65 research outputs found

    Consistent Query Answering without Repairs in Tables with Nulls and Functional Dependencies

    Full text link
    In this paper, we study consistent query answering in tables with nulls and functional dependencies. Given such a table T, we consider the set Tuples of all tuples that can be built up from constants appearing in T, and we use set theoretic semantics for tuples and functional dependencies to characterize the tuples of Tuples in two orthogonal ways: first as true or false tuples, and then as consistent or inconsistent tuples. Queries are issued against T and evaluated in Tuples. In this setting, we consider a query Q: select X from T where Condition over T and define its consistent answer to be the set of tuples x in Tuples such that: x is a true and consistent tuple with schema X and there exists a true super-tuple t of x in Tuples satisfying the condition. We show that, depending on the status that the super-tuple t has in Tuples, there are different types of consistent answer to Q. The main contributions of the paper are: (a) a novel approach to consistent query answering not using table repairs; (b) polynomial algorithms for computing the sets of true-false tuples and the sets of consistent-inconsistent tuples of Tuples; (c) polynomial algorithms in the size of T for computing different types of consistent answer for both conjunctive and disjunctive queries; and (d) a detailed discussion of the differences between our approach and the approaches using table repairs.Comment: 42 page

    Personalizable Knowledge Integration

    Get PDF
    Large repositories of data are used daily as knowledge bases (KBs) feeding computer systems that support decision making processes, such as in medical or financial applications. Unfortunately, the larger a KB is, the harder it is to ensure its consistency and completeness. The problem of handling KBs of this kind has been studied in the AI and databases communities, but most approaches focus on computing answers locally to the KB, assuming there is some single, epistemically correct solution. It is important to recognize that for some applications, as part of the decision making process, users consider far more knowledge than that which is contained in the knowledge base, and that sometimes inconsistent data may help in directing reasoning; for instance, inconsistency in taxpayer records can serve as evidence of a possible fraud. Thus, the handling of this type of data needs to be context-sensitive, creating a synergy with the user in order to build useful, flexible data management systems. Inconsistent and incomplete information is ubiquitous and presents a substantial problem when trying to reason about the data: how can we derive an adequate model of the world, from the point of view of a given user, from a KB that may be inconsistent or incomplete? In this thesis we argue that in many cases users need to bring their application-specific knowledge to bear in order to inform the data management process. Therefore, we provide different approaches to handle, in a personalized fashion, some of the most common issues that arise in knowledge management. Specifically, we focus on (1) inconsistency management in relational databases, general knowledge bases, and a special kind of knowledge base designed for news reports; (2) management of incomplete information in the form of different types of null values; and (3) answering queries in the presence of uncertain schema matchings. We allow users to define policies to manage both inconsistent and incomplete information in their application in a way that takes both the user's knowledge of his problem, and his attitude to error/risk, into account. Using the frameworks and tools proposed here, users can specify when and how they want to manage/solve the issues that arise due to inconsistency and incompleteness in their data, in the way that best suits their needs

    Exchange-Repairs: Managing Inconsistency in Data Exchange

    Full text link
    In a data exchange setting with target constraints, it is often the case that a given source instance has no solutions. In such cases, the semantics of target queries trivialize. The aim of this paper is to introduce and explore a new framework that gives meaningful semantics in such cases by using the notion of exchange-repairs. Informally, an exchange-repair of a source instance is another source instance that differs minimally from the first, but has a solution. Exchange-repairs give rise to a natural notion of exchange-repair certain answers (XR-certain answers) for target queries. We show that for schema mappings specified by source-to-target GAV dependencies and target equality-generating dependencies (egds), the XR-certain answers of a target conjunctive query can be rewritten as the consistent answers (in the sense of standard database repairs) of a union of conjunctive queries over the source schema with respect to a set of egds over the source schema, making it possible to use a consistent query-answering system to compute XR-certain answers in data exchange. We then examine the general case of schema mappings specified by source-to-target GLAV constraints, a weakly acyclic set of target tgds and a set of target egds. The main result asserts that, for such settings, the XR-certain answers of conjunctive queries can be rewritten as the certain answers of a union of conjunctive queries with respect to the stable models of a disjunctive logic program over a suitable expansion of the source schema.Comment: 29 pages, 13 figures, submitted to the Journal on Data Semantic

    Queries with Arithmetic on Incomplete Databases

    Get PDF
    The standard notion of query answering over incomplete database is that of certain answers, guaranteeing correctness regardless of how incomplete data is interpreted. In majority of real-life databases, relations have numerical columns and queries use arithmetic and comparisons. Even though the notion of certain answers still applies, we explain that it becomes much more problematic in situations when missing data occurs in numerical columns. We propose a new general framework that allows us to assign a measure of certainty to query answers. We test it in the agnostic scenario where we do not have prior information about values of numerical attributes, similarly to the predominant approach in handling incomplete data which assumes that each null can be interpreted as an arbitrary value of the domain. The key technical challenge is the lack of a uniform distribution over the entire domain of numerical attributes, such as real numbers. We overcome this by associating the measure of certainty with the asymptotic behavior of volumes of some subsets of the Euclidean space. We show that this measure is well-defined, and describe approaches to computing and approximating it. While it can be computationally hard, or result in an irrational number, even for simple constraints, we produce polynomial-time randomized approximation schemes with multiplicative guarantees for conjunctive queries, and with additive guarantees for arbitrary first-order queries. We also describe a set of experimental results to confirm the feasibility of this approach

    Repairs of databases with null values

    Get PDF
    Dissertação para obtenção do Grau de Mestre em Engenharia InformáticaDatabases store information that is intended to model the real world and to help in modeling, they use constraints that shape the information according to the world view. However, when a new constraint is defined, the data contained in the database may not respect it and so the database should be repaired. Those repairs are made by adding, removing or updating tuples, making as few modifications as possible to satisfy the constraints. In order to determine the repairs of a database with respect to new constraints, there are already some available approaches that provide a solution. But databases also need to contain information that is absence, which is represented through null values. Null values are not regular values and they represent information that is missing or unknown. When using null values, there is no consensus in the literature on how to interpret them when checking constraint satisfaction. Also, there is not a practical implementation to do the repairing regarding null values. In this document, we study the problem of dealing with null values in the repairing process and propose a (both practical and theoretically sound) solution for this problem including the definition of semantics for null values to achieve constraint satisfaction, and how to proceed to make the databases repairs, ending with a practical implementation of the proposed solution using Answer-set Programming.FCT project ASPEN - Answer Set Programming with BoolEaN Satisfiability (PTDC/EIA-CCO/110921/2009
    • …
    corecore