7 research outputs found

    Constant approximation algorithms for embedding graph metrics into trees and outerplanar graphs

    Full text link
    In this paper, we present a simple factor 6 algorithm for approximating the optimal multiplicative distortion of embedding a graph metric into a tree metric (thus improving and simplifying the factor 100 and 27 algorithms of B\v{a}doiu, Indyk, and Sidiropoulos (2007) and B\v{a}doiu, Demaine, Hajiaghayi, Sidiropoulos, and Zadimoghaddam (2008)). We also present a constant factor algorithm for approximating the optimal distortion of embedding a graph metric into an outerplanar metric. For this, we introduce a general notion of metric relaxed minor and show that if G contains an alpha-metric relaxed H-minor, then the distortion of any embedding of G into any metric induced by a H-minor free graph is at meast alpha. Then, for H=K_{2,3}, we present an algorithm which either finds an alpha-relaxed minor, or produces an O(alpha)-embedding into an outerplanar metric.Comment: 27 pages, 4 figires, extended abstract to appear in the proceedings of APPROX-RANDOM 201

    Constant approximation algorithms for embedding graph metrics into trees and outerplanar graphs

    No full text
    International audienceIn this paper, we present a simple factor 6 algorithm for approximating the optimal multiplicative distortion of embeddinga graph metric into a tree metric (thus improving and simplifying the factor 100 and 27 algorithms of B\v{a}doiu, Indyk, and Sidiropoulos (2007) and B\v{a}doiu, Demaine, Hajiaghayi, Sidiropoulos, and Zadimoghaddam (2008)). We also present a constant factor algorithm for approximating the optimal distortion of embedding a graph metric into an outerplanar metric. For this, we introduce a general notion of metric relaxed minor and show that if GG contains an α\alpha-metric relaxed HH-minor, then the distortion of any embedding of GG into any metric induced by a HH-minor free graph is α\geq \alpha. Then, for H=K2,3H=K_{2,3}, we present an algorithm which either finds an α\alpha-relaxed minor, or produces an O(α)O(\alpha)-embedding into an outerplanar metric

    Greedy routing and virtual coordinates for future networks

    Get PDF
    At the core of the Internet, routers are continuously struggling with ever-growing routing and forwarding tables. Although hardware advances do accommodate such a growth, we anticipate new requirements e.g. in data-oriented networking where each content piece has to be referenced instead of hosts, such that current approaches relying on global information will not be viable anymore, no matter the hardware progress. In this thesis, we investigate greedy routing methods that can achieve similar routing performance as today but use much less resources and which rely on local information only. To this end, we add specially crafted name spaces to the network in which virtual coordinates represent the addressable entities. Our scheme enables participating routers to make forwarding decisions using only neighbourhood information, as the overarching pseudo-geometric name space structure already organizes and incorporates "vicinity" at a global level. A first challenge to the application of greedy routing on virtual coordinates to future networks is that of "routing dead-ends" that are local minima due to the difficulty of consistent coordinates attribution. In this context, we propose a routing recovery scheme based on a multi-resolution embedding of the network in low-dimensional Euclidean spaces. The recovery is performed by routing greedily on a blurrier view of the network. The different network detail-levels are obtained though the embedding of clustering-levels of the graph. When compared with higher-dimensional embeddings of a given network, our method shows a significant diminution of routing failures for similar header and control-state sizes. A second challenge to the application of virtual coordinates and greedy routing to future networks is the support of "customer-provider" as well as "peering" relationships between participants, resulting in a differentiated services environment. Although an application of greedy routing within such a setting would combine two very common fields of today's networking literature, such a scenario has, surprisingly, not been studied so far. In this context we propose two approaches to address this scenario. In a first approach we implement a path-vector protocol similar to that of BGP on top of a greedy embedding of the network. This allows each node to build a spatial map associated with each of its neighbours indicating the accessible regions. Routing is then performed through the use of a decision-tree classifier taking the destination coordinates as input. When applied on a real-world dataset (the CAIDA 2004 AS graph) we demonstrate an up to 40% compression ratio of the routing control information at the network's core as well as a computationally efficient decision process comparable to methods such as binary trees and tries. In a second approach, we take inspiration from consensus-finding in social sciences and transform the three-dimensional distance data structure (where the third dimension encodes the service differentiation) into a two-dimensional matrix on which classical embedding tools can be used. This transformation is achieved by agreeing on a set of constraints on the inter-node distances guaranteeing an administratively-correct greedy routing. The computed distances are also enhanced to encode multipath support. We demonstrate a good greedy routing performance as well as an above 90% satisfaction of multipath constraints when relying on the non-embedded obtained distances on synthetic datasets. As various embeddings of the consensus distances do not fully exploit their multipath potential, the use of compression techniques such as transform coding to approximate the obtained distance allows for better routing performances

    27th Annual European Symposium on Algorithms: ESA 2019, September 9-11, 2019, Munich/Garching, Germany

    Get PDF
    corecore