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Constant Modulus Algorithms via Low-Rank
Approximation

Amir Adler, Member, IEEE, and Mati Wax, Fellow, IEEE

Abstract—We present a novel convex-optimization-based ap-
proach to the solutions of a family of problems involving constant
modulus signals. The family of problems include the constant
modulus and the constrained constant modulus, as well as
the modified constant modulus and the constrained modified
constant modulus. The usefulness of the proposed solutions is
demonstrated for the tasks of blind beamforming and blind
multiuser detection. The performance of these solutions, as we
demonstrate by simulated data, is superior to existing methods.

Index Terms—Constant modulus, constrained constant mod-
ulus, modified constant modulus, constrained modified constant
modulus. convex optimization, trace norm.

I. INTRODUCTION

Constant modulus algorithms are based on exploiting
the constant modulus of the desired signal. They are

used in a variety of areas in signal processing ranging from
blind equalization and blind beamforming to blind multiuser
detection.

The constant modulus (CM) algorithm was first introduced
in the works of Godard [1] and Triechler and Agee [2] on
blind equalization. In these works, the linear equalizer weight
vector was computed by exploiting the constant modulus of
the desired signal, without any explicit learning of the chan-
nel impulse response, and was therefore referred as ”blind”.
Subsequently, Triechler and Larimore [3] introduced a CM
algorithm for extracting a desired constant modulus signal in
the presence of non-constant-modulus interfering signals. It is
referred to as blind beamforming, since the only information
exploited is the constancy of the modulus of the desired signal.
The extension of the CM algorithm to allow additional linear
constraints to be imposed on the weight vector, referred to
as linear constrained constant modulus (LCCM) algorithm,
was introduced by Rude and Griffith [4]. Miguez and Castro
[5] then proposed a LCCM algorithm for multiuser CDMA
communications, aimed at detecting the data of one user in the
presence of the data of the other users, acting as interference.
It is referred to as blind multiuser detection (MUD) since
the only information exploited is the constant modulus of the
CDMA signals and the spreading code of the desired user.
Note that since all the signals are constant-modulus, and hence
indistinguishable by the CM algorithm, the LCCM algorithm
was necessary in order to single out the desired signal. Another
extension of the CM algorithm was proposed in [6], referred
to as the modified constant modulus (MCM) algorithm. This
modification was motivated by the insensitiveness of the

A. Adler e-mail: adleram@mit.edu. M. Wax e-mail: matiwax@gmail.com.
This work was supported by the Center for Brains, Minds and Machines
(CBMM), funded by NSF STC award CCF-1231216.

CM algorithm to the phase of the signal carrier, and was
aimed at enabling improved performance for high order QAM
constellation and for carrier phase synchronization.

In all these algorithms, as well as in more recent devel-
opments [7], [8], the computation of the weight vector is
based on a multidimensional non-convex cost function with
multiple local minima [9], making global minimization very
challenging.

In this paper we present a novel framework based on convex
formulations of the CM and CCM cost functions, as well as
of the MCCM and the linearly constrained MCM (LCMCM)
cost functions . The solutions assure global optimality and
are parameter free, i.e, they do not contain any tuneable
parameter and do not require any a-priori parameter setting.
The performance of these solutions is better than the existing
CCM based solutions, reaching the theoretical performance
limit with a much lower number of samples.

The rest of the paper is organized as follows. The problem
formulation is presented in section II. Section III describes the
convex CM solution. Section IV describes the convex CCM
solution. Sections V and VII present the convex solutions
for the MCM and for the LCMCM, respectively. Section VII
discusses the blind beamforming problem, while section VIII
discusses the blind multiuser detection problem. The perfor-
mance analysis is presented in section IX. Finally, section X
presents the conclusions.

II. PROBLEM FORMULATION

Let the received signal x(t) be a P × 1 complex vextor
given by:

x(t) = a1s1(t) +

K∑
k=2

aksk(t) + n(t), (1)

where s1(t) is a desired constant modulus (CM) sig-
nal, {sk(t)}Kk=2 are non-constant-modulus interfering signals,
{ak}Kk=1 are unknown vectors, and n(t) is the P × 1 noise
vector. We further assume that the number of signals obeys
K ≤ P and that the vectors {ak}Kk=1 are linearly independent.
The constant modulus problem can be formulated as follows:
Given the received vectors {x(tn)}Nn=1,, find a P × 1 weight
vector w such that the linear combiner output y(t) = wHx(t),
where H denotes the conjugate transpose, provides a good
estimate of the CM signal s1(t).

Assuming, without loss of generality, that the square of the
modulus of the desired signal s1(t) is R, the common CM
cost function for estimating the linear combiner weight w is
given by minimization of the sample-average of the deviation
of the linear combiner power output from R:
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ŵ = argmin
w

1

N

N∑
n=1

(|wHx(tn)|2 −R)2. (2)

This is a fourth order minimization problem in the vector w,
and as such does not admit a closed form solution. Moreover,
as shown in [13]-[14], it is a non-convex problem (i.e. it
has multiple local minima), making global minimization very
challenging. We next show how to reformulate the CMA as a
convex optimization problem, which assures global optimality.

III. CONVEX CONSTANT MODULUS ALGORITHM

First, we rewrite the linear combiner power output, denoted
by z(t), as1:

z(t) = |wHx(t)|2 = wHx(t)x(t)Hw (3)
= tr(wwHx(t)x(t)H) = tr(Wx(t)x(t)H),

where tr() denotes the trace of the bracketed matrix and W
denotes the P ×P positive semidefinite (PSD) rank-1 matrix:

W = wwH . (4)

We can now rewrite (2) as:

Ŵ = argmin
W

1

N

N∑
n=1

|z(tn)−R|2, (5a)

subject to:

z(tn) = tr(Wx(tn)x(tn)H), n = 1, ..., N, (5b)

W < 0, (5c)

rank W = 1, (5d)

where W < 0 denotes the PSD constraint. Note however, that
since the rank constraint (5d) is not convex, the minimization
problem is not convex. A commonly-used convex relaxation
surrogate to the rank-1 constraint is to minimize the trace
norm (nuclear norm), defined as the sum of the singular values
of the matrix. Recalling that W is a PSD matrix, it follows
that its trace norm is given by tr(W). This implies that we
can reformulate the CM problem as the following convex
optimization problem:

Ŵ = argmin
W

{( 1

N

N∑
n=1

|z(tn)−R|2) + tr(W)}, (6a)

subject to:

tr(Wx(tn)x(tn)H) = z(tn), n = 1, ..., N, (6b)

W < 0. (6c)

Since (6) is a convex optimization problem, we can use any
of the convex optimization solvers [10], [11] to solve for Ŵ.

1We use the following properties of the trace operator tr(): (i) cyclic shift:
tr(ABCD) = tr(BCDA) = tr(CDAB) = tr(DABC); and (ii) tr(a) =
a for any scalar a.

With Ŵ at hand, a straightforward way to estimate the
weight vector w is by the rank-1 approximation of Ŵ:

Ŵ ' λ1v1v
H
1 , (7)

where λ1 denotes the largest eigenvalue of Ŵ, and v1 denotes
the eigenvector of Ŵ corresponding to λ1. Using this rank-1
approximation, we estimate the weight vector w as:

ŵ = v1. (8)

IV. CONVEX LINEARLY CONSTRAINED CMA

In many scenarios involving CM signals, it may be desired
to impose additional constraints on the weight vector w in the
form of the following linear constraint:

wHC = vH , (9)

where C and v are P×J matrix and J×1 vector, respectively,
assumed to be known. This problem is referred to as LCCM.

To incorporate the linear constraint (9) into our convex
CMA formulation, we first rewrite it as

wHcj = vj , j = 1, ..., J, (10)

where cj denotes the j-th column of C and vj denotes the j-th
element of v. Now, using the properties of the trace operator
and (9), we have

tr(wwHcjc
H
j ) = tr(cHj wwHcj) = tr(vjv

H
j ) = |vj |2, (11)

which implies that we can rewrite the linear constraint (10)
as,

tr(Wcjc
H
j ) = |vj |2, j = 1, ..., J, . (12)

The convex LCCM cost function can now be formulated as:

Ŵ = argmin
W

{( 1

N

N∑
n=1

|z(tn)−R|2) + tr(W)}, (13a)

subject to:

tr(Wx(tn)x(tn))H) = z(tn) n = 1, ..., N, (13b)

tr(Wcjc
H
j ) = |vj |2 j = 1, ..., J, (13c)

W < 0. (13d)

V. CONVEX MODIFIED LINEARLY CONSTRAINED CMA

The CM cost function is insensitive to the phase of the
signal carrier. Therefore, in the presence of an unknown phase
rotation the resulting estimated signal will also be rotated. A
phase-sensitive modification of the CM cost function, referred
to as the MCM, was introduced in [6], aimed at enabling
improved performance for high order QAM and carrier phase
synchronization. To introduce the MCM cost function, let
wR, wI and yR(t), yI(t) denote, respectively, the real and
imaginary parts of w and y(t). Using this notation, the MCM
cost function can be written as:

ŵ = argmin
w

1

N

N∑
n=1

[(|yR(tn)|2 −RR)2 + (|yI(tn)|2 −RI)2],

(14a)
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where

RR =
E|sR(t)|4

E|sR(t)|2
, (14b)

and

RI =
E|sI(t)|4

E|sI(t)|2
, (14c)

where sR(t) and sI(t) denote the real and imaginary parts of
s(t).

To reformulate the MCM cost function as a convex opti-
mization problem, we first rewrite yR(t) and yI(t) as

yR(t) = w̃Tx1(t), (15a)

and
yI(t) = w̃Tx2(t). (15b)

where
w̃ =

[
wR

wI

]
, (15c)

x1(t) =

[
xR(t)
xI(t)

]
, (15d)

and
x2(t) =

[
xI(t)
−xR(t)

]
. (15e)

Using the properties of the trace operator, we have

z1(t) = |yR(t)|2 = w̃Tx1(t)xT1 (t)w̃ = tr(W̃x1(t)xT2 (t)),
(16a)

and

z2(t) = |yI(t)|2 = w̃Tx2(t)xT2 (t)w̃ = tr(W̃x2(t)xT2 (t)),
(16b)

where W̃ denotes the 2P × 2P rank-1 matrix

W̃ = w̃w̃T . (17)

With this notation we can rewrite the MCM cost function as

ˆ̃w = argmin
w

1

N

N∑
n=1

[(z1(tn))−RR)2+(z2(tn)−RI)2], (18a)

subject to

z1(tn) = tr(W̃x1(tn)xT1 (tn)), n = 1, ..., N, (18b)

z2(tn) = tr(W̃x2(tn)xT2 (tn)), n = 1, ..., N, (18c)

W̃ � 0, (18d)

rank W̃ = 1. (18e)

Using the trace norm as a surrogate for the non-convex rank-1
constraint, we can reformulate the MCM cost function as the
following convex optimization problem:

ˆ̃
W = argmin

W̃

1

N

N∑
n=1

[(z1(tn)−RR)2+(z2(tn)−RI)2]+tr(W̃),

(19a)
subject to:

z1(tn) = tr(W̃x1(tn)xT1 (tn)), n = 1, ..., N, (19b)

z2(tn) = tr(W̃x2(tn)xT2 (tn)), n = 1, ..., N, (19c)

W̃ � 0, (19d)

We next show that for a symmetric constellation, the solution
W̃ of this optimization problem has two different rank-1
solutions corresponding to two linearly independent vectors.

To this end, note that from (15d) and (15e) we have

x2(t) = Gx1(t), (20)

where G is the 2(P + L− 1)× 2(P + L− 1) block matrix

G =

[
0 I
−I 0

]
. (21)

This enables us to rewrite z2(t) as

z2(t) = tr(W̃x2(t)xT2 (t)) = tr(W̃Gx1(t)xT1 (t)GT ), (22)

or alternatively, using the properties of the trace operator, as

z2(t) = tr(
˜̃
Wx1(t)xT1 (t)), (23)

where ˜̃W is given by ˜̃
W = GTW̃G, (24)

which, by using (40), can be rewritten as˜̃
W = ˜̃w ˜̃wT

, (25)

where ˜̃w is given by ˜̃w = GT w̃, (26)

which implies that ˜̃w and w̃ are linearly independent.
Now, since the optimization process yields

z1(t) ≈ RR, (27a)

and
z2(t) ≈ RI , (27b)

and since in a symmetrical constellation we have

RR = RI (28)

it follows that
z1(t) ≈ z2(t). (29)

This implies, as can be easily verified, that

tr(W̃x1(t)xT1 (t) ≈ tr(
˜̃
Wx1(t)xT1 (t), (30a)

and
tr(W̃x2(t)xT2 (t) ≈ tr(

˜̃
Wx2(t)xT2 (t). (30b)

which shows that both W̃ and ˜̃
W are feasible solutions,

corresponding to two rank-1 solutions given by w̃ and ˜̃w.
Thus, given the solution ˆ̃

W of (19), we can estimate vectors
w̃ and ˜̃w, from the rank-2 approximation of ˆ̃

W, as:

ˆ̃w = v1 (31a)

and
ˆ̃
w̃ = v2 (31b)

where v1 and v2 denote the two largest eigenvectors of ˆ̃
W.

As in the CM formulation, we can incorporate additional
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linear constraints on the vector w. This problem is referred
to as the Constrained Modified Constant Modulus (CMCM).
To incorporate the constraints (10) into our convex MCM
formulation, let cRj

, cIj and vRj
, vIj denote, respectively,

the real and imaginary parts of cj and vj . Using this notation
we can rewrite (10) as

w̃T c1j = vRj
, j = 1, ..., J, (32a)

and
w̃T c2j = −vIj , j = 1, ..., J, (32b)

where

c1j =

[
cRj

cIj

]
, (32c)

and
c2j =

[
cIj
−cRj

]
. (32d)

This implies that

w̃T c1jc
T
1j w̃ = v2Rj

, j = 1, ..., J, (33a)

and
w̃T c2jc

T
2j w̃ = v2Ij , j = 1, ..., J, (33b)

which, using the properties of the trace operator, can be
rewritten

tr(W̃T c1jc
T
1j ) = v2Rj

, j = 1, ..., J, (34a)

and
tr(W̃T c2jc

T
2j ) = v2Ij , j = 1, ..., J, . (34b)

Thus, combining these two equation, we can rewite (10) as

tr(W̃T c1jc
T
1j ) + tr(W̃T c2jc

T
2j ) = |vj |2, j = 1, ..., J,

(34c)
The convex formulation of CMCM is therefore given by

ˆ̃
W = argmin

W̃

{ 1

N

N∑
n=1

[(z1(tn)−RR)2+(z2(tn)−RI)2]+tr(W̃),

(35a)
subject to

z1(tn) = tr(W̃x1(tn)xT1 (tn)), n = 1, ..., N, (35b)

z2(tn) = tr(W̃x2(tn)xT2 (tn)), n = 1, ..., N, (35c)

tr(W̃T c1jc
T
1j ) + tr(W̃T c2jc

T
2j ) = |vj |2, j = 1, ..., J,

(35d)
W̃ � 0, (35e)

VI. CONVEX CMA FOR BLIND BEAMFORMING

Consider an antenna array composed of P antennas with
arbitrary locations and arbitrary directional characteristics.
Assume that a desired signal s1(t) is impinging on the array
from an unknown direction-of-arrival θ1 and that K − 1 other
interfering signals sk(t), k = 2, . . . ,K, are impinging on the
array from unknown directions-of-arrival θ2, . . . , θK . All the
signals are assumed to be narrow-band, namely that the array
aperture, denoted by d, obeys d << c/B, where c is the
speed of light, and B is the signals bandwidth. Under these

assumptions, the P × 1 array vector x(t) of the complex
envelopes of the received signals can be written as:

x(t) = a(θ1)s1(t) +

K∑
k=2

a(θk)sq(t) + n(t), (36)

where a(θ1) is the P × 1 steering vector of the array toward
the desired CM signal s1(t), a(θq) is the P×1 steering vector
of the array toward the interfering signal sq(t), and n(t) is
the P × 1 noise vector.

Since (36) is in the form of (1), the estimation of the desired
CM signal s1(t) from the received array vectors {x(tn)}Nn=1,

can be readily done using the unconstrained convex CMA
(6), summarized in Algorithm 1, or the convex MCM (19),
summarized in Algorithm 2.

Algorithm 1 Convex CMA Blind Beamforming
1: Input: Received array vectors {x(tn)}Nn=1,

2: Solve:

Ŵ = argmin
W
{ 1
N

N∑
n=1

|z(tn)−R|2 + tr(W)},

subject to:

tr(Wx(tn)x(tn)
H) = z(tn), n = 1, ..., N,

W < 0.

3: Compute: v1 = Largest Eigenvector of Ŵ
4: Output: ŵ = v1 .

Regarding the constrained algorithms (16) and (35), it is
worth while to point out some useful linear constraints, which
are special cases of (9). An example for such a constraint is
the well-known ”look direction” constraint:

wHa(θ) = 1, (37)

constraining w to have a unity gain in the direction θ. Another
example is the constraint,

wHB = 0, (38)

constraining w to be orthogonal to the columns of B. One
example for such a B is

B = a(θ), (39)

assuring deep ”nulls” in the direction θ. This may be desired,
for example, in case a strong interference is known to be
impinging from direction θ and the desire is to put a deep
null in this direction. Another example is

B = [vK+1, ...,vP ], (40)

where vi is the eigenvector of the array covariance matrix
R̂ =

∑N
n=1 x(tn)x(tn)H corresponding to the i-th eigenvalue.

This constraints w to be orthogonal to the noise subspace, i.e.,
to be confined to the K-dimensional signal subspace [12]. This
low-dimensional confinement reduces the number of degrees-
of-freedom of w, thereby improving the solution performance,
especially in challenging conditions such as small number of
samples and low signal-to-noise ratio.
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Algorithm 2 Convex Modified CMA Blind Beamforming
1: Input: Received array vectors {x(tn)}Nn=1,

2: Set:
x1(t) =

[
xR(t)
xI(t)

]
,

and
x2(t) =

[
xI(t)
−xR(t)

]
.

3: Solve:

ˆ̃
W = argmin

W̃

1

N

N∑
n=1

[(z1(tn)−RR)
2+(z2(tn)−RI)

2]+tr(W̃),

subject to:

z1(tn) = tr(W̃x1(tn)x
T
1 (tn)), n = 1, ..., N,

z2(tn) = tr(W̃x2(tn)x
T
2 (tn)), n = 1, ..., N,

W̃ � 0,

4: Compute: v1 = Largest Eigenvector of ˆ̃
W

5: Set:
ˆ̃w =

[
wR

wI

]
= v1.

6: Output: ŵ = wR + jwI .

VII. CONVEX LINEARLY CONSTRAINED CMA FOR BLIND
MULTIUSER DETECTION

Consider a symbol-synchronous un-coded CDMA system
with K simultaneous users. Let sk denote the P ×1 spreading
code of user k, assuming that the spreading codes are normal-
ized, i.e, ||sk|| = 1. Let bk(t) denote the the transmitted QAM
symbols to user k, and let B denote constellation alphabet
from which bk(t) take its value. Assuming multipath free
propagation, the P×1 vector x(t) of the complex envelopes of
the signals received by a single user, say user 1, after filtering
by a chip-pulse matched filter and sampled at chip rate, can
be written as [5]

x(t) = A1b1(t)s1 +

K∑
k=2

Akbk(t)sk + n(t), (41)

where Ak and sk are the received amplitude and the spreading
code, respectively, of the k-th user. To insure identifiability,
we further assume that the number of users obeys K ≤ L,
and that the signals’ spreading codes {sk)}Kk=1 are linearly
independent.

The estimation of user 1 symbols {b1(tn)}Nn=1, from the
received vectors {x(tn)}Nn=1,, is referred to as blind multiuser
detection.

Note that (41) is in the form of (1), with the difference
that here all the other interfering signals {bk(t)}Kk=2 are also
constant modulus. In this case the unconstrained algorithms (6)
and (13) will capture the desired signal only if it is stronger
than the interfering signals. To assure capturing of the desired
signal in this case it necessary to incorporate the following
desired user unit gain constraint:

wHs1 = 1, (42)

Incorporating this constraint in the convex CCM (13), as
summarized in Algorithm 3, or in the convex CMCM (35)
readily solves the blind multiuser detection problem.

Algorithm 3 Convex LCCM Blind Multiuser Detection
1: Input: Chip-matched filter vectors {x(tn)}Nn=1,, desired user

signature s1.
2: Solve:

Ŵ = argmin
W
{ 1
N

N∑
n=1

|z(tn)−R|2 + tr(W)},

subject to:

tr(Wx(tn)x(tn)
H) = z(tn), n = 1, ..., N,

tr(Ws1s
H
1 ) = 1,

W < 0.

3: Compute: v1 = Largest Eigenvector of Ŵ
4: Output: ŵ = v1 .

In case of multipath propagation the situation is slightly
more complicated. Assuming a maximum delay of LTc, where
Tc is the chip duration, the (P +L−1)×1 vector x(t) of the
complex envelopes of the signals received by a single user,
say user 1, after filtering by a chip-pulse matched filter and
sampled at chip rate, can be written as [5],

x(t) = A1b1(t)S1h1+u1(t)+

K∑
k=2

(Akbk(t)Skhk+uk(t))+n(t),

(43)
where Sk is the (P + L− 1)× L matrix whose columns are
shifted versions of the spreading code sk,

Sk =


sk 0 · · · 0

0 sk
...

...
...

...
. . . 0

0 0 · · · sk

 , (44)

hk is the L × 1 vector of the channel response of user k,
uk(t) is the inter-symbol interference (ISI) for user k from
the adjacent symbols, and n(t) is the (L+ P − 1)× 1 noise
vector. To insure identifiability in this case, we further assume
that the number of users obeys 2K ≤ (L+ P − 1).

The blind multiuser detection in this case can be similarly
solved using the constrained algorithms described above, by
using the following linear constraints:

wHc1 = 1, (45)

where c1 is given by

c1 = S1h1, (46)

with h1 and S1 assumed to be known. Since h1 is typically
unknown in practice, it is estimated from the data, as discussed
in [4]-[5].

Another useful constraint is given by,

wHC = 0, (47)



6

constraining w to be be orthogonal to the columns of C. One
example for such a C, presented here for simplicity for the
multipath free case is given by

C = sk, (48)

assuring ”deep nulls” towards spreading code sk. This may be
desired, for example, in case a strong interference is known
to have a spreading code sk, and it desired to mitigate it by a
”deep null”. Another example, again presented for simplicity
for the multipath free case is

C = [vK+1, ...,vP ] (49)

where vi is the eigenvector corresponding to the i-th eigen-
value of the covariance matrix R̂ =

∑N
n=1x(tn)x(tn)H . This

constraints w to be orthogonal to the noise subspace [29],
i.e., to be confined to the K-dimensional signal subspace
spanned by the vectors {x(tn)}Nn=1. This confinement to a
low-dimensional subspace reduces the number of degrees-of-
freedom of w, thereby improves the solution performance,
especially in challenging conditions such as small number of
samples and low signal-to-noise ratio.

VIII. PERFORMANCE ANALYSIS

A. Blind Beamforming Performance Evaluation

In this section we present blind beamforming simulation
results illustrating the performance of the proposed solution,
referred to as Trace Norm. The performance is compared to
the Recursive Least Squares (RLS) [13] the Unscented Kalman
Filter (UKF) [8] and the Constrained CM-RLS (CCM-RLS)
[14] solutions.

The desired signal was simulated as a unit power QPSK
signal. The interfering signals were simulated as complex
Gaussian with zero mean and unit variance. The noise was
simulated as a complex Gaussian with zero mean and covari-
ance σ2

nI. The performance measure employed is the signal-to-
interference-plus-noise ratio (SINR) at the beamformer output:

SINR =
wHRssw

wHRnnw + wHRiiw
, (50)

where Rss = a(θ0)a(θ0)H , Rnn = σ2
nI, and

Rii =
∑q
j=1 a(θj)a(θj)

Hare the CM signal, noise and
interference covariance matrices, respectively. All presented
results are averaged over 100 experiments, and employ a
uniform linear array (ULA) with P = 16, unless specified
differently.

Before discussing the results of the simulated experiments,
we would like to discuss the computation time of the Trace
Norm solution and its suitability to real time communication
systems. To this end, we evaluated the computation time of
the simulated experiments using the MATLAB CVX [15]
toolbox2. The computation time for a typical scenario with
N = 100 samples, consisting of a CM signal impinging from
20◦ on a Uniform Linear Array (ULA) with P = 16 and 3
interferers impinging from −45◦ , −15◦ and 40◦, all having

2Using an Intel Core i7-5930K, 32GB RAM, desktop computer.

SNR of 10 dB, is 1 second. Since the average speed-up
factor between CVX-based implementation and a real-time
implementation, as analyzed in [16], is ×1000 (single
processor), this implies a 1 ms in real-time implementation,
which is highly suitable to packet-based communications,
especially in low mobility.

Experiment 1 evaluates the ratio between the largest (λ1)
and the second largest (λ2) eigenvalues of Ŵ, which is a
good measure for the goodness of the rank-1 approximation
of the trace norm solution of Ŵ. We evaluated this ratio by
simulating 500 times3 each of the following scenarios: a CM
signal in the presence of 0, 1, or 2 interferers, all signals
having equal power, at SNR of 10dB or 20dB (σ2

n = 0.1 or
0.01, respectively). For the case of no interference, the ratio
λ1

λ2
exceeded 106 with probability 1, implying a perfect rank-1

result. Fig. 1(a) presents the results for the cases of 1 and 2
interferers, and reveals that with probability 1, λ1

λ2
≥ 10 for

SNR = 10dB, and λ1

λ2
≥ 50 for SNR = 20dB. These results

demonstrate the goodness of the rank-1 approximation of Ŵ.

Experiment 2 evaluates the performance of the Trace-Norm
solution in the presence of two CM signals: The first from
20◦ with unit power, and the second from 50◦, attenuated
in each trial by a random attenuation, uniformly distributed
between 0dB to -5dB. Fig. 1(b) presents the averaged array
pattern, over 500 experiments, and demonstrates the ”capture”
effect of the Trace-Norm solution: the algorithm captures
always the strongest CM signal, and cancels the weaker

Experiment 3 compares the SINR of the Trace-Norm, UKF
and RLS, in the presence of interferers. Note that the UKF
and the RLS are sequential algorithms, i.e., operating on the
samples sequentially, from the first to the last, say n, while the
Trace-Norm is a batch algorithm operating on all the n samples
simultaneously. In the first scenario we simulated a CM signal
impinging from 20◦, with 3 interfering signals impinging from
−45◦, −15◦, 40◦, and noise variance σ2

n = 0.1. The results
are presented in Fig. 2(a) and demonstrate that the Trace-
Norm solution yields better SINR and converges after 100
samples, as compared to the UKF and RLS, which require
500 and 2, 700 samples, respectively, to converge. Fig. 2(b)
presents the performance with an additional interferer from
60◦. In this case convergence of the UKF and RLS is slower
(1, 500 and 3, 500 samples, respectively), whereas the Trace-
Norm is essentially invariant to the additional interferer, and
surpasses UKF and RLS with only 100 samples. The array
pattern of the Trace Norm with 200 samples (averaged over
1,000 experiments), is depicted in Fig. 2(c). The rejection of
all 4 interferers is clearly visible.

Experiment 4 evaluates the robustness of the proposed
linearly-constrained solution for the case of a look direction
error. In this scenario, the constraint is wH ã(θ) = 1 where

˜a(θ) = a(θ) + ∆(θE), with ∆ being the steering vector error

3Each solution treated different transmitted symbols, different noise real-
ization, and different interfering signals waveforms.
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component, resulting from a steering angle error θE . Fig.
3(a) compares output SINR performance of the Trace-Norm
LCCMA to the CCM-RLS [14] for the following scenario:
the CM signal of interest is impinging from 20◦ and two
CM interferers are impinging from 40◦ and 60◦, all QPSK
modulated with SNR of 20dB. Performance was evaluated
for a steering angle mismatch error uniformly distributed in
the range of [−1◦,+1◦] and [−5◦,+5◦]. The robustness of
the Trace Norm algorithm is clearly visible, in addition to the
faster convergence rate, as compared to CCM-RLS.

Experiment 5 demonstrates the ability of the Trace-Norm
LCCMA to generate deep nulls in the array pattern in
predefined directions, using the constraint (11),(12). The
simulated scenario includes a CM signal at 20◦, and 3
interferers from −45◦,−15◦ and 40◦ (σ2

n = 0.1). The
nulls are constrained to directions −30◦ and −60◦. The
resulting array pattern, averaged over 1,000 experiments, is

depicted in Fig. 3(b). Clearly visible is the rejection of all
interferers, as well as the deep nulls in the specified directions.

Experiment 6 demonstrates the performance advantage of
the Trace Norm LCCMA over the Trace-Norm CMA when
the constraint (11),(13) is imposed. The simulated scenario
includes a CM signal impinging from 20◦ on a P = 32
elements ULA, with 2 interferers impinging from −45◦ and
−20◦. The SNR per array element is varied between -5dB
to 5dB. The constraint (11),(13) forces the beamforming
vector to be confined to the 3-dimensional signal subspace.
Fig. 3(c) shows SINR results vs. the number of samples (N).
The results demonstrate the advantage of the Trace Norm
LCCMA over the Trace-Norm CMA for all signal-to-noise
ratios (excluding a minor disadvantage for SNR=5dB and
N > 30 samples).

B. Blind MUD Performance Evaluation

In this section we present blind MUD simulation results
illustrating the performance of the proposed Trace Norm
solution, as compared to the Linearly Constrained CMA RLS
(LCCMA-RLS) [14], The Minimum Output Energy (MOE-
MUD) [17], the Subspace-based blind multiuser detector
(SUB-MUD) [17], and the Minimum Mean Squared Error with
Tikhonov Reguralization (MMSE-Tikhonov) [18].

The MOE-MUD detector under the constraint wHs1 = 1 is
given by [17]:

ŵ = (sH1 R̂−1s1)−1R̂−1s1, (51)

where R̂ is the estimated covariance matrix. The blind
subspace-based MUD requires explicit knowledge of the num-
ber of users K, and is given by [17]:

ŵ = (sH1 UsΛ
−1
s UH

s s1)−1UsΛ
−1
s UH

s s1, (52)

where Us and Λs are computed from the eigenvalue decompo-
sition of the estimated covariance R̂U = UΛ. Us includes the
K leading eigenvectors of U, and spans the signal subspace.
Similarly, Λs includes the K leading eigenvalues of Λ.
The Minimum Mean Squared Error with Tikhonov Regular-
ization is given by [18]:

ŵ = [sH1 (R̂ + αI)−1s1]−1(R̂ + αI)−1s1, (53)

where α = m× tr(R̂) (m = 0.01 in our experiments).
All users were simulated as QPSK signals, spread by Gold
sequences with P = 31 chips. The desired user was simulated
with unit power, whereas the interfering users were simulated
with amplitudes Ak > 1. The noise was simulated as a
complex Gaussian with zero mean and covariance σ2

nI. The
performance measure employed is the SINR at the MUD
detector output:

SINR =
wHRssw

wHRnnw + wHRiiw
, (54)

where Rss = s1s
H
1 , Rnn = σ2

nI, and Rii =
∑K
k=2A

2
ksks

H
k ,

are the desired signal, noise and multiple-access interference
(MAI) covariance matrices, respectively. All presented results
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were averaged over 100 experiments.

Experiment 1 evaluates MUD SINR output as a function
of the number of symbols (20 to 120). Figure 7, presents the
results with K = 5 users, interference-to-signal ratio of 10dB,
and SNR of 10dB, demonstrating the superior performance of
the Trace-Norm. Figure 8, presents the results with K = 10
users, further demonstrating the superior performance of the
Trace-Norm, in this challenging scenario. The SINR limit
was computed using the ground truth covariance matrix
R =

∑K
k=1A

2
ksks

T
k + σ2

nI, and by computing w using the
MMSE detector with R̂ = R.

Experiment 2 evaluates MUD SINR output as a function
of the number of symbols (20 to 120), in the presence of
spreading code mismatch due to multi-path propagation:
the code of the desired user was distorted by the channel
h = [0.925, 0,−0.1, 0, 0.2], resulting in an average correlation
of 0.975 between the correct and distorted codes. Figure 9,
presents the results with K = 5 users, interference-to-signal
ratio of 10dB, and SNR of 10dB, demonstrating the superior
performance of the Trace-Norm. Figure 10, presents the
results with K = 10 users, further demonstrating the superior
performance of the Trace-Norm, in this challenging scenario.

Experiment 3 evaluates SINR performance of the Trace-
Norm solution with the multi-path constraints (45)-(46), in
the presence of the channel h = [0.925, 0,−0.1, 0, 0.2], as
depicted in Fig. 11, with K = 10 users, interference-to-signal
ratio of 10dB, and SNR of 15dB. Fig. 12 demonstrates the
results with K = 5 users and a more challenging channel h =
[0.85,−0.125, 0.15, 0.45,−0.1, 0.05] (of longer delay spread).
Fig. 13, presents the constellation at the detector output.
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users, QPSK modulation, SNR=10dB, Interference-to-Signal-Ratio=10dB.
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Fig. 9. MUD output SINR [dB] in the presence of spreading code mismatch
due to multi-path propagation with the channel h = [0.925, 0,−0.1, 0, 0.2].
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IX. CONCLUSIONS

We have presented a new convex-optimization-based ap-
proach to the constant modulus problem, and to the related
problems of linearly constrained constant modulus and mod-
ified constant modulus. This approach is based on casting
these problem as rank-1 matrix minimization problems, and
then transforming them to convex optimization problems by
replacing the rank-1 constraint by its convex surrogate -
the minimization of the trace norm. As solutions to convex
optimization problems, the proposed solutions are free from
the local minima problem hindering the existing solutions.

We have demonstrated the effectiveness of the proposed
solutions in simulated experiments of typical scenarios in
blind beamforming and blind multiuser detection. In all these
experiments the proposed solution have shown superior per-
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formance over the existing solutions, especially in challenging
conditions of low number of samples/symbols.
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