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We study and extend the semidefinite programming (SDP) hierarchies introduced in Navascués and Vértesi
[Phys. Rev. Lett. 115, 020501 (2015)] for the characterization of the statistical correlations arising from
finite-dimensional quantum systems. First, we introduce the dimension-constrained noncommutative polynomial
optimization (NPO) paradigm, where a number of polynomial inequalities are defined and optimization
is conducted over all feasible operator representations of bounded dimensionality. Important problems in
device-independent and semi-device-independent quantum information science can be formulated (or almost
formulated) in this framework. We present effective SDP hierarchies to attack the general dimension-constrained
NPO problem (and related ones) and prove their asymptotic convergence. To illustrate the power of these
relaxations, we use them to derive a number of dimension witnesses for temporal and Bell-type correlation
scenarios, and also to bound the probability of success of quantum random access codes.

DOI: 10.1103/PhysRevA.92.042117 PACS number(s): 03.65.Ud, 03.67.Hk, 03.67.Mn

I. INTRODUCTION

Many problems in quantum information theory can be
formulated as optimizations over operator algebras of a given
dimensionality. Let us quickly review some of them.

In one-way quantum communication complexity [1,2], two
separate parties, call them Alice and Bob, are respectively
handed the bit strings x,y ∈ {0,1}n. Bob’s task consists in
guessing the value of the Boolean function f (x,y) ∈ {0,1},
and, to this aim, we allow Alice to send him a D-dimensional
quantum system. Under these conditions, computing the
maximum probability that Bob’s guess is correct amounts to
optimizing over all possible D-dimensional quantum states
prepared by Alice and over all possible measurements con-
ducted by Bob on such states.

In Bell scenarios [3], two or more distant parties conduct
measurements over an unknown quantum state. It has been
observed that, even if we do not assume any knowledge
whatsoever about the mechanisms of the measurement devices,
it is sometimes possible to lower bound the dimensionality D

of the quantum systems accessible to each party by virtue of
the correlations between the measurement results alone [4–7].
In this regard, deriving dimension witnesses, i.e., statistical
inequalities satisfied by the correlations achievable through
multipartite quantum systems of local dimension D, can
be understood as an optimization over entangled states and
measurement operators.

Entanglement distillation [8], or the capacity to prepare
states close to a pure singlet given a number of mixed
states through local operations and classical communication
(LOCC), is one of the most conventional problems in quantum
information science. More generally, determining whether the
state transformation ρ → σ can be effected via LOCC can be
interpreted as a feasibility problem, where the free variable is
the corresponding LOCC map. If we restrict to local protocols
or one-way LOCC, the set of relevant maps admits a simple
characterization in terms of tensor products of Kraus operators
satisfying certain quadratic constraints.

The above problems involve optimizations over a tuple
of noncommuting variables X1, . . . ,Xn satisfying a number
of polynomial constraints, such as X2

i = Xi = X
†
i (for pro-

jectors) or XiX
†
i = X

†
i Xi = I (for unitaries). The number

of total constraints is typically so low that, even fixing the
dimensionality D of the spaces where these operators act, we
find a continuum of inequivalent representations.

Analogous problems emerge in the black-box approach
to quantum information theory [3,9–11], where the only
constraints considered are essentially commutation relations
between projection operators implemented by distant parties.
The characterization of quantum nonlocality has boosted
the field of noncommutative polynomial optimization (NPO)
theory [12–14], where the goal is, precisely, to conduct
optimizations over all tuples of operators satisfying a number
of polynomial inequalities. NPO theory achieves this via hier-
archies of semidefinite programming (SDP) [15] relaxations
whose first levels approximate quite well the space of feasible
solutions.

Unfortunately, NPO theory does not offer any means to
bound or fix the dimension of the Hilbert spaces where such
operators act. Since the aforementioned problems in quantum
information theory become senseless or trivial in the high di-
mensionality limit, one would not expect NPO to be of any use.

This view changed with the publication of Ref. [16], where
a systematic way to devise hierarchies of SDP relaxations for
a wide class of NPO problems under dimension constraints
was introduced. Such relaxations, which seem to work quite
well in practice, were used to derive a number of new results in
quantum nonlocality and quantum communication complexity.
Important theoretical aspects, such as the completeness of the
hierarchies, or the explicit nature of the dimension constraints,
were nonetheless left out. Actually, from a reading of Ref. [16],
it is not even clear which problems can be attacked with the
new tools.

In this paper, we generalize the SDP schemes proposed in
Ref. [16] to cover all NPO problems where the dimensionality
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of the relevant Hilbert spaces is bounded. We prove the
convergence of the resulting SDP hierarchies and discuss their
efficient implementation. Finally, we use them to derive a num-
ber of results in quantum information theory: from new bounds
for quantum random access codes (QRACs) for both real
and complex quantum systems to semi-device-independent
positive operator valued measure (POVM) detection [17,18]
and from the characterization of temporal correlations [19]
under dimension constraints to the exploration of tripartite
Bell scenarios where the dimensionality of just one of the
parties is limited.

The structure of this paper is as follows. First, we define the
generic problem of NPO under polynomial constraints. Then,
in Sec. III, we present a hierarchy of SDP relaxations to tackle
it. In Sec. IV we prove the convergence of this hierarchy. As
it turns out, a straightforward implementation of the hierarchy
would converge too slowly to be of much use, given reasonable
computational resources. Hence, in Sec. V we give some
hints to boost the speed of convergence of the method—to
make it practical—and exemplify its application by solving a
specific problem on temporal correlations [19]. In Sec. VI
we explore the performance of related SDP hierarchies to
characterize quantum nonlocality under dimension constraints
and quantum communication complexity. In Sec. VII we offer
some advice on how to code the corresponding programs.
Finally, we summarize our conclusions.

II. NONCOMMUTATIVE POLYNOMIAL OPTIMIZATION
UNDER DIMENSION CONSTRAINTS

Consider the set S of all n-tuples of self-adjoint operators
(X1, . . . ,Xn) satisfying the relations R = {qi(X) � 0 : i =
1, . . . ,m}. Here qi(X) denotes a Hermitian polynomial of the
variables X1, . . . ,Xn, while the notation A � 0 signifies that
operator A is positive semidefinite. We call each feasible tuple
(X1, . . . ,Xn) a representation of the polynomial relations R.
Given a Hermitian polynomial p(X) and a natural number
D, the problem we want to address is how to maximize the
maximum eigenvalue of p(X) over all representations of R of
dimension D or smaller. In other words, we want to solve the
problem

p� = max
H,X,ψ

〈ψ |p(X)|ψ〉

such that (1)

dim(H) � D, qi(X) � 0, for i = 1, . . . ,m,

where the maximization is supposed to take place over all
Hilbert spaces H with dim(H) � D, all tuples of operators
(X1, . . . ,Xn) ⊂ B(H), and all normalized states |ψ〉 ∈ H.
Note that, if it were not for the dimension restriction D, the
above would be a regular NPO problem [14].

We say that the relations R satisfy the Archimedean
condition if there exist polynomials fj (X),gij (X) such that

C −
∑

i

X2
i =

∑
j

fj (X)†fj (X) +
∑
i,j

gij (X)†qi(X)gij (X).

(2)

In the following, we provide a hierarchy of SDP relaxations
for this problem. Such a hierarchy provides a decreasing

sequence of values p1 � p2 � · · · such that pk � p�,∀ k.
Moreover, if the Archimedean condition holds,1 then the
hierarchy can be shown complete, i.e., limk→∞ pk = p�.

III. THE METHOD

Let y = (yw)|w|�2k be a sequence of complex numbers
labeled by monomials w of the variables X1, . . . ,Xn of degree
|w| smaller than or equal to 2k. Such a sequence is called
a 2kth-order moment vector. Given y, the kth-order moment
matrix Mk(y) is an array whose rows and columns are labeled
by monomials of X1, . . . ,Xn of degree at most k, and such that

Mk(y)u,v = yu†v. (3)

Given y = (yw)|w|�2k and a Hermitian polynomial q(X) =∑
w qww(X), where the w in the summation ranges over

all monomials of X1, . . . ,Xn of degree at most deg(q), the
corresponding kth-order localizing matrix is defined as

Mk(qy)u,v =
∑
w

qwyu†wv, (4)

with |u|,|v| � k − 	 deg(q)
2 
.

A sequence y = (yw)|w|�2k admits a quantum representa-
tion if there exists a representation (X1, . . . ,Xn) ⊂ B(H) of
relations {qi(X) � 0}i , with dim(H) � D, and a normalized
vector |ψ〉 ∈ H such that yw = 〈ψ |w(X)|ψ〉. It is a standard
result in NPO theory that, if (yw) admits a moment represen-
tation (of whatever dimensionality), then Mk(y) and Mk(qiy)
must be positive semidefinite matrices for all orders k [14].

The above positive semidefinite constraints are not di-
mension dependent and are actually obeyed by momenta
emerging from representations of {qi(X) � 0}i of arbitrary
(even infinite) dimensionality. The key to introduce dimension
constraints is to acknowledge that moment vectors (yw)
admitting a quantum representation satisfy a number of extra
linear restrictions depending on the value of D.

Some of such restrictions arise due to matrix polyno-
mial identities (MPIs) [20]: These are polynomials s(X) of
the variables X1, . . . ,Xn, which are identically zero when
evaluated on matrices of dimensionality D or smaller. For
D = 1, all MPIs reduce to commutators, i.e., [Ai,Aj ] = 0,
if Ai,Aj ∈ B(C). Identifying Ai = Xi , this implies that se-
quences y = (yw)|w|�2k admitting a one-dimensional moment
representation must satisfy yX1X2 − yX2X1 = 0. Actually, for
any value of D there exist MPIs from which nontrivial linear
constraints on y can be derived. For D = 2, all MPIs are
generated by composition of the identities [[A1,A2]2,A3] = 0
and

∑
π∈S4

sgn(π )Aπ(1)Aπ(2)Aπ(3)Aπ(4) = 0, where S4 denotes
the set of all permutations of four elements. The latter identity
is a particular case of the family of polynomial identities Id ,
with ∑

π∈Sd

sgn(π )Aπ(1) · · · Aπ(d) = 0. (5)

It can be proven that all D × D matrices satisfy I2D [20],
also called the standard identity. The problem of determining

1Actually, as we will see, a weaker condition suffices.

042117-2



CHARACTERIZING FINITE-DIMENSIONAL QUANTUM . . . PHYSICAL REVIEW A 92, 042117 (2015)

the generators of all MPIs for dimensions D greater than two
is, however, open.

A nontrivial relaxation of problem (1) is thus

pk = max
y

∑
w

pwyw,

such that
(6)

y ∈ Sk
D, yI = 1, Mk(y) � 0,

M(qiy) � 0, for i = 1, . . . ,m,

where Sk
D denotes the span of the set of feasible sequences

y = (yw)|w|�2k . This is a semidefinite program, and, as such,
can be solved efficiently for moment matrices of moderate size
(around 200 × 200) using a normal desktop PC [15].

Equivalently, we can reexpress the positivity conditions as
M̂k ≡ Mk(y) ⊕ ⊕m

i=1 Mk(qiy) � 0 and rewrite the objective
function as a linear combination of the entries of the first
diagonal block of M̂ . That way, we can regard the block-
diagonal matrix M̂ (and not y) as our free variable, hence
arriving at the program

pk = max
M̂

∑
w

pwM̂w,I,

such that (7)

M̂ ∈ Mk
D, M̂I,I = 1, M̂ � 0,

where Mk
d denotes the span of the set of feasible extended

moment matrices. This reformulation of problem (6), although
conceptually more cumbersome, leads to simpler computer
codes.

The key to implementing either program is, of course, to
identify the subspaces Sk

D,Mk
D . We now provide two methods

to do so. Both have advantages and disadvantages. In [21] we
provide yet a third method, which, although more complicated
than the other two, requires considerably less memory and
time resources, making it suitable for high-order relaxations.

A. The randomized method

We sequentially generate n-tuples of random Hermitian
D × D complex matrices Xj ≡ (Xj

1 , . . . ,X
j
n) and normalized

random vectors |ψj 〉 ∈ CD , which we use to build mo-
ment and localizing matrices M

j
u,v = 〈ψj |u(Xj )†v(Xj )|ψj 〉,

M(qi)
j
u,v = 〈ψj |u(Xj )†qi(X)v(Xj )|ψj 〉, respectively. Their

direct sum will constitute an extended moment matrix
M̂j . Adopting the Hilbert-Schmidt scalar product 〈A,B〉 =
tr(A†B), one can apply the Gram-Schmidt process2 to the
resulting sequence of feasible extended moment matrices in
order to obtain an orthogonal basis M̃1,M̃2, . . . for the space
spanned by such matrices. We notice that, for some number
N , M̃N+1 = 0, up to numerical precision. This is the point
at which to terminate the Gram-Schmidt process and define
the normalized matrices {�i ≡ M̃j√

tr(M̃j )2
: j = 1, . . . ,N}. It is

easy to see that, even though the matrix basis {�j }Nj=1 was

2One could even do better using a numerically stable variant, such
as the modified Gram-Schmidt method [22].

obtained randomly, the space it represents is always the same,
namely, Mk

D .
Indeed, let N = dim(Mk

D), and suppose that M̃1, . . . ,M̃j−1

are nonzero, with j � N . Then the entries of the matrix
M̃j will be polynomials of the components of Xj,ψj . Since
j � N , there exists a choice of �zj such that M̃j (Xj,ψj ) �= 0.
The probability that a nonzero polynomial vanishes when
evaluated randomly is zero, and so we conclude that M̃j will be
nonzero with probability 1. On the other hand, M̃1 = M̂ �= 0,
so by induction we have that N randomly chosen moment
matrices will spanMk

D with certainty. Consequently, M̃N+1 =
0 indicates when to stop the procedure.

Remark 1. A cautionary note is in order. For high-order k, it
is expected that program (7), as written, will not admit strongly
feasible points. That is, the subspace Mk

D will not contain any
positive definite matrix. This can be problematic, as many
SDP solvers need strong feasibility to operate. The solution is
to add up the random extended moment matrices M̂j as we
produce them, i.e., to compute the operator T = 1

N

∑N
j=1 M̂j .

Since {M̂j } were randomly generated, it can be argued that the
support of any matrix M̂ ∈ Mk

D is contained in the support
of T . Let V be any matrix mapping supp(T ) to Cdim[supp(T )]

isometrically. We just need to replace the positivity condition
M̂ � 0 in (7) with V M̂V † � 0, which, by definition, admits a
strictly feasible point.

This method has the advantage that it is extremely easy
to program, more so when the constraints {qi(X) � 0} reduce
to polynomial identities, as we will see. One disadvantage is
that, in practice, the decision to stop the protocol amounts to
verifying that the entries M̃N+1 are zero up to ε precision.
Choosing the right value for the threshold ε is a delicate
matter: If too small, the algorithm will not halt; if too large,
the algorithm will stop before it finds a complete basis for
Mk

D . The second problem is that, due to rounding errors, it is
possible that the algorithm will not identify the right subspace,
but only an approximation to it.

B. The deterministic method

We choose a simple distribution f (X,ψ)dXdψ , say, a
Gaussian, for the entries of each of the matrices X1, . . . ,Xn

and the components of the un-normalized vector ψ . Then we
define the components of the 2kth moment vector y(X,ψ)
via the relation y(X,ψ)w ≡ 〈ψ |w(X)|ψ〉. Then we compute
analytically the matrix

S ≡
∫

f (X,ψ)dXdψy(X,ψ)y(X,ψ)†. (8)

Clearly, the space Sk
D corresponds to the support of S. Diag-

onalizing S and keeping just the eigenvectors with nonzero
eigenvalue we hence obtain an orthonormal basis for Sk

D .
The disadvantage of this method is that it involves symbolic

computations, and hence, depending on the platform used, it
is either more difficult to code or results in slower programs.

IV. CONVERGENCE OF THE HIERARCHY

Let pk denote the result of the kth-order relaxation (6)
of problem (1), and let yk be the corresponding minimizer
2kth-order moment vector.
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Now let us assume that the Archimedean condition (2) is
met and call r the degree of the polynomial on the right-hand
side of Eq. (2). Expressing the polynomials fi,gij as fi(X) =∑

v f v
i v(X), gij (X) = ∑

v gv
ij v(X), it follows that

Cyk
u†u −

n∑
l=1

yk

u†X2
l u

=
∑

i

∑
v,w

(
f v

i

)∗
f w

i yk
u†v†wu

+
∑
i,j

∑
v,w,s

(
gv

ij

)∗
gw

ij q
s
i y

k
u†v†swu

(9)

for |u| � k − � r
2�. Due to positive semidefiniteness of the

moment and localizing matrices, the right-hand side of the
above equation is non-negative, implying that Cyk

u†u
� yk

u†X2
l u

for all Xl . By induction, it follows that

C|u| � yk
u†u (10)

for all sequences |u| � k − � r
2�. Such moments correspond

to the diagonal entries of the moment matrix Mk(yk). Since
Mk(yk) � 0, it follows that |y|w|| � C|w|/2 for all monomials
|w| � 2k − 2� r

2�.
Now, for each vector yk , replace with zeros all entries yk

w,
with |w| > 2k − 2� r

2�, and complete the resulting 2kth-order
moment vector to an ∞-order moment vector by placing even
more zeros. We arrive at an infinite sequence ŷs ,ŷs+1, . . . of
vectors, with |ŷk

w| � C|w| for all k,w. By the Banach-Alaoglu
theorem [23], this sequence has a converging subsequence,3

and we call ŷ the corresponding limit.
ŷ satisfies ŷI = 1, and Mk(ŷ),Mk(qi ŷ) � 0 for all k,i.

By successive Cholesky decompositions of Mk(ŷ) for k =
s,s + 1, . . ., we find a sequence of complex vectors (|u〉)u
with the property ŷu†v = 〈u|v〉 for all monomials u,v. Call
H ≡ span{|u〉 : u}. We define the action of the operator X̃i on
this (nonorthogonal) basis by

X̃i |u〉 = |Xiu〉 (11)

and extend its definition to span{|u〉 : u} by linearity. To prove
that this definition is consistent, we need to show that, if∑

u cu|u〉 = ∑
u du|u〉 for two different linear combinations

(cu)u,(du)u, then
∑

u cu|Xiu〉 = ∑
u du|Xiu〉. Indeed, note

that, for any vector |w〉,
〈w|

∑
u

cu|Xiu〉 =
∑

u

cu〈w|Xiu〉 =
∑

u

cu〈Xiw|u〉

= 〈Xiw|
∑

u

cu|u〉 = 〈Xiw|
∑

u

du|u〉

= 〈w|
∑

u

du|Xiu〉, (12)

where the second and fifth equalities follow from 〈w|Xiu〉 =
yw†Xiu = y(Xiw)†u = 〈Xiw|u〉. This relation holds for arbitrary
|w〉, so the vectors

∑
u cu|Xiu〉, ∑u du|Xiu〉 must be identical.

Similarly, it can be verified immediately that X̃i is a symmetric
operator, since 〈u|X̃i |v〉 = yu†Xiv = y∗

v†Xiu
= 〈u|X̃i |v〉.

3Technically, the Banach-Alaoglu theorem must be applied to the
sequence ẑs ,ẑs+1, . . ., where zu = yu

C|u|/2 .

From the positive semidefiniteness of the localizing matri-
ces M(qi ŷ), it can be shown that 〈φ|qi(X̃)|φ〉 � 0 for all |φ〉 ∈
H and i = 1, . . . ,m. The Archimedean condition implies,
moreover, that 〈φ|X̃2

i |φ〉 � C〈φ|φ〉. From this observation
it is trivial to extend the action of X̃i to H̃, the closure of
H , and hence we arrive at a Hilbert space H̃ and a set of
operators X̃1, . . . ,X̃n such that qi(X̃) � 0 for i = 1, . . . ,m

and ŷu = 〈ψ̃ |u(X̃)|ψ̃〉 for |ψ̃〉 ≡ |I〉.
Note as well that, by construction, these operators satisfy all

MPIs for dimension D. Now, call A the von Neumann algebra
generated by X̃1, . . . ,X̃n. By von Neumann’s 1949 result [24],
such an algebra must decompose as a direct integral of types
I, II, and III factors [25]. That is,

A =
∫ ⊕

dμI(y)AI
y ⊕

∫ ⊕
dμII(y)AII

y ⊕
∫ ⊕

dμIII(y)AIII
y .

(13)

Type I factors are isomorphic to B(H) for Hilbert spaces H
of finite or infinite dimensionality [25]. Since A must satisfy
the MPIs for dimension D, that excludes Hilbert spaces of
dimension d > D from the first term of the right-hand side
of (13). Moreover, in the Appendix it is proven that types II
and III factors violate the standard identity (5) for all values
of d.

It follows that we can write our operators X̃1, . . . ,X̃n as

X̃i =
∫ ⊕

dμI(y)X̃i,y, (14)

where each X̃i,y acts on a Hilbert spaceHy with dim(Hy) � D.
From qi(X̃) � 0, it follows that qi(X̃y) � 0 for i = 1, . . . ,m.
Hence, p̂ is a convex combination of feasible values of
〈p(X)〉 and so p̂ � p�. On the other hand, pk � p� for k � s.
Thus, p̂ = limk→∞ pk � p�, proving the convergence of the
hierarchy.

Remark 2. Note that we just invoked the Archimedean
condition (2) to establish the existence of ŷ and, later,
the boundedness of the operators X̃1, . . . ,X̃n. Both results
also follow from the weaker D-dimensional Archimedean
condition,

C −
∑

i

X2
i =

∑
j

fj (X)†fj (X)

+
∑
i,j

gij (X)†qi(X)gij (X) + hD(X), (15)

where hD(X) is an MPI for dimension D.
Remark 3. If we take D = 1, then the MPIs will force all

operators X1, . . . ,Xn to commute with each other. In that case,
the SDP hierarchy reduces to the Lasserre-Parrilo hierarchy for
polynomial minimization [26,27].

Remark 4. So far, we have been assuming that the variables
X1, . . . ,Xn are Hermitian. If a subset of them is not, one
can still define a converging SDP hierarchy, by considering
all possible monomials of the variables X1, . . . ,Xn and their
adjoints X

†
1, . . . ,X

†
n in the definition of moment vectors and

moment matrices. In that case, the left-hand side of the D-
dimensional Archimedean condition (15) must be replaced
with C − ∑

i XiX
†
i − X

†
i Xi .
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V. EXPLOITING POLYNOMIAL CONSTRAINTS

It is a basic result in operator algebras that MPIs for
D × D matrices must have degree at least 2D [20]. This
implies that we would need to implement the Dth relaxation
of (6) or (7) in order to obtain nontrivial D-dimensional
constraints. Even for problems involving a small number of
noncommuting variables, this becomes impractical already
for D = 5. Hence, if we wish to conduct optimizations over
matrices of dimensions greater than 2 or 3, we must rely on
linear restrictions other than those derived from MPIs.

Most NPO problems relevant in quantum information
science involve polynomial identities rather than polynomial
inequalities. That is, constraints of the form q(X) � 0 are
complemented with −q(X) � 0, and so q(X) = 0 must hold
for all representations of {qi(X) � 0}. The strategy we follow
to solve these kinds of problems is to divide the representations
of X1, . . . ,Xn into different classes r in such a way that any two
representations belonging to the same class r can be connected
by a continuous trajectory of feasible representations in r . As
we will see, each of these classes will satisfy nontrivial low
degree polynomial identities, which we translate into linear
constraints at the level of moment matrices (vectors). By
carrying out a relaxation of the form (6) for each possible
class r and taking the greatest result, we hence obtain an upper
bound on the solution of the general problem (1).

For instance, suppose that {qi(X) � 0} contains relations
of the form X2

i = 1 for i = 1,2,3. For D = 2, there are two
possibilities:

(1) Xi = ±I for some i ∈ {1,2,3};
(2) Xi �= ±I for all i, in which case it can be shown that

the operators satisfy the identities

[X1,{X2,X3}+] = [X2,{X1,X3}+] = [X3,{X1,X2}+] = 0.

(16)

In either case, the noncommuting variables satisfy non-
trivial polynomial constraints of degree smaller than 4, the
smallest possible degree of an MPI for D = 2. A way to attack
this problem is therefore to define an SDP relaxation of the
form (7) for each case, enforcing the corresponding extra linear
constraints on the moment matrix (or moment vector).

Note also that, if we further assume that the matrices
X1, . . . ,Xn are real, then we can add constraints of the sort

{X1,[X2,X3]}+ = 0 (17)

in the second case. This approach hence allows us (in principle)
to distinguish between real and complex matrix algebras.

The objective, again, is to identify all possible linear
restrictions on M̂k or y within a given class r . Fortunately,
most NPO problems in quantum information science have the
peculiarity that random representations of a given class can be
generated efficiently.

Continuing with the previous example, suppose that we
wish to optimize over six dichotomic operators; i.e., the poly-
nomial constraints are, precisely, X2

i = I for i = 1,2, . . . ,6.
For simplicity, let us denote the first four operators as
X00,X01,X10,X11 and the last two as Y1,Y2. We want to
maximize the average value of the operator

p(X) ≡
∑
j=1,2

∑
c1,c2=0,1

(−1)cj Xc1c2YjXc1,c2 . (18)

Note that we can write each dichotomic operator as Xi =
(−1)a 2Ei

a−I
2 , where {Ei

a} are projection operators satisfying
Ei

0 + Ei
1 = I. Substituting in (18), we have that the objective

function 〈ψ |p(X)|ψ〉 is equal to

4
∑

c1,c2,s=0,1

P
(
s,c1

∣∣Xc1c2 ,Y1
) + P

(
s,c2

∣∣Xc1c2 ,Y2
) − 16, (19)

where P (a1,a2|x1,x2) = 〈ψ |Ex1
a1

Ex2
a2

Ex1
a1

|ψ〉. This corresponds
to the temporal correlations scenario defined in [19], where
sequential dichotomic projective measurements are conducted
over a quantum system and a record of the measurements
x1,x2, . . . implemented, as well as the measurement out-
comes a1,a2, . . ., is kept. The goal is to limit the statistics
P (a1, . . . ,an|x1, . . . ,xn) obtained after several repetitions of
the experiment.

As noted in [14,19], when the dimensionality of the quan-
tum system is unrestricted, the set of all feasible distributions
P (a1, . . . ,an|x1, . . . ,xn), and hence the optimal value of (18),
can be characterized by a single SDP. Using the SDP solver
MOSEK [28], we find that, for D = ∞, p� = 8 up to seven
decimal places.

Suppose, however, that we have the promise that the system
has dimension D = 2. The problem we want to solve is
therefore

p� = max
H,X,ψ

〈ψ |p(X)|ψ〉
such that

dim(H) � 2, I − X2
i = 0, for i = 1, . . . ,6.

(20)

We start by dividing the representations of two-dimensional
dichotomic operators into classes. For any dichotomic oper-
ator, the rank of the projector E ≡ X+I

2 can be 0, 1, or 2.
For r = 0,2, the corresponding operator is X = −I or X = I,
respectively. For r = 1, a random dichotomic operator X can
be generated as X = 2 |v〉〈v|

〈v|v〉 − I, where v ∈ C2 is a random
complex vector. Since we are dealing with six noncommuting
variables, there are 36 = 729 classes, labeled by the vector
�r ∈ {0,1,2}6, with rank(Xi + I) = ri .

For a fixed value of �r , we sequentially generate random
6-tuples of dichotomic operators Xj ≡ (Xj

1 , . . . ,X
j

6 ), with the
required rank constraints, as well as a sequence of random
normalized vectors |ψj 〉 ∈ C2. As before, we use each pair
(Xj,|ψj 〉) to generate a random feasible moment matrix M

j

k .
Note that, since the conditions X2

i = I are implicit in each mo-
ment matrix, it is not necessary to include localizing matrices
in our description (they would amount to zero diagonal blocks
in the extended moment matrix). Notice as well that, given a
feasible moment matrix Mk , its complex conjugate M∗

k is also
feasible. Since p(X) is a real linear combination of Hermitian
monomials, the objective function will have the same value for
both Mk and M∗

k [and thus for the real feasible moment matrix

Re(Mk) = Mk

2 + M∗
k

2 ]. This implies that, in order to define an
SDP relaxation for (20), it suffices to consider the sequence of
real matrices Re(M1

k ),Re(M2
k ), . . ..

Applying the modified Gram-Schmidt method to that
sequence until we find linear dependence, we obtain an or-
thonormal basis forMk

D,�r , the space of all real feasible moment

042117-5
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matrices for representations of the class �r . This time, the fact
that this randomizing method works with probability one is
a consequence that the projection of the randomly generated
moment matrix Re(Mj+1

k ) onto the orthogonal complement of
the space spanned by Re(M1

k ), . . . ,Re(Mj

k ) is a matrix whose
entries are rational functions of the randomly generated vectors
used to build Xj+1 and |ψj+1〉. If Re(M1

k ), . . . ,Re(Mj

k ) do
not span Mk

D,�r , then there exists a choice for those vectors
such that the projected matrix is nonzero; i.e., at least one
of such rational functions is nonzero. It is a well-known fact
that the probability that a randomly evaluated nonzero rational
function vanishes is zero.

Alternatively, we can identify Sk
D,�r , the space of feasible

2kth-order moment vectors for representations in the class �r
by parametrizing each normalized vector needed to build X

or ψ by two angles φ,ϕ, and constructing the corresponding
moment vector y( �φ, �ϕ). Then the entries of the matrix

S ≡
∫

d �φd �ϕRe(y( �φ, �ϕ))Re(y( �φ, �ϕ)†) (21)

can be computed analytically. Its support will coincide with
Sk

D,�r .
One way or another, we must solve the program

pk = max
M̂

∑
w

pwM̂w,I,

such that

M̂ ∈ Mk
D�r , M̂I,I = 1, M̂ � 0, (22)

for all possible classes �r . For k = 2, again using MOSEK [28],
we find p2 ≈ 5.656 854, definitely smaller than the free limit.

VI. SIMILARLY INSPIRED SDP HIERARCHIES

In the following we introduce two problems in quantum
information science which, while not exactly fitting in the class
of problems (1), can be similarly reduced to SDP hierarchies.

A. Quantum nonlocality under dimension constraints

The scenario is as follows. Two distant parties, call them
Alice and Bob, conduct measurements on a bipartite quantum
system. We denote Alice’s (Bob’s) measurement setting by x

(y) and her (his) measurement outcome by a (b). We wish to
bound a linear functional of the statistics P (a,b|x,y) they will
observe, under the assumption that Alice’s and Bob’s spaces
are, at most, D dimensional. If Alice and Bob’s outcomes
are binary, i.e., a,b ∈ {0,1}, the problem can be shown to be
equivalent to

max
∑

x,y,a,b

B
x,y

a,b P (a,b|x,y),

such that (23)

P (a,b|x,y) = 〈ψ |Ex
a ⊗ F

y

b |ψ〉,
where {Ex

a ,F
y

b } are projection operators acting on CD , with∑
a Ex

a = ∑
b F

y

b = ID and |ψ〉 ∈ CD ⊗ CD .
Following the last section, we divide the representations

of the operators Ex
a ,F

y

b into different classes labeled by the

vectors �r,�t , with rank(Ex
a ) = rx

a , rank(Fy

b ) = t
y

b . For each rep-
resentation class �r,�t , we try to characterize the span Mk

D,�r�t of
feasible kth-order moment matrices. To do so, we sequentially
generate random normalized states |ψj 〉 ∈ CD ⊗ CD and
projectors E

x,j
a ,F

y,j

b ∈ B(CD), satisfying the rank conditions
rank(Ex,j

a ) = rx
a , rank(Fy,j

b ) = t
y

b . Given E
x,j
a ,F

y,j

b , we de-
fine the projectors Ē

x,j
a ≡ E

x,j
a ⊗ ID and F̄

y,j

b ≡ ID ⊗ F
y,j

b ,
which we use to generate a feasible kth-order moment matrix
M

j

k . By subjecting the resulting sequence of moment matrices
to the modified Gram-Schmidt orthogonalization, we obtain a
basis for Mk

D,�r�t . The SDP to solve is hence

Bk ≡ max
∑

x,y,a,b

B
x,y

a,b (Mk)Ēx
a ,F̄

y

b

such that (24)

(Mk)I,I = 1, Mk � 0, Mk ∈ T k
D,�r,�t .

We again advise the reader to check that T ≡ 1
N

∑N
j=1 M

j

k

is positive definite: Otherwise, a projection of Mk onto the
support of T is necessary to guarantee the strict feasibility of
the associated SDP; see Remark 1.

The completeness of the above SDP hierarchy can be
established easily: Following the same lines as in Sec. IV, we
prove the existence of a (in general, infinite-dimensional) rep-
resentation Ẽx

a ,F̃
y

b ⊂ B(H), with [Ẽx
a ,F̃

y

b ] = 0 for all x,y,a,b,
and a state ψ̃ , such that

∑
x,y,a,b B

x,y

a,b 〈ψ̃ |Ẽx
a F̃

y

b |ψ̃〉 coincides

with the asymptotic limit B̂ ≡ limk→∞ Bk . The center of the
algebra A generated by {Ẽx

a : x,a} decomposes H into a direct
integral of sectorsHz. By construction, in each sector z,A boils
down to a type I factor Az of dimension smaller than or equal
to D. Being a type I factor, we can writeHz = HA

z ⊗ HB
z ; then

Az ∼ B(HA
z ) ⊗ I andA′

z ∼ I ⊗ B(HB
z ), whereA′

z denotes the
commutant of Az. It follows that

Ẽx
a =

∫ ⊕
dμ(z)Ẽx

a,z ⊗ IB,z,

(25)

F̃
y

b =
∫ ⊕

dμ(z)IA,z ⊗ F̃
y

b,z,

where dim(HA,Y ) � D. Likewise, it can also be shown that
the algebra generated by F̃

y

b,z decomposes as a direct integral
of finite-dimensional algebras with dimension smaller than
or equal to D. B̂ is thus a convex combination of feasible
points and, as such, it represents a lower bound for the original
problem (23).

1. Examples

Here we give examples of maximizing the violation of
bipartite Bell inequalities with binary outcomes for different
dimensionality of the component spaces. Some of the examples
have already appeared in Ref. [16]. First we discuss the
I3322 inequality, the only tight three-setting, two-outcome Bell
inequality and its modified version. Then we move on to one
more setting per party. For all the subsequent computations
we used the solvers MOSEK [28] and SEDUMI [29] through the
interface YALMIP [30], which we ran on a memory-enhanced
desktop PC (with 128 GB RAM).
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a. I3322. First we considered the I3322 inequality [31],
which is the member of the INN22 family N � 2. Recently,
it has been proven that qubit systems are not enough to attain
the overall quantum maximum 0.2509. Rather, the best value
inC2 × C2 systems is 0.25 [32,33]. Using SDP, we reproduced
the maximum value of 0.25 in dimensions C3 × C3 as well up
to eight significant digits [16]. The size of the moment matrix
was 76, involving 1240 linear constraints. The computations
took about 5 min for a fixed rank combination of measure-
ments. Note that the hierarchy of Moroder et al. [33], by
limiting the negativity [34] of the bipartite quantum state, also
gives a (not necessarily tight) upper bound on the Bell violation
for a fixed dimension of the quantum state. Indeed, this method
works for C2 × C2 systems by returning a violation of 0.25
of the I3322 inequality [33]. However, for C3 × C3 systems it
does not seem to converge (see Fig. 1 of [33]).

The SDP method also allows the user to upper bound
the maximum quantum violation of a Bell inequality using
a fixed two-qudit state. Let us choose the three-dimensional
maximally entangled state, |ψ〉 = (|00〉 + |11〉 + |22〉)/√3.
We find the value of 0.229 771, which is saturated by see-
saw computation; hence, the presented upper bound is tight.
The computation involved a 116-dimensional moment matrix
(on a partial four-level relaxation) along with 1060 linear
constraints. The program took 2 min to complete for a fixed
rank combination of projective measurements. We mention a
related problem, where the maximal violation of I3322 has been
computed for the maximally entangled state (of unrestricted di-
mensionality). This has been solved both analytically [35] and
using a relaxation method [36] by returning the value of 0.25.

b. Modified I3322. Though I3322 inequality likely re-
quires infinite dimensions to achieve the maximal violation
0.2509 [13], D = 12 seems to be the smallest local dimension
surpassing the qubit bound 0.25 [37]. It is an open question
whether there exists a Bell inequality for which the maximum
quantum violation in a given dimension is a strictly monotonic
function of the dimension. Below we give such a candidate.
To this end, we modify the I3322 inequality by introducing a
parameter c � 1,

I3322(c) = EA
1 + EA

2 + EB
1 + EB

2

− (E1,1 + E1,2 + E2,1 + E2,2)

+ c(E1,3 + E3,1 − E2,3 − E3,2) � 4c, (26)

where the correlator Ex,y between measurement x by Alice and
measurement y by Bob is defined as Ex,y = P (a = b|x,y) −
P (a �= b|x,y), a,b ∈ {0,1}, and EA

x denotes the marginal of
Alice’s measurement setting x (and EB

y is similarly defined for
Bob). This inequality is symmetric for exchange of Alice and
Bob and returns the original I3322 inequality (written in terms
of correlators) for parameter c = 1.

Setting c = 2, we used the see-saw variational tech-
nique [38,39] to find a lower bound on the maximal violation
for any dimension 2 � d � 15, which we observe to be
gradually increasing with dimension. We conjecture that
the bounds are tight. Table I shows results up to D = 6
concerning both the lower (see-saw) and the upper bounds
(SDP). Accordingly, the bounds for D = 2,3 are indeed tight.
Computationally, the most challenging case was obtaining
the upper bound in D = 4. It involved 3514 constraints; the

TABLE I. Quantum bounds for different local dimensions on
the violation of the I3322(2) inequality computed using see-saw
search/SDP computation. Bounds for D = 2,3 are tight since the
see-saw and SDP bounds match. As an overall upper bound, the
Navascués-Pironio-Acı́n (NPA) [12,13] hierarchy on level 3 gives
8.075 937.

D Lower bound Upper bound

2 8.013 177 8.013 177
3 8.024 050 8.024 050
4 8.032 766 8.071 722
5 8.039 579 8.075 937
6 8.056 714 8.075 937

dimension of the moment matrix is 184 and it took roughly
40 min for MOSEK to complete the task for a given rank
combination of the measurements. The quantum maximum
in dimensions 5 and 6 coincide with the NPA bound on
level 3 up to the shown digits. We pose it as a challenge to
prove tightness of the see-saw bound for D = 4 (or possibly
higher dimensions) by exploiting the symmetric structure of
the inequality (26) using techniques such as in Refs. [33,40].

c. I4422 family. A one-parameter family of four-setting
inequalities is given in Ref. [32]. These inequalities are not
tight but they have a quite simple structure. They look as
follows for c � 0:

I4422(c) = cEA
1 + (E1,1 + E1,2 + E2,1 − E2,2)

+ (E3,3 + E3,4 + E4,3 − E4,4) � 4 + c. (27)

When c = 0, it is a direct sum of two Clauser-Horne-Shimony-
Holt (CHSH) [9] inequalities; hence, maximum violation is
attained with qubit systems. However, by setting c > 0, it may
serve as a dimension witness. In particular, for c = 1 (the value
used in Eq. (19) of [32]), its maximal violation inC2 × C2 sys-
tems is upper bounded by the value of 5.8515 [32]. However,
using our SDP tool, this upper bound turns out to be not tight:
We certify a smaller value of 5.8310, which is matched by the
see-saw method. Further, by raising the dimension toC3 × C3,
we get the same amount of violation. The SDP computation
returning 5.8310 in C3 × C3 was quite demanding: It required
a 130-dimensional moment matrix and took about 2 h of
computational time. The value 5.8310 must be compared to
the maximum value of 2

√
2 + √

10 ≈ 5.9907, achievable in
C4 × C4 systems. In contrast to our certified value 5.8310,
the corresponding C3 × C3 value arising from Moroder et al.
hierarchy [33] (on their level 2) is a higher value of 5.9045.

d. I4722 inequality. It is also worth mentioning a situation
(actually, this is the only case we are aware of) for which
a previous SDP method introduced in Ref. [32] outperforms
our present SDP method. We tested the method in case of
asymmetric Bell inequalities, that is, when the number of
settings on the two sides are not the same. For the sake of
comparison, we have chosen a correlation-type Bell inequality
from [41], already analyzed in [32],

I4722 = E11 + E21 + E31 + E41

+(E12 − E22) + (E31 − E33) + (E41 − E44)

+(E25 − E35) + (E26 − E46) + (E37 − E47)

� 8, (28)
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NAVASCUÉS, FEIX, ARAÚJO, AND VÉRTESI PHYSICAL REVIEW A 92, 042117 (2015)

which consists of four and seven binary-outcome settings
on Alice and Bob’s respective sides. In Ref. [32] a method
is presented in Sec. III B, which is particularly suited to
asymmetric Bell setups. This way, the best upper bound
obtained for qubit systems is 10.5102, whereas the best lower
bound value of 10.4995 is due to see-saw search. The quantum
maximum, attainable with two ququarts, is 10.5830. Using our
present SDP technique and a desktop PC, unfortunately, we
did not manage to go below the global maximum 10.5830.

Suppose now that Alice and Bob are conducting nonbinary
measurements, that is, measurements with more than just
two outcomes. Then, in order to consider the most general
measurements they could perform, we must model their
measurement devices via POVMs, rather than projective
measurements. There are two ways to accomplish this.

(1) We can replace constraints of the sort (Ex
a )2 = Ex

a

in (23) with the positive semidefinite constraints Ex
a � 0 at

the cost of having to add the corresponding localizing matrices
to (24). Although converging, this method does not seem to
behave well in our numerical experiments.

(2) Alternatively, we can exploit the fact that any d-
outcome POVM {Ea � 0} ⊂ B(CD) can be realized in an
extended Hilbert spaceCd ⊗ CD via a projective measurement
of the form Ma = U (|a〉〈a| ⊗ ID)U †, where U ∈ B(Cd ⊗
CD) is a unitary matrix [42]. Indeed, taking the state to be
ρ = |0〉〈0| ⊗ |ψ〉〈ψ | and choosing U appropriately, it can be
verified that

tr(ρMa) = tr(Ea|ψ〉〈ψ |), (29)

for a = 0, . . . ,d − 1 and all states |ψ〉.
In the hierarchy to implement, random states of the

form |0〉〈0|A′ ⊗ |ψ〉〈ψ |AB ⊗ |0〉〈0|B ′ are generated. For each
random state, we construct a moment matrix containing the
operators Ēx

a = Ux(|a〉〈a| ⊗ ID)(Ux)† ⊗ ID ⊗ Id , F̄ y

b = Id ⊗
ID ⊗ V y(ID ⊗ |b〉〈b|)(V y)† and the projectors PA = |0〉〈0| ⊗
I⊗2
D ⊗ Id , PB = Id ⊗ I⊗2

D ⊗ |0〉〈0|.
The convergence of this hierarchy follows from the fact

that the algebras generated by {PAĒx
aPA}, {PBF̄

y

b PB} cannot
violate D-dimensional MPIs.

2. Examples

We now apply our method to place nontrivial upper bounds
on the quantum violation of Bell inequalities using genuine
POVM measurements for some of the settings. Note that for
binary-outcome settings general POVM measurements are not
relevant; hence, we have to consider Bell inequalities with
at least one nonbinary setting. To this end, we consider the
simplest tight Bell inequality due to Pironio beyond genuine
two-outcome inequalities [4,43]. In this inequality, Alice
has three binary-outcome measurements, and Bob has two
settings: The first one has binary outcomes and the second one
has ternary outcomes. If we allow Bob to use general POVM
measurements on his second setting, the two-qubit quantum
maximum (

√
2 − 1)/2 ≈ 0.2071 is recovered up to computer

precision on level 3 of the SDP hierarchy. Hence, in this
particular Bell inequality the use of general measurements does
not provide any advantage over projective ones. Let us note
that the quantum maximum without dimension constraints is a
larger value, 0.2532, which can be obtained using a two-qutrit

system and projective measurements [4]. We also applied the
above method to the Collins-Gisin-Linden-Massar-Popescu
(CGLMP) inequality [44] in order to prove the conjecture
that the qubit bound 0.2071 using projective measurements
is optimal (i.e., general POVM measurements do not help to
improve the bound). However, in that case, we were unable
to go below the known overall quantum maximum given in
Refs. [13,45].

The previous approach can be easily extended to charac-
terize the statistics of multipartite scenarios where the local
dimensionality of all parties is bounded from above. More
interestingly, it can also be adapted to deal with multipartite
Bell scenarios where only a subset of the parties has limited
dimensionality.

Consider, for instance, a tripartite scenario where Alice
and Bob’s measurement devices are unconstrained, but the
dimensionality of the third system (say, Charlie’s) is bounded
by D. We want to generate a basis for the corresponding space
of truncated moment matrices, with rows and columns labeled
by strings of operators of the form u(AB)v(C), where u(AB)
[v(C)] denotes a string of Alice and Bob’s (Charlie’s) operators
of length at most kAB (kC).

The key is to realize that, in a multipartite (complex) Hilbert
space, the space of feasible moment matrices is spanned by
moment matrices corresponding to separable states. Hence, in
order to attack this problem, we start by generating a sequence
of complex D-dimensional moment matrices for Charlie’s
system alone. After applying Gram-Schmidt to these complex
matrices, we obtain the basis of Hermitian matrices {Mj }Nj=1.
Next we generate a basis for Alice and Bob’s moment matrices.
Since their dimension is unconstrained, such matrices are
expressed as

�kAB
=

∑
|u|�2kAB

cuNu + c∗
uNu† , (30)

where Nu is a matrix defined by

(Nu)v,w = 1, if v†w = u;

0, otherwise. (31)

The overall moment matrix for the whole system can then be
expressed as M = ∑

u,j Mj ⊗ (cu,jNu + c∗
u,jNu†).

Since we are just interested in optimizing a real linear
combination of real entries of M—corresponding to the
measured probabilities P (a,b,c|x,y,z)—we can take the real
part of the above matrix, and so we end up with the relaxation

max
∑

x,y,z,a,b,c

B
x,y,z

a,b,c MEx
a ,F

y

b Gz
c
,

such that

MI,I = 1, M � 0, (32)

M =
∑
u,j

cRu,j Re(Mj ) ⊗ (Nu + Nu† )

− cIu,j Im(Mj ) ⊗ (Nu − Nu† ),

where cRu,j (cIu,j ) denotes the real (imaginary) part of cu,j . This
is an SDP with real variables.
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3. Examples

We now show applications of the above SDP method
tailored to multipartite systems. As a first example, a three-
party system is considered for which Alice possesses a qubit
and the other two parties (Bob and Charlie) have no restriction
on the dimensionality of the Hilbert spaces. We are able to
fully reproduce the bounds obtained in Ref. [32]. In the next
example, we extend Alice’s Hilbert space to a qutrit, thereby
certifying genuine four-dimensional entanglement. Then we
move to a four-party (translationally invariant) Bell scenario
and certify that a Bell value above a certain threshold cannot
be obtained with symmetric measurements (that is, when each
four parties measure the same observables in the first and
second respective settings).

a. I333 inequality. We consider the following three-party
three-setting permutationally invariant Bell inequality [32]

I333 = sym{−P (A1) − 2P (A3) + P (A1,B1)

− P (A1,B2) + P (A1,B3) − 2P (A2,B2)

+ 2P (A2,B3) − 2P (A3,B3)} � 0. (33)

Here we used the short-hand notation P (Ax,By) =
p(0,0|x,y), P (Ax) = p(0|x) and similarly for the other
parties. Notice that the Bell expression above consists of
only two-body correlators and single-party marginal terms,
which usually provide an advantage in experiments. Such
Bell inequalities have been proposed in Ref. [46] to detect
nonlocality in multipartite quantum systems for any number of
parties (however, those inequalities involve only two settings
per party; hence, they can be maximally violated with qubit
systems, unlike the present example). In Eq. (33), sym{X}
means that every term occurring in X should be symmetrized
with respect to all possible permutations of the parties, e.g.,
sym{P (A1,B1)} = P (A1,B1) + P (B1,C1) + P (A1,C1).

We next compute upper bounds on the quantum violations
assuming different dimensionality of the Hilbert spaces. Lower
bound values, on the other hand, are obtained from see-saw
iteration in a prior work [32]. Table II summarizes the results.
Values with an asterisk (∗) have been established in the present
work. Notation (D1D2D3) refers to the dimensionalities of
Alice, Bob, and Charlie’s Hilbert spaces, respectively. Notice
that due to symmetry of the Bell inequality (33), the same
bounds apply to any permutations of (D1D2D3). Establishing
upper bound on case (222) with nondegenerate measurements
was the most time consuming task, the corresponding SDP
problem involved 4894 constraints and took 3 h to be solved

using MOSEK; still the lower bound value has not been
saturated. Computing the upper bound for the case (2∞∞)
required to run the hybrid method (Alice was given level 2
of the qubit hierarchy, whereas Bob and Charlie’s system was
computed on NPA level 1 + AB). In that case, we managed
to close the gap between the lower and the upper bound
values, thereby reproducing the result of Ref. [32]. We also
computed (3∞∞) upper bound and recovered the global
maximum of 0.196 285 2 certified by the NPA hierarchy
(Alice was given the level 3 of the qutrit hierarchy and took
24 h for MOSEK to solve the resulting SDP). Accordingly,
any Bell violation of I333 bigger than 0.178 689 7 cannot be
attained with dimensionalities (2∞∞) (plus the two other
permutations), implying that the underlying three-party state
ρABC has at least Schmidt number vector (3,3,3) (see, e.g.,
Refs. [47,48]). Moreover, any pure state decomposition of
ρABC contains at least one state σABC = |ψ〉〈ψ | such that the
rank of each single-party marginal σA, σB , and σC is greater
than 2. In short, a Bell violation of I333 bigger than 0.178 689 7
detects in a device-independent way that the three-party state
is genuinely three-dimensional entangled.

b. I444 inequality. We construct a three-party Bell in-
equality which cannot be violated maximally in state spaces
C3 × CD × CD (and arbitrary permutations thereof) for any
dimension D. This extends the previous example to the case
when Alice’s state space is restricted to a qutrit (instead of
a qubit). In particular, the maximal violation is attained in
C4 × C4 × C4. Hence, this certifies that the underlying three-
party quantum state is genuinely four-dimensional entangled.

Let us consider the following three-party, four-setting Bell
inequality [49],

I444 = CHSHAB + CHSHA′C + CHSHB ′C ′ � 6, (34)

where A and A′ denote different sets of measurements for
party A, and we use similar notation for parties B and C.
In Ref. [49] it has been proved that the maximum quantum
violation attainable with biseparable states is S = 4 + 2

√
2 ≈

6.8284. Hence, if the above bound is exceeded in a Bell
experiment, we can conclude that the state is genuinely
tripartite entangled [50,51]. The same bound can be derived
by using the SDP techniques of Ref. [52] based on the NPA
hierarchy. Below we extend this result to the realm of genuine
higher-dimensional entanglement.

To this end, we replace CHSHB ′C ′ with the Tsirelson
bound 2

√
2 [53]. This places an upper bound on I444 in (34).

TABLE II. Lower bounds (LB) and upper bounds (UB) on the violation of the I333 inequality in various local dimensions. Values with
an asterisk (∗) have been established in the present work. The notation (D1D2D3) refers to the dimensionalities of Alice, Bob, and Charlie’s
Hilbert spaces, respectively. The sign ∞ denotes no restriction on dimension of the respective party. Abbreviation Deg/No-deg refers to the
situation when Alice has at least one degenerate measurement/all measurements are nondegenerate (i.e., rank 1 projectors). The qutrit value
(333) is the overall quantum maximum certified by the NPA hierarchy [12]. The upper bound value for (2∞∞) in the degenerate case was
obtained using the NPA hierarchy as well.

LB UB LB UB LB
(222) (222) (2∞∞) (2∞∞) (333)

No-deg 0.044 348 4 0.054 136 2∗ 0.178 394 6 0.178 394 6∗ 0.196 285 2
Deg 0.178 394 6 0.178 394 6∗ 0.178 689 7 0.178 689 7
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TABLE III. Maximum quantum bounds on Bell inequality I444

in (34) for different local dimensions of Alice. The first column
(labeled by Bisep) stands for the case when Alice has a classical
system and the other two parties have unrestricted dimensionalities.
All bounds are tight as they are matched with lower bounds arising
from see-saw iteration.

Bisep (2∞∞) (3∞∞) (444)

6.828 427 7.656 854 7.971 284 8.485 281

Therefore, we are left with optimizing CHSHAB +
CHSHA′C + 2

√
2 for C3 × CD × CD systems, where D de-

notes arbitrary dimension. To do so, we classify Alice’s four
observables according to their traces (±1,±3) and in each
case we can solve the problem with SDP for the hybrid
multipartite case. Notice, however, that Bob and Charlie
have only two binary-outcome measurements; hence, Jordan’s
Lemma applies and we can assume that Bob and Charlie
have traceless qubit observables [54]. Then the problem
goes back to upper bounding CHSHAB + CHSHA′C + 2

√
2

in C3 × C2 × C2, which can be straightforwardly done using
our SDP tools. By running the SDP, the maximum turns out
to be 36/7 + 2

√
2 up to the numerical precision of the solver

MOSEK. We also solved the problem assuming that Alice has
a qubit yielding the upper bound 2 + 4

√
2 up to computer

precision. Results are summarized in Table III. All bounds are
tight as they are saturated using see-saw search.

Consider now the so-called fully connected Bell state, that
is, a three-party state for which any two parties share a two-
qubit Bell pair,

|ψ444〉 = |ϕ+〉AB ⊗ |ϕ+〉A′C ⊗ |ϕ+〉B ′C ′ . (35)

With this particular C4 × C4 × C4 state and measurement set-
tings optimal for CHSH violation, we get the overall quantum
maximum of 6

√
2 ≈ 8.485 281 for the Bell inequality (34).

By adding a certain amount of white noise to the state (35):

ρnoisy = p|ψ444〉〈ψ444| + 1 − p

43
I4×4×4, (36)

we get the critical visibility pcrit = (36/7 + 2
√

2)/(6
√

2) ≈
0.939 425, above which we can detect the state (36) to
be genuinely four-dimensional entangled. We believe this
threshold is low enough to be interesting from an experimental
point of view as well.

c. I2222 with symmetric measurements. In Ref. [55], a
search has been conducted for all three- and four-partite
binary-outcome Bell inequalities involving two-body corre-
lators that obey translationally symmetry. Any translationally
invariant Bell inequality is provably maximally violated by
a translationally invariant state when all parties measure
the same set of observables (of unlimited dimensionality).
Numerical investigations in Ref. [55] suggest that it is not
true anymore if we restrict the local Hilbert space dimension
of the parties. Let us pick #64 inequality from Table II in
Ref. [55]. Due to the fact that these Bell inequalities involve
two dichotomic measurements per site, Jordan’s lemma applies
and the maximum violation is given by βQ = 6 + 2

√
2 in

qubit systems. Due to numerics, this value is achieved with
different pairs of qubit observables. Indeed, running our SDP

program by building up the bases from random symmetric
measurements, we certify that applying the same settings at
all sites does not allow us to violate the Bell inequality #64
in Table II of Ref. [55] (i.e., βT I

Q = βc in the notation of the
corresponding reference).

B. One-way quantum communication complexity

Consider the following communication scenario. Alice and
Bob are given inputs x,y with probability p(x,y) and have the
task to compute the Boolean function f (x,y). To do so, we
allow Alice to transmit a D-dimensional quantum system to
Bob, who, upon receiving it, must make a guess b on f (x,y).
We wish to find the strategy which will allow Alice and Bob
to maximize the probability that Bob’s guess is correct, i.e.,
b = f (x,y). For example, in a QRAC [56], the inputs �x,y

can take values in {0,1}k and {1, . . . ,k}, respectively, and the
function to compute is f (�x,y) = xy .

This scenario can be modeled by assuming that Alice pre-
pares a pure quantum state ρx ≡ |ψx〉〈ψx | ∈ B(CD) depending
on her input x. Bob will conduct a two-outcome projective
measurement labeled by y and defined by the projection
operators {Fy

b : b = 0,1}, whose outcome will be Bob’s guess.
In sum, we need to solve the problem

max
∑
x,y

p(x,y)tr
(
ρxF

y

f (x,y)

)
,

such that
(37)

tr(ρx) = 1, ρ2
x = ρx,

(
F

y

b

)2 = F
y

b ,

ρx, F
y

b ∈ B(CD).

This problem can be reformulated by assuming that the
initial state of Alice’s system corresponds to ρx=0 and for
any other input x she sends the state Vxρ0V

†
x , where Vx is a

unitary operator that can be chosen self-adjoint, i.e., V 2
x = I.

The resulting problem belongs to the class (1), and hence there
is a converging SDP hierarchy to attack it. We observed that,
in practice, such an SDP hierarchy gave good predictions for
D = 2 at k = 2. For D = 3, a third-order relaxation did not
suffice to reach the optimal probability of success in 2 → 1
QRAC [56].

We believe that the main reason for such a slow convergence
rate is that the above proposal relies solely on MPIs to enhance
dimension constraints. In order to devise a practical SDP
hierarchy for problem (37), one needs to find a reformulation of
problem (37) where the space Mk

D,�r is dimension-dependent
even for low values of k. One such reformulation is immediate:
Regard ρx as rank 1 projectors and assume that the state of the
system is the (not normalized) tracial state ID .

The resulting hierarchy of SDPs should be easy to guess.
First, we divide the representations of problem (37) into
different classes r depending on the rank of the projectors
{Fy

0 }. Second, we generate random states ρx and projectors
{Fy

0 } within the class r , and, taking the state of the system to
be ID , we use them to build random feasible moment matrices.
Those allow us to characterize the space Mk

D,�r . Note that
dimension constraints on Mk

D,�r are present for all D even for
k = 1. For example, for any feasible first-order moment matrix
M , MI,I = D × MI,ρx

.
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The above SDP hierarchy gives good results in practice,
but we were not able to prove its convergence. Following
Sec. IV, it can be shown that, for any class r , one can define a
representation F̃

y

b ,ρ̃x and a tracial state D|ψ̃〉〈ψ̃ | which recover
the limiting value of the hierarchy of SDPs. Furthermore,
the operator algebra decomposes into a direct integral of
representations z with the property that rank(F̃ y

b,z) � r
y

b ,
rank(I − ρx,z) � D − 1, rank(ρx,z) � 1. If the dimensionality
of Hz is D, that defines a feasible point of problem (37).
However, if the dimensionality of Hz is strictly smaller, we run
into trouble: In such representations, ρx,z can vanish for some
values of x. Constraints such as tr(ρz) = 1 can be accounted
for by other representations t , where ρx,t is a rank 1 projector,
since D〈ψ̃t |ρx,t |ψ̃t 〉 = D

dim(Ht )
> 1.

One possibility to suppress the effects of lower finite-
dimensional representations is to add “noncommuting con-
stants,” i.e., certain extra operators whose operator relations
cannot be realized in dimensions lower than D. For instance,
in order to guarantee that all representations Y have dimension
D = 2, we could include the Pauli matrices σz,σx as operators
in the moment matrix Mk . With these extra variables, proving
convergence can be done by appealing to the convergence of
the Lasserre-Parrilo hierarchy [26,27]. However, we did not
find a single situation in our numerical experiments where
adding noncommuting constants to fix the dimension was of
any advantage.

1. Examples

We explore how the relaxation of the above communication
problem performs in practice. To do so, we establish (usually
tight) upper bounds in QRAC for various values of k and
dimension D. We also recompute quantum bounds for the
witnesses IN of Gallego et al. [57]. We further distinguish
between real and complex Hilbert spaces and detect general
POVM measurements assuming that Alice communicates Bob
a quantum system of fixed dimension D = 2. Note that
Ref. [58] investigates a generalized QRAC problem where
Alice’s inputs �x take values from a string of dits (instead of
bit-strings). In that case, our SDP method also showed good
performance [58].

a. QRAC. We suppose the QRAC has independently and
uniformly distributed inputs and Alice is allowed to transmit
Bob a D-level quantum system. We use the notation of
Ref. [59] and we denote the average success probability of
the optimal k → log2(D) QRAC by Pmax[k → log2(D)].

It was known previously from Ref. [56] that Pmax(2 → 1) =
1/2 + √

2/4. This is actually the value given by our SDP code
at order 2, up to numerical precision. Likewise, when Alice is
allowed to transmit a qutrit (case D = 3), our relaxation based
on tracial states at the same order 2 gives Pmax � 0.904 508 50,

which matches with high numerical precision the lower bound
value obtained via see-saw technique. Another method from
the literature to attack this problem is the Mironowicz-Li-
Pawłowski (MLP) SDP hierarchy [60], whose second-order
relaxation gives us the (nontight) upper bound of 0.926 835 5.

One can prove that the MLP hierarchy does not converge
in general. To do that, first notice that any QRAC can be
rewritten as a full-correlation Bell inequality by defining
Alice’s observables as Ax = 2ρx − I. Then, the only constraint
that the MLP hierarchy adds to the NPA hierarchy is that
〈Ax〉 = 2 − D. Taking D = 2, we see that the problem of
calculating Pmax(k → 1) reduces to maximizing the violation
of a full-correlation Bell inequality constraining (some of)
its marginals to be uniform. By Tsirelson’s theorem, the
maximum is anyway attained when the marginals are uniform,
so the constraint is automatically satisfied [53,61]. This means
we can simply solve Tsirelson’s SDP to find out this maximum
and the minimal dimension necessary to attain it [61]. For
k = 4, we see that D = 4 is necessary to reach the maximum,
so the hierarchy did not converge to the maximum for D = 2.

By increasing the dimension D and the parameter k, the
second-order relaxation of the hierarchy based on the tracial
states also performs well. The entries in the first three rows
of Table IV are from Ref. [16], which shows lower and upper
bounds on the average success probability for QRAC k →
log2(D) for k = 3 and for different values of D. The upper
bounds (UB) are computed via our SDP using a normal desktop
PC, and took less than 1 h for any of the D values (assuming
a given rank-combination of measurements) using the solver
SEDUMI [29]. The upper bounds (UB′) are resulting from the
second-order relaxation of the MLP method [60]. We also
show upper bounds (UB′′) derived from the Moroder et al. [33]
hierarchy by fixing negativity (D − 1)/2 and adding the
constraint P (a|x) = 1/D on Alice’s marginal distributions.
As Table IV shows, except for D = 2,4, where the outputs of
all methods coincide, the new tool gives predictions ∼10−2

more accurate than the MLP method and the method based on
Moroder et al. hierarchy.

Let us pick Pmax(3 → 1) = 0.788 675 from Table IV. This
is precisely the value given by the construction of Chuang [56]
proving optimality of the complex qubit value. However, we
can apply in this case the same ideas to characterize the
properties of real qubit systems as well. By generating the
basis from randomly chosen real-valued qubit states ρx and
projectors {Fy

0 }, we get the (tight) upper bound 0.769 672 3.
Hence, this simple example allows us to distinguish between
real and complex two-level systems.

b. IN family. As another example, we used the SDP program
based on tracial states to recompute the maximal quantum
value of the prepare-and-measure dimension witnesses IN

defined in Ref. [57], Table I. The second relaxation of the

TABLE IV. Lower (LB) and various upper bounds (UB, UB′, UB′′) on Pmax[3 → log2(D)] detailed in the text.

D 2 3 4 5 6 7

LB 0.788 675 0.832 273 0.908 248 0.924 431 0.951 184 0.969 841
UB 0.788 675 0.832 273 0.908 248 0.924 445 0.954 123 0.969 841
UB′ 0.788 675 0.853 553 0.908 248 0.934 264 0.957 785 0.979 567
UB′′ 0.788 675 0.852 156 0.908 248 0.931 201 0.954 140 0.977 072
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NAVASCUÉS, FEIX, ARAÚJO, AND VÉRTESI PHYSICAL REVIEW A 92, 042117 (2015)

TABLE V. Lower and upper bounds on I7 witness for dimensions
D = 2, . . . ,6. LB stands for the data in Ref. [63], Table I, whereas
LB′ is due to our see-saw technique and UB is resulting from our
SDP method.

D 2 3 4 5 6

LB 17.3976 20.7143 23.2167 24.8978 26.1017
LB′ 17.3976 20.7085 23.2167 24.8987 26.1017
UB 17.3976 20.7718 23.2180 24.8991 26.1019

SDP hierarchy turns out to produce upper bounds for cases
N = 3,4 and D = 2,3 which match the lower bounds obtained
with see-saw method. Let us note that the conclusions of
the experimental paper [62] relied on the conjecture that the
inequality I4 � 7.9689 cannot be violated by quantum systems
of dimension D = 3.

In a recent experimental paper [63], the IN dimension
witness has been investigated for N = 7. Using a heuristic
search, lower bounds are provided for dimensions D =
2, . . . ,6, which were conjectured to be optimal. The first
row (LB) in our Table V shows lower bound results of
Ref. [63], which match our lower bounds (LB′ in second
row), except the case D = 3, where we got a slightly higher
lower bound value. This also justifies the need to relaxation
methods providing certified upper bound values. Remarkably,
our SDP upper bound values (UB in third row) are close to
the LB′ values differing in the worst case D = 3 in the second
digit. For instance, Ref. [63] provides the experimental value
of I7 = 25.44 ± 0.02 for the preparation of six-dimensional
states. Therefore, our UB value of 24.8991 for D = 5 certifies
the generation of at least six-dimensional quantum states.

c. POVM witnesses. Gisin [64] asked if there exists a Bell in-
equality which requires POVMs for optimal violation on some
quantum state. This question has been answered affirmatively
in case of two-qubit states (see, e.g., Refs. [17,18,65,66]).
However, the question is still open for Bell inequalities
defining facet of the local polytope (though, numerical study
suggests the existence of such cases for three parties and
high-dimensional states [67]). We pose a similar question in
the prepare-and-measure communication scenario: By fixing
dimension (say, Alice is allowed to send Bob a two-level
system), are there witnesses which allow higher violations
when Bob performs general POVM measurements instead of
standard projective measurements? Our SDP tools allow one
to certify the existence of such POVM witnesses.

To this end, we pick the V4 witness of Ref. [68] and consider
dimension D = 2. This witness consists of four preparations
(x = 1, . . . ,4) on Alice’s side and six measurements (y =
1, . . . ,6) on Bob’s side. For D = 2, the maximum value of
V4 equals 2

√
6, which can be attained if Alice prepares four

states pointing toward the vertices of the regular tetrahedron
(corresponding to SIC POVM elements). We add a four-
outcome measurement to Bob (y = 7) with four outcomes
b = 1,2,3,4 to the original V4 witness and define the modified
V4 witness as follows:

V ′
4 = V4 −

4∑
i=1

P (b = i|x = i,y = 7) � 2
√

6 � 4.8990.

(38)

We remark that a similar modification was used in the context
of Bell nonlocality in Ref. [65]. As the last term in the
inequality cannot be positive, the qubit bound 2

√
6 � 4.8990

using POVMs follows from the bound on V4. Indeed, by
using the known optimal qubit settings for V4, the only
way of getting the maximal violation of 2

√
6 is when Bob’s

POVM elements in setting y = 7 are antialigned with the four
tetrahedron states prepared by Alice, so that all probabilities
P (b = i|x = i,y = 7) become zero. By assuming projective
qubit measurements for Bob and running SDP in the case
of D = 2, we obtain 2(

√
2 + 1) � 4.8284 up to numerical

precision on the witness V ′
4 in Eq. (38). Hence, any value bigger

than 4.8284 for V ′
4 certifies in a semi-device-independent way

that Bob’s measurement y = 7 was, in fact, a general POVM
measurement.

VII. SOME TIPS ON IMPLEMENTATION

In this section, we offer some tips on implementing the pro-
grams defined above. As we will see, those tricks will make the
hierarchy for NPO under dimension constraints much easier
to code and modify than its dimension-free counterpart [14].
For simplicity, we assume that our program does not involve
localizing matrices, i.e., that all polynomial restrictions appear
as identities. We also presume that operator representations can
be divided into classes �r and that generating a random instance
of each class can be done efficiently.

First, we need a subroutine [X,rho] = genSamp(D,n,r) that
generates a cell-array X of random operators X0,X1, . . . ,Xn,
with X0 = ID and X1, . . . ,Xn ∈ B(CD) satisfying the appro-
priate class constraints, determined by the vector r . GENSAMP

must also return a quantum state ρ ∈ B(CD) (in our examples,
either a pure random state |ψ〉〈ψ |, the maximally entangled
state, or the un-normalized maximally mixed state).

Second, we need a subroutine G = buildG(X,rho,k) that,
given the cell array X and an index k, generates a kth-order
moment matrix of the form

G�i, �j = tr
(
ρX

†
ik

· · · X†
i1
Xj1 · · ·Xjk

)
, (39)

where �i, �j ∈ {0, . . . ,n}k if the variables X1, . . . ,Xn are Her-
mitian or �i, �j ∈ {0, . . . ,2n}k if they are not. In either case,
monomials of G can be accessed via tr(G|�i〉〈 �j |), choosing
�i, �j appropriately. Note that, in this representation, different
columns of G correspond to the same operator, e.g., 01 and 10.
That does not matter, because, at the end of the day, redundant
columns will be suppressed by the matrix V mapping the space
where G is defined to the support of span{G}; see Remark 1.

If the reader is an OCTAVE or MATLAB user, the following
considerations will lead to very fast code.

Any D × D matrix A = ∑D
i,j=1 Ai,j |i〉〈j | can be repre-

sented in vector form as |A〉 = ∑
i,j Aij |i〉|j 〉: To go from

A to |A〉, one can invoke the in-built function RESHAPE. It
can be verified that (ID ⊗ 〈ψ+| ⊗ ID)|A〉|B〉 = |AB〉, where
|ψ+〉 is the non-normalized maximally entangled state |ψ+〉 =∑D

i=1 |i,i〉. Similarly, (ID ⊗ 〈φ|)|A〉 = A|φ∗〉, and, hence,
〈A|(ID ⊗ ρ∗)|B〉 = tr(A†Bρ) for any Hermitian matrix ρ ∈
B(CD).
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Now, for random operators X1, . . . ,Xn in the class r , define
� = ∑n

i=0 |Xi〉〈i|. From the above, it follows that

(ID ⊗ 〈ψ+| ⊗ ID)

⎛
⎝� ⊗

∑
j2,...,jl

∣∣Xj2 · · · Xjl

〉〈j2, . . . ,jl|
⎞
⎠

=
∑

j1,...,jl

∣∣Xj1 · · · Xjl

〉〈j1, . . . ,il|. (40)

By tensoring � sequentially and projecting on the maxi-
mally entangled state, we thus (quickly) obtain the operator

C ≡
∑

j1,...,jk

∣∣Xj1 · · ·Xjk

〉〈j1, . . . ,ik|. (41)

Then it can be verified that

G = C†(ID ⊗ ρ∗)C. (42)

Finally, we must code a third subroutine [basisMat,V]=
buildBasis(D,n,r,k) that, by repeatedly calling GENSAMP and
BUILDG, derives an orthonormal matrix basis for span{G}
and the isometry V described in Remark 1. From there, it
is straightforward to implement program (7).

Notice that all operator relations are determined by
GENSAMP only. This means, for example, that if we wish to
optimize over projection (unitary operators) all we need to
do is program GENSAMP to generate random tuples of pro-
jection (unitary) operators P1,...,Pn (U1, . . . ,Un,U

†
1 , . . . ,U

†
n).

Switching from one type of polynomial constraints to another
can thus be done straightforwardly with the above implemen-
tation.

VIII. CONCLUSION

In this paper we have extended the notion of NPO to
scenarios where the dimensionality of the spaces where the
noncommuting variables act is bounded from above. We have
presented a complete hierarchy of SDP relaxations to solve
such problems and we have explored its performance by
applying it to solve a number of open problems in quantum
information theory.

Our research raises several questions which deserve further
study. The first one is whether the hierarchy of relaxations
proposed to study one-way quantum complexity is complete.
As we showed, the main obstacle to prove convergence lies
in interference from low-dimensional operator representations
with “dark states.” For D = 2, the extreme points of such
additional one-dimensional representations are finite, and thus
the problem of determining whether the hierarchy converges
in a given prepare-and-measure scenario amounts to proving
that all such points can be reproduced by two-level quantum
systems. Similarly, the convergence of the sequence of
relaxations to the maximum value of a specific functional for
arbitrary D can be verified by establishing an upper bound
for the dark-state value smaller than or equal to the value
of a concrete D-dimensional realization. It would be more
satisfactory, though, to have a general convergence result.

Another open problem is whether the relaxations proposed
for optimizations over finite-dimensional real operator alge-
bras actually converge. Here we are faced with the problem that

certain operator representations, irreducible in the real space,
can be expressed as a direct sum of nontrivial representations
if we allow complex unitary transformations. Hence, if we
wished to follow the proof for complex algebras, we would
encounter problems at the step of applying von Neumann’s
direct-integral theorem [24].

Finally, note that in this work we have not exploited the
symmetry of the functionals to optimize. If our aim is to bound
quantum nonlocality under dimension constraints, that leaves
us with a method that, in the best scenario, would allow us to
conduct optimizations for D = 2,3 with a normal computer.
Which dimensionalities could become accessible if we chose
to play with symmetries is an intriguing question.
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APPENDIX: TYPE II AND III FACTORS VIOLATE
THE STANDARD MPI

The purpose of this appendix is to prove its title. To do so,
we require the following lemma.

Lemma 1. Let A be a type II or III factor. Then for all n

there exists nontrivial projectors {Pi}ni=1 ⊂ A such that
(1)

∑n
i=1 Pi = I;

(2) P1AP2A · · · PnA �= 0.
Proof. Suppose that the statement is not true for general n

and let N be the greatest number such that it holds. Note that
N > 1. Indeed, if P1AP2 = 0 for nontrivial P1,P2, then for all
x ∈ A,

[x,P1] = (P1 + P2)[x,P1](P1 + P2)

= P1xP1 + P2xP1 − P1xP1 − P1xP2 = 0. (A1)

That is impossible, because factors, by definition, are central;
i.e., the only elements of A commuting with A are multiples
of the identity.

Now suppose that {Pi}Ni=1 satisfy the conditions of
the lemma. Then we can always write PN = P ′

N +
P ′

N+1, where P ′
N,P ′

N+1 are nonzero projectors such that
P ′

1AP ′
2A · · · P ′

NA �= 0. Call B the algebra generated by
AP ′

1AP ′
2A · · · P ′

NA, and let  denote its identity, i.e., a
projector  ∈ B such that y = y for all y ∈ B. Note that, due
to the definition of B, AB = BA = B, and hence x,x ∈ B
for all x ∈ A. It follows that x = x = x; that is,
[x,] = 0.

On the other hand, N is the greatest number such that the
conditions of the lemma hold, and so AP ′

1 · · ·AP ′
NAP ′

N+1 =
P ′

N+1AP ′
1 · · ·AP ′

NA = 0. In other words, BP ′
N+1 = 0, and,

consequently, P ′
N+1 = 0. We conclude that , which is

neither 0 nor the identity, must commute with all x ∈ A,
contradicting the centrality of A. �

042117-13



NAVASCUÉS, FEIX, ARAÚJO, AND VÉRTESI PHYSICAL REVIEW A 92, 042117 (2015)

Now, given n and a type II or III factor A, choose
orthogonal projectors {Pi}ni=1 ⊂ A and operators x1, . . . ,xn ∈
A such that P1x1P2x2 · · ·Pn �= 0. Then define the op-
erators Ei ≡ PixiPi+1 for i = 1, . . . ,n − 1 and compute

the fundamental polynomial In−1(E). Due to the or-
thogonality of {Pi}, the only nonvanishing product is
E1E2 · · · En−1 = P1x1P2x2 · · ·Pn �= 0. A, hence, violates
In−1 = 0.
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