165 research outputs found

    Which point sets admit a k-angulation?

    Get PDF
    For k >= 3, a k-angulation is a 2-connected plane graph in which every internal face is a k-gon. We say that a point set P admits a plane graph G if there is a straight-line drawing of G that maps V(G) onto P and has the same facial cycles and outer face as G. We investigate the conditions under which a point set P admits a k-angulation and find that, for sets containing at least 2k^2 points, the only obstructions are those that follow from Euler's formula.Comment: 13 pages, 7 figure

    Synchronized planarity with applications to constrained planarity problems

    Get PDF
    We introduce the problem Synchronized Planarity. Roughly speaking, its input is a loop-free multi-graph together with synchronization constraints that, e.g., match pairs of vertices of equal degree by providing a bijection between their edges. Synchronized Planarity then asks whether the graph admits a crossing-free embedding into the plane such that the orders of edges around synchronized vertices are consistent. We show, on the one hand, that Synchronized Planarity can be solved in quadratic time, and, on the other hand, that it serves as a powerful modeling language that lets us easily formulate several constrained planarity problems as instances of Synchronized Planarity. In particular, this lets us solve Clustered Planarity in quadratic time, where the most efficient previously known algorithm has an upper bound of O(n⁞)

    Planar Drawings of Fixed-Mobile Bigraphs

    Full text link
    A fixed-mobile bigraph G is a bipartite graph such that the vertices of one partition set are given with fixed positions in the plane and the mobile vertices of the other part, together with the edges, must be added to the drawing. We assume that G is planar and study the problem of finding, for a given k >= 0, a planar poly-line drawing of G with at most k bends per edge. In the most general case, we show NP-hardness. For k=0 and under additional constraints on the positions of the fixed or mobile vertices, we either prove that the problem is polynomial-time solvable or prove that it belongs to NP. Finally, we present a polynomial-time testing algorithm for a certain type of "layered" 1-bend drawings

    Optimally fast incremental Manhattan plane embedding and planar tight span construction

    Full text link
    We describe a data structure, a rectangular complex, that can be used to represent hyperconvex metric spaces that have the same topology (although not necessarily the same distance function) as subsets of the plane. We show how to use this data structure to construct the tight span of a metric space given as an n x n distance matrix, when the tight span is homeomorphic to a subset of the plane, in time O(n^2), and to add a single point to a planar tight span in time O(n). As an application of this construction, we show how to test whether a given finite metric space embeds isometrically into the Manhattan plane in time O(n^2), and add a single point to the space and re-test whether it has such an embedding in time O(n).Comment: 39 pages, 15 figure

    Combinatorial and Geometric Aspects of Computational Network Construction - Algorithms and Complexity

    Get PDF
    • 

    corecore