3,131 research outputs found

    Soft behaviour modelling of user communities

    Get PDF
    A soft modelling approach for describing behaviour in on-line user communities is introduced in this work. Behaviour models of individual users in dynamic virtual environments have been described in the literature in terms of timed transition automata; they have various drawbacks. Soft multi/agent behaviour automata are defined and proposed to describe multiple user behaviours and to recognise larger classes of user group histories, such as group histories which contain unexpected behaviours. The notion of deviation from the user community model allows defining a soft parsing process which assesses and evaluates the dynamic behaviour of a group of users interacting in virtual environments, such as e-learning and e-business platforms. The soft automaton model can describe virtually infinite sequences of actions due to multiple users and subject to temporal constraints. Soft measures assess a form of distance of observed behaviours by evaluating the amount of temporal deviation, additional or omitted actions contained in an observed history as well as actions performed by unexpected users. The proposed model allows the soft recognition of user group histories also when the observed actions only partially meet the given behaviour model constraints. This approach is more realistic for real-time user community support systems, concerning standard boolean model recognition, when more than one user model is potentially available, and the extent of deviation from community behaviour models can be used as a guide to generate the system support by anticipation, projection and other known techniques. Experiments based on logs from an e-learning platform and plan compilation of the soft multi-agent behaviour automaton show the expressiveness of the proposed model

    Learning Task Specifications from Demonstrations

    Full text link
    Real world applications often naturally decompose into several sub-tasks. In many settings (e.g., robotics) demonstrations provide a natural way to specify the sub-tasks. However, most methods for learning from demonstrations either do not provide guarantees that the artifacts learned for the sub-tasks can be safely recombined or limit the types of composition available. Motivated by this deficit, we consider the problem of inferring Boolean non-Markovian rewards (also known as logical trace properties or specifications) from demonstrations provided by an agent operating in an uncertain, stochastic environment. Crucially, specifications admit well-defined composition rules that are typically easy to interpret. In this paper, we formulate the specification inference task as a maximum a posteriori (MAP) probability inference problem, apply the principle of maximum entropy to derive an analytic demonstration likelihood model and give an efficient approach to search for the most likely specification in a large candidate pool of specifications. In our experiments, we demonstrate how learning specifications can help avoid common problems that often arise due to ad-hoc reward composition.Comment: NIPS 201

    Learning Linear Temporal Properties

    Full text link
    We present two novel algorithms for learning formulas in Linear Temporal Logic (LTL) from examples. The first learning algorithm reduces the learning task to a series of satisfiability problems in propositional Boolean logic and produces a smallest LTL formula (in terms of the number of subformulas) that is consistent with the given data. Our second learning algorithm, on the other hand, combines the SAT-based learning algorithm with classical algorithms for learning decision trees. The result is a learning algorithm that scales to real-world scenarios with hundreds of examples, but can no longer guarantee to produce minimal consistent LTL formulas. We compare both learning algorithms and demonstrate their performance on a wide range of synthetic benchmarks. Additionally, we illustrate their usefulness on the task of understanding executions of a leader election protocol

    A Constraint Programming Approach for Mining Sequential Patterns in a Sequence Database

    Full text link
    Constraint-based pattern discovery is at the core of numerous data mining tasks. Patterns are extracted with respect to a given set of constraints (frequency, closedness, size, etc). In the context of sequential pattern mining, a large number of devoted techniques have been developed for solving particular classes of constraints. The aim of this paper is to investigate the use of Constraint Programming (CP) to model and mine sequential patterns in a sequence database. Our CP approach offers a natural way to simultaneously combine in a same framework a large set of constraints coming from various origins. Experiments show the feasibility and the interest of our approach
    • …
    corecore