58 research outputs found

    Constant Modulus Algorithms via Low-Rank Approximation

    Get PDF
    We present a novel convex-optimization-based approach to the solutions of a family of problems involving constant modulus signals. The family of problems includes the constant modulus and the constrained constant modulus, as well as the modified constant modulus and the constrained modified constant modulus. The usefulness of the proposed solutions is demonstrated for the tasks of blind beamforming and blind multiuser detection. The performance of these solutions, as we demonstrate by simulated data, is superior to existing methods.This work was supported by the Center for Brains, Minds and Machines (CBMM), funded by NSF STC award CCF-1231216

    UNDERWATER COMMUNICATIONS WITH ACOUSTIC STEGANOGRAPHY: RECOVERY ANALYSIS AND MODELING

    Get PDF
    In the modern warfare environment, communication is a cornerstone of combat competence. However, the increasing threat of communications-denied environments highlights the need for communications systems with low probability of intercept and detection. This is doubly true in the subsurface environment, where communications and sonar systems can reveal the tactical location of platforms and capabilities, subverting their covert mission set. A steganographic communication scheme that leverages existing technologies and unexpected data carriers is a feasible means of increasing assurance of communications, even in denied environments. This research works toward a covert communication system by determining and comparing novel symbol recovery schemes to extract data from a signal transmitted under a steganographic technique and interfered with by a simulated underwater acoustic channel. We apply techniques for reliably extracting imperceptible information from unremarkable acoustic events robust to the variability of the hostile operating environment. The system is evaluated based on performance metrics, such as transmission rate and bit error rate, and we show that our scheme is sufficient to conduct covert communications through acoustic transmissions, though we do not solve the problems of synchronization or equalization.Lieutenant, United States NavyApproved for public release. Distribution is unlimited

    Constant modulus based blind adaptive multiuser detection.

    Get PDF
    Thesis (Ph.D.)-University of KwaZulu-Natal, Durban, 2004.Signal processing techniques such as multi user detection (MUD) have the capability of greatly enhancing the performance and capacity of future generation wireless communications systems. Blind adaptive MUD's have many favourable qualities and their application to OS-COMA systems has attracted a lot of attention. The constant modulus algorithm is widely deployed in blind channel equalizations applications. The central premise of this thesis is that the constant modulus cost function is very suitable for the purposes of blind adaptive MUD for future generation wireless communications systems. To prove this point, the adaptive performance of blind (and non-blind) adaptive MUD's is derived analytically for all the schemes that can be made to fit the same generic structure as the constant modulus scheme. For the first time, both the relative and absolute performance levels of the different adaptive algorithms are computed, which gives insights into the performance levels of the different blind adaptive MUD schemes, and demonstrates the merit of the constant modulus based schemes. The adaptive performance of the blind adaptive MUD's is quantified using the excess mean square error (EMSE) as a metric, and is derived for the steady-state, tracking, and transient stages of the adaptive algorithms. If constant modulus based MUD's are suitable for future generation wireless communications systems, then they should also be capable of suppressing multi-rate DS-COMA interference and also demonstrate the ability to suppress narrow band interference (NBI) that arises in overlay systems. Multi-rate DS-COMA provides the capability of transmitting at various bit rates and quality of service levels over the same air interface. Limited spectrum availability may lead to the implementation of overlay systems whereby wide-band COMA signal are collocated with existing narrow band services. Both overlay systems and multi-rate DS-COMA are important features of future generation wireless communications systems. The interference patterns generated by both multi-rate OS-COMA and digital NBI are cyclostationary (or periodically time varying) and traditional MUD techniques do not take this into account and are thus suboptimal. Cyclic MUD's, although suboptimal, do however take the cyclostationarity of the interference into account, but to date there have been no cyclic MUD's based on the constant modulus cost function proposed. This thesis thus derives novel, blind adaptive, cyclic MUD's based on the constant modulus cost function, for direct implementation on the FREquency SHift (FRESH) filter architecture. The FRESH architecture provides a modular and thus flexible implementation (in terms of computational complexity) of a periodically time varying filter. The operation of the blind adaptive MUD on these reduced complexity architectures is also explored.· The robustness of the new cyclic MUD is proven via a rigorous mathematical proof. An alternate architecture to the FRESH filter is the filter bank. Using the previously derived analytical framework for the adaptive performance of MUD's, the relative performance of the adaptive algorithms on the FRESH and filter bank architectures is examined. Prior to this thesis, no conclusions could be drawn as to which architecture would yield superior performance. The performance analysis of the adaptive algorithms is also extended in this thesis in order to consider the effects of timing jitrer at the receiver, signature waveform mismatch, and other pertinent issues that arise in realistic implementation scenarios. Thus, through a careful analytical approach, which is verified by computer simulation results, the suitability of constant modulus based MUD's is established in this thesis

    Blind source separation for interference cancellation in CDMA systems

    Get PDF
    Communication is the science of "reliable" transfer of information between two parties, in the sense that the information reaches the intended party with as few errors as possible. Modern wireless systems have many interfering sources that hinder reliable communication. The performance of receivers severely deteriorates in the presence of unknown or unaccounted interference. The goal of a receiver is then to combat these sources of interference in a robust manner while trying to optimize the trade-off between gain and computational complexity. Conventional methods mitigate these sources of interference by taking into account all available information and at times seeking additional information e.g., channel characteristics, direction of arrival, etc. This usually costs bandwidth. This thesis examines the issue of developing mitigating algorithms that utilize as little as possible or no prior information about the nature of the interference. These methods are either semi-blind, in the former case, or blind in the latter case. Blind source separation (BSS) involves solving a source separation problem with very little prior information. A popular framework for solving the BSS problem is independent component analysis (ICA). This thesis combines techniques of ICA with conventional signal detection to cancel out unaccounted sources of interference. Combining an ICA element to standard techniques enables a robust and computationally efficient structure. This thesis proposes switching techniques based on BSS/ICA effectively to combat interference. Additionally, a structure based on a generalized framework termed as denoising source separation (DSS) is presented. In cases where more information is known about the nature of interference, it is natural to incorporate this knowledge in the separation process, so finally this thesis looks at the issue of using some prior knowledge in these techniques. In the simple case, the advantage of using priors should at least lead to faster algorithms.reviewe

    Hybrid solutions to instantaneous MIMO blind separation and decoding: narrowband, QAM and square cases

    Get PDF
    Future wireless communication systems are desired to support high data rates and high quality transmission when considering the growing multimedia applications. Increasing the channel throughput leads to the multiple input and multiple output and blind equalization techniques in recent years. Thereby blind MIMO equalization has attracted a great interest.Both system performance and computational complexities play important roles in real time communications. Reducing the computational load and providing accurate performances are the main challenges in present systems. In this thesis, a hybrid method which can provide an affordable complexity with good performance for Blind Equalization in large constellation MIMO systems is proposed first. Saving computational cost happens both in the signal sep- aration part and in signal detection part. First, based on Quadrature amplitude modulation signal characteristics, an efficient and simple nonlinear function for the Independent Compo- nent Analysis is introduced. Second, using the idea of the sphere decoding, we choose the soft information of channels in a sphere, and overcome the so- called curse of dimensionality of the Expectation Maximization (EM) algorithm and enhance the final results simultaneously. Mathematically, we demonstrate in the digital communication cases, the EM algorithm shows Newton -like convergence.Despite the widespread use of forward -error coding (FEC), most multiple input multiple output (MIMO) blind channel estimation techniques ignore its presence, and instead make the sim- plifying assumption that the transmitted symbols are uncoded. However, FEC induces code structure in the transmitted sequence that can be exploited to improve blind MIMO channel estimates. In final part of this work, we exploit the iterative channel estimation and decoding performance for blind MIMO equalization. Experiments show the improvements achievable by exploiting the existence of coding structures and that it can access the performance of a BCJR equalizer with perfect channel information in a reasonable SNR range. All results are confirmed experimentally for the example of blind equalization in block fading MIMO systems

    Mobile and Wireless Communications

    Get PDF
    Mobile and Wireless Communications have been one of the major revolutions of the late twentieth century. We are witnessing a very fast growth in these technologies where mobile and wireless communications have become so ubiquitous in our society and indispensable for our daily lives. The relentless demand for higher data rates with better quality of services to comply with state-of-the art applications has revolutionized the wireless communication field and led to the emergence of new technologies such as Bluetooth, WiFi, Wimax, Ultra wideband, OFDMA. Moreover, the market tendency confirms that this revolution is not ready to stop in the foreseen future. Mobile and wireless communications applications cover diverse areas including entertainment, industrialist, biomedical, medicine, safety and security, and others, which definitely are improving our daily life. Wireless communication network is a multidisciplinary field addressing different aspects raging from theoretical analysis, system architecture design, and hardware and software implementations. While different new applications are requiring higher data rates and better quality of service and prolonging the mobile battery life, new development and advanced research studies and systems and circuits designs are necessary to keep pace with the market requirements. This book covers the most advanced research and development topics in mobile and wireless communication networks. It is divided into two parts with a total of thirty-four stand-alone chapters covering various areas of wireless communications of special topics including: physical layer and network layer, access methods and scheduling, techniques and technologies, antenna and amplifier design, integrated circuit design, applications and systems. These chapters present advanced novel and cutting-edge results and development related to wireless communication offering the readers the opportunity to enrich their knowledge in specific topics as well as to explore the whole field of rapidly emerging mobile and wireless networks. We hope that this book will be useful for students, researchers and practitioners in their research studies
    • …
    corecore