56,934 research outputs found

    EUROMOD: the European Union tax-benefit microsimulation model

    Get PDF
    This paper aims to provide an introduction to the current state of the art of EUROMOD, the European Union tax-benefit microsimulation model. It explains the original motivations for building a multi-country EU-wide model and summarises its current organisation. It provides an overview of EUROMOD components, covering its policy scope, the input data, the validation process and some technical aspects such as the tax-benefit programming language and the user interface. The paper also reviews some recent applications of EUROMOD and, finally, considers future developments

    Fashion, Cooperation, and Social Interactions

    Full text link
    Fashion plays such a crucial rule in the evolution of culture and society that it is regarded as a second nature to the human being. Also, its impact on economy is quite nontrivial. On what is fashionable, interestingly, there are two viewpoints that are both extremely widespread but almost opposite: conformists think that what is popular is fashionable, while rebels believe that being different is the essence. Fashion color is fashionable in the first sense, and Lady Gaga in the second. We investigate a model where the population consists of the afore-mentioned two groups of people that are located on social networks (a spatial cellular automata network and small-world networks). This model captures two fundamental kinds of social interactions (coordination and anti-coordination) simultaneously, and also has its own interest to game theory: it is a hybrid model of pure competition and pure cooperation. This is true because when a conformist meets a rebel, they play the zero sum matching pennies game, which is pure competition. When two conformists (rebels) meet, they play the (anti-) coordination game, which is pure cooperation. Simulation shows that simple social interactions greatly promote cooperation: in most cases people can reach an extraordinarily high level of cooperation, through a selfish, myopic, naive, and local interacting dynamic (the best response dynamic). We find that degree of synchronization also plays a critical role, but mostly on the negative side. Four indices, namely cooperation degree, average satisfaction degree, equilibrium ratio and complete ratio, are defined and applied to measure people's cooperation levels from various angles. Phase transition, as well as emergence of many interesting geographic patterns in the cellular automata network, is also observed.Comment: 21 pages, 12 figure

    Learning from Neighbors about a Changing State

    Full text link
    Agents learn about a changing state using private signals and past actions of neighbors in a network. We characterize equilibrium learning and social influence in this setting. We then examine when agents can aggregate information well, responding quickly to recent changes. A key sufficient condition for good aggregation is that each individual's neighbors have sufficiently different types of private information. In contrast, when signals are homogeneous, aggregation is suboptimal on any network. We also examine behavioral versions of the model, and show that achieving good aggregation requires a sophisticated understanding of correlations in neighbors' actions. The model provides a Bayesian foundation for a tractable learning dynamic in networks, closely related to the DeGroot model, and offers new tools for counterfactual and welfare analyses.Comment: minor revision tweaking exposition relative to v5 - which added new Section 3.2.2, new Theorem 2, new Section 7.1, many local revision
    • …
    corecore