157 research outputs found

    Algorithm 950: Ncpol2sdpa---Sparse Semidefinite Programming Relaxations for Polynomial Optimization Problems of Noncommuting Variables

    Full text link
    A hierarchy of semidefinite programming (SDP) relaxations approximates the global optimum of polynomial optimization problems of noncommuting variables. Generating the relaxation, however, is a computationally demanding task, and only problems of commuting variables have efficient generators. We develop an implementation for problems of noncommuting problems that creates the relaxation to be solved by SDPA -- a high-performance solver that runs in a distributed environment. We further exploit the inherent sparsity of optimization problems in quantum physics to reduce the complexity of the resulting relaxations. Constrained problems with a relaxation of order two may contain up to a hundred variables. The implementation is available in Python. The tool helps solve problems such as finding the ground state energy or testing quantum correlations.Comment: 17 pages, 3 figures, 1 table, 2 algorithms, the algorithm is available at http://peterwittek.github.io/ncpol2sdpa

    Characterizing finite-dimensional quantum behavior

    Get PDF
    We study and extend the semidefinite programming (SDP) hierarchies introduced in [Phys. Rev. Lett. 115, 020501] for the characterization of the statistical correlations arising from finite dimensional quantum systems. First, we introduce the dimension-constrained noncommutative polynomial optimization (NPO) paradigm, where a number of polynomial inequalities are defined and optimization is conducted over all feasible operator representations of bounded dimensionality. Important problems in device independent and semi-device independent quantum information science can be formulated (or almost formulated) in this framework. We present effective SDP hierarchies to attack the general dimension-constrained NPO problem (and related ones) and prove their asymptotic convergence. To illustrate the power of these relaxations, we use them to derive new dimension witnesses for temporal and Bell-type correlation scenarios, and also to bound the probability of success of quantum random access codes.Comment: 17 page

    ON THE COMPLEXITY OF SEMIDEFINITE PROGRAMS ARISING IN POLYNOMIAL OPTIMIZATION

    Get PDF
    In this paper we investigate matrix inequalities which hold irrespective of the size of the matrices involved, and explain how the search for such inequalities can be implemented as a semidefinite program (SDP). We provide a comprehensive discussion of the time complexity of these SDPs

    ON THE COMPLEXITY OF SEMIDEFINITE PROGRAMS ARISING IN POLYNOMIAL OPTIMIZATION

    Get PDF
    In this paper we investigate matrix inequalities which hold irrespective of the size of the matrices involved, and explain how the search for such inequalities can be implemented as a semidefinite program (SDP). We provide a comprehensive discussion of the time complexity of these SDPs
    corecore