265 research outputs found

    Near-Capacity Turbo Trellis Coded Modulation Design

    No full text
    Bandwidth efficient parallel-concatenated Turbo Trellis Coded Modulation (TTCM) schemes were designed for communicating over uncorrelated Rayleigh fading channels. A symbol-based union bound was derived for analysing the error floor of the proposed TTCM schemes. A pair of In-phase (I) and Quadrature-phase (Q) interleavers were employed for interleaving the I and Q components of the TTCM coded symbols, in order to attain an increased diversity gain. The decoding convergence of the IQ-TTCM schemes was analysed using symbol based EXtrinsic Information Transfer (EXIT) charts. The best TTCM component codes were selected with the aid of both the symbol-based union bound and non-binary EXIT charts for the sake of designing capacity-approaching IQ-TTCM schemes in the context of 8PSK, 16QAM and 32QAM signal sets. It will be shown that our TTCM design is capable of approaching the channel capacity within 0.5 dB at a throughput of 4 bit/s/Hz, when communicating over uncorrelated Rayleigh fading channels using 32QAM

    Self-concatenated code design and its application in power-efficient cooperative communications

    No full text
    In this tutorial, we have focused on the design of binary self-concatenated coding schemes with the help of EXtrinsic Information Transfer (EXIT) charts and Union bound analysis. The design methodology of future iteratively decoded self-concatenated aided cooperative communication schemes is presented. In doing so, we will identify the most important milestones in the area of channel coding, concatenated coding schemes and cooperative communication systems till date and suggest future research directions

    EXIT charts for system design and analysis

    No full text
    Near-capacity performance may be achieved with the aid of iterative decoding, where extrinsic soft information is exchanged between the constituent decoders in order to improve the attainable system performance. Extrinsic information Transfer (EXIT) charts constitute a powerful semi-analytical tool used for analysing and designing iteratively decoded systems. In this tutorial, we commence by providing a rudimentary overview of the iterative decoding principle and the concept of soft information exchange. We then elaborate on the concept of EXIT charts using three iteratively decoded prototype systems as design examples. We conclude by illustrating further applications of EXIT charts, including near-capacity designs, the concept of irregular codes and the design of modulation schemes

    Turbo-Detected Unequal Error Protection Irregular Convolutional Codes Designed for the Wideband Advanced Multirate Speech Codec

    No full text
    Abstract—since the different bits of multimedia information, such as speech and video, have different error sensitivity, efficient unequalprotection channel coding schemes have to be used to ensure that the perceptually more important bits benefit from more powerful protection. Furthermore, in the context of turbo detection the channel codes should also match the characteristics of the channel for the sake of attaining a good convergence performance. In this paper, we address this design dilemma by using irregular convolutional codes (IRCCs) which constitute a family of different-rate subcodes. we benefit from the high design flexibility of IRCCs and hence excellent convergence properties are maintained while having unequal error protection capabilities matched to the requirements of the source. An EXIT chart based design procedure is proposed and used in the context of protecting the different-sensitivity speech bits of the wideband AMR speech codec. As a benefit, the unequalprotection system using IRCCs exhibits an SNR advantage of about 0.4dB over the equal-protection system employing regular convolutional codes, when communicating over a Gaussian channel

    Self-concatenated coding for wireless communication systems

    No full text
    In this thesis, we have explored self-concatenated coding schemes that are designed for transmission over Additive White Gaussian Noise (AWGN) and uncorrelated Rayleigh fading channels. We designed both the symbol-based Self-ConcatenatedCodes considered using Trellis Coded Modulation (SECTCM) and bit-based Self- Concatenated Convolutional Codes (SECCC) using a Recursive Systematic Convolutional (RSC) encoder as constituent codes, respectively. The design of these codes was carried out with the aid of Extrinsic Information Transfer (EXIT) charts. The EXIT chart based design has been found an efficient tool in finding the decoding convergence threshold of the constituent codes. Additionally, in order to recover the information loss imposed by employing binary rather than non-binary schemes, a soft decision demapper was introduced in order to exchange extrinsic information withthe SECCC decoder. To analyse this information exchange 3D-EXIT chart analysis was invoked for visualizing the extrinsic information exchange between the proposed Iteratively Decoding aided SECCC and soft-decision demapper (SECCC-ID). Some of the proposed SECTCM, SECCC and SECCC-ID schemes perform within about 1 dB from the AWGN and Rayleigh fading channels’ capacity. A union bound analysis of SECCC codes was carried out to find the corresponding Bit Error Ratio (BER) floors. The union bound of SECCCs was derived for communications over both AWGN and uncorrelated Rayleigh fading channels, based on a novel interleaver concept.Application of SECCCs in both UltraWideBand (UWB) and state-of-the-art video-telephone schemes demonstrated its practical benefits.In order to further exploit the benefits of the low complexity design offered by SECCCs we explored their application in a distributed coding scheme designed for cooperative communications, where iterative detection is employed by exchanging extrinsic information between the decoders of SECCC and RSC at the destination. In the first transmission period of cooperation, the relay receives the potentially erroneous data and attempts to recover the information. The recovered information is then re-encoded at the relay using an RSC encoder. In the second transmission period this information is then retransmitted to the destination. The resultant symbols transmitted from the source and relay nodes can be viewed as the coded symbols of a three-component parallel-concatenated encoder. At the destination a Distributed Binary Self-Concatenated Coding scheme using Iterative Decoding (DSECCC-ID) was employed, where the two decoders (SECCC and RSC) exchange their extrinsic information. It was shown that the DSECCC-ID is a low-complexity scheme, yet capable of approaching the Discrete-input Continuous-output Memoryless Channels’s (DCMC) capacity.Finally, we considered coding schemes designed for two nodes communicating with each other with the aid of a relay node, where the relay receives information from the two nodes in the first transmission period. At the relay node we combine a powerful Superposition Coding (SPC) scheme with SECCC. It is assumed that decoding errors may be encountered at the relay node. The relay node then broadcasts this information in the second transmission period after re-encoding it, again, using a SECCC encoder. At the destination, the amalgamated block of Successive Interference Cancellation (SIC) scheme combined with SECCC then detects and decodes the signal either with or without the aid of a priori information. Our simulation results demonstrate that the proposed scheme is capable of reliably operating at a low BER for transmission over both AWGN and uncorrelated Rayleigh fading channels. We compare the proposed scheme’s performance to a direct transmission link between the two sources having the same throughput

    Iterative decoding and detection for physical layer network coding

    Get PDF
    PhD ThesisWireless networks comprising multiple relays are very common and it is important that all users are able to exchange messages via relays in the shortest possible time. A promising technique to achieve this is physical layer network coding (PNC), where the time taken to exchange messages between users is achieved by exploiting the interference at the relay due to the multiple incoming signals from the users. At the relay, the interference is demapped to a binary sequence representing the exclusive-OR of both users’ messages. The time to exchange messages is reduced because the relay broadcasts the network coded message to both users, who can then acquire the desired message by applying the exclusive-OR of their original message with the network coded message. However, although PNC can increase throughput it is at the expense of performance degradation due to errors resulting from the demapping of the interference to bits. A number of papers in the literature have investigated PNC with an iterative channel coding scheme in order to improve performance. However, in this thesis the performance of PNC is investigated for end-to-end (E2E) the three most common iterative coding schemes: turbo codes, low-density parity-check (LDPC) codes and trellis bit-interleaved coded modulation with iterative decoding (BICM-ID). It is well known that in most scenarios turbo and LDPC codes perform similarly and can achieve near-Shannon limit performance, whereas BICM-ID does not perform quite as well but has a lower complexity. However, the results in this thesis show that on a two-way relay channel (TWRC) employing PNC, LDPC codes do not perform well and BICM-ID actually outperforms them while also performing comparably with turbo codes. Also presented in this thesis is an extrinsic information transfer (ExIT) chart analysis of the iterative decoders for each coding scheme, which is used to explain this surprising result. Another problem arising from the use of PNC is the transfer of reliable information from the received signal at the relay to the destination nodes. The demapping of the interference to binary bits means that reliability information about the received signal is lost and this results in a significant degradation in performance when applying soft-decision decoding at the destination nodes. This thesis proposes the use of traditional angle modulation (frequency modulation (FM) and phase modulation (PM)) when broadcasting from the relay, where the real and imaginary parts of the complex received symbols at the relay modulate the frequency or phase of a carrier signal, while maintaining a constant envelope. This is important since the complex received values at the relay are more likely to be centred around zero and it undesirable to transmit long sequences of low values due to potential synchronisation problems at the destination nodes. Furthermore, the complex received values, obtained after angle demodulation, are used to derive more reliable log-likelihood ratios (LLRs) of the received symbols at the destination nodes and consequently improve the performance of the iterative decoders for each coding scheme compared with conventionally coded PNC. This thesis makes several important contributions: investigating the performance of different iterative channel coding schemes combined with PNC, presenting an analysis of the behaviour of different iterative decoding algorithms when PNC is employed using ExIT charts, and proposing the use of angle modulation at the relay to transfer reliable information to the destination nodes to improve the performance of the iterative decoding algorithms. The results from this thesis will also be useful for future research projects in the areas of PNC that are currently being addressed, such as synchronisation techniques and receiver design.Iraqi Ministry of Higher Education and Scientific Research

    Capacity -based parameter optimization of bandwidth constrained CPM

    Get PDF
    Continuous phase modulation (CPM) is an attractive modulation choice for bandwidth limited systems due to its small side lobes, fast spectral decay and the ability to be noncoherently detected. Furthermore, the constant envelope property of CPM permits highly power efficient amplification. The design of bit-interleaved coded continuous phase modulation is characterized by the code rate, modulation order, modulation index, and pulse shape. This dissertation outlines a methodology for determining the optimal values of these parameters under bandwidth and receiver complexity constraints. The cost function used to drive the optimization is the information-theoretic minimum ratio of energy-per-bit to noise-spectral density found by evaluating the constrained channel capacity. The capacity can be reliably estimated using Monte Carlo integration. A search for optimal parameters is conducted over a range of coded CPM parameters, bandwidth efficiencies, and channels. Results are presented for a system employing a trellis-based coherent detector. To constrain complexity and allow any modulation index to be considered, a soft output differential phase detector has also been developed.;Building upon the capacity results, extrinsic information transfer (EXIT) charts are used to analyze a system that iterates between demodulation and decoding. Convergence thresholds are determined for the iterative system for different outer convolutional codes, alphabet sizes, modulation indices and constellation mappings. These are used to identify the code and modulation parameters with the best energy efficiency at different spectral efficiencies for the AWGN channel. Finally, bit error rate curves are presented to corroborate the capacity and EXIT chart designs

    Turbo space-time coded modulation : principle and performance analysis

    Get PDF
    A breakthrough in coding was achieved with the invention of turbo codes. Turbo codes approach Shannon capacity by displaying the properties of long random codes, yet allowing efficient decoding. Coding alone, however, cannot fully address the problem of multipath fading channel. Recent advances in information theory have revolutionized the traditional view of multipath channel as an impairment. New results show that high gains in capacity can be achieved through the use of multiple antennas at the transmitter and the receiver. To take advantage of these new results in information theory, it is necessary to devise methods that allow communication systems to operate close to the predicted capacity. One such method recently invented is space-time coding, which provides both coding gain and diversity advantage. In this dissertation, a new class of codes is proposed that extends the concept of turbo coding to include space-time encoders as constituent building blocks of turbo codes. The codes are referred to as turbo spacetime coded modulation (turbo-STCM). The motivation behind the turbo-STCM concept is to fuse the important properties of turbo and space-time codes into a unified design framework. A turbo-STCM encoder is proposed, which consists of two space-time codes in recursive systematic form concatenated in parallel. An iterative symbol-by-symbol maximum a posteriori algorithm operating in the log domain is developed for decoding turbo-STCM. The decoder employs two a posteriori probability (APP) computing modules concatenated in parallel; one module for each constituent code. The analysis of turbo-STCM is demonstrated through simulations and theoretical closed-form expressions. Simulation results are provided for 4-PSK and 8-PSK schemes over the Rayleigh block-fading channel. It is shown that the turbo-STCM scheme features full diversity and full coding rate. The significant gain can be obtained in performance over conventional space-time codes of similar complexity. The analytical union bound to the bit error probability is derived for turbo-STCM over the additive white Gaussian noise (AWGN) and the Rayleigh block-fading channels. The bound makes it possible to express the performance analysis of turbo-STCM in terms of the properties of the constituent space-time codes. The union bound is demonstrated for 4-PSK and 8-PSK turbo-STCM with two transmit antennas and one/two receive antennas. Information theoretic bounds such as Shannon capacity, cutoff rate, outage capacity and the Fano bound, are computed for multiantenna systems over the AWGN and fading channels. These bounds are subsequently used as benchmarks for demonstrating the performance of turbo-STCM

    Coding for Parallel Channels: Gallager Bounds for Binary Linear Codes with Applications to Repeat-Accumulate Codes and Variations

    Full text link
    This paper is focused on the performance analysis of binary linear block codes (or ensembles) whose transmission takes place over independent and memoryless parallel channels. New upper bounds on the maximum-likelihood (ML) decoding error probability are derived. These bounds are applied to various ensembles of turbo-like codes, focusing especially on repeat-accumulate codes and their recent variations which possess low encoding and decoding complexity and exhibit remarkable performance under iterative decoding. The framework of the second version of the Duman and Salehi (DS2) bounds is generalized to the case of parallel channels, along with the derivation of their optimized tilting measures. The connection between the generalized DS2 and the 1961 Gallager bounds, addressed by Divsalar and by Sason and Shamai for a single channel, is explored in the case of an arbitrary number of independent parallel channels. The generalization of the DS2 bound for parallel channels enables to re-derive specific bounds which were originally derived by Liu et al. as special cases of the Gallager bound. In the asymptotic case where we let the block length tend to infinity, the new bounds are used to obtain improved inner bounds on the attainable channel regions under ML decoding. The tightness of the new bounds for independent parallel channels is exemplified for structured ensembles of turbo-like codes. The improved bounds with their optimized tilting measures show, irrespectively of the block length of the codes, an improvement over the union bound and other previously reported bounds for independent parallel channels; this improvement is especially pronounced for moderate to large block lengths.Comment: Submitted to IEEE Trans. on Information Theory, June 2006 (57 pages, 9 figures

    Advanced Coding And Modulation For Ultra-wideband And Impulsive Noises

    Get PDF
    The ever-growing demand for higher quality and faster multimedia content delivery over short distances in home environments drives the quest for higher data rates in wireless personal area networks (WPANs). One of the candidate IEEE 802.15.3a WPAN proposals support data rates up to 480 Mbps by using punctured convolutional codes with quadrature phase shift keying (QPSK) modulation for a multi-band orthogonal frequency-division multiplexing (MB-OFDM) system over ultra wideband (UWB) channels. In the first part of this dissertation, we combine more powerful near-Shannon-limit turbo codes with bandwidth efficient trellis coded modulation, i.e., turbo trellis coded modulation (TTCM), to further improve the data rates up to 1.2 Gbps. A modified iterative decoder for this TTCM coded MB-OFDM system is proposed and its bit error rate performance under various impulsive noises over both Gaussian and UWB channel is extensively investigated, especially in mismatched scenarios. A robust decoder which is immune to noise mismatch is provided based on comparison of impulsive noises in time domain and frequency domain. The accurate estimation of the dynamic noise model could be very difficult or impossible at the receiver, thus a significant performance degradation may occur due to noise mismatch. In the second part of this dissertation, we prove that the minimax decoder in \cite, which instead of minimizing the average bit error probability aims at minimizing the worst bit error probability, is optimal and robust to certain noise model with unknown prior probabilities in two and higher dimensions. Besides turbo codes, another kind of error correcting codes which approach the Shannon capacity is low-density parity-check (LDPC) codes. In the last part of this dissertation, we extend the density evolution method for sum-product decoding using mismatched noises. We will prove that as long as the true noise type and the estimated noise type used in the decoder are both binary-input memoryless output symmetric channels, the output from mismatched log-likelihood ratio (LLR) computation is also symmetric. We will show the Shannon capacity can be evaluated for mismatched LLR computation and it can be reduced if the mismatched LLR computation is not an one-to-one mapping function. We will derive the Shannon capacity, threshold and stable condition of LDPC codes for mismatched BIAWGN and BIL noise types. The results show that the noise variance estimation errors will not affect the Shannon capacity and stable condition, but the errors do reduce the threshold. The mismatch in noise type will only reduce Shannon capacity when LLR computation is based on BIL
    corecore