors, Carol, Ken, and Darcy, you have been entirely supportive and

understanding throughout my graduate career. I want to redouble my thanks to you, Carol.

You are my favorite person to see on the street in front of P&S.

To my committee, a word for each:

Nate, I would like to thank you for sharing your interests in physiology. I loved it when you

would pull me aside to tell me about a paper you’d just read about adaptive filters in the

cerebellum or internal models postulated in the VOR. (Incidentally, I hope we can finish

this project soon.)

Mark, I want to thank you for turning my committee meetings into deep discussions. You

have a way of politely segueing from a simple clarifying question to the nuts and bolts of

an idea.

Ken, you are showing up here twice in two different guises. I still remember my first visit

to the theory center was to see a lecture by you about your work with Brendan Murphy.

I felt such a flush of enthusiasm. Throughout my time in the center, I’ve admired your

passion for science and your ability to make a critical scientific point in a persistent but

well-meaning way.

Yann, you’ve practically been my advisor in absentia. I am permanently grateful to you for

the time you let me spend in your lab and the lessons I squeaked in at your white board.

vii

You taught me to look for common, simple structure amidst the menagerie of algorithms

and methods used in machine learning.

Larry, I want to apologize for all of the times I walked into your office with nothing much

to report scientifically, just because I wanted to say hi. It has been extremely fun to be your

student. It’s been said that style comes from failed imitation. I have tried and failed to

imitate you; I can only hope that failing leads to style of its own.

viii

Chapter 2 Acknowledgements

We are grateful to Yann LeCun, Sara Solla, John Krakauer, and Peter Dayan for ideas,

support, and criticism. We thank Yashar Ahmadian, Loïc Matthey, Mattia Rigotti, Ann

Kennedy, Darcy Wayne, and Saul Kato for helpful discussions. Research supported by the

Gatsby, Swartz, Kavli, and National Science Foundations and by NIH grant MH093338.

ix

Dedicated to those who have taught me and to those who teach others.

x

Prologue

It comes as a shock to learn that our conscious experience is the result of a physical struc-

ture. The seismograph barely settles down before we learn that this physical structure is

made of microscopic cells called neurons. A mystery announces itself: What are these

neurons doing, and, from their perspective, how do they know what to do? The miracle of

the brain is that not only do these neurons know what to do, they act in such a concerted

manner that our introspective experience is independent of their operation. We feel whole,

unitary, not the product of 100 billion autonomous cells. We act with purpose.

And so must they. Neurons are not the loosely connected stars in a constellation; they are

arranged in circuits, fulfilling specialized roles.

Just as the computer has parts – random access memory, buses, the central processor, in-

put/output ports – so too do neural systems have parts that interact in prescribed ways. In

this thesis we explore what some of those parts might be.

xi

Chapter 1

Introduction

All stable processes we shall predict. All unstable processes we shall control. – John von

Neumann

1

1.1 Introduction

Norbert Wiener, in his seminal book Cybernetics (Wiener, 1961), set a grand theoretical

agenda for research in machine intelligence and neuroscience. He argued that we would

understand intelligence when we could connect the sciences of information and control

theory. Wiener was on to something, and his book was initially received to great acclaim,

followed, though, by petering enthusiasm. In 1948, there simply was not enough there

there.1 Claude Shannon himself scoffed at “bandwagonism” – the attempted and usually

misinformed explanation of everything under the sun by the principles of information the-

ory (Shannon, 1956). And yet, these ideas percolated; staid old biology gradually trans-

formed into molecular biology and genetics when it was realized that the very process

of reproduction was bound by efficient coding and error correction. In neuroscience, At-

tneave (Attneave, 1954) and Barlow (Barlow, 1961) applied information theory, perhaps

to less resounding effect, to understand sensory processing based on metaphors of redun-

dancy reduction. In the present day, information theory has become one of the central tools

of analysis for the theoretical neuroscientist. Not bad for a mathematical field originating

in telegraphy.

Yet control theory, whose development was furthered not by names like Shannon and

Wiener but by names like Bellman, Kalman, and Pontryagin, lay inside the penumbra for

much longer. Perhaps not until the 1970s did the corresponding cross-fertilization begin

between control theory and neuroscience. It is not clear if this lag was just a historical acci-

dent or a function of practical difficulty.2 Even now, one is more likely to hear “predictive

coding” escape the mouth of a neuroscientist than “model-predictive optimal control,” even

1to paraphrase Gertrude Stein
2It is hard to record from brains inside moving animals, and control theory computations demand modern

computers.

2

though the case could be made that the two concepts are equally central to their respective

disciplines, and the two disciplines in turn are equally central to explaining intelligence.3

As of 2013, the theory of optimal control has become the dominant framework for explain-

ing motor behavior. The seeds of this development were sewn by researchers like Flash

and Hogan (Flash and Hogan, 1985), who showed that the computations of optimal control

theory could describe the qualitative behavior of human arm movements, for example, the

smoothness of human reaches. In 2002, Emanuel Todorov and Michael I. Jordan argued

that optimal feedback control could account more sufficiently for movements responsive to

perturbations (Todorov and Jordan, 2002). In optimal control theory, a movement trajectory

is planned before action occurs, and it is assumed that the intended movement unrolls as a

predetermined script on movement initiation. This is known as “open-loop” control. In op-

timal feedback control, the result of optimization is instead a control “policy” or controller

– a function or dynamical system that takes in sensory or state information and produces

motor commands as outputs. Policies are more flexible and can respond reactively to dis-

turbances. Optimal feedback control is known as a “closed-loop” paradigm.

Yet optimal control and optimal feedback control are solely normative models. That is, they

describe a set of computations relevant to planning and executing movements, but they do

not strongly prescribe the neural mechanisms that can actually achieve those movements.

This is both a strength and a weakness. They can make predictions about real motor be-

havior without concern for the complicated internal nature of these computations. Still,

ultimately, we will need to know how neural systems actually achieve such optimal or

nearly optimal performance.

Why optimal performance? Isn’t it possible that the motor system is just “good enough” to

3This is no more an endorsement of model-predictive optimal control than it is of predictive coding. The
sole point is that most neuroscientists have heard of the latter but not of the former.

3

solve its tasks? This is, of course, true. The motor system is probably just “good enough,”

but researchers with experience solving control problems can say with confidence that the

distance between competence and optimality is often narrower than one might suppose. It is

difficult to control a 7 degree-of-freedom arm with variable loads and applied disturbances

in simplistic ways. Merely to achieve “good enough” demands substantial computation or

innate structure that is already exceedingly superlative. Moreover, human motor behavior

is extremely flexible. Even in novel tasks, human subjects exhibit great skill, skill that must

be the product of sophisticated strategies of improvement or optimization. Human behavior

is not just good enough, nor is it optimal, it is markedly better and more interesting than

extant frameworks of optimal control, which can only characterize very specialized forms

of optimality.4

1.1.1 Motor Flexibility

Consider the following intuitive examples of human behavior. A chess grandmaster sits

motionless, his blood pressure as high as that of a male baboon in a lethal fight (Sapolsky,

2004), for several minutes before barely lifting a finger to place a move; a classroom student

raises her hand, obeying a learned instruction from her teacher; an amputee rehearses the

control of a prosthetic arm. These examples provide incontrovertible evidence for human

motor flexibility of three different kinds.

1. The first example demonstrates that behavioral “planning” is largely independent of

motor action.

2. The first and second demonstrate that human motor goals can be instructed or varied

based on contextual signals that are quite remote in nature from the movement control

4I find it extremely intellectually liberating to note that, no matter how brilliant and persuasive the propo-
nents of various theories are, we are all, at some level, radically confused.

4

problem itself.

3. The third demonstrates that motor control can be learned despite little a priori knowl-

edge of the motor apparatus or “plant”5 to be controlled.

Our capacity to modulate movement subject to internal and external context is extraordi-

nary, and the understanding of this capacity connects to conceptual difficulties that reach

far beyond the conventional boundaries of the field of motor control; it is fair to say that

it will probably resist full-scale modeling efforts indefinitely. Nevertheless, researchers

in theoretical neuroscience, motor control, and machine learning have begun to develop

models that possess these three features qualitatively.

The space of possible strategies for designing control systems is large, but several important

classificatory divisions exist, although individual models sometimes blur these distinctions.

We have already alluded to the difference between open-loop and closed-loop control. An-

other prominent distinction is between control systems that invoke models of the plant and

those that do not, known as “model-free” methods. Reinforcement learning methods tend

to fall inside this latter category (Sutton and Barto, 1998). In these systems, one of which

we will derive in this chapter, the activity of some intrinsic behavioral perturbation gen-

erator is correlated with the variation of a performance function. Perturbations correlated

with reward drive adaptive change in the system. A third important distinction is between

so-called “global” and “local” methods. In global controllers, the optimal motor command

is pre-computed for every conceivable state. These methods are extremely powerful but

typically suffer from the curse of dimensionality, also known as the “infinitude of the pos-

sible.” It is staggeringly difficult to compute the right response to every possible scenario

that will ever be encountered. On the other hand, local methods compute the desired motor

5a weird archaism from the time when chemical and factory plants were the systems controlled

5

response only in the vicinity of the current state. They have more modest pretensions but

can often attain satisfactory performance quickly.

By a process of evolutionary selection, certain kinds of controllers are currying favor among

control theorists and roboticists. Fast, dynamic, optimal control is most easily achieved

when the plant equations are known directly (Tassa et al., 2011) (Tedrake, 2009). This

is a much stronger kind of knowledge than possessing a model. Such a method depends

on knowing the exact model and hence can only be applied within a simulation. When

the exact plant equations are not given, the case relevant to animal motor behavior, iden-

tifying a model of the plant typically allows for better control solutions than can be pro-

duced by model-free methods. Identified models are known as “forward models” because

they can approximate the dynamics of the system forward-in-time or forward from motor

command to sensory consequence. Model-free reinforcement learning techniques require

large numbers of trials to learn control policies; so far, their use has either been limited to

the optimization of low-dimensional control policy parameters (with careful parameteriza-

tion and built-in structure, sometimes to very impressive effect (Theodorou et al., 2010)),

or they must be augmented by other tools such as “experience replay” in which data are

stored in computer memory and then re-used later several times offline for learning (Lin,

1992) (Wawrzyński, 2009). Techniques similar to reinforcement learning but based on si-

multaneous, parallel evaluation of many forward models (whereas reinforcement learning

is applied to serial evaluations of the actual system dynamics) can produce state-of-the-

art results (Wang et al., 2009). It is much easier to optimize complex single trial motions

than to optimize a generically capable feedback controller (Mordatch et al., 2012); i.e., it

is much easier to learn local controllers than global ones.6 Recurrent neural networks can

6The Mordatch paper is actually a much slower-than-real-time, open-loop computation, performed in the
absence of noise, using the exact plant model. Still, it stands as the most astonishing use of optimal control I
have seen.

6

usefully exploit hidden state to compensate for plant disturbances such as changes in the

friction of joints (Sutskever, 2013) or to switch behavior based on contextual signals (Huh

and Todorov, 2009).

While stimulating, the travails and successes of engineers are unlikely to yield definitive

guidance to neuroscientists about what mechanisms to search for as the interplay between

optimization and pre-determined structure is intricate. A “simple” method such as rein-

forcement learning can perform well when the right heuristics, controller structures, and

problem formulations are combined. Complex model-based optimization can fail when

the system model is wrong or the parameters to optimize are chosen naïvely. This trade-

off between pre-determined structure and optimization parallels the eternal debate between

nature and nurture.

From the camps of experimentalists, there is a long and proud tradition that points toward

the existence of internal models of the motor apparatus that can adapt to disturbances. In the

study of human visuo-motor coordination, there have been numerous studies of inversion

and prism adaptation in which subjects don goggles that either mirror-reverse the visual

field or refract it by a constant angle (Stratton, 1896) (Sugita, 1996). After a period of

disorientation, subjects return to high levels of performance on various tasks. In animal

studies, several surgical “rewiring” experiments have been carried out, the most dramatic

of which, for our purposes, was a transposition of the ulnar and radial nerves controlling the

grasping thumb of macaque monkeys (Brinkman et al., 1983). After healing, the monkeys

exhibited no decline in grasping performance, despite the total reversal of the relationship

between the central motor command and muscle contraction. Standard model-free methods

cannot account for such dramatic changes to the motor apparatus since they conflate the

learning of optimal decisions with the dynamics of the plant. If the plant changes, the

rug is pulled out from under them. Other studies of motor adaptation to a force field or

7

the redirection of reaching angle in cursor pointing studies suggest that subjects’ ability

to compensate for the disturbance using verbally-instructed advice (a cognitive strategy) is

distinct from slower, unconscious adaptation; in fact, the two compensatory mechanisms

can interfere with each other (Mazzoni and Krakauer, 2006). In all of these studies, we

see glimmers of Lashley’s principle of motor equivalence (Lashley, 1930): not only can a

single goal be achieved in multiple ways, but the procedural learning of a goal can also be

disassociated from the details of the motor plant used to achieve it.

These experimental studies have therefore primed the pump for researchers in human mo-

tor control to take more seriously possible roles for internal models of the motor apparatus

in the optimization or generation of goal-directed movement (Wolpert et al., 2011). We

are sanguine about this move; at the same time, we acknowledge that the link between

the methods used by engineers and the experimental studies of adaptation is still very ten-

uous and should be looked on with great skepticism. Others share the same perspective

(Krakauer, 2013).

1.1.2 Conceptual Foundations of Optimal Control

The road to optimal control passes primarily through two theories. One of these theories

poses the control problem globally: find the best control command for every state. The

other of these theories poses the control problem locally: find the best sequence of com-

mands that can generate an optimal trajectory from the present state. There are a few other

ways to solve optimal control problems, which we will also touch on briefly.

Bellman’s Approach

The global approach to optimal control was initiated by Bellman. It is based on his principle

of optimality:

8

An optimal policy has the property that whatever the initial state and initial

decision are, the remaining decisions must constitute an optimal policy with

regard to the state resulting from the first decision. (Bellman, 1957)

In Figure 1.1, we diagram the principle of optimality. The vertices are states and are labeled

by letters a, b, c, d, and e. The paths between states are labeled with numbers, indicating the

cost of traversing them. In this discrete world, our actions, or controls, are to move along

the paths marked by arrows. We begin in state a and want to get to the goal state e. For

didactic purposes, we allow multiple paths between the same two connected states. We can

see that there are two ways of exiting state b to get to e and also two from d to e. Suppose

we are in state b. The minimal cost to get to the goal is to move along the straight path of

cost 1. So, if we are in state b, and we act optimally, we expect to incur a total of 1 unit

cost from then on. Now, consider state c. The minimal cost to the goal, also known as the

“cost-to-go” is 5 because there is only one exit edge. Similarly, from state d, the cost-to-go

is 2. The lowest cost path from a to e is to go first to state b, then to go from b to e along

the straight-line path, incurring a total of 3 units of cost. We denote the cost of the best

trajectory from state a, the cost-to-go, as V(a) = 3. Interestingly, the lowest cost path from

state a takes a route through b that incurs relatively high immediate cost. The lowest cost

action from a is to move to c, but once in c one would suffer a path cost of 5 to the goal, so

this entire trajectory is actually suboptimal.

Suppose f (state, control) is a function that takes in the state (say a) and the control com-

mand u and gives us the consequent state. This is a forward model. Further, let C(a, u) be

the cost of executing control command u while in state a. One way of stating the principle

of optimality formally is that V(a) = minu

(
C(a, u) + V(f (a, u))

)
. That is, the cost-to-go

from the present state is the minimum of the cost of choosing a path from the state plus the

cost-to-go from the state at which we arrive. Thus, we have a recursive definition of the

9

cost-to-go. Evidently, to figure out what the cost-to-go is from state a, V(a), we need to

know the cost-to-go of the states that come after a. Therefore, one algorithm for computing

the cost-to-go of each state is to start at e, noting that V(e) = 0. Then work backward to

calculate that V(b) = 1, V(c) = 5, and V(d) = 2. Now, head back to state a and compute

the cost-to-go from here. In this way, Bellman’s principle gives us a method to compute the

optimal trajectory by working backward from the goal state to the initial state. We and oth-

ers sometimes say that the trajectory is computed backward-in-time from goal states. This

may sound mysterious, but we mean nothing more by it than what we have just shown.

Such a method of computing the optimal control is known as dynamic programming. We

can see that to find the best path from the initial state, we also need to find the best path

from every other state. Consequently, this method is a global method.

Figure 1.1: Dynamic Programming.
The minimum cost route from state a to state e incurs high immediate cost but low total cost.

10

Pontryagin’s Approach

The other approach to optimality is due to Pontryagin and his colleagues (Stengel, 1994),

though the basic idea follows naturally from the work of Euler and Lagrange in the 18th

century. It characterizes the optimal trajectory to the goal using calculus (variational cal-

culus). Consider the supposedly optimal trajectory, colored blue in Figure 1.2 from a to

c. Nowhere along this path can any distortion of the path, even infinitesimal, lower the

cost of the entire path. This is by assumption. Suppose we transit through b′ instead of

b. If the trajectory in blue is optimal, we know that this excursion can only increase the

trajectory cost. If this excursion is infinitesimal, just as in calculus (d f /dx = 0 for optima

of the function f (x)), the change in cost is 0 to first order. Pontryagin’s minimum principle

therefore states that infinitesimal changes to the solution trajectory should not change its

cost (again, to first order).7 Unfortunately, calculus characterizes extrema, maxima or min-

ima, by the same first-order condition. If we use the first-order condition alone, we do not

know whether this trajectory is truly the lowest cost trajectory. It could be one of many low

cost trajectories. Or it could actually be the highest cost trajectory in its neighborhood of

trajectories. If one is deriving a solution analytically, which we will only do for comparison

purposes once in this thesis, one must vigilantly check to see whether one has found the

lowest cost or highest cost trajectory. First-order conditions in calculus are known as nec-

essary conditions. The truly optimal trajectory will satisfy the minimum principle, but so

will the truly pessimal. By contrast, Bellman’s optimality principle is a sufficient condition.

If we have found a trajectory satisfying Bellman’s optimality principle, we know for cer-

tain that there is none better. Bellman’s principle is strictly stronger than Pontryagin’s. A

consequence of this that we will examine later is that one can derive Pontryagin’s principle

from Bellman’s but not conversely.
7The minimum principle is actually subtler than this, but we never need all the subtlety, so we’ll call this

the minimum principle, even if wonks would object.

11

Figure 1.2: The Variational Approach to Optimization.
Any trajectory that is infinitesimally close to the optimal trajectory has the same cost to first order. We
compare here a trajectory from a to c that goes through state b versus one that is extremely close but goes
through b′.

1.1.3 Mathematical Foundations of Optimal Control

Bellman’s Approach

Let us now examine the mathematical formalisms of optimal control. We have a system

governed by known equations

ẋ = F(x,u). (1.1.1)

x is the state variable, and u is the control variable or command. We additionally have

a performance criterion, L(x,u), known variously as the Lagrangian or “cost-rate,” that

specifies the desirability of particular state-control pairs. We ask what costs we expect to

accumulate after we arrive in a state at a given time and act optimally thenceforth. Again,

12

this is known as the optimal cost-to-go or the value function:

V(x(t), t) = min
u(·)

∫ t f

t
L(x(t′),u(t′), t′)dt′. (1.1.2)

A variable enclosing a dot, e.g., u(·), indicates the entire sequence of values of that variable

over the relevant time interval, from the initial time t to the final time t f . As we noted

before, there is implicitly a recursive structure in the definition of the cost-to-go. We can

see that

V(x(t), t) = min
u(·)

{∫ t+dt

t
L(x(t′),u(t′), t′)dt′ +

∫ t f

t+dt
L(x(t′),u(t′), t′)dt′

}

= min
u(t)

{
L(x(t),u(t), t)dt + min

u(t′>t)

∫ t f

t+dt
L(x(t′),u(t′), t′)dt′

}

= min
u(t)
{L(x(t),u(t), t)dt + V(x(t + dt), t + dt)} . (1.1.3)

In discrete-time, taking dt to be 1, this is known as the Bellman equation. It is closely

related to the framework of Markov Decision Processes, in which we compute an expected

value over the distribution of ensuing states, often discussed by researchers in computer

science. In continuous-time, dt → 0, we can proceed further by Taylor-expanding the

right-hand side:

V(x(t), t) = min
u(t)

{
L(x(t),u(t), t)dt + V(x(t), t) +

∂V(x(t), t)
∂x

>
ẋ(t)dt +

∂V(x(t), t)
∂t

dt
}

= min
u(t)

{
L(x(t),u(t), t)dt + V(x(t), t) +

∂V(x(t), t)
∂x

>
F(x(t),u(t))dt +

∂V(x(t), t)
∂t

dt
}
.

The value functions on both sides cancel, and the partial derivative of the value function

with respect to time is independent of the control variable. All the remaining variables are

13

scaled by dt, so we can divide by it. Thus, we have

−∂V(x(t), t)
∂t

= min
u(t)

{
L(x(t),u(t), t) +

∂V(x(t), t)
∂x

>
F(x(t),u(t))

}
. (1.1.4)

This equation is known as the Hamilton-Jacobi-Bellman (HJB) equation. We can simplify

the expression by defining the “Hamiltonian”

H(x(t),u(t), t) ≡ L(x(t),u(t), t) +
∂V(x(t), t)

∂x

>
F(x(t),u(t)). (1.1.5)

Then, clearly, the Hamilton-Jacobi-Bellman equation reads

∂V(x(t), t)
∂t

= −min
u(t)
H(x(t),u(t), t). (1.1.6)

If we write the optimal control as u∗(t) and the states along the optimal paths as x∗(t), then

we can compress the notation further.

∂V(x∗(t), t)
∂t

= −H(x∗(t),u∗(t), t). (1.1.7)

The HJB equation is nonlinear due to the minimization operation and is a partial-differential

equation. It is in general difficult to solve. However, if we do indeed find a way to com-

pute the HamiltonianH(x,u, t), then we can simply compute the optimal control command

u∗(t) by minimizing it. Knowing the Hamiltonian disconnects the states from one another,

allowing us to find the optimal command without extensively analyzing its future conse-

quences.

14

Pontryagin’s Approach

We want to find a sequence of control commands u(·) that optimizes a criterion of long-

term performance, while taking into account that the system evolves according to the model

equations ẋ = F(x,u). Here, we use a subtly different concept to describe long-term perfor-

mance. Previously, the cost-to-go was just a function of each state of the system. The total

cost J, by contrast, is a functional (a function of a function) of the entire system trajectory.

J[x(·),u(·)] =

∫ t f

t0
L(x(t),u(t), t)dt. (1.1.8)

In the Dissertation Appendix, we derive the basic fact that we can use Lagrange multipliers

to solve constrained optimization problems. The optima of a function C(x), on the surface

described by a constraint equation s(x) = 0, satisfy ∇xC(x) = −λ∇xs(x), where λ is an

undetermined constant of proportionality, called a Lagrange multiplier. This implies that

the optima of the augmented cost function C(x) + λs(x) are the optima of our original cost

function subject to the constraint. For equation 1.1.8, we use several Lagrange multipliers

to impose constraints for each dimension of the dynamics equation.

Jconstrained[x(·),u(·), λ(·)] =

∫ t f

t0

[
L(x(t),u(t), t) +

∑

i

λi(t)(Fi(x,u) − ẋi)
]
dt

=

∫ t f

t0
[L(x(t),u(t), t) + λ(t)>(F(x,u) − ẋ)]dt. (1.1.9)

Let us define a new quantity that we will also call a Hamiltonian. Here,

Ĥ(x(t),u(t), λ(t), t) = L(x(t),u(t), t) + λ(t)>F(x,u).

15

We will clarify the relationship between this Hamiltonian Ĥ and the one in equation 1.1.5

in the next section. In terms of this Hamiltonian, equation 1.1.10 reads

Jconstrained[x(·),u(·), λ(·)] =

∫ t f

t0
[Ĥ(x(t),u(t), λ(t), t) − λ>ẋ]dt. (1.1.10)

We can state the equation solely in terms of the state variables, ridding ourselves of ẋ, by

integrating by parts.

Jconstrained[x(·),u(·), λ(·)] =

∫ t f

t0
[Ĥ(x(t),u(t), λ(t), t) + λ̇>x]dt − [λ>x]t f

t0 .

At optima of this equation, any slight variation of the arguments to the total cost does not

change it to first order:

Jconstrained[x(·) + δx(·),u(·) + δu(·), λ(·) + δλ(·)] = Jconstrained + δJconstrained + O(δJ2
constrained)

= Jconstrained + O((δx, δu, δλ)2).

Or, for each t, δJconstrained/δx(t) = 0, δJconstrained/δu(t) = 0, and δJconstrained/δλ(t) = 0. From

the first two, we conclude that

λ̇(t) = −δĤ/δx(t),

δĤ/δu(t) = 0.

To evaluate the variation with respect to the Lagrange multiplier, we use equation 1.1.10.

We have

ẋ(t) = δĤ/δλ(t).

16

Consolidating, we have

ẋ(t) = δĤ/δλ(t),

λ̇(t) = −δĤ/δx(t),

δĤ/δu(t) = 0.

These equations have a pleasing anti-symmetry. The Lagrange multiplier is sometimes

called the “costate” for its anti-symmetric relationship to the state, x.8 These equations only

specify a minimum of the total cost if δ2Ĥ/δu(t)2 > 0, which is known as the Legendre-

Clebsch condition (Stengel, 1994). When we cannot solve for the minimum algebraically

because the equation δĤ/δu(t) = 0 is complicated, we can still satisfy the state and costate

differential equations and use δĤ/δu(t) to reduce the total cost by a gradient-based proce-

dure.

The boundary conditions that appeared when we integrated by parts are important as well.

We see that λ(t f)>δx(t f) = 0. Since the state at the final time is free to vary, we conclude that

λ(t f) = 0. However, the state at the initial time t0 is not free to vary, so the corresponding

equation λ(t0)>δx(t0) = 0 is trivially satisfied by δx(t0) = 0. If we were free to vary the

state at the initial time however we wanted, the change in the total cost δJconstrained would be

exactly λ(t0)>δx(t0). This applies for any direction of variation, so we can say that on the

optimal trajectory

δJconstrained/δx(t0) = λ(t0). (1.1.11)

Our argument here makes no significant assumption about t0; we therefore conclude that

8Physicists may recognize that the costate serves the same role in these equations as does the momentum
in Hamiltonian mechanics.

17

δJconstrained/δx(t) = λ(t) for general t.

Since the boundary condition for x is prescribed only at time t0, we must solve the state

equations forward-in-time. The boundary condition for λ is prescribed at the final time,

t f . We must integrate the costate equations backward-in-time. This is analogous to the

backward-in-time calculation of dynamic programming. On the optimal trajectory, the

value of the cost-to-go as a function of the state equals the total cost. Thus, we see from

equation 1.1.11 that Pontryagin’s method propagates derivatives of the value function with

respect to the state backward-in-time, while the dynamic programming approach propa-

gates the value function itself.

Deriving the Minimum Principle from the Hamilton-Jacobi Bellman Equation

If we differentiate the left side of the Hamilton-Jacobi Bellman equation 1.1.7 with respect

to the state, we get −∂2V(x∗(t), t)/∂t∂x. Because

d
dt
∂V(x∗(t), t)

∂x
=

∂2V(x∗(t), t)
∂t∂x

+
∂2V(x∗(t), t)
∂x∂x>

F(x∗(t),u∗(t)),

we can assert that

d
dt
∂V(x∗(t), t)

∂x
− ∂

2V(x∗(t), t)
∂x∂x>

F(x∗(t),u∗(t)) = −∂H(x∗(t),u∗(t))
∂x

.

If we unpack the definition of the right-hand side, we have

−∂H(x∗(t),u∗(t))
∂x

= − ∂
∂x

[
L(x∗(t),u∗(t)) +

∂V(x∗(t), t)
∂x

>
F(x∗(t),u∗(t))

]

= −∂L(x∗(t),u∗(t))
∂x

− ∂
2V(x∗(t), t)
∂x∂x>

F(x∗(t),u∗(t))

−∂F(x∗(t),u∗(t))
∂x

>∂V(x∗(t), t)
∂x

.

18

Both the left-hand side and the right-hand side have the same term involving the Hessian

of the value function, which can be cancelled, leaving

d
dt
∂V(x∗(t), t)

∂x
= −∂L(x∗(t),u∗(t))

∂x
− ∂F(x∗(t),u∗(t))

∂x

>∂V(x∗(t), t)
∂x

.

Define λ(t) ≡ ∂V(x∗(t), t)/∂x. Then we recover,

λ̇ = −
[
∂L(x∗(t),u∗(t))

∂x
+
∂F(x∗(t),u∗(t))

∂x

>
λ(t)

]

= −∂Ĥ
∂x

.

This is the same equation we arrived at from the Minimum Principle. By the uniqueness

theorem of ordinary differential equations, we can say that this λ is the same as the costate

λ. Furthermore, the two Hamiltonians are really the same: Ĥ = H .

1.1.4 Neural Network Models of Control

Equivalence of Backpropagation and Optimal Control

A discussion of the relationship between control theory and neural networks warrants an

important digression. An interesting relationship exists between the minimum principle and

the most widely used algorithm for training neural networks, backpropagation. Consider,

for instance, the typical firing rate network studied in neuroscience:

ẋ = −x + gJr,

r(x) = tanh(x).

19

These implicitly express a single functional form for the time derivative of the rates, ṙ, de-

pendent on the parameters, J. Suppose we have some particular Lagrangian,L(r, J), which

penalizes various states of the network and synaptic coupling strengths. (This penalty could

express, for example, the squared difference between the rates of certain neurons and tar-

gets, while preventing the growth of large synapses.) Abstractly, of course, we just have a

dynamical equation ṙ = F(r, J). Now, the coupling parameters serve the same role as the

control variables do. The only minor difference is that the coupling parameters in typical

models do not change at every time step of the simulation.9 The optimization problem is

exactly the same, except that J is not taken to be a function of time:

∫ t f

t0

[
L(r, J) + λ>(F(r, J) − ṙ)

]
dt.

For feedforward networks, we can also apply the same mathematical machinery (LeCun,

1988). In this case, instead of constructing a functional that integrates over time, we create

a functional that sums over the activity at each layer

∑

l

[
L(rl, Jl) + λ>l (F(rl, Jl) − rl+1)

]
.

In Chapter 2 (Methods), we perform essentially this computation when we derive backpropagation-

through-time for discrete-time systems.

9I expect people will relax this particular constraint in the future. At the same time, some dynamical
meta-rule should then be imposed governing allowable changes in synapses. Otherwise, “learning” would
involve no learning at all. The constrained problem in this case would look like

∫ t f

t0

[
L(r(t), J(t)) + λ(t)>(F(r, J(t)) − ṙ(t)) + p(t)>(G(r(t), J(t)) − J̇(t))

]
dt.

The synaptic evolution rule G could be Hebbian or anything else. Hidden variables could also be incorporated
into the synapses to create more memory.

20

Using Neural Networks to Control Other Systems

Broadly speaking, there are also two ways of performing optimal control computations

using neural networks, corresponding respectively to the Bellman approach and the Pon-

tryagin approach to optimal control. In the Bellman approach, the cost-to-go or value

function is approximated with a neural network (Doya, 2000) (Stengel, 1994). This is usu-

ally done by some variation on “temporal difference” learning (Sutton and Barto, 1998).

These methods are also known as “approximate dynamic programming” (Werbos, 1992).

The details tend to vary, but one typically has a controller that takes in features of the state

and produces the control command, uπ(x; Θπ). π denotes that this is a policy with asso-

ciated parameters Θπ. One also has a value function that tries to learn the cost-to-go of

that policy, Vπ(x; ΘV). The typical learning process is to make sure that the value function

satisfies some variant of the Belman or Hamilton-Jacobi-Bellman equation. For example,

in discrete-time, one can define the “temporal difference” error

TD =

[
Vπ(x; ΘV) −C(x,u) − Vπ(F(x,u); ΘV)

]2

.

The cost-to-go of the present state is equal to the cost of that state plus the cost-to-go of

the next state. The amount by which this is violated on successive time steps of operation

is the error of the value function network, the “TD” error. To perform control, one simulta-

neously tries to minimize the value function by changing the policy parameters while also

trying to estimate the value of the policy at the current set of parameters. This creates a

moving target learning problem for both the controller and the value function network: the

value function’s learning depends on the controller, and the controller’s learning depends

on the value function. Often, these methods are not actually guaranteed to converge. If one

manages to succeed, controller optimization now does not need to simulate the system dy-

21

namics at all because the Hamiltonian formed using the value function captures all relevant

information for planning. Sutton and colleagues have recently claimed to have solved some

of the convergence issues that have plagued value function methods (Maei et al., 2009), but

they have not yet applied their new methods to objectively more difficult problems. The ex-

act mechanisms used are somewhat tricky and the methods of analysis somewhat baroque,

so we consider them incidental to this thesis.

Figure 1.3: Forward Model and Controller.
Neural network modeling of motor control has achieved its greatest successes using optimization algorithms
that are similar to the ones used in other machine learning tasks (Jordan and Rumelhart, 1992) (Sutskever,
2013) (Huh and Todorov, 2009), making use of forward models of the plant within the optimization. An
optimization trial is depicted in which the veridical state of the system initializes a forward model. The
controller and forward model recurrently interact over several time steps (left to right), and the parameters of
the controller are optimized based on the evaluation of the total cost.

In the approach based on the Minimum Principle, one builds a forward model of the system

using a neural network and then performs the standard computation using the Minimum

Principle (Backpropagation-through-Time) (Figure 1.3). This approach was developed in

the neural network community by (Nguyen and Widrow, 1989) and (Jordan and Rumelhart,

1992). Largely, control theorists avoid the use of neural networks for control, but when

they do use them, this approach has shown the greatest capability so far. It does not suffer

from the same issues of convergence. The principal difficulty in this case is to learn an

22

accurate forward model. If the forward model can be learned easily, one optimizes the total

cost using the forward model either to find a sequence of control commands, u(·), or the

parameters of a fixed controller, u(x; Θ).

REINFORCE

Williams (Williams, 1992) invented a method for reinforcement learning in stochastic sys-

tems. Here, we assume we have a stochastic policy Pr(uk|xk,Θ) and a potentially stochastic

environment Pr(xk+1|xk,uk). The total cost in a single episode is J =
∑

lL(xl+1,ul). The

expected total cost of this policy is

〈J〉 =

〈∑

l

L(xl+1,ul)
〉

=

K∏

k=1

∫
duk

∫
dxk+1 Pr(uk|Θ, xk) Pr(xk+1|xk,uk)

∑

l

L(xl+1,ul),

where we have defined the Lagrangian on separate time steps of the state and control for

convenience. The gradient of the expected cost with respect to Θ is

∇Θ〈J〉 =

K∑

j=1

∫
du j

∫
dx j+1∇Θ Pr(u j|Θ, x j) Pr(x j+1|x j,u j)

×
K∏

k, j

∫
duk

∫
dxk+1 Pr(uk|Θ, xk) Pr(xk+1|xk,uk)

∑

l

L(xl+1,ul)

=

K∑

j=1

∫
du j

∫
dx j+1∇Θ ln(Pr(u j|Θ, x j)) Pr(u j|Θ, x j) Pr(x j+1|x j,u j)

×
K∏

k, j

∫
duk

∫
dxk+1 Pr(uk|Θ, xk) Pr(xk+1|xk,uk)

∑

l

L(xl+1,ul)

=

K∏

k=1

∫
duk

∫
dxk+1 Pr(uk|Θ, xk) Pr(xk+1|xk,uk)

K∑

j=1

∇Θ ln(Pr(u j|Θ, x j))
∑

l

L(xl+1,ul).

23

Define eΘ
j ≡ ∇Θ ln(Pr(u j|Θ, x j)). Then

∇Θ〈J〉 =

〈
J
∑

j

eΘ
j

〉
.

This is a reinforcement learning rule in which the product of the total cost is taken with the

sum of the quantities eΘ
j , known as eligibility traces. REINFORCE is not a very efficient

algorithm on its own, but we mention it because it does permit the learning of goal-directed

behaviors and its offshoots have become very popular in theoretical neuroscience.

1.1.5 Overview of this Dissertation

The unifying thread in this dissertation is the internal model. We have already discussed

the utility of internal models in engineering and, more briefly, the types of evidence for

them amassed in motor control. To date, the internal model that has been most widely

considered is the “forward model,” a model that predicts the sensory consequences of motor

commands.

In this dissertation we develop two more kinds of internal model. The fundamental idea

that powers our inventiveness is the belief that different parts of the brain may model one

other, in the same way that motor control researchers believe the central nervous system

models its periphery.

In Chapter 2, we consider the question of how the nervous system can use hierarchy to

“divide-and-conquer.” We build a controller network for motor control with the use of

standard optimal control calculations. We ask whether this controller network can in turn

be controlled by propagating commands to it. To understand the sensory consequences of

these commands, we must build another model, a “higher-level forward model.” Given our

higher-level forward model, we can again perform the computations of optimal control at

24

this second level. Our procedure for constructing hierarchies is thus recursive.

By introducing hierarchy, we increase the level of abstraction at which decisions are made.

The lower-level controller in our simulation learns how to drive a semi-truck in reverse

toward different goal locations. It lives in a world of steering wheels and short time-scales.

The higher-level controller learns the effect of asking the lower-level to drive to particular

locations. It deals with time scales that are orders of magnitude larger and problem domains

of considerably greater complexity. In a limited way, this system can plan about the deeper

future.

Because our control systems are neural networks, we inherit many of the beautiful prop-

erties of these devices. We show that we can implement a simple but high-dimensional

sensory system that allows the higher-level controller to keep track of obstacles in its en-

vironment. Collectively, the two controllers can navigate around obstacles toward distant

goals, even though the lower-level controller is completely ignorant of those obstacles.

To our knowledge, our system breaks new ground in the combination of optimal control,

hierarchy, and high-dimensional sensory perception.

The algorithmic computations of optimal control, even when embedded in neural networks,

are widely perceived to be “biologically implausible.” When these models are used as ex-

planatory models in neuroscience, the conventional defense is that only the fully-optimized

controller network stands as a model of the motor system. We quote Todorov (Todorov,

2008): “Such optimization is not meant to model the process of biological learning but

rather the outcome of that process.” There is admittedly much value to be gained from

separating the problem of execution from the problem of optimization. As contended re-

peatedly, high human task-performance does not guarantee the existence of analogues to

our conventional optimization algorithms in the nervous system.10 Additionally, without

10The brain has been optimized over evolutionary time, not just the time to plan a single reach. Or, to put

25

making claims about how the neural responses arise through learning and development,

features of the trained models can be compared with neural recordings and questions about

the dynamics of neural computation can be answered (Sussillo and Barak, 2013).

Still, despite our uncertainty about the entire enterprise, we view it as a disappointment

that the question of how the nervous system optimizes motor performance has been largely

tabled for an unknown, later date. Todorov’s words above are very similar to the sentiments

of Crick (Crick, 1989), a full 19 years earlier. Although proof of online optimization in neu-

ral systems is inconclusive, the very flexibility of motor behavior – in particular the ability

to take on new goals and achieve them rapidly – suggests that a search for optimization

schemes in the nervous system is warranted and not a counter-productive fantasy.

In Chapter 3 of this thesis, we take on the challenge of articulating what features of opti-

mal control calculations are the least “biologically plausible” and attempt to construct an

efficient neural network controller that eschews them. We show that we can emulate the

computations of optimal control, entirely within neural networks, and apply our construc-

tion to two prototypical problems in optimal control. The workhorse of our construction

is called a “sensitivity model” – a model of the Jacobian matrix of the forward model it-

self. Implicitly, anyone who has ever programmed an optimal control calculation has built

a sensitivity model without knowing it. We show that a very simple procedure can embed

a sensitivity model in a neural network. We couple this sensitivity model with a lesser-

known arrangement of the calculations of optimal control that works forward-in-time, in

contrast to most common solution methods for optimal control problems, while still per-

mitting goal-directed planning.

Before we begin in earnest, we offer one more cautionary, albeit radical, perspective about

it more sarcastically, no one has proposed that the cockroach brain computes its escape response using the
literal computations involved in optimal control, despite the response’s evident effectiveness (Vaidyanathan
et al., 2012).

26

optimization in the brain. The universal computer has also proven capable of producing

optimized motions in robotics and in simulation without any architectural bias toward ex-

ecuting optimization algorithms. Instead, the computer joins a finite state machine (the

central processing unit) with a read-write memory (the registers, cache, random-access

memory, and other assorted drives). The joining of a finite state machine with a read-write

memory enables the computer to construct arbitrary data structures and run arbitrary al-

gorithms (Minsky, 1967) (?) (Hillis and Hart-Davis, 1998), among them the algorithms

that control physical plants. If we grant the plausibility of read-write memory, many of

the suspiciously implausible algorithms used in computer science begin to look plausible

after all. They can run in the brain as software, not hardware. The relative slowness of

serial processing in the nervous system compared to the clock-speed of a modern computer

suggests that considerations of biological plausibility should turn less on spatial and tem-

poral “locality” of processing; the relevant criterion for the plausibility of an algorithm is

whether it can be achieved quickly enough with components that cycle at the time scale of

milliseconds instead of nanoseconds.

27

Chapter 2

A Design Procedure For Hierarchical Neu-

ral Control

If there is a problem you can’t solve, then there is an easier problem you can solve: find it.

– George Pólya

It seems that any systematic formulation of the adaptive control problem leads to a meta-

problem which is not adaptive. – J.J. Florentin

28

A Design Procedure for Hierarchical Neural Control

Greg Wayne1 and L.F. Abbott1,2

1 Department of Neuroscience

2 Department of Physiology and Cellular Biophysics

Columbia University College of Physicians and Surgeons

New York, NY 10032-2695 USA

Keywords: Optimal Feedback Control, Internal Models, Neural Networks

Abstract

We propose and develop a hierarchical approach to network control of complex tasks. In

this approach, a low-level controller directs the activity of a “plant," the system that per-

forms the task. However, the low-level controller may only be able to solve fairly simple

problems involving the plant. To accomplish more complex tasks, we introduce higher-

level controllers, i.e. controllers of controllers, that divide the overall task into simpler

sub-tasks. Each controller issues commands to the controller below it in the hierarchy

and receives commands from the controller above it. These commands set task sub-goals

that become more ambitious as the hierarchy is ascended. The command received by the

highest-level controller is the final goal of the task itself. We use a system based on this idea

to direct an articulated truck to a specified location through an environment filled with static

or moving obstacles. The final system consists of networks that have memorized associa-

tions between the sensory data they receive and the commands they issue. These networks

are trained on a set of optimal associations that are generated by minimizing cost functions.

Cost function minimization requires predicting the sensory consequences of sequences of

commands, which is achieved by constructing forward models, including models of the

controllers themselves. The forward models and cost minimization are only used during

training, allowing the trained networks to respond rapidly. The resulting system divides

complex tasks into more manageable sub-tasks, and the optimization procedure and the

construction of the forward models and controllers are performed in similar ways at every

level of the hierarchy. This allows the system to be modified to perform other tasks or to

be extended for more complex tasks without retraining lower-level elements.

30

Introduction

A common strategy used by humans and machines for performing complex, temporally ex-

tended tasks is to divide them into sub-tasks that are more easily and rapidly accomplished.

In some cases, the sub-tasks themselves may be quite difficult and time-consuming, mak-

ing it necessary to further divide them into sub-sub-tasks. This approach can be iterated as

many times as necessary until the task is manageable. We mimic this strategy to design a hi-

erarchical control system. The top-level controller in such a hierarchy receives an external

command that specifies the overarching task objective, whereas the bottom-level controller

issues commands that actually generate actions. A series of controllers acts between these

extremes to sub-divide the task into successively simpler and less time-consuming sub-

tasks. At each level, a controller receives a command from the level immediately above

it describing the goal it is to achieve and issues a command to the controller immediately

below it describing what that controller is supposed to do.

We design neural networks that use this hierarchical strategy to perform control tasks. The

tasks we consider are dynamic and ongoing, so the commands describing the sub-goals

must be generated continuously in time (actually at each small time step in our simulations).

For this reason, each controller must come up with the command it issues rapidly. To realize

the required speed, our controllers are neural networks that implement complex lookup

tables. Each controller receives input describing the goal it is to achieve and, in addition,

“sensory" input providing information about the environment relevant to achieving this

goal. Its output is the command specifying the goal for the controller one level down

in the hierarchy. Getting this to work requires training each controller to implement the

appropriate lookup table and, most essentially, generating the data for this table. This two-

stage training procedure is made considerably easier by the fact that each controller in the

hierarchy is basically doing the same thing: receiving and issuing commands describing

31

goals. Thus, we can apply the same training procedure at each level. Another advantage of

our approach is that lower-level controllers do not need to be retrained if the overall task

changes. In addition, the hierarchy can be extended by adding more levels if the task gets

more difficult, again without requiring retraining of the lower levels.

Generating data for the look-up table is the more involved of the two steps in our train-

ing procedure. These data consist of optimal output commands given a particular input

command (goal) and particular sensory information. Optimality is defined by a cost func-

tion specified at each level. Optimization is achieved with the aid of a neural network

implementing a forward model of the controller being commanded. The forward model

is only used for optimization during learning; the fully-trained model consists only of the

controller networks. The training procedure involves what is effectively a control-theory

optimization in which the “plant" being controlled is actually the network controller at the

next lower level of the hierarchy (except, of course, for the lowest-level controller in which

case it is the actual plant performing the task). This research thus extends ideas about for-

ward models and optimization from the problem of controlling a plant to that of controlling

a controller. Once the optimal output commands are determined for a large set of input

commands and sensory inputs, these are used as training data for the controller, which

effectively “memorizes" them.

We apply this approach to a problem that requires two levels of control. The basic problem

is to drive a simulated articulated semi-truck backward to a specified location that we call

the final target location (the truck is driven backward because this is harder than driving

forward). The backward velocity of the truck is held constant, so the single variable that

has to be controlled is the angle of the truck’s wheels. This problem was first posed and

solved by Nguyen and Widrow (Nguyen and Widrow, 1989), and their work is an early

example of the successful solution of a nonlinear control problem by a neural network. We

32

make this problem considerably harder by moving the final target location quite far away

from the truck and, inspired by the swimmer of Tassa, Erez, and Todorov (Tassa et al.,

2011), by distributing a number of obstacles across the environment. Although the lower-

level controller can drive to a nearby location when no obstacles are in the way, it cannot

solve this more difficult task. Thus, we introduce a higher-level controller that feeds a series

of unobstructed, closer locations that we call sub-targets to the lower-level controller that

generates the wheel-angle commands. The job of the higher-level controller is to generate

a sequence of sub-targets that lead the truck to its ultimate goal, the final target location,

without hitting any obstacles. Thus, we divide the problem into lower-level control of the

truck and higher-level navigation.

Results

We begin by describing how the hierarchical approach, consisting of lower- and higher-

level controllers, operates after both of these network controllers have been fully trained.

We do this sequentially, first showing the lower-level controller operating the truck when its

sub-target data are generated externally (by us), rather than by the higher-level controller.

We then discuss how the higher-level controller generates a sequence of sub-target locations

to navigate through the environment. To allow the higher-level controller to detect and

locate obstacles, we introduce a sensory grid system. To complete this first section of the

results, we present and analyze the complete hierarchical system with the two controllers

working together. The bulk of the results, presented after we have shown the trained system

in operation, covers the procedures and auxiliary networks used to train the controllers.

All of the networks we consider run in discrete time steps, and we use this step as our unit

of time. All times are thus integers. Distance is measured in units such that the length of

the truck cab is 6, the trailer is 14, and both have a width of 6. In these units, the backward

speed of the truck is 0.2. The final target for the truck and the obstacles it must avoid have a

33

radius of 20. Distances from the initial position of the truck to the final target are typically

in the range of 100 to 600.

Driving the Truck

Our hierarchical model for driving the truck (Figure 1) starts with a lower-level controller

that sends out a sequence of commands u(t) that determines the angle of the wheels of the

truck. This controller is provided with “proprioceptive" sensory information, namely the

cosine and sine of the angle between the cab and trailer of the truck. [cos(θrel), sin(θrel)],

and a sub-target location toward which it is supposed to direct the truck (to ensure continu-

ity and promote smoothness, we process all angles by taking their cosines and sines). The

target information is provided as a distance from the truck to the sub-target, dst/L (L=100

is a scale factor), and the cosine and sine of the angle from the truck to the sub-target,

[cos(θst), sin(θst)]. This sub-target information is provided by a higher-level controller that

receives the same proprioceptive input from the truck as the lower-level controller but also

receives sensory information about obstacles in the environment (to be described later). In

addition, the higher-level controller is provided with external information about the dis-

tance from the truck to the final target location and also the cosine and sine of the angle

from the truck to this location, [log(1+dft/L), cos(θft), sin(θft)]. The task of the higher-level

controller is to provide a sequence of sub-targets to the lower-level controller that lead it

safely past a set of obstacles to the final target location. Note that the higher-level con-

troller receives the logarithm of the distance to the final target, log(1 + dft/L), rather than

dft/L itself. This allows for operation over a larger range of distances without saturating

the network activities. The logarithm is not needed for dst/L because the distance to the

sub-target is maintained within a constrained range by the higher-level controller.

The Lower-Level Controller

34

lower-level
controller

higher-level
controller

sub-targetfinal target

proprioception

wheel angle
u

cos(✓rel)
sin(✓rel)

sensory grid

sin(✓st)
cos(✓st)cos(✓ f t)

sin(✓ f t)

g

log(1+df t/L) dst/L

Thursday, April 11, 13

Figure 1. Flow diagram of the hierarchical control system. Commands that control the wheel angle of the
truck are issued by the lower-level controller, which receives information about a sub-target direction toward
which the truck should be driven from the higher-level controller. Both controllers receive proprioceptive
information about the angle between the cab and trailer of the truck, and the higher-level controller also
receives information about obstacles in the environment from a grid of sensors. In addition, the higher-level
controller receives input about the final target that the truck is supposed to reach.

The job of the lower-level controller is to generate a sequence of wheel angles, u(t), given

the proprioceptive data, [cos(θrel(t)), sin(θrel(t))], and a sub-target location specified by [dst(t),

cos(θst(t), sin(θst(t))] (Figure 1). The proprioceptive information is needed by the controller

not only to move the truck in the right direction but also to avoid jackknifing. The lower-

level controller is a 3-layer basis-function network with the 5 inputs specified above, 100

Gaussian-tuned units in a hidden-layer, and 1 output unit that reports u as a linear function

of its input from the hidden layer (Methods). Figure 2A shows an example in which the

sub-target location is held fixed and the lower-level controller directs the truck along the

backward path indicated by the curved line.

At this point, we are showing the lower-level controller working autonomously with the

sub-targets specified by us, but when the truck is directed by the higher-level controller,

it will be given a time-dependent sequence of sub-targets. To test whether it can deal

with sequential sub-targets, we switched the sub-target we provide every time the truck got

close to it, using a rather fanciful sequence of sub-targets (Figure 2B). This indicates that

the lower-level control is up to the job of following the directions that will be provided by

35

A B

Thursday, April 4, 13

Figure 2. A) The lower-level controller directs the truck to a sub-target (white square). The black trace shows
the path of the back of the truck. B) The lower-level controller directs the truck to trace the constellation Ursa
Major (white line is the path of the truck) by approaching sub-targets at the locations of the stars. The sub-
targets appear one at a time; when the back of the truck arrives close to the current sub-target, it is replaced
by the next sub-target. Photo by Akira Fujii.

the higher-level controller.

The Higher-Level Controller

The higher-level controller is a five-layer, feedforward network with a bottleneck architec-

ture. It has 205 inputs (3 specifying the final target location, 2 the angle between the cab

and trailer of the truck, 199 describing the state of the sensory grid described below, and a

bias input; Figure 1), hidden layers consisting of 30, 20 and 30 units, and three command

outputs providing the sub-target information for the lower-level network (Methods). The

bottleneck layer with 20 units ensures that the network responds only to gross features in

the input that reliably predict the desired higher-level command. When we initially trained

the higher-level controller without any form of bottleneck, it did not generalize well to

novel situations.

In the absence of any obstacles, the job of the higher-level controller is to provide a se-

quence of sub-targets to the lower-level controller that lead it to the location of the final

target, which is specified by the variables [dft, cos(θft), sin(θft)] that the higher-level con-

troller receives as external input. The higher-level controller also receives a copy of the

proprioceptive input provided to the lower-level controller (Figure 1). Figure 3 shows a

trajectory generated by the higher-level controller and the motion of the truck as directed

36

Figure 3. The truck following a sequence of sub-targets provided by the higher-level controller. The sub-
targets are indicated by black/grey/white squares with darker colors representing earlier times in the sequence.
The trajectory that the truck follows in pursuing the sub-targets is shown in black. A connecting line indicates
the sub-target that is active when the truck reaches particular trajectory points. The background coloration
indicates the distance to the final target, located off the lower-left corner.

by the lower-level controller, leading to a target just beyond the bottom-left corner of the

plot. Note the sequence of target locations that lead the truck along the desired path. Al-

though this example shows that the higher-level controller is operating as it should and that

the lower-level controller can follow its lead, this task is quite simple and could be han-

dled by the lower-level controller alone. To make the task more complex so that it requires

hierarchical control, we introduced obstacles into the environment.

The obstacles are discs with the same radius as the final target scattered randomly across

the arena (Figure 4B). These are soft obstacles that do not limit the movement of the truck,

but during training we penalize commands of the higher-level controller that cause the

truck to pass too close to them (see below). Making this environmental change requires

us to introduce a sensory system that provides the higher-level controller with information

about the locations of the obstacles. Just as the final and sub-target locations are provided

in “truck-centric" coordinates (distances and angles relative to the truck), we construct this

sensory system in a truck-centric manner (Figure 4A).

37

A B

Figure 4. A) An egocentric coordinate system surrounds the truck, composed of grid points. During move-
ment, the grid shifts with the truck. Only a small fraction of the grid points is shown here. B) The full set
of grid points in an environment with obstacles (yellow circles). Those points that lie within an obstacle are
blackened, indicating that the grid element is activated.

Specifically, we construct a hexagonal grid of points around the truck (Figure 4). The grid is

a lattice of equilateral triangles with sides of length 20 units. One grid point lies at the back

of the trailer, and the most distant grid points are 150 units away from this point. In total,

there are 199 grid points. These points move with the truck and align with the longitudinal

axis of the trailer (Figure 4A). If a grid point lies inside an obstacle, we consider it to

be activated; otherwise, it is inactive. The state of the full grid is specified by an 199-

component binary vector g with component i specifying whether grid point i is active (gi =

1) or inactive (gi = 0). Neither topological closeness nor Euclidean distance information is

explicit in this vector representation. The grid vector is provided as additional input to the

higher-level controller (Figure 1).

38

Operation of the Full System

We now show how the full system operates when the higher-level controller provides the

lower-level controller with sub-targets as they drive the truck together through a field of

obstacles to the final target (Figure 5A). Figure 5B shows a number of guided trajectories

through an obstacle-filled arena.

A B

Thursday, April 4, 13

Figure 5. A) The truck is directed to avoid the obstacles and reach the final target. The white square indicates
the first sub-target; note that it is not at a position the truck actually reaches. The higher-level controller
merely uses this to indicate the desired heading to the lower-level controller. B) With 50 static obstacles,
more than the 20 that were present during training, the higher-level controller steers the truck around all of
the obstacles to the final target on each of 50 consecutive trials. The black lines show the paths taken by the
back of the trailer.

To quantify the performance of the system, we executed 100 trials in 100 different environ-

ments with 20 obstacles. The hierarchical controller avoids the obstacles on each trial; the

minimum distance to an obstacle never decreases below one obstacle radius (20 units; Fig-

ure 6A). As the number of environmental obstacles is increased (Figure 6B), the probability

of obstacle collision grows slowly. This occurs even though the controllers were trained

with only 20 obstacles in the environment. The control system directs the truck to the final

target along short paths (Figure 6C) that are comparable in length to the straight line dis-

39

tance between the initial position and the nearest edge of the final target, with deviations

when the truck must execute turning maneuvers or circumnavigate obstacles.

The trained higher-level controller continuously generates sub-targets based on the sen-

sory information it receives (Video 1). Because all the contingencies are memorized, it

needs very little time to compute these plans. Thus, the higher-level controller can respond

quickly to changes in the environment, even though it was trained on data from static en-

vironments. To illustrate this, we tested the system with obstacles that moved around,

although it was trained with stationary obstacles. The obstacle motions were generated as

random walks. The probability of collision grows slowly with increasing diffusion constant

of the random walk (Figure 6D). At high rates of diffusion, the obstacles move significantly

further than the truck for small numbers of time steps. For example, when the diffusion co-

efficient is 1 (units [L2/T]), the obstacles typically diffuse (but can diffuse farther than) the

width of the trailer within 9 time steps. It takes the truck 30 time steps to travel the same

distance. Another example can be seen in Video 2.

The Training Procedure

The controllers at each level of the hierarchy work because they have been trained to gen-

erate commands (sub-targets or wheel angles for the truck) that are “optimal" for the input

they are receiving at a given time. Recall that this input consists of the sub-target received

from the upstream controller and whatever sensory information is provided. In the follow-

ing, the combination of the sensory data and the target-related information that form the

input to a controller is referred to as "sensory" input, even though the target information

comes in the form of a command. For most of this section, we discuss how we define and

generate optimal commands for a large number of input conditions, but, for now, assume

that these data are available. Then, training each controller is straightforward. We apply

a particular input to the controller network and use backpropagation to modify its param-

40

0 20 40 60 80 10020

60

100

140

Trial Number

D
is

ta
nc

e

100 300 500

100

300

500

700

Initial Distance

Pa
th

 L
en

gt
h

A B

C D

Diffusion Coefficient

Pr
ob

ab
ilit

y
of

 C
ol

lis
io

n
on

 T
ria

l
Pr

ob
ab

ilit
y

of
 C

ol
lis

io
n

on
 T

ria
l

Number of Obstacles

0

0.5

1

20 40 60

1

0.5

0
0 0.2 0.4 0.6 0.8 1

Figure 6. Performance measures. A) Obstacle Avoidance. Black dots show the minimum distance between
the truck and any target averaged over 50 runs to the final goal with 20 obstacles in the environment. B)
Collisions versus Obstacles. The black line shows the probability of a collision with an obstacle per trip to
the final target as a function of the number of obstacles. The shaded regions are 95% confidence intervals.
As the number of obstacles increases from 5 to 75, the probability of a collision grows slowly, despite high
obstacle densities. C) Target-directedness. The black dots show the lengths of paths taken to the final target,
averaged over 50 trials, in an environment with 20 obstacles. The dashed line show the straight-line distance
from the initial location of the truck to the nearest edge of the final target. D) Brownian Obstacle Motion. The
black line shows the probability of a collision with an obstacle per trip as a function of the diffusion constant of
the obstacle motion. The grey region is as in B. Although we did not explicitly train the controllers to handle
obstacle movement, the controller can frequently navigate to the goal without collision in an environment of
20 obstacles undergoing Brownian motion.

eters in order to minimize the squared difference between the output command given by

the controller and the optimal command for that particular set of inputs. After a sufficient

number of such trials (Methods), the controller network learns to produce the desired com-

mand in response to a particular input. Furthermore, if the network is properly designed it

41

will generalize to novel inputs by smoothly interpolating among the trained examples. The

previous section showed that this indeed works. Thus, we turn to the problem of generating

the optimal commands that provide the training data for the controllers.

One feature that makes tasks difficult is that a significant amount of time may elapse before

the cost associated with a particular command strategy can be assessed. In our lower-level

example, it takes a while for the truck to move far enough to reveal that the wheels are not at

a good angle. Typically, as tasks get more complex, this delay gets longer. For example, it

takes longer to evaluate whether a sub-target issued by the higher-level controller is going to

get the truck closer to the final target without leading it into an obstacle. One consequence

of this delay is that we cannot assess the cost associated with a single command; we must

evaluate the cost of a sequence of commands.

To deal with the hierarchy of timescales that are associated with a hierarchy of control

levels, we introduce two time scales. One is associated with the temporal scale over which

a process needs to be controlled. There is no point in issuing commands that change more

rapidly than the dynamics of the object being controlled. In the truck example, wiggling

the wheels back and forth rapidly is not an intelligent way to drive the truck, and swinging

the sub-target around wildly is not a good way to guide the lower-level controller. At level

l of the hierarchy, we call this dynamic timescale Tl. For the truck problem, we take T1 =6

and T2 = 72 time steps. The second time scale is the length of the sequence of commands

needed to compute a cost reliably. At level l, we denote this number by Kl. In other words,

it requires Kl commands, spaced apart by Tl times steps, to determine the cost of a particular

command strategy. In the case of the truck, we set K1 =15 and K2 =10.

At each level, l, we must solve two problems: 1) Find a cost function that allows the

system to achieve the final goal of the task, and 2) Given the sensory input at time t,

find the set of Kl commands, one every Tl time steps, that minimizes this cost function.

42

We start by addressing problem 2, leaving a discussion of the cost function to the fol-

lowing section. We denote a command given at time t by the level l controller by the

vector ml(t). For the lower-level controller in the truck example, m1(t) = u(t), and for

the upper-level controller m2(t) = [dst(t), cos(θst(t)), sin(θst(t))]. We want to compute the

cost of issuing a sequence of commands [ml(t),ml(t + Tl),ml(t + 2Tl), . . . ,ml(t + KlTl)].

We also need to define a vector sl(t) that represents the sensory input to layer l at time

t upon which the decision to issue the command sequence is based. For the case of the

truck, s1(t) = [cos(θrel), cos(θrel), dst, cos(θst), sin(θst)] and s2 = [cos(θrel), cos(θrel), g, log(1 +

dft/L), cos(θft), sin(θft)] (figure 1). The cost function takes the general form

Sl =

Kl∑

k=0

Ll
(
sl(t + (k + 1)Tl),ml(t + kTl)

)
. (2.2.1)

The functions Ll for the lower- (l = 1) and higher- (l = 2) level controllers are specified in

the following section.

Equation 2.2.1 raises a significant new problem: the cost function depends not only on the

sequence of commands being given but also on the entire sequence of sensory consequences

of those commands. In other words, Sl depends on sl(t) . . . sl(t + KlTl), and only sl(t) is

provided. We therefore need a way to predict the future sensory data resulting from the

command sequence. We do this by building a forward model at each level of the hierarchy.

It is important to note that, for the truck problem, the future sensory inputs, for the purpose

of command optimization, are defined slightly differently from the actual sensory inputs

used by the controllers during their normal operation. Recall that the sensory command

includes information about the distance and angle to the target (either the sub-target for

level 1 or the final target for level 2). The actual target location is held fixed during training,

but because the truck moves, the distance and angle to this location change. Thus, when the

43

forward model predicts the future sensory data, it estimates the actual distance and cosine

and sine of the angle to the target.

We have now addressed the second problem listed above; we determine an optimal se-

quence of commands by minimizing the cost function of equation 2.2.1 using a forward

model to predict the resulting sensory inputs. In the following section, we present the cost

functions used for the truck-driving task. In the section after that, we discuss how we build

the required forward models. Before proceeding, however, it is useful to clarify the full

process for training the controllers in light of the procedure just described for computing

optimal command sequences.

The same procedure applies at every level. We randomly select an input vector s(t) and

determine the optimal command sequence arising from that initial input. We then train the

controller to associate this particular sensory input with the first motor command in the

sequence. Note that we do not use the full sequence of optimal commands for training the

controller, we only use the full sequence to evaluate the cost function. The reason for this

is that all the future commands beyond the first one in the sequence are based on sensory

inputs predicted by the forward model. Training the controller to associate these predicted

inputs with their paired commands in the sequence introduces errors into the controller,

because the sensory predictions of the forward model are not entirely accurate. Learning

these predicted associations degrades the performance of the controller.

44

The Cost Functions

We would like the truck to drive toward the target along a straight angle-of-attack, without

articulating the link between the cab and trailer too much, and using minimal control effort.

A cost function satisfying these requirements can be constructed from

L1 = α1dst + β1θ
2
st + γ1(|θrel| − θmax)2Θ (|θrel| − θmax) + ζ1u2. (2.2.2)

The third term makes use of the Heaviside step function, which is 1 if x ≥ 0 and 0 otherwise.

We use the convention that all angles are in radians, and we center all angles around 0 so

they fall into the range between ±π. The parameters α1, β1, γ1, ζ1, and θmax are given in

Table 1 of the Methods.

The higher-level cost function is divided into three parts: L2 =Lsensory
2 +Lcommand

2 +Lobstacle
2 .

All the parameters in these cost functions are given in Table 1 of the Methods. The sensory

cost contains a distance-dependent term, but we no longer need to penalize large cab-trailer

angles because the lower-level controller takes care of this on its own, so

Lsensory
2 = α2 log (1 + dft/L) . (2.2.3)

The higher-level motor command portion of the cost is given by

Lcommand
2 = β2

(
cos(θst)2 + sin(θst)2 − 1

)2
+ γ2

(
(dst − dmin)2 Θ (dmin − dst)

+ (dst − dmax)2 Θ (dst − dmax)
)
. (2.2.4)

The first term in this equation may look strange because the sum of the squares of a cosine

and a sine is always 1. However, the optimization procedure does not generate an angle

θst and take its cosine and sine. Instead, it generates values for the cosine and sine directly

45

without any constraint requiring that these obey the laws of trigonometry. As a result,

this constraint needs to be included in the cost function. The distance-dependent terms in

equation 2.2.4 penalize sub-target distances that are either too short or too long.

The final term in the higher-level cost function, Lobstacle
2 penalizes truck positions that are

too close to an obstacle. We are not concerned with the distance from the truck to every

single obstacle; rather, we care primarily if the truck is too near a single obstacle, the

closest one. Thus, we choose the smallest distance to an obstacle, dobstacle
min (t), and impose a

Gaussian penalty for proximity to this closest obstacle with standard deviation equal to the

disc’s radius, σdisc. We also add a smaller, flatter penalty with a larger standard deviation,

σareola, as a warning signal to prevent the truck from wandering nearby the obstacle. The

resulting cost function is

Lobstacle
2 = ρ2 exp

−
(
dobstacle

min

)2

2σ2
disc

 + ν2 exp

−
(
dobstacle

min

)2

2σ2
areola

 . (2.2.5)

Recall that the obstacles are detected by the sensory grid system show in Figure 4, and thus

the distances to obstacles are not directly available. We solve this problem by introducing

a network that evaluates the cost function 2.2.5 directly from the sensory grid information

g(t). We call this network the “obstacle critic” because it serves the same role as critic net-

works in reinforcement learning (Widrow et al., 1973) (Sutton and Barto, 1998): predicting

the cost of sensory data, ultimately to train another network. It has 199 grid inputs and one

bias and a single output, representing the estimated cost of the sensor reading (Methods).

We train this network to predict the obstacle cost from grid data by creating a large number

of measurement scenarios and computing the true cost function.

The complete higher-level cost function is the sum of the costs given in equations 2.2.3,

2.2.4, and 2.2.5. The trajectories that minimize the complete higher-level cost function are

46

goal-seeking and obstacle-avoiding.

The Forward Models

The forward model for level l predicts the future sensory data sl(t + Tl) that result from

passing the command ml(t) to the level below it. We use the convention that the forward

model is named after the level that issues the commands and receives the sensory data, not

the level that follows those commands and causes the sensory data to change. Thus, the

higher-level forward model is actually modeling the lower-level controller, and the lower-

level forward model, the truck.

The lower-level forward model, which is a single network, is trained by randomly choosing

a set of sensory data, s1(t), consisting of the distance and cosine and sine of the angle to a

target, and a command m1(t), defining a wheel angle, within their allowed ranges. We then

simulate the motion of the truck for a time T1 and determine the sensory data s1(t + T1),

indicating t he articulation of the cab with respect to the trailer and where the truck lies

in relation to the sub-goal. We continue to gather data for the lower-level forward model

by applying another command to the truck and taking a new sensory measurement after

the delay. In this way, we generate several command sequences along a single trajectory

to gather more data. To create a diversity of training cases for the forward model, we

periodically terminate a trajectory and start a new trial from a random initial condition. On

the basis of several thousand such measurements, we train the lower-level forward model

network to predict the motion and articulation of the truck over the full range of initial

conditions and motor commands.

The higher-level forward model is composed of three networks: proprioceptive, goal-

related, and obstacle-related (Methods). Each of these networks receives the command

m2(t). The proprioceptive network also receives the proprioceptive information, [cos(θrel(t)),

47

sin(θrel(t))] and predicts [cos(θrel(t + T2)), sin(θrel(t + T2))]. The goal-related forward model

receives these proprioceptive data and the goal-related information, [log(1+dft/L), cos(θft),

sin(θft)], and predicts the goal-related variables at time t + T2. The obstacle-related forward

model is the most complicated. It receives the proprioceptive information and the obstacle

grid data g(t). Unlike the other forward model networks we have described, which make

deterministic predictions, the predictions of the goal-related forward model are probabilis-

tic. This is necessary because the grid predictions are underdetermined. For example, at

time t the grid input cannot provide any information about obstacles outside its range, but

one of these may suddenly appear inside the grid at time t + T2. The goal-related forward

model cannot predict such an event with certainty. Therefore, we ask the obstacle-related

network to predict the probability that each grid point will be occupied at time t + T2, given

a particular grid state and command issued at time t. This is, obviously, a number between

0 and 1, in contrast with the true value of gi(t + T2), which would be either 0 or 1. We

explain how this is done in the Methods.

When we use forward model networks to predict sensory information along a trajectory,

sl(t), sl(t +Tl), sl(t +2Tl), . . ., we simply iterate, using the predicted sensory data time t +kTl

to generate a new prediction at t + (k + 1)Tl. This allows us to compute the summed cost

functions of equation 2.2.1 for both controller levels (Figure 7).

Computing Optimal Commands

Our procedure for generating optimal command sequences is schematized in Figure 7. We

begin by initializing states of the environment and truck randomly (within allowed ranges)

and to measure sl(t). We then choose an initial (or “nominal”) sequence of commands

[ml(t),ml(t + Tl), . . . ,m1(t + KlTl)]. For the lower-level controller, we choose m1(t + kT1)=

u(kT1) = 0 for all k, indicating that pointing the wheels straight is our first guess for the

optimal command. For the higher-level controller, we choose the initial command sequence

48

forward
model

particular set of inputs. After a su�cient number of such trials (Methods) the controller
network learns to produce the desired command in response to a particular input. Further-
more, if the network is properly designed it will generalize to novel inputs by smoothly
interpolating between the trained examples. The previous section showed that this indeed
works. Thus, we turn to the problem of generating the optimal commands that provide the
training data for the controllers.

One feature that makes tasks di�cult is that a significant amount of time may elapse before
the cost associated with a particular command strategy can be assessed. In our lower-level
example, it takes awhile for the truck to move far enough to reveal that the wheels are not at
the best angle. Typically, as tasks get more complex, this delay gets longer. For example, it
takes longer to evaluate whether a sub-target issued by the higher-level controller is going to
get the truck closer to the final target without leading it into an obstacle. One consequence
of this delay is that we cannot assess the cost associated with a single command; we must
evaluate the cost of a sequence of commands.

To deal with the hierarchy of timescales that are associated with a hierarchy of control
levels, we introduce two time scales. One is associated with the temporal scale over which
a process needs to be controlled. There is no point in issuing commands that change more
rapidly than the dynamics of the object being controlled. In the truck example, wiggling
the wheels back and forth rapidly is not an intelligent way to drive the truck, and swinging
the sub-target around wildly is not a good way to guide the lower-level controller. At level
l of the hierarchy, we call this dynamic timescale Tl. For the truck problem, we take T1=6
and T2 = 72 time steps. The second time scale is the length of the sequence of commands
needed to compute a cost reliably. At level l, we denote this number by Kl. In other words,
it requires Kl commands, spaced apart by Tl times steps, to determine the cost of a particular
command strategy. In the case of the truck, we set K1=15 and K2=10.

At each level, l, we must solve two problems: 1) Find a cost function that allows the
system to achieve the final goal of the task, and 2) given the sensory input at time t,
find the set of Kl commands, one every Tl time steps, that minimizes this cost function.
We start by addressing problem 2, leaving a discussion of the cost function to the fol-
lowing section. We denote a command given at time t by the level l controller by the
vector ml(t). For the lower-level controller in the truck example, m1(t) = u(t), and for
the upper-level controller m2(t) = [dst(t), cos(✓st(t)), sin(✓st(t))]. We want to compute the
cost of issuing a sequence of commands (ml(t),ml(t + Tl),ml(t + 2Tl), . . . ,ml(t + KlTl)).
We also need to define a vector sl(t) that represents the sensory input to layer l at time
t upon which the decision to issue the command sequence is based. For the case of the
truck, s1(t) = [cos(✓rel), cos(✓rel), dst, cos(✓st), sin(✓st)] and s2 = [cos(✓rel), cos(✓rel), g, log(1 +
dft), cos(✓ft), sin(✓ft)]. The cost function takes the general form

Sl =

KlX

k=0

Ll(sl(t + (k + 1)Tl),ml(t + kTl)) . (1)

The functions Ll for the lower- (l = 1) and higher- (l = 2) level controllers are specified in

10
forward
model

forward
modelsl(t+ Tl)

ml(t+ Tl)

sl(t)

ml(t)

sl(t+2Tl)

cost
function

sl(t+KlTl)

ml(t+KlTl)

s l(
t+

(K
l+

1)
T l

)

Thursday, April 11, 13

Figure 7. Schematic showing the iterated use of the forward model for computing an optimal command
sequence. The system is provided with sensory input at time t through the vector sl(t). The forward model is
used repeatedly to generate predictions of the sensory vector a times t + Tl, . . . , t + (Kl + 1)Tl. The command
sequence ml(t),ml(t + Tl), . . . ,m1(t + KlTl) is an input to both the cost-function computation and the forward
model, and it is optimized.

to consist of identical commands placing a sub-target 50 length units directly behind the

truck. We apply these commands sequentially to calculate an entire truck trajectory.

The command sequences are then optimized by using the Dynamic Optimization algo-

rithm described in the Methods (also known as Pontryagin’s Minimum Principle (Sten-

gel, 1994) or Backpropagation-through-Time (LeCun, 1988)). Briefly, we calculate the

effect that a small change to each command will have on the total trajectory cost and de-

termine the gradient of the cost function with respect to the parameters defining the com-

mands. This gradient information is used to change the commands according to a variable-

metric update accomplished with the limited-memory Broyden-Fletcher-Goldfarb-Shanno

(L-BFGS) method in “minFunc” (Schmidt, 2013). L-BFGS uses successive gradient com-

putations to compute an approximation of the inverse Hessian of the cost function, which

speeds up optimization considerably compared to steepest descent. We iterate the opti-

mization until performance does not improve (more details are provided in the Methods).

The above procedure generates a single command sequence that is optimal for the initial

sensory data sl(t). However, we can use the sensory data after the first command has gen-

erated its sensory consequences (at time t + Tl), to optimize a new trajectory starting from

49

the new sensory data. This process can obviously be repeated at subsequent times. We

periodically terminate the trajectory and begin a new trial to obtain sufficient variety in the

initial sensory data. When this process is completed, the pairings of initial sensory data and

optimal commands constitute a training set for the controller being trained, which learns to

associating each sensory measurement with the appropriate command.

Computing an optimal trajectory of K1 steps at the lower-level takes on average 1.3 seconds

on our computer (averaged over 100 such optimizations). Computing an optimal trajectory

of K2 steps at the higher-level takes on average 12.47 seconds (averaged over 10 such

optimizations). Once the lower- and higher-level controllers have been trained, only 0.001

seconds is needed to run the two controllers in series. Clearly, memorization provides a

tremendous advantage in speed over online optimization.

Discussion

The training procedure we have described provides a strategy to design a hierarchical con-

trol system for problems that can be formulated and solved by division into easier sub-

problems. Many interesting tasks have this structure, so our strategy should be quite gen-

erally applicable. The construction of the hierarchy is recursive or self-similar. The lowest

level controls the plant itself, and higher levels control the levels below them.

Apart from navigation problems, the hierarchical scheme and training procedure using for-

ward models should be useful for tackling problems that require simultaneous application

of sensorimotor and cognitive skills. Consider, for example, a robotic gripper moving

blocks. It would be quite a challenge to construct a unitary network that directs the gripper

to pick up, move and drop blocks and that decides how to arrange them into a prescribed

pattern at the same time. It is easier to separate the problem into a manual coordination

task and a puzzle-solving task, and a natural vehicle for this separation is the network ar-

50

chitecture itself. Surprisingly, despite the intuitiveness of this idea, it has received little

attention. The closest antecedents of our work on hierarchical network control are to be

found in the work of Kawato and colleagues, who designed a low-level network to solve

an inverse kinematic problem and a higher-level network to solve an inverse dynamics

problem (Kawato et al., 1987). In this work, however, both problems were still essentially

motor-level problems. In robotics, it has now become conventional to build hierarchies

in which the system levels appropriate different task levels. Dominant paradigms include

Brooks’s subsumption architecture (Brooks, 1986) and three-layer architectures, so dubbed

by Gat (Gat, 1998), and used to very impressive effect in the self-driving car Stanley, win-

ner of the DARPA Grand Challenge (Thrun et al., 2006). It is not conventional, however,

in robotics for higher levels to possess forward models the lower levels.

The idea of controlling a physical system by building a model of it is quite old, entering

the connectionist literature with Nguyen and Widrow (Nguyen and Widrow, 1989) and

Jordan and Rumelhart (Jordan and Rumelhart, 1992), but existing in a prior incarnation

as “model-reference adaptive control.” To the best of our knowledge, the idea of using a

network to model the feedback from another network and then to use that model to control

the modeled network is novel. We expect it to have ramifications that exceed the tradi-

tional framework of motor control. Forward models could be constructed either by motor

babbling or by a more intelligent experimentation procedure. Once the controllers have

been trained, they exhibit automaticity, an ability to generate answers without extensive

computation. Automating complex computations by “caching” has been proposed before

(Kavukcuoglu et al., 2008) (Dayan, 2009) in different contexts, but using cached circuits as

lower-level substrates for higher-level control circuits has not.

Although we have trained the forward-model and controller networks sequentially, we do

not preclude the attractive possibility of training them at the same time, maybe even at

51

multiple levels of the hierarchy simultaneously. To do so, we expect it would be crucial

to account for errors in the forward models; we could generate cautious commands by

penalizing those commands that a forward model is unlikely to predict accurately, or we

could also generate commands that attempt to probe the response properties of the level

below to improve the model.

Although our networks are certainly not models of biological neural systems, we cannot

resist drawing a connection to physiology. A long-standing hypothesis is that the cere-

bellum implements a forward model that predicts the delayed sensory consequence of a

motor command (Miall et al., 1993) (Shadmehr et al., 2010). Intriguingly, a recent study

suggests that neurons in Clarke’s column in the spinal cord simultaneously receive input

from cortical command centers and from proprioceptive sensory neurons, and the authors

speculate that this joining of sensory and motor inputs could function as a predictor, akin

to a forward model (Hantman and Jessell, 2010). Experimentalists have therefore already

proposed multiple loci for forward models, functioning at different levels of the motor sys-

tem. This connection suggests that motor behavior may be produced by hierarchies of

controllers that are trained by forward models at each level of the hierarchy.

This study presents a hard result, a hierarchical neural network, but it also bolsters a soft

view. To create intelligent behaviors from neuron-like components, we need to embed

those neurons in modules that perform specific functions and operate to a large extent inde-

pendently. These modules need to have protocols for interfacing one to another, protocols

which effectively hide the complexity of the full computation from the constituents. In

experimental neuroscience, studying how such modules interact may require us to move

beyond single-area recordings and understand the causal interactions between connected

regions, in part to identify the goals of the computations performed within any one region.

52

Methods

A. Parameters

Parameter Value
r (speed) 0.2
lcab (length) 6
wcab (width) 6
ltrailer 14
wtrailer 6
�disc (radius) 20

It is worthwhile to mention that s1 = (x, y, ✓cab, ✓trailer) is a four-dimensional state with a
one-dimensional control variable, u. Control theorists call problems in which the control
vector is lower-dimensional than the state vector “under-actuated”; such problems are typi-
cally more difficult than “fully-actuated” problems because it may take more than one step
to modify a given state variable, and it may be impossible to drive the system state to an
arbitrary point in the state space. The truck is also a nonlinear system and an unstable one
since setting u = 0 will amplify any angular deviation of the cab from the trailer.

Lower-Level Sensory Representation

When we propagate a new sub-target to the lower-level, we update the lower-level sen-
sory representation g1 = (

dsub-target

l
, sin(✓sub-target), cos(✓sub-target), sin(✓rel), cos(✓rel)), where

l = 100. When the sub-target is changed again, we again modify this measurement’s
description of the sub-target’s heading. If, however, the truck moves while the sub-target
m2 stays fixed for several time steps, we must integrate the truck’s movement with respect
to the maintained sub-target to change the lower-level sensory representation. During ex-
ecution, the sub-target is changed continuously, so this computation never occurs. It only
occurs while training the forward model. Integrating the relative location of the sub-target
is just an exercise in trigonometry. Specifically, we compute (xsub-target, ysub-target) when the
sub-target is first propagated to the lower-level. The relative angle between the longitudinal
axis of the trailer and the sub-target is ✓sub-target(t) = tan�1(

ysub-target�y

xsub-target�x
)+✓trailer(t). Addition-

ally, the distance to the sub-target is dsub-target ⌘
p

(xsub-target � x)2 + (xsub-target � y)2.

Lower-Level Cost Function

Parameter Value
↵1 1
�1 0.5
�1 0.5
⇣1 0.5
✓max

⇡
2
� ⇡

6

Higher-Level Cost Function

18

Parameter Value
r (speed) 0.2
lcab (length) 6
wcab (width) 6
ltrailer 14
wtrailer 6
�disc (radius) 20

It is worthwhile to mention that s1 = (x, y, ✓cab, ✓trailer) is a four-dimensional state with a
one-dimensional control variable, u. Control theorists call problems in which the control
vector is lower-dimensional than the state vector “under-actuated”; such problems are typi-
cally more difficult than “fully-actuated” problems because it may take more than one step
to modify a given state variable, and it may be impossible to drive the system state to an
arbitrary point in the state space. The truck is also a nonlinear system and an unstable one
since setting u = 0 will amplify any angular deviation of the cab from the trailer.

Lower-Level Sensory Representation

When we propagate a new sub-target to the lower-level, we update the lower-level sen-
sory representation g1 = (

dsub-target

l
, sin(✓sub-target), cos(✓sub-target), sin(✓rel), cos(✓rel)), where

l = 100. When the sub-target is changed again, we again modify this measurement’s
description of the sub-target’s heading. If, however, the truck moves while the sub-target
m2 stays fixed for several time steps, we must integrate the truck’s movement with respect
to the maintained sub-target to change the lower-level sensory representation. During ex-
ecution, the sub-target is changed continuously, so this computation never occurs. It only
occurs while training the forward model. Integrating the relative location of the sub-target
is just an exercise in trigonometry. Specifically, we compute (xsub-target, ysub-target) when the
sub-target is first propagated to the lower-level. The relative angle between the longitudinal
axis of the trailer and the sub-target is ✓sub-target(t) = tan�1(

ysub-target�y

xsub-target�x
)+✓trailer(t). Addition-

ally, the distance to the sub-target is dsub-target ⌘
p

(xsub-target � x)2 + (xsub-target � y)2.

Lower-Level Cost Function

Parameter Value
↵1 1
�1 0.5
�1 0.5
⇣1 0.5
✓max

⇡
2
� ⇡

6

Higher-Level Cost Function

18

Parameter Value
↵2 1
�2 100
�2 100
dmotor

min 0.1
dmotor

max 0.9
�disc 20
�areola 30
⇢2 2
⌫2 0.5

B. Design Procedure
The networks at the lower and higher levels of the hierarchy are architecturally different.
This difference was largely a historical artifact. We trained the the lower level first, using
radial-basis function (RBF) neural networks. RBF networks possess a strong bias toward
generating smoothly-varying outputs and can train very quickly (on low-dimensional input
data), two qualities that are useful at the lowest level of the hierarchy. The functional targets
for the higher-level networks were more complicated and higher-dimensional, so we had to
develop “deep” (or many-layer) networks to approximate them accurately.

The architectures of the networks were:

Network Dimensions and Activation Functions
Lower-Level Forward Model 6 ⇥ [G]150 ⇥ [L]5
Lower-Level Controller 5 ⇥ [G]100 ⇥ [L]1
Higher-Level Forward Model (Proprio.) 5 ⇥ [T]40 ⇥ [T]20 ⇥ [T]20 ⇥ [L]2
Higher-Level Forward Model (Sub-target) 8 ⇥ [T]40 ⇥ [T]20 ⇥ [T]20 ⇥ [L]3
Higher-Level Forward Model (Obstacle) 205 ⇥ [T]300 ⇥ [T]200 ⇥ [T]200 ⇥ [T]300 ⇥ [Si]199
Higher-Level Critic (Obstacle) 199 ⇥ [T]300 ⇥ [T]100 ⇥ [T]100 ⇥ [So]1
Higher-Level Controller 205 ⇥ [So]30 ⇥ [So]20 ⇥ [So]20 ⇥ [So]30 ⇥ [L]3

The bracketed letters indicate the activation function used for the units. [G] is a Gaussian
radial basis function, where the i-th hidden unit activation is

yi(x) =
exp

⇣
� ||x�µi||2

2�2
i

⌘

P
j exp

⇣
� ||x�µj ||2

2�2
j

⌘

for some basis function centers µi and standard deviations �i. All other multiplication
signs imply a matrix multiplication followed by an activation function, which could be

19

linear. [L] is a linear matrix multiplication Wx. [T] is tanh(x). [Si] is a logistic sigmoid
1

1+exp(�x)
. [So] is a “soft-rectification” function log(1+ exp(x)). We chose these activation

functions using a mixture of prior knowledge and experimentation. The soft-rectification in
the obstacle critic imposed the constraint that costs are positive. The logistic function in the
obstacle grid forward model bounds the outputs between 0 and 1 and allows us to interpret
them as the probabilities that the grid points will be occupied. The soft-rectification in the
higher-level controller appeared to alleviate over-fitting. The radial basis function centers
were chosen by randomly selecting exemplars from the input data. They were not further
adapted in training. The RBF standard deviations were initialized to scale linearly with the
number of input dimensions. To avoid division-by-zero, we actually computed using the
inverse standard deviations 1

�i
. A weight matrix between a layer of size M1 and a layer of

size M2 was initialized to have Gaussian entries of mean 0 and standard deviation 1p
M1

.
All multi-layer networks included a single additional bias unit in their inputs. Optimization
of the network parameters was accomplished using batch training with the quasi-Newton
optimization method L-BFGS in “minFunc” by Mark Schmidt.

Lower-Level Details

Parameter Value
T1 6
Kmodel

1 15

Koptimization
1 15

K total
1 30

Nc,1 2 ⇥ 104

Nfm,1 5 ⇥ 104

To train the lower-level forward model or the lower-level controller, at the beginning of
each trial a random angle was drawn ✓sub-target ⇠ U(0, 2⇡) along with a random radius
dsub-target ⇠ U(0, 500). The sub-target was put at the origin, and the truck was displaced
in accordance with (dsub-target, ✓sub-target). So (x, y) := �r · (cos(✓sub-target), sin(✓sub-target)).
The trailer angle was similarly drawn uniformly, ✓trailer ⇠ U(0, 2⇡). The cab angle was
initialized to be within ±(⇡

2
� ⇡

64
) radians of the trailer angle. Specifically, we set ✓cab ⇠

✓trailer + (U(0, 1) � 0.5) · (⇡ � ⇡
32

).

Higher-Level Details

Parameter Value
T2 12 · T1

Kmodel
2 1

Koptimization
2 10

K total
2 10

Nc,1 5 ⇥ 105

Nfm,2 2 ⇥ 106

20

linear. [L] is a linear matrix multiplication Wx. [T] is tanh(x). [Si] is a logistic sigmoid
1

1+exp(�x)
. [So] is a “soft-rectification” function log(1+ exp(x)). We chose these activation

functions using a mixture of prior knowledge and experimentation. The soft-rectification in
the obstacle critic imposed the constraint that costs are positive. The logistic function in the
obstacle grid forward model bounds the outputs between 0 and 1 and allows us to interpret
them as the probabilities that the grid points will be occupied. The soft-rectification in the
higher-level controller appeared to alleviate over-fitting. The radial basis function centers
were chosen by randomly selecting exemplars from the input data. They were not further
adapted in training. The RBF standard deviations were initialized to scale linearly with the
number of input dimensions. To avoid division-by-zero, we actually computed using the
inverse standard deviations 1

�i
. A weight matrix between a layer of size M1 and a layer of

size M2 was initialized to have Gaussian entries of mean 0 and standard deviation 1p
M1

.
All multi-layer networks included a single additional bias unit in their inputs. Optimization
of the network parameters was accomplished using batch training with the quasi-Newton
optimization method L-BFGS in “minFunc” by Mark Schmidt.

Lower-Level Details

Parameter Value
T1 6
Kmodel

1 15

Koptimization
1 15

K total
1 30

Nc,1 2 ⇥ 104

Nfm,1 5 ⇥ 104

To train the lower-level forward model or the lower-level controller, at the beginning of
each trial a random angle was drawn ✓sub-target ⇠ U(0, 2⇡) along with a random radius
dsub-target ⇠ U(0, 500). The sub-target was put at the origin, and the truck was displaced
in accordance with (dsub-target, ✓sub-target). So (x, y) := �r · (cos(✓sub-target), sin(✓sub-target)).
The trailer angle was similarly drawn uniformly, ✓trailer ⇠ U(0, 2⇡). The cab angle was
initialized to be within ±(⇡

2
� ⇡

64
) radians of the trailer angle. Specifically, we set ✓cab ⇠

✓trailer + (U(0, 1) � 0.5) · (⇡ � ⇡
32

).

Higher-Level Details

Parameter Value
T2 12 · T1

Kmodel
2 1

Koptimization
2 10

K total
2 10

Nc,1 5 ⇥ 105

Nfm,2 2 ⇥ 106

20

truck & obstacles
lower-level

cost function
higher-level

cost function
lower-level

training
higher-level

training

Friday, April 5, 13

Table 1. Parameters for (from left to right) the truck and obstacles, the lower- and higher- level cost function,
and the lower- and higher-level training. Nc,l denotes the number of example patterns used to train the
controller and Nfm,l the number for the forward model. Ktotal

l refers to the number of steps taken when
optimizing trajectories before restarting the truck in a new environment.

B. Network Structure and Training

The lower-level makes use of radial-basis function (RBF) neural networks. RBF networks

possess a strong bias toward generating smoothly-varying outputs as a function of their in-

puts and can train very quickly on low-dimensional input data, two qualities that are useful

at the lowest level of the hierarchy. The functional targets for the higher-level networks

were more complicated and higher-dimensional, so we had to develop “deep” (or many-

layered) networks to approximate them accurately.

The architectures of the networks are:

53

Network Dimensions and Activation Functions

Lower-Level Forward 6 × [G]150 × [L]5

Lower-Level Controller 5 × [G]100 × [L]1

Higher-Level Forward (Proprio.) 5 × [T]40 × [T]20 × [T]20 × [L]2

Higher-Level Forward (Goal) 8 × [T]40 × [T]20 × [T]20 × [L]3

Higher-Level Forward (Obstacle) 205 × [T]300 × [T]200 × [T]200 × [T]300 × [Si]199

Higher-Level Critic (Obstacle) 199 × [T]300 × [T]100 × [T]100 × [So]1

Higher-Level Controller 205 × [So]30 × [So]20 × [So]30 × [L]3

The bracketed letters indicate the activation functions used for the units. [G] is a normalized

Gaussian radial basis function for input x,

exp
(
−||x − µi||2/(2σ2

i)
)

∑
j exp

(
−||x − µ j||2/(2σ2

j)
) ,

with basis function centers µi and standard deviations σi. The radial basis function centers

were chosen by randomly selecting exemplars from the input data. They were not further

adapted in training. The RBF standard deviations were initialized to scale linearly with the

number of input dimensions. To avoid division-by-zero, we actually computed using the

inverse standard deviations 1/σi.

All the other multiplication signs in Table 1 imply matrix multiplication followed by an

activation function. [L] is a linear activation function, [T] is tanh(x), [Si] is a logistic

sigmoid 1/(1 + exp(−x)), and [So] is a “soft-rectification” function log(1 + exp(x)). We

chose these activation functions using a mixture of prior knowledge and experimentation.

The soft-rectification in the obstacle critic imposed the constraint that costs are positive.

The logistic function in the obstacle grid forward model bounds the outputs between 0 and

1 and allows us to interpret them as the probabilities that the grid points will be occupied.

54

The soft-rectification in the higher-level controller alleviated over-fitting.

A weight matrix from a layer of size M to another layer was initialized to have Gaussian

entries of mean 0 and standard deviation 1/
√

M. All multi-layer networks included a single

additional bias unit in their inputs.

We chose to interpret an obstacle grid model output as the probability that the correspond-

ing grid element would be occupied after movement. We consequently used the “cross-

entropy” cost function to train this network. We can derive this cost function from a

maximum-likelihood argument. Suppose we have a data set of patterns (xk, yk)
Npatterns
k=1 and a

neural network with M outputs whose i-th output unit as a function of the k-th input vector

given by zi(xk) represents the binomial probability that yi(xk)=1. The likelihood of the data

is binomial, so the log-likelihood is

Log-Likelihood =

Npatterns∑

k=1

M∑

i=1

yi(xk) log zi(xk) + (1 − yi(xk)) log(1 − zi(xk)) .

When negated, this gives the cross-entropy cost function.

Optimization of the network parameters was accomplished using batch training with the

quasi-Newton optimization method L-BFGS in “minFunc” (Schmidt, 2013). To train the

lower-level forward model or the lower-level controller, at the beginning of each trial a

random angle θst was drawn along with a random distance dst in the range between 0 and

500. The trailer angle θtrailer was similarly drawn uniformly. The cab angle was initialized

to be within ±(π/2 − π/64) radians of the trailer angle.

The higher-level proprioceptive and goal-related models were trained to predict not the

values of their targets but the difference between the values of their targets before and after

movement. This reduced training time because the interesting predictions of many forward

models are the deviations from the identity.

55

C. Equations for the Truck

The truck is a kinematic model of a cab and trailer (Figure 8), first defined by Nguyen and

Widrow (Nguyen and Widrow, 1989). The cab is connected to the trailer by a rigid linkage.

(x, y)

u

(x0, y0)

Tuesday, April 16, 13

Figure 8. Variables describing the truck. The position of the center of the back of the trailer is given by (x, y),
and the center of the front of the trailer is at (x′, y′). The angle of the cab with respect to the x-axis is θcab(t)
and for the trailer, θtrailer(t). The angle by which the front wheels deviate from straight ahead is u, and the
relative angle between the cab and trailer is θrel =θcab − θtrailer.

The wheels are connected to the front of the cab and translate backward by distance r in

one time step. Note that the wheels drive the cab the same way that the linkage drives the

trailer, so we can solve for the motion of the cab and trailer in a similar way.

We begin by decomposing the motion of the front of the cab caused by the wheels into a

component orthogonal to the front of the cab, defined as A = r cos(u(t)), and a component

parallel to the front of the cab, C = r sin(u(t)). Only the orthogonal component, A, gets

transferred through the linkage to the trailer. Performing a similar decomposition of the

motion of the front of the trailer, we find an orthogonal component B = A cos(θcab(t) −
θtrailer(t)) and a parallel component D= A sin(θcab(t) − θtrailer(t)). In one time step, the center

of the front of the trailer (Figure 8) therefore moves by

x′(t + 1) = x′(t) − B cos(θtrailer(t)) + D sin(θtrailer(t))

y′(t + 1) = y′(t) − B sin(θtrailer(t)) − D cos(θtrailer(t)) .

56

The back of the trailer is constrained to move straight backward, so

x(t + 1) = x(t) − B cos(θtrailer(t))

y(t + 1) = y(t) − B sin(θtrailer(t)) .

If the length of the trailer is Ltrailer, x′(t) = x(t) + Ltrailer cos(θtrailer(t)) and y′(t) = y(t) +

Ltrailer sin(θtrailer(t)). The tangent of the angle of the trailer is equal to (y′ − y)/(x′ − x), so

tan(θtrailer(t + 1)) =
Ltrailer sin(θtrailer(t)) − D cos(θtrailer(t))
Ltrailer cos(θtrailer(t)) + D sin(θtrailer(t))

.

An identical argument applied to the cab yields

tan(θcab(t + 1)) =
Lcab sin(θcab(t)) −C cos(θcab(t))
Lcab cos(θcab(t)) + C sin(θcab(t))

.

Consolidating all of the equations, we have

A = r cos(u(t))

B = A cos(θcab(t) − θtrailer(t))

C = r sin(u(t))

D = A sin(θcab(t) − θtrailer(t))

x(t + 1) = x(t) − B cos(θtrailer(t))

y(t + 1) = y(t) − B sin(θtrailer(t))

θcab(t + 1) = tan−1
(

Lcab sin(θcab(t)) −C cos(θcab(t))
Lcab cos(θcab(t)) + C sin(θcab(t))

)

θtrailer(t + 1) = tan−1
(

Ltrailer sin(θtrailer(t)) − D cos(θtrailer(t))
Ltrailer cos(θtrailer(t)) + D sin(θtrailer(t))

)
.

57

It is worth mentioning that (x, y, θcab, θtrailer) is a four-dimensional state vector with a one-

dimensional control variable, u. Control theorists call problems in which the control vector

is lower-dimensional than the state vector “under-actuated”; such problems are typically

more difficult than “fully-actuated” problems because it may take more than one step to

modify a given state variable, and it may be impossible to drive the system to an arbitrary

point in the state space (a concept known as “controllability”). The truck is also a nonlinear

system and an unstable one because setting u=0 amplifies any angular deviation of the cab

from the trailer.

D. Minimizing the Cost Functions

In this section we describe how to minimize the cost functionals with respect to the com-

mand parameters. We are minimizing a cost functional of the form

S =

K∑

k=0

L(
s(k + 1),m(k)

)
(2.4.6)

as in equation 2.2.1, but to streamline the notation, we have dropped the time t and the

temporal scale factor T that appear in equation 2.2.1. This means that we have shifted the

time variable to the starting at time t, and measure time in units of T . The original equations

can be recovered by shifting and scaling back. We have also dropped the subscripts l

because the same procedure is applied at each level.

The sensory vector s is estimated by a forward model, and we denote the output of the

forward model by F(s,m), so that s(k + 1) is estimated as F(s(k),m(k)). To implement

this constraint, we introduce Lagrange multipliers for every component of m and at every

moment in time and minimize

Sconstrained =

K∑

k=0

L(s(k + 1),m(k)) + λ(k)>
(
F(s(k),m(k)) − s(k + 1)

)
. (2.4.7)

58

For convenience, we define λ(K + 1)=0.

The gradient of this function with respect to the sensory vector is

δSconstrained

δs(k)
= Ls(s(k),m(k − 1)) + Fs(s(k),m(k))>λ(k) − λ(k − 1) ,

where the subscript s indicates a derivative with respect to that variable. At a minimum of

the cost function we find the backward equation for the Lagrange multipliers

λ(k − 1) = Ls(s(k),m(k − 1)) + Fs(s(k),m(k))>λ(k) . (2.4.8)

It is easy to find an extremum of the cost functional with respect to the sensory variables

and the Lagrange multipliers. It is more difficult to minimize with respect to the command

variables, where the relevant gradient is

δSconstrained

δm(k)
= Lm(s(k + 1),m(k)) + Fm(s(k),m(k))>λ(k) .

This is done using the following algorithm:

Dynamic Optimization

Input: Initial state s(0) and “nominal” control tape {m(k)}Kk=0
repeat

for k := 0 to K do
s(k + 1) := F(s(k),m(k));

end for
λ(K + 1) := 0;
for k := K+1 down to 1 do
λ(k − 1) := Ls(s(k),m(k − 1)) + Fs(s(k),m(k))>λ(k);
δSconstrained
δm(k−1) := Lm(s(k),m(k − 1)) + Fm(s(k − 1),m(k − 1))>λ(k);

Update m(k − 1) using a gradient-based method (steepest descent, L-BFGS, etc.)
provided with δSconstrained

δm(k−1) .
end for

until convergence

59

Chapter 3

Sensitivity Models for Local, Error-Driven

Control

Life can only be understood backward, but it must be lived forward. - Søren Kierkegaard

60

Sensitivity Models for Local, Error-Driven Control

Greg Wayne

Department of Neuroscience

Columbia University College of Physicians and Surgeons

New York, NY 10032-2695 USA

Abstract

We try to investigate the intuitive notions of “biological plausibility” that are commonly

used to reject learning mechanisms based on optimal control formalisms. These notions

capture the beliefs that biological systems do not use external, non-neural memory struc-

tures to keep record of planning and optimization computations and that they cannot cal-

culate the derivatives necessary to implement gradient descent. We describe one possible

way to avoid these implausibilities by first learning a forward model of the plant and ei-

ther subsequently or simultaneously learning a “sensitivity model” of the forward model

(another neural network that calculates the Jacobian matrix of the forward model). We in-

tegrate the forward model and the sensitivity model with a forward-in-time computation,

known as “forward accumulation,” to optimize controller structures for two model opti-

mal control problems: the torque-limited pendulum swing-up and the cart-pole swing-up.

Our method is model- and gradient-based, so, once the models have been learned, it can

compute control responses extremely efficiently.

3.1 Introduction

In this chapter, we play the role of the scientific realist. We consider the computations

involved in optimal control and ask whether neural networks, respecting certain architec-

tural desiderata, can account for those computations. We want to examine what the often

unspoken, consensus view of “biological plausibility” actually dictates and see if we can

construct an optimal controller based on a restriction to elements admissible under that

view. Consequently, this chapter’s results are in part sociological. As opinions about bio-

logical plausibility are informed by more experiments, the arguments in this chapter may

become outmoded – or more compelling. Our ulterior motive is that we would ultimately

like to create spiking neural networks that can perform optimal control calculations. This

chapter’s results serve as a useful milestone on that path.

In the last chapter, we used the Dynamic Optimization (DO) algorithm or Backpropagation-

through-Time (BPTT) to optimize sequences of control commands to apply to our dynam-

ical systems. This algorithm is frequently described as biologically implausible. What,

however, does this mean?

Consider a dynamical system defined by the equation ẋ = Fsystem(x,Θ), where Θ stands

either for a set of system parameters or control inputs u(t). To apply DO, a precise record

of the states the system passes through must be maintained. We must store a list (or a

stack) of the states x(t), x(t + dt), x(t + 2dt), . . ., and so on. This list of states is typically

not a part of the model per se but a part of a conventional computer memory. When the

system is a recurrent neural network, the memory storage required for the application of

DO completely dwarfs the memory capacity of the network itself.1 In some cases (not

1This is perhaps not true if you count the memory capacity latent in synapses. Of course, this comes
down to a scaling argument. DO requires resources that scale with time, and if long enough time intervals
are considered, the spatial resources, even synaptic ones, would be exhausted.

62

in all), this leads to obvious absurdities: to train a network by DO to store and maintain

information as recirculating activity for a long time, a conventional use for a recurrent

network, one needs a pre-existent computer memory that can already solve the problem

without training. (Of course, one may not have on hand the algorithm or process that has

synthesized the training data, so a recurrent neural network’s generalization capacity may

still prove useful.)

DO computes the derivatives of cost functions with respect to the system parameters or the

system inputs. Regardless of the exact problem, one always needs to calculate the Jacobian

matrices ∂Fsystem(x(t),Θ)/∂(x(t),Θ) at every moment in time. Again, this calculation is not

carried out by the units in a neural network model.

Even more conspicuously, DO divides time into two phases. In the first phase, the system

equations are run forward for some predetermined interval of time. The system is then

stopped, and in the second phase the list of states is traversed in the backward direction

x(t + Kdt), x(t + (K −1)dt), x(t + (K −2)dt), . . . from the present moment back into the past.

At least within the motor system, we cannot recall a time when anyone has ever claimed

that a group of neurons retraces a sequence of activity backward in time.23

To summarize, there seem to be three primary reasons why DO is not considered biologi-

cally plausible. They are:

1. A separate, non-neural memory structure, whose capacity scales with the length of
2In the study of more cognitive tasks, psychologists have examined the ability of human subjects to search

for an optimal plan in games like chess. An interesting result is that people have difficulty recounting the steps
backward from a planned point B, a final state, to point A, the initial state (Newell, 1994), in much the same
way as it is difficult to recite the alphabet backward. Consequently, people seem to plan by tracing paths
forward from initial states and dropping off the paths back to the initial states when the current one is deemed
problematic. This stands in contrast to common techniques in artificial intelligence where a game-playing AI
might perform a “depth-first” search. In chess and go, it is a mark of skill to be able to trace one’s moves
backward from the end game to the beginning. It is a bit of a stretch to argue that the same computational
difficulty should be inherent in motor domains, but the result does give one pause.

3We omit discussion of hippocampal replay, which is probably not important for motor learning.

63

the trajectory to be optimized, is used to record the historical activity of the plant.

2. Derivatives of the plant need to be computed, but they are not themselves computed

by a network.

3. Using the memory structure and the derivatives, error signals are calculated by a

process that steps backward through the historical record of activity.

We therefore ask whether it is possible to construct an efficient neural network control

system that avoids (1), (2), and (3). We require that the error signals that modify the

functioning of our control system be represented within one or several networks.

This chapter now begins with a discussion of the computational requirements and tradeoffs

in optimal control. We then discuss how the terms in the control problem can be approx-

imated by neural networks, gradually building up a control system that avoids the three

implausibilities we have listed. Finally, we apply our methods to two well-known optimal

control problems, the torque-limited pendulum swing-up and the cart-pole swing-up.

3.2 Discounted Optimal Control

We consider first the case of a receding-horizon, discounted control task. At every time t,

we look forward into the future until time t + Nτ and try to optimize the time integral of a

cost function

S =

∫ t+Nτ

t
dt′

1
τ

exp
[
− (t′ − t)/τ

]
L(x(t′),u(t′)). (3.2.1)

τ is the discounting time scale. Nτ is our optimization horizon. One useful reason to

discount is that the cost-integral is well-defined even as N → ∞ as long as L is bounded.

Also, as τ→ ∞ but N ∼ K/τ, we recover undiscounted receding-horizon control. Because

the Lagrangian L(x,u) depends on time only through state and control variables, the cost-

64

integral is time-translation invariant or Markovian. In the previous chapter, we optimized

cost-integrals by solving for a list of controls u(t). In this chapter, we take a different

perspective. We construct a network feedback controller (also known as a “policy”) that

produces the control as a function of the state u(x;Θ) with parameters Θ. Our targets to

optimize are now the parameters of this controller.

3.3 Methods of Computing Gradients

Perturbation

If we include the policy within the cost-integral, we have the following equation:

S =

∫ t+Nτ

t
dt′

1
τ

exp
[
− (t′ − t)/τ

]
L
(
x(t′),u(x(t′);Θ)

)
. (3.3.1)

To optimize the policy we need to compute ∂S
∂Θ

by some means.4 A simple method to

compute ∂S/∂Θ is to run twice as many simulations as there are parameters |Θ|. For

every parameter, we make a small increment Θi → Θi + ∆ and a decrement Θi → Θi − ∆

and simulate once with each change to the parameter. The difference of the cost-integral

between these two experiments gives us the required partial derivative

∂S
∂Θi
≈

[
S(Θ|Θi + ∆) − S(Θ|Θi − ∆)

]
/2∆,

where the notation S(Θ|Θi ± ∆) implies that only the indexed parameter is changed. The

obvious downside to this “finite-difference” or “serial perturbation” procedure is that an

4It is also possible to optimize the policy by methods that do not rely on gradient computation, namely,
by choosing several different random parameter settings and keeping the best one or by mixing solutions
generated by random selection as in genetic algorithms, but these methods are typically less efficient than
methods that rely on gradients. That said, we still have some lingering interest in such methods for some
problems. Let’s stay on the lookout!

65

extremely large number of simulations must be executed from identical initial conditions.

Such an algorithm is simply not practical to execute on a real system, and it is only mildly

practical if the equations can be executed quickly on a model system. The benefit of this

approach from the perspective of the mechanisms involved is that the only signal to be

communicated back to the parameters is a global one, S. Finite-differencing is thus closely

related to reinforcement learning algorithms. It can be performed on either the system

itself, where each run is performed by restarting the system after a short trial period, or it

can be performed on a forward model of the system; in this case, one has more liberty and

can, for example, restart the trials from identical states very easily. If one has a forward

model, one can optimize before committing to action on the real system, a notion known

as “planning” in the control theory literature.

The major failing of the serial perturbation procedure is that it completely ignores the causal

structure of the problem. In particular, the parameters only affect the cost through their

effect first on the control output and then the effect of the control output on the state. This

effect must be relatively stable if the learning problem is solvable at all. “Backward” and

“forward accumulation” are two methods that take into account the causal structure of the

problem by making use of models of the system and can thereby significantly reduce the

number of trials required to calculate gradients.

Backward Accumulation

Backward accumulation is another term for backpropagation. We prove in the Appendix

that for equation 3.3.1, the gradient of the cost-integral with respect to the parameters can

66

be computed from the system of equations:5

p(t + Nτ) = 0,

ṗ = −δL/δx> − δu/δx> · δL/δu>

−
(
δF/δx> + δu/δx> · δF/δu>

)
· p +

1
τ

p,

δS/δu(t′) =
1
τ

exp
[
− (t′ − t)/τ

](
δL/δu + p(t′)> · δF/δu

)
,

∂S/∂Θ =

∫ t+Nτ

t
dt′δS/δu(t′) · ∂u(t′)/∂Θ.

p, the “costate,” is integrated backward from its boundary condition at time t + Nτ, and the

gradient with respect to the policy parameters can be computed from it. The computational

advantage of this procedure is that a model F of the system need be run forward once from

time t to t + Nτ and then the equations used to compute p are run backward once. This

gives us the entire gradient. If the system is a real physical system, the model is distinct

from the system.

In backward accumulation, the quantity that is transported from one place and time to

another is the costate. In a neural system, we would mean this literally: the terms of the

costate would have to be transmitted neurally through the different circuits. In his review

of optimal control theory’s contribution to understanding motor performance, Todorov has

written (Todorov, 2004): “[I]magine that the costate vector is encoded by some population

of neurons – which would not be surprising given its fundamental role in the computation

of optimal controls. . . .” In the neural network literature, the transportation of the costate is

called “backpropagation of error” for a reason. As we prove in the Appendix, the costate

5We use the following conventions: 1) a derivative with respect to a time-varying variable’s value at a
specific instant is marked with a “δ”; a partial derivative with respect to a constant parameter is marked with
a “∂”; a total derivative with respect to a constant parameter that includes all paths by which the parameter
influences the dependent variable is marked with a “d.” 2) typical vectors are column vectors, while gradients
are row vectors.

67

represents the change to the cost-integral δS that is caused by a change to the state δx(t) at

time t all other things equal.

Forward Accumulation

Surprisingly, there is another way to optimize the cost-integral with respect to the controller

parameters. In this approach, the quantity that is transported from one place and time to

another is not an error signal at all; it is the sensitivity of each state variable to each of the

parameters, dxi(t′)/dΘ j. This sensitivity can be calculated forward-in-time alongside the

integration of the model equations. Define the matrix Gi j(t′) = dxi(t′)/dΘ j and the vector

q = ∂S/∂Θ. At time t, these variables are initialized identically to 0. We prove in the

Appendix that the following system of equations calculates q:

Ġ = δF/δx ·G + δF/δu ·
(
∂u/∂Θ + δu/δx ·G

)
(3.3.2)

q̇ =
1
τ

exp
[
− (t′ − t)/τ

](
δL/δu · ∂u/∂Θ + δL/δx ·G

)
. (3.3.3)

To our knowledge, this method of optimizing dynamical systems was first proposed by

McBride and Narendra (McBride and Narendra, 1965). It has been rediscovered numerous

times, though (Williams and Zipser, 1989) (Kolter, 2010) (Atkeson, 2012). Because the

model dynamics run forward-in-time and require no external memory resource beyond the

matrix G and vector q, we find forward accumulation to be more convenient for approxi-

mation in the form of a system of neural networks.

68

Figure 3.1: Flow Diagram of the Forward Accumulation Computation.
The boxes are functions. Lines entering a box comprise the arguments of the function. The red paths convey
information about the cost function; these are error paths. A merging of lines represents multiplication. A box
with an outgoing line that loops back to itself represents a differential equation. The crescent loops indicate
that two paths are non-interacting. A red arrow crossing another object represents error-driven parameter
modificiation. As the forward model F is integrated, terms involving the sensitivity matrices δF/δx and δF/δu
are integrated to form G, the sensitivity of the state variables to the parameters. G is combined with the cost
function derivatives δL/δx and δL/δu and integrated to determine q, which modifies Θ via a gradient-based
procedure.

3.3.1 Planning versus Acting

Very importantly, the optimization of equation 3.3.1 by forward or backward accumulation

cannot be performed on the actual system since we do not know the Jacobian matrices

69

of the system. It can only be performed on a model of that system. This has significant

consequences.

Suppose we attempt to execute a trial of the control policy on the real system. Unfor-

tunately, the system equations ẋ = Fsystem(x,u) may be inaccurately approximated by our

model ẋ = F(x,u). Both forward and backward accumulation rely on estimating δFsystem/δx

and δFsystem/δu, which we approximate with our model equations δF/δx and δF/δu. There

is nothing to be done but to make sure the model is a good one.

Since all optimization is done on a model of the system, we lose nothing, but gain a great

deal, by optimizing using the model before acting. If we already possess a system model,

we can avoid the time and effort required to work with the real system during optimiza-

tion computations. Planning computations, in which optimization for the interval of time

between t and t+Nτ occurs before or at time t, become attractive. To perform these compu-

tations, at a minimum, we need to integrate ẋ from time t to t + Nτ using the forward model

several times as we change the parameters of the controller. Planning is especially practical

if the computations can be executed quickly enough not to hinder the actual operation of

the system. The optimization can be significantly expedited if we need not perform it de

novo. If we have performed a partial optimization in the past, the current optimization will

take less time.

It is also possible to optimize the equations without planning. We can integrate G and q

using our models δF/δx, δF/δu, δu/δx, . . . as we interact with the actual system Fsystem. As

we accumulate the gradent, we can make slow changes to Θ based on the current value of

q. However, this method requires a large number of trials on the actual system, and, for the

sake of the present study, the efficiency of our network compared to reinforcement learning

methods is more apparent if we allow ourselves the freedom to optimize by planning.

70

3.3.2 Models

Forward Model

To perform model-based planning, we first need the forward model, F. In the present study,

we construct the forward model as a feedforward neural network. To learn the model,

we merely actuate the system with random controls u and use the difference between the

system state and the model prediction as an error signal.

Figure 3.2: Learning a Forward Model.
We provide random control inputs to the system and the forward model. The difference between the output of
the system and the forward model is used as an error signal for the model. The crossed arrowheads indicate
that the output of the system trains the forward model. The error signal that trains the model is completely
unrelated to the error signals used in the control problem.

71

3.3.3 Sensitivity Models

System Sensitivities

Equation 3.3.2 demands that we calculate the sensitivities δF/δx and δF/δu. We will repre-

sent them in neural networks. Kolter (Kolter and Ng, 2009) has suggested that they can be

guessed for some robotic systems, but in general the sensitivities are time-varying and can

even reverse sign as the system state changes. Outside of the framework of optimal control,

these Jacobian matrices have been learned by Gaàl (Gaàl, 1995), Hinton and McClelland

(Hinton and McClelland, 1988), and by Abdelghani et al. (Abdelghani et al., 2008) by mea-

suring time derivatives of the system dynamics. In such an approach, we take advantage of

the fact that

Ḟsystem = δFsystem/δx · ẋ + δFsystem/δu · u̇.

Define the sensitivity model J(x,u) to be a network approximation of

[δFsystem/δx, δFsystem/δu].

Then
1
2

∣∣∣∣∣
∣∣∣∣∣ẍ − J(x,u) · [ẋ; u̇]

∣∣∣∣∣
∣∣∣∣∣
2

is a reconstruction error that can be used to train the sensitivity model. A nice property of

this error is that we can compute it while operating the system. There are some drawbacks

as well. Time derivatives are notoriously noisy, and we are cavalierly taking the second

time derivative. Additionally, we are only learning J projected along the curve taken by

the system dynamics. To guarantee that we can properly identify the components of J, we

would need to excite the components of [ẋ; u̇] independently. This may be difficult since

we have direct responsibility only over u̇. Finally, we also cannot control the magnitudes

72

of the time derivatives in a simple way; to do so would be tantamount to controlling the

system, which is begging the question.

Yet since we already possess a forward model, we use it instead to estimate the sensitivity

model. As we interact with the system, Fsystem, at every operating point z = (x,u), we run

several iterations (Nprobe) of sensitivity analysis on the model, F, in which we choose pertur-

bations (δx, δu) randomly with mean 0 and variance σ2
probe and evaluate the reconstruction

error. The reconstruction error is

1
2

∣∣∣∣∣
∣∣∣∣∣
(
F(z + δz) − F(z)

)
− J(z) · δz

∣∣∣∣∣
∣∣∣∣∣
2

. (3.3.4)

Here, we have total control over the perturbations and can excite the components of the

state as easily as we can excite the control components. After a perturbation, we train the

sensitivity model parameters to minimize this reconstruction error. The error derivative

with respect to the (i, j)-unit in the sensitivity model is

(
δFi −

∑

k

Jik(z) · δzk

)
δz j. (3.3.5)

The expectation value of this error derivative scales with the variance of the perturbation

〈δzk · δz j〉 = σ2
probeδk j, where we have chosen uncorrelated perturbations. For example,

before learning, when J(z) = 0, the expected error derivative is

〈(δFi − 0)δz j〉 =

〈∑

k

(δFi/δFk)zkz j

〉

=
∑

k

(δFi/δFk)σ2
probeδk j

= (δFi/δF j)σ2
probe.

73

To correct for this scaling, we divide by the variance of the perturbation

(
δFi −

∑

j

Jik(z) · δzk

)
δz j/σ

2
probe (3.3.6)

when we deliver the error to the (i, j)-unit in the sensitivity model.

Figure 3.3: Learning a Sensitivity Model.
The sensitivity model linearizes the dynamics around the operating point (x,u). It takes the operating point as
input and multiplies its output against the perturbation around this point to calculate the estimated perturbation
to the output of the forward model.

74

Figure 3.4: The Outputs of the Sensitivity Model.
Each output unit of the sensitivity model corresponds to one entry in the Jacobian matrices δF/δx and δF/δu.

Controller Sensitivities

In addition to the sensitivity model of the plant, we also need the sensitivity derivatives of

the controller itself, ∂u/∂Θ and δu/δx. Although we could use the same mechanism as

above to estimate them, we chose to evaluate these sensitivities analytically by backpropa-

gation. Our choice is primarily one of convenience; to model the sensitivities with networks

would create another inner loop of learning which would slow down the simulations due to

the added computational burden and training time.

Cost Function Sensitivities

Finally, we need to know δL/δx and δL/δu. Our method actually does not need to com-

pute L(x,u) itself, so we produce the cost function gradients directly. These gradients are

specified algebraically in a function.

3.3.4 The Planning Cycle

Once we have trained the forward model and the forward sensitivity model, we can address

the control problem in full. At every small time step of our simulation, we perform the

75

following operations:

1: for n from 1 to Nplan.
2: initialize G, q to 0
3: for time t′ step by dt′ from t to t + Nτ
4: compute control u(x;Θ)
5: integrate state by ẋ = F(x,u)
6: integrate G by equation 3.3.2
7: integrate q by equation 3.3.3
8: end for
9: update Θ using q (using a gradient-based method – e.g., Nesterov’s method)

10: end for
11: apply u(x(t);Θ) to system

76

3.4 Simulations

3.4.1 Torque-Limited Pendulum Swing-up

Problem Formulation

In the pendulum swing-up problem (Doya, 2000), a pendulum in a gravitational field is

dropped at a random angle, and a torque must be applied to the pendulum bob to swing the

pendulum into the upright position and balance it there. The pendulum equations are

θ̇ = ω

ml2ω̇ = −µω + mgl sin(θ) + u.

We report specific parameter values in the Appendix. The state is x = [θ;ω], and the control

is the single torque u. We make a transformation of the state to x′ = [cos(θ); sin(θ);ω] but

from now on will refer to the transformed state as x. The cost function for the problem

takes the form

L(x,u) = Lstate(x) +Lcontrol(u)

= − cos(θ) + βω2/2 + α(2/π)2umax log(| cos((π/2)u/umax)|)

= −x1 + βx2
3/2 + α(2/π)2umax log(| cos((π/2)u/umax)|). (3.4.1)

The form of Lcontrol(u) deserves further discussion. We, of course, do not make use of

backward accumulation to compute optimal controls in this paper, but, as we derive in

the Appendix, in terms of the costate, the gradient of the cost-integral with respect to the

77

control variables is

δS/δu = δL/δu + p> · δF/δu

We can substitute the control cost from equation 3.4.1 into this equation.

δS/δu = δ(α(2/π)2umax log(| cos((π/2)u/umax)|)/δu + p> · δF/δu

= (α/umax)(2/π) tan((π/2)u/umax) + p> · δF/δu

At an extremum, we have δS/δu = 0, so

u = umax(2/π) tan−1
(
− (π/2)(umax/α)p> · δF/δu

)
.

We also note that in this system the control enters linearly into the model equations, so

δ2F/δu2 = 0. Thus, the second derivative is simply the positive definite quantity

δ2S/δu2 = (α/u2
max)sec((π/2)u/umax)2>0,

and we are guaranteed that the extremum is a minimum. Since tan−1 is bounded by π/2, the

maximum torque is umax. Provided that the maximal control torque is small compared to

the maximal torque imparted by gravity, the pendulum must be swung repeatedly back-and-

forth to gain enough energy to reach the goal state, where x1 and x3 are nearly 0. For this

reason, the torque-limited pendulum swing-up is a good model problem in optimal control.

To minimize the cost integral, the optimal trajectory needs to pass transiently through states

of high immediate cost, an exhibition of “delayed gratification.”

78

Figure 3.5: Torque-Limited Pendulum Swing-Up.
A torque u is applied to the pendulum bob to swing the pendulum toward the goal state. If the maximum
torque umax is limited so that |umax| < |mgl|, the trivial solution of pushing the pendulum directly to the top
is not possible. Instead, a pumping solution must be found in which the pendulum swings back and forth in
order to gain enough energy to reach the top.

For the sake of implementation we make a few adjustments to our equations. Unfortunately,

if we represent θ as (cos(θ), sin(θ)) and examine the Jacobian in the new coordinates, we

find discontinuities. Consider the term ∂ẋ1/∂x1. ẋ1 = d cos(θ)/dθ · θ̇ = − sin(θ)θ̇ = −ωx2.

This is

∂[−ωx2]/∂x1 = −ω · d sin(θ)/d cos(θ)

= ω cot(θ)

= ωx1/x2

79

This diverges when x2 = 0 at θ = 0. This discontinuity is due to the interaction of our

parameterization with the system equations. Our simple correction to remove the problem

is to drop the use of differential equations. Instead of using time derivatives ẋ = F(x,u),

we integrate the equations for a time ∆t′: x(t′ + ∆t′) = Fdiscrete(x(t′),u(t′)). In discrete time,

our updates for G and q change slightly. Now,

∂x(t′ + ∆t′)/∂Θ = δFdiscrete(x(t′),u(t′))/δx(t′) · dx(t′)/dΘ

+ δFdiscrete(x(t′),u(t′))/δu(t′) · ∂u(t′)/∂Θ

+ δFdiscrete(x(t′),u(t′))/δu(t′) · δu(t′)/δx(t′) · dx(t′)/dΘ.

Or,

G(t′ + ∆t′) = δFdiscrete/δx(t′) ·G(t′)

+ δFdiscrete/δu(t′) · ∂u(t′)/∂Θ

+ δFdiscrete/δu(t′) · δu(t′)/δx(t′) ·G(t′).

Since our system really does evolve smoothly in time, the forward model’s state prediction

at time t′+ ∆t′ should be very close to the state at time t′. Therefore, it is useful to write the

discrete time equations instead as x(t′ + ∆t′) = x(t′) + Fdiscrete(x(t′),u(t′)), loading only the

state changes in the forward model. It is this form that we have used in our computations.

In this case,

G(t′ + ∆t′) = G(t′) + δFdiscrete/δx(t′) ·G(t′)

+ δFdiscrete/δu(t′) · ∂u(t′)/∂Θ

+ δFdiscrete/δu(t′) · δu(t)/δx(t′) ·G(t′).

80

In either case for q we have

q(t′ + ∆t′) = q(t′) +
1
τ

exp
[
(t′ − t)/τ

](
δL/δu · δu/δΘ + δL/δx ·G(t′)

)
.

Network Structure

We have used radial basis function networks. The forward model and the forward sensi-

tivity model have input (x,u), whereas the controller network has only state-related input

x. For an input vector y, these networks compute their hidden layer activities h j(y) and

outputs zi(h) as

h j(y) =
exp(−||y − µ j||2/2σ2)∑
k exp(−||y − µk||2/2σ2)

,

zi(h) =
∑

j

Wi jh j(y).

In this study, we learn only the outgoing weights W, which are initialized to 0. We train the

forward model and the forward sensitivity model using a normalized version of Amari’s

natural gradient method (Amari, 1998), which we derive in the Appendix.

Our pendulum controller has an additional output nonlinearity and produces its output ac-

cording to umax tanh(z(h)). This guarantees that the control output stays inside the range

where the cost function Lcontrol is finite. It also gives the controller another saturating non-

linearity to work with, which simplifies the production of torques that are sensitive to the

state but never grow too large.

Examining the Forward Model

We train the forward model by actuating with white-noise torques in the range u ∈ (−5, 5).

We start each trial from a uniform angle in (π, π) with angular velocity ω ∈ (−5/2π, 5/2π).

81

On every fifth learning trial, starting from trial 0, we compute the average prediction error

of the forward model over the entire state space (with u = 0). To do so, we discretize the

state space by marking a 25-by-25 grid on the θ interval from (−π, π) and on the ω interval

from (−5/2π, 5/2π). We average the mean-squared error over those 252 grid points.

0 5 10 15 20 25 30 35 40 45 50
10−4

10−3

10−2

10−1

100

Trial Number

M
SE

Figure 3.6: The Learning Curve for the Forward Model.
Within tens of trials, the forward model’s predictions are extremely good.

82

Examining the Sensitivity Model

After we have trained the forward model for 50 trials, we train the sensitivity model. (Train-

ing the two models sequentially is not necessary. For the cart-pole problem in the next

section, we trained the models at the same time. However, to generate learning curves for

the sensitivity model that reflect learning processes in the sensitivity model alone, the for-

ward model must be finalized before the sensitivity model is trained.) At each time step,

we perform 10 perturbations on the forward model. The learning curve for the sensitivity

model is very steep, and the outputs of the network very closely approximate the entries

of the Jacobian of the forward model (Figure 3.6). The outputs are much less good at ap-

proximating the system Jacobian as calculated by finite differences in our sine and cosine

parameterization (Figure 3.7). Since the forward model’s error is low, and the sensitivity

model is very accurate in its estimate of the Jacobian of the forward model, it would seem

striking that the sensitivity model is not more accurate at predicting the Jacobian of the

system equations. This is again an artifact of our parameterization, using sinusoids in place

of angles. To perform finite differences, we add perturbations to the (sin(θ), cos(θ)) terms

of the state vector, invert the parameterization to get θ, apply the system equations, then

re-apply the transformation to get the new sine and cosine terms. By doing this, we have

violated the constraint that these terms square to 1. The appropriate way to compute the

system Jacobian under these constraints deserves further study, but for the present moment

we leave it as a puzzle.

83

0 5 10 15 20 25 30 35 40 45 50
10−4

10−3

10−2

10−1

Trial Number

M
SE

Figure 3.7: The Learning Curve for the Sensitivity Model.
Here, we are comparing the sensitivity model’s predictions against the analytically computed Jacobian of the
forward model.

Optimizing the Controller

At every time step of simulation, we run a planning cycle. After we calculate the gradient

term q, we update the controller parameters, that is, the outgoing weights of the radial basis

network, using Nesterov’s accelerated gradient method (Nesterov, 1983), detailed in the

Appendix. Nesterov’s method is an entirely local, first-order update algorithm, but it has a

convergence rate that is provably superior to simple gradient descent methods when applied

to convex functions.6 Once we have learned the forward model and forward sensitivity

6By way of disclaimer: our functions are not clearly convex, and we do not use the optimal parameter
settings that Nesterov requires for his proof because extra calculations are necessary to set them.

84

−3 −2 −1 0 1 2 3

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8 0.08

0.09

0.1

0.11

0.12

0.13

0.14

Figure 3.8: Finite-Differences Computation of Sensitivity Model Error.
The mean-squared error of the sensitivity model at each point on the grid based on finite-differencing the
actual system dynamics when no torque is applied (u = 0). The error of the approximation to the system
Jacobian is much higher than the approximation error of the Jacobian of the forward model was in Figure 3.7.

model, the planning cycle for the controller is sufficient to achieve swing-up on the first trial

for the controller (Figure 3.9), using surprisingly few evaluations per cycle. We achieved

success with fewer than 5 planning evaluations per time step but chose to use 5 because this

provided very smooth swing-up trajectories (Video 3.1). In contrast, Doya (Doya, 2000)

has exhibited a method that uses the exact system Jacobian yet still requires approximately

20 trials to attain frequent success.

85

Figure 3.9: Key Frames of Pendulum Swing-Up.
To reach the top, a back-and-forth swinging action has been discovered on the first trial. The frames read
top-left to top-right, then bottom-left to bottom-right.

3.4.2 Cart-Pole Swing-Up

Problem Formulation

In the cart-pole problem, a cart on a track is attached to a pole that must be swung up

from an arbitrary angle and balanced. There are 4 state variables (θ, ω, x, v) and one control

variable u, a force that is applied to push the cart back-and-forth. The equations of the cart

(Florian, 2007) are

θ̇ = ω,

ω̇ =
(mc + mp)g sin(θ) + cos(θ)(−u − mplθ̇2 sin(θ))

l(4
3 (mc + mp) − mp cos(θ)2)

,

ẋ = v,

v̇ =
u + mpl(θ̇2 sin(θ) − ω̇ cos(θ))

mc + mp
.

86

An important property of these dynamics is that the derivative with respect to the control

variable is a function of the state in the second equation. By contrast, in the pendulum prob-

lem, the sensitivities with respect to the control are constant. This makes the construction

of the forward and sensitivity models for the cart-pole system qualitatively more difficult;

hence, the cart-pole problem serves as a more strenuous test of our methods.

Figure 3.10: Cart-Pole Swing-Up.
In the cart-pole problem, a limited force must be applied to a cart on a track to swing the stick upright and
balance it.

87

We again process the angle by taking the sine and cosine to get the entire state vector

x = [cos(θ); sin(θ);ω; x; v] and define a cost function that rewards upright pole positions

while discouraging the use of large forces and states with high rotational and translational

velocities.

L(x,u) = − cos(θ) + αu2/2 + βv2/2 + γω2/2

= −x1 + αu2/2 + βx2
5/2 + γx2

3/2.

Building the Models

Because of the increased dimensionality of this problem, learning the forward model and

the sensitivity models was challenging. None of our models received information about

the x-coordinate, facilitating the learning of translationally invariant policies. To expedite

learning, we switched among learning trials that started from several different likely con-

figurations along paths to the goal state. In one configuration, the angle of the pole was

random, the angular velocity was 0, and the cart was still. In another configuration, the

pole was close to upright with 0 angular velocity, and the cart was moving quickly. In a

third, we uniformly sampled the state space, bounding the maximum velocities. We simul-

taneously trained the forward model and the sensitivity model by first training the forward

model on a new pattern, then experimenting on the forward model with 5 perturbations to

train the sensitivity model. Once the models were trained, we could again optimize trajec-

tories on the first trial, using as few as 10, but usually 20, gradient updates per planning

cycle. Our resultant controller was able to solve the problem in real-time (Video 3.2).

88

Figure 3.11: Key Frames of Cart-Pole.
Key frames in the first trial of the cart-pole swing-up problem.

3.5 Discussion

We have demonstrated that it is possible to learn forward models of unstable dynamical

systems and build sensitivity models by experimentally perturbing those forward models.

Despite the presence of modeling inaccuracies, we can still solve optimal control problems,

and we can do so with a tabula rasa controller network on the first trial.

By combining our sensitivity models with forward accumulation-based optimization, we

can forego the usual memory structures required by conventional solution methods used

in optimal control. One of the typical critiques of optimal control calculations is that they

are not performed by network structures but instead use the full resources of the computer

on which the model is executed to perform external computations. Such critiques have

long compelled researchers to investigate reinforcement learning algorithms for network

optimization, despite known efficiency limitations. We hope that this study stimulates re-

searchers to think broadly about what networks truly cannot do. The architecture of the

motor system may be more structured, strange, and marvelous than we currently speculate.

89

3.6 Appendix

3.6.1 Derivation of Backward Accumulation

In a similar manner to our previous derivation of backpropagation in Chapter 1, we can

get cost-integral gradients for equation (2). First, we create a constrained optimization

problem, guaranteeing that the dynamical equations of the plant remained satisfied.

S =

∫ t+Nτ

t
dt′

1
τ

exp
[
− (t′ − t)/τ

]
L
(
x(t′),u(x(t′);Θ)

)
+ λ(t′)>[F(x(t′),u(x(t′);Θ) − ẋ(t′)]

=

∫ t+Nτ

t
dt′

1
τ

exp
[
− (t′ − t)/τ

]{
L
(
x(t′),u(x(t′);Θ)

)
+ p(t′)>[F(x(t′),u(x(t′);Θ) − ẋ(t′)]

}
,

defining p(t′) = (1/τ) exp[(t′ − t)/τ)]λ(t′) to simplify further calculation. The term

∫ t+Nτ

t
dt′

1
τ

exp
[
− (t′ − t)/τ

]
p(t′)>[−ẋ(t′)]

can be integrated by parts:

∫ t+Nτ

t
dt′

1
τ

exp
[
− (t′ − t)/τ

]
p(t)>[−ẋ(t′)] =

[1
τ

exp[−(t′ − t)/τ]p(t′)>[−x(t′)]
]∣∣∣∣∣

t+Nτ

t

+

∫ t+Nτ

t
dt′

d
dt′

[1
τ

exp[−(t′ − t)/τ]p(t′)>
]
x(t′)

= −
[1
τ

exp[−(t′ − t)/τ]p(t′)>x(t′)
]∣∣∣∣∣

t+Nτ

t

+

∫ t+Nτ

t
dt′

1
τ

exp[−(t′ − t)/τ]
[
ṗ(t′)> − 1

τ
p(t′)>

]
x(t′).

90

If we reinsert this into the full equation, we have

S =

∫ t+Nτ

t
dt′

1
τ

exp
[
− (t′ − t)/τ

]{
L
(
x(t′),u(x(t′);Θ)

)
+ p(t′)>F(x(t′),u(x(t′);Θ)

+

[
ṗ(t′)> − 1

τ
p(t′)>

]
x(t′)

}
−

[1
τ

exp[−(t′ − t)/τ]p(t′)>x(t′)
]∣∣∣∣∣

t+Nτ

t
.

We can take the variation of S with respect to the state variables at a given time. Ignoring

the boundary condition for a moment, the variation at times not on the boundary is given

by

δS/δx(t′) · δx(t′) =

(
δL/δx + δL/δu · δu/δx

)
· δx + p> ·

(
δF/δx + δF/δu · δu/δx

)
· δx

+

(
ṗ> − 1

τ
p>

)
· δx.

At an optimum, the variation with respect to the state variables is 0. Therefore,

0 =

(
δL/δx + δL/δu · δu/δx

)
· δx + p> ·

(
δF/δx + δF/δu · δu/δx

)
· δx

+

(
ṗ> − 1

τ
p>

)
· δx.

For nonzero δx, this can only be satisfied if

ṗ = −δL/δx> − δu/δx> · δL/δu> −
(
δF/δx> + δu/δx> · δF/δu>

)
· p +

1
τ

p.

The variation due to the control variables can be calculated similarly:

δS/δu(t′) =
1
τ

exp
[
− (t′ − t)/τ

](
δL/δu + p> · δF/δu

)
.

This is blessedly simple in comparison. Since the parameters Θ only interact with the

cost through the control variables, we can calculate the gradient with respect to them as

91

∫
dt′δS/δu(t′) · ∂u(t′)/∂Θ.

For the variation at the boundary:

−
[1
τ

exp[−(t′ − t)/τ]p(t′)>δx(t′)
]∣∣∣∣∣

t+Nτ

t
=

1
τ

p(t)>δx(t) − 1
τ

exp[−N]p(t + Nτ)>δx(t + Nτ).

Since the variation with respect to these terms must also be 0, we have that p(t + Nτ) = 0.

We also see that δS/δx(t) = 1
τ
p(t). The former equation implies that we must calculate

equation 3.6.1 by integrating backward from t + Nτ since the boundary condition is only

known at that time. The latter equation demonstrates that the gradient of the cost-integral

with respect to a state at a given time is given by the quantity 1
τ
p(t), also known as the

“costate.”

3.6.2 Derivation of Forward Accumulation

First, define the quantity Gi j(t′) ≡ dxi(t′)/dΘ j. The system equations dictate that x(t′) =
∫ t′

t
dsF(x(s),u(x(s);Θ)). Therefore,

G(t′) =

∫ t′

t
ds∂F(x(s),u(x(s);Θ))/∂Θ

=

∫ t′

t
dsδF/δx(s) · dx(s)/dΘ + δF/δu ·

(
∂u/∂Θ + δu(s)/δx(s) · dx(s)/dΘ

)

=

∫ t′

t
dsδF/δx(s) ·G(s) + δF/δu ·

(
∂u/∂Θ + δu/δx ·G(s)

)

We can generate a differential equation for G:

Ġ = δF/δx ·G + δF/δu ·
(
∂u/∂Θ + δu/δx ·G

)

92

We then use the decomposition

δS/δΘ =

∫ t+Nτ

t
dt′

1
τ

exp
[
− (t′ − t)/τ

](
δL/δu(t′) · ∂u(t′)/∂Θ + δL/δx(t′) ·G(t′)

)
.

Define q ≡ ∂S/∂Θ. Our previous equation, too, can be integrated forward-in-time:

q̇ =
1
τ

exp
[
− (t′ − t)/τ

](
δL/δu · ∂u/∂Θ + δL/δx ·G

)
.

93

3.6.3 Pendulum Problem

Simulation Parameter Value Notes

m 1 kg

l 1 m

umax 5 kg · m2/s2 units of torque

α 0.1

β 0.05

g 9.8 · m/s2

µ 0.1kg · m2/s

τ 2s

dt 0.09s

Nhorizon 1 We optimize over 1τ⇒ dτ/dte = 23 steps

Nplan 5

Npert 10

ηfm 1 forward model learning rate

ηsm 0.1 sensitivity model learning rate

ρ 0.95 for Nesterov’s method

ν 0.1 for Nesterov’s method

σforward 2.4

σsensitivity 2.4

σcontroller 0.12

We use a second-order Runge-Kutta method to integrate the pendulum equations. Every

time we call this method, we integrate 3 successive times with time step dt/3. This allows

us to maintain numerical accuracy while still learning the forward model on the relatively

94

coarse time scale of 0.09 seconds.

3.6.4 Cart-Pole Problem

Simulation Parameter Value Notes

mp 0.1 kg pole mass

mc 1.0 kg cart mass

l 0.5 m pole length is 2l

umax 10 kg · m/s2 (Newtons)

α 0.05

β 0.05

γ 0.05

g 9.8 · m/s2

µ 0.1kg · m2/s

τ 1s

dt 0.09s

Nhorizon 1 We optimize over 1τ⇒ dτ/dte = 12 steps

Nplan 20

Npert 5

ηfm 1 forward model learning rate

ηsm 0.1 sensitivity model learning rate

ρ 0.99 for Nesterov’s method

ν 0.01 for Nesterov’s method

σforward 15.5

σsensitivity 15.5

σcontroller 0.99

95

3.6.5 Network Learning

Setting the Radial Basis Function Parameters

For the µ-s, we tile the space of allowed state configurations evenly. For each independent

dimension d, we define a lower bound b and upper bound a. The interval length I = a − b

is divided into Md + 1 pieces, and we define µd
j = j · (I/Md) + b for j = 0 . . . Md. When

our dimensions represent cosines and sines, we tile in the space of θ ∈ [0, 2π] and then

transform by taking the cosine and sine. Our basis function centers are constructed as

the terms of the Cartesian product of the center points along the individual dimensions

µk,l,m,... = (µ1
k , µ

2
l , µ

3
m, . . .). Finally, we collapse or vectorize the multi-index µk,l,m,... into a

single linear index µ j for j = 1 . . .Nbasis. To set σ, we compute the volume of the whole

space V . (Again, co-dependent coordinates do not count as multiple dimensions.) Then the

volume occupied by the basis functions is of order O(Nbasis · σD). Setting V = Nbasis · σD,

we find we cover the whole space if σ ≈ (V/Nbasis)1/D. In practice, this order of magnitude

estimate for σ was multiplied by a coefficient, and the coefficient was tested over a range

of 10−1 through 10 for fastest learning.

For the pendulum problem basis function centers, we grid the θ interval (−π, π) at 15 points,

the ω interval (−5/2π, 5/2π) at 15 points, and the u interval (−5, 5) at 10 points.

For the cart-pole problem basis function centers, we grid the θ interval (−π, π) at 8 points,

the ω interval (−3π, 3π) at 6 points, the v interval (−3, 3) at 5 points, and the u interval

(−10, 10) at 5 points. We did not include the x variable as input to any of the networks.

A Normalized Version of Amari’s Natural Gradient

Given a metric gi j that determines vector lengths, we construct an online learning rule that

simultaneously makes the error on the current pattern zero while minimizing the length of

96

the change to the weight vector according to the metric.

Define ∆wi to be the change to weight wi. Our training set consists of patterns (x, y), where

x is a vector and y is a scalar. (We perform the derivation here for scalar output, but the

results generalize trivially at the end to vector output.) Our cost function for a new pattern

x is:

L(x,∆w, λ) =
1
2

∑

i, j

∆wigi j∆w j + λ[y −
∑

i

(wi + ∆wi)xi]

If we minimize with respect to ∆wi, we get

∂L(x,∆w, λ)
∂∆wi

=
∑

j

gi j∆w j − λxi = 0.

We can invert the metric by raising indices to get

∆wk = λ
∑

i

gkixi.

To complete the specification of the learning rule, we must impose the constraint that y −
∑

i(wi + ∆wi)xi = 0. If we define the error on the current pattern as δ = y−∑
i wixi, then we

can see that

y −
∑

i

(wi + ∆wi)xi = 0

⇒ δ =
∑

i

∆wixi

= λ
∑

i, j

xigi jx j.

97

We can solve for λ.

λ =
δ∑

i, j xigi jxk
.

Substituting λ into the weight update gives us

∆wk =
δ ·∑i gkixi∑

i, j xigi jx j
. (3.6.1)

This generalizes the normalized least mean squares learning rule (Haykin, 2003) to the case

of a general metric. Amari (Amari, 1998) has studied Riemannian metrics associated with

the parameter spaces of many networks. Here, we merely use the sample covariance matrix

Ci j(T) = (1/T)
∑T

t=1 xi(t)x j(t) as a simple but powerful metric. In this case, on the T -th time

step, we update the weights by

∆wk(T) =
δ ·∑i Cki(T)xi(T)∑
i, j xi(T)Ci j(T)x j(T)

, (3.6.2)

where we have taken the inverse covariance matrix by raising the indices. We can also

compute Cki or C−1 recursively. Suppose we have an estimate at time T of the inverse

covariance C−1(T), and we want an estimate of the inverse covariance at time T + 1. First

note that the covariance matrix itself can be written recursively:

Ci j(T + 1) =
1

T + 1

T+1∑

t=1

xi(t)x j(t)

=
1

T + 1

T∑

t=1

xi(t)x j(t) +
1

T + 1
xi(T + 1)x j(T + 1)

=
T

T + 1
Ci j(T) +

1
T + 1

xi(T + 1)x j(T + 1)

To find a recursive update for the inverse of the covariance matrix, we employ the Sherman-

98

Morrison lemma which states that for an invertible matrix A and a rank-one outer-product

uv>

(A + uv>)−1 = A−1 − A−1uv>A−1

1 + v>A−1u
(3.6.3)

Here, we can apply the result to compute the inverse covariance recursively.

C−1(T + 1)−1 =

(T
T + 1

C(T) +
1

T + 1
x(T + 1)x>(T + 1)

)−1

= (T + 1)
(
T−1C−1(T) − T−1C−1(T)x(T + 1)x(T + 1)>T−1C−1(T)

1 + x(T + 1)>T−1C−1(T)x(T + 1)

)

=
T + 1

T

(
C−1(T) − C−1(T)x(T + 1)x(T + 1)>C−1(T)

T + x(T + 1)>C−1(T)x(T + 1)

)
.

We can efficiently automate the learning rule update at time T + 1 using the following

algorithm:

1: k := C−1(T)x(T + 1)
2: d := x(T + 1)>k
3: γ := 1/(T + d)
4: C−1(T + 1) = T+1

T (C−1(T) − γkk>)
5: w(T + 1) := w(T) + γδk>

For multidimensional outputs, the vector w is just replaced with a matrix W, and the scalar

δ becomes a vector of errors. If we have noisy target patterns, making the error 0 with each

learning step is overly aggressive. In this case, we can modify the weight update above to

make w(T + 1) := w(T) + ηγδk> for some η ∈ (0, 1]. Appealingly, for η = f /100, we make

an f % reduction in error after learning on the current pattern.

99

Nesterov’s Accelerated Gradient

1: for n from 1 to Nplan
2: evaluate q|Θ+ρv using one iteration of the planning cycle
3: v := ρv − νq
4: Θ := Θ + v
5: end for

100

Chapter 4

Conclusion

101

4.1 What Should We Look For?

Nate Sawtell has asked me to consider what a physiologist should search for if he were

to take any of these ideas seriously. I have to admit, I’m not very well-prepared for this

question, even though it is the most natural question to ask. It is true that the levels of

description of algorithms and biophysics are very different, and one superficially might

think this is the difficulty. But this difference is a subjective one. The real problem is not

that optimal control theory is difficult to pin down neurally, it is that algorithms themselves

have proved elusive. I often feel that if we had just one fully worked-out circuit that we

could clearly understand both dynamically and functionally, it would serve as a Rosetta

Stone for the rest of the nervous system. We know that the brain must partake of exorbitant

reuse of its functional components. The genome is only a gigabyte, after all. A little

window may be enough to get a full glimpse.

We do know something about what a forward model might look like. The forward models

we build take in the state and control command information and predict the state informa-

tion at a delayed time. One might expect that this delay is exactly the conduction delay

from the initiating motor discharge down to the spinal cord and musculature plus the time

for proprioceptive signals to travel back up the spinal cord. In the human locomotor system,

such a delay could be on the order of 200 milliseconds. In the Mormyrid electric fish, this

delay is probably on the order of tens of milliseconds. A possible signature of the forward

model then is a circuit that uses sensory and motor information at time t to predict sensory

information that arrives at time t + ∆t. To learn to associate the information at time t with

the information at time t + ∆t, the early-arriving information must be delayed artificially.

In the Mormyrid electric fish, the unipolar brush cell could serve as a delay element.

The sensitivity model is a more speculative module, but it is perhaps simpler to look for. It

102

pairs a perturbation generator with a difference calculation. That is, the difference between

the circuit output before and after the perturbation needs to be estimated. Such a difference

can indeed be calculated by time derivatives; perhaps a mechanism of synaptic facilitation

or residual calcium concentration in spiking cells could perform a differencing operation.

The sensitivity model also requires a reasonable neural approximation to multiplication. In

this case, the necessary clue is clear: if the firing rate of a neuron approximates the product

of the firing rates of two other neurons, we have a suspect. Alternatively, if a neuron detects

the coincidence of the spiking of two other neurons, it could implement multiplication in

binary.

The ever-present dilemma throughout the history of neuroscience is whether the brain func-

tions as a totally distributed system or a highly modular one. Noted historical proponents of

the modular view included phrenologists like Franz Joseph Gall. Noted proponents of the

distributionist view included Camillo Golgi, who believed in a sylvan reticulum. Whatever

the final truth may be, we inhabit an era in which consensus opinion is swinging towards

modularity. I expect that in another generation or so it will swing back – so it goes with the

deep questions – but, for now, the age is on our side. Let’s look for box diagrams!

103

Chapter 5

Bibliography

104

Bibliography

M N Abdelghani, T P Lillicrap, and D B Tweed. Sensitivity Derivatives for Flexible Sen-
sorimotor Learning. Neural computation, 20(8):2085–2111, August 2008.

S Amari. Natural Gradient Works Efficiently in Learning. Neural computation, 10(2):
251–276, February 1998.

C G Atkeson. Efficient Robust Policy Optimization. Technical report, 2012.

F Attneave. Some informational aspects of visual perception. Psychological Review, 61
(3):183–193, May 1954.

H B Barlow. Possible principles underlying the transformation of sensory messages. Sen-
sory communication, pages 217–234, 1961.

R E Bellman. Dynamic Programming. 1957.

C Brinkman, R Porter, and J Norman. Plasticity of motor behavior in monkeys with crossed
forelimb nerves. Science, 1983.

R A Brooks. A robust layered control system for a mobile robot. IEEE Journal of Robotics
and Automation, 1986.

F Crick. The recent excitement about neural networks. Nature, 1989.

P Dayan. Goal-directed control and its antipodes. Neural Networks, 2009.

Kenji Doya. Reinforcement Learning in Continuous Time and Space. Neural computation,
12(1):219–245, January 2000.

T T Flash and N N Hogan. The coordination of arm movements: an experimentally con-
firmed mathematical model. Journal of Neuroscience, 5(7):1688–1703, July 1985.

R V Florian. Correct equations for the dynamics of the cart-pole system. Center for
Cognitive and Neural Studies (Coneural), 2007.

G Gaàl. Relationship of calculating the Jacobian matrices of nonlinear systems and popu-
lation coding algorithms in neurobiology. Physica D: Nonlinear Phenomena, 1995.

105

E Gat. On Three-Layer Architectures. Artificial Intelligence and Mobile Robots, 1998.

A W Hantman and T M Jessell. Clarke’s column neurons as the focus of a corticospinal
corollary circuit. Nature Neuroscience, 2010.

S Haykin. Adaptive filter theory (ise). 2003.

W D Hillis and A Hart-Davis. The pattern on the stone. 1998.

G E Hinton and J L McClelland. Learning representations by recirculation. Neural infor-
mation processing . . . , 1988.

D Huh and E Todorov. Real-time motor control using recurrent neural networks. In pro-
ceedings of the 2nd IEEE Symposium on Adaptive Dynamic Programming and Rein-
forcement Learning, 2009.

M I Jordan and D E Rumelhart. Forward Models: Supervised Learning with a Distal
Teacher. Cognitive Science, 1992.

K Kavukcuoglu, M Ranzato, and Y LeCun. Fast inference in sparse coding algorithms
with applications to object recognition. Technical Report CBLL-TR-2008-12-01: Com-
putational and Biological Learning Lab, Courant Institute, NYU., 2008.

M Kawato, K Furakawa, and R Suzuki. A Hierarchical Neural-Network Model for Control
and Learning of Voluntary Movement. Biological Cybernetics, 1987.

J Z Kolter. Learning and control with inaccurate models. PhD thesis, Stanford, 2010.

J Z Kolter and A Y Ng. Policy search via the signed derivative. Robotics: science and
systems, 2009.

J W Krakauer. Personal Communication. 2013.

K S Lashley. Basic Neural Mechanisms in Behavior. Psychological Review, 1930.

Y LeCun. A theoretical framework for backpropagation. Proceedings of the 1988 Connec-
tionist Models Summer School, 1988.

L J Lin. Self-improving reactive agents based on reinforcement learning, planning and
teaching. Machine learning, 1992.

H R Maei, C Szepesvári, S Bhatnagar, D Precup, D Silver, and R S Sutton. Convergent
temporal-difference learning with arbitrary smooth function approximation. Advances
in Neural Information Processing Systems, 22:1204–1212, 2009.

P Mazzoni and J W Krakauer. An implicit plan overrides an explicit strategy during visuo-
motor adaptation. The Journal of neuroscience, 26(14):3642–3645, 2006.

106

L McBride and K Narendra. Optimization of time-varying systems. Automatic Control,
1965.

R C Miall, D J Weir, D M Wolpert, and J F Stein. Is the Cerebellum a Smith Predictor?
Journal of Motor Behavior, 1993.

M L Minsky. Computation. 1967.

I Mordatch, E Todorov, and Z Popović. Discovery of complex behaviors through contact-
invariant optimization. ACM Transactions on Graphics (TOG), 31(4):43, 2012.

Y Nesterov. A method of solving a convex programming problem with convergence rate O
(1/k2). Soviet Mathematics Doklady, 1983.

A Newell. Unified theories of cognition. 1994.

D Nguyen and B Widrow. The Truck Backer-Upper: An Example of Self-Learning in Neu-
ral Networks. Proceedings of the International Joint Conference on Neural Networks,
1989.

R M Sapolsky. Why Zebras Don’t Get Ulcers: The Acclaimed Guide to Stress, Stress-
Related Diseases, and Coping-Now Revised and Updated. 2004.

M Schmidt. minFunc. http://www.di.ens.fr/∼mschmidt/Software/minFunc.html, 2013.

R Shadmehr, M A Smith, and J W Krakauer. Error Correction, Sensory Prediction, and
Adaptation in Motor Control. Annual Review of Neuroscience, 2010.

C E Shannon. The bandwagon. IRE Transactions on Information Theory, 1956.

R F Stengel. Optimal control and estimation. Dover Publications, 1994.

G M Stratton. Some Preliminary Experiments on Vision Without Inversion of the Retinal
Image, 1896.

Y Sugita. Global plasticity in adult visual cortex following reversal of visual input. Nature,
1996.

D Sussillo and O Barak. Opening the black box: Low-dimensional dynamics in high-
dimensional recurrent neural networks. Neural computation, 2013.

I Sutskever. Training Recurrent Neural Networks. PhD thesis, University of Toronto, 2013.

R S Sutton and A G Barto. Reinforcement Learning: An Introduction. 1998.

Y Tassa, T Erez, and E Todorov. Fast Model Predictive Control for Reactive Robot Swim-
ming. http://www.cs.washington.edu/homes/todorov/papers/MPCswimmer.pdf, 2011.

107

R Tedrake. LQR-Trees: Feedback motion planning on sparse randomized trees. 2009.

E Theodorou, J Buchli, and S Schaal. Reinforcement learning of motor skills in high
dimensions: A path integral approach. Robotics and Automation, 2010.

S Thrun, M Montemerlo, and et al. Stanley: The Robot that Won the DARPA Grand
Challenge. Journal of Field Robotics, 2006.

E Todorov. Optimality principles in sensorimotor control. Nature neuroscience, 2004.

E Todorov. Recurrent neural networks trained in the presence of noise give rise to
mixed muscle-movement representations. Unpublished Manuscript available from
http://homes.cs.washington.edu/ todorov/papers/mixed.pdf, 2008.

Emanuel Todorov and Michael I Jordan. Optimal feedback control as a theory of motor
coordination. Nature neuroscience, 5(11):1226–1235, November 2002.

R Vaidyanathan, C T Chen, and C D Jeong. A reflexive vehicle control architecture based
on a neural model of the cockroach escape response. In Proceedings of the . . . , 2012.

J M Wang, D J Fleet, and A Hertzmann. Optimizing walking controllers. ACM Transac-
tions on Graphics (TOG), 2009.

P Wawrzyński. Real-time reinforcement learning by sequential Actor–Critics and experi-
ence replay. Neural Networks, 2009.

P Werbos. Handbook of intelligent control: Neural, fuzzy, and adaptive approaches. Van
Nostrand Reinhold Company, 1992.

B Widrow, N K Gupta, and S Maitra. Punish/reward: learning with a critic in adaptive
threshold systems. IEEE Transactions on Systems, Man, and Cybernetics, 1973.

N Wiener. Cybernetics. Or the Control and Communication in the Animal and the Machine.
The MIT Press, 1961.

R J Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Reinforcement Learning, 1992.

R J Williams and D Zipser. A learning algorithm for continually running fully recurrent
neural networks. Neural computation, 1989.

D M Wolpert, J Diedrichsen, and J R Flanagan. Principles of sensorimotor learning. Nature
Reviews . . . , 2011.

108

Chapter 6

Appendix on Lagrange Multipliers

109

6.1 A Simple Derivation of Lagrange Multipliers

Suppose we are restricted to lie on a constraint surface s(x) = 0 and would like to find the
extremum of a function C(x) on the surface. Let the point x∗ be one such extremum of C(x)
subject to the constraint. Choose a vector v ⊥ ∇xs(x∗). Then v · ∇xs(x∗) = 0. v constitutes
a feasible direction of movement that would not change the value of the constraint to first
order. If we check the value of the cost function along the direction of v, we have

C(x∗ + εv) = C(x∗) + εv · ∇xC(x∗) + O(ε2).

By the assumption that x∗ is an extremum, C(x∗ + εv) = C(x∗) +O(ε2). So v · ∇xC(x∗) = 0,
and v ⊥ ∇xC(x∗). Since this holds generically for all possible feasible directions v, it must
be the case that ∇xC(x∗) ∝ ∇xs(x∗). We call the constant of proportionality λ and finally
conclude

∇xC(x∗) = λ∇xs(x∗).

We solve such a gradient equation while leaving the constant of proportionality undeter-
mined. Once we have arrived at a solution, we must plug the result back into the constraint
to determine the particular λ that is required.

110

