
Abstract

Title of dissertation: Personalizable Knowledge Integration

Maria Vanina Martinez,
Doctor of Philosophy, 2011

Dissertation directed by: Professor V.S. Subrahmanian
Department of Computer Science

Large repositories of data are used daily as knowledge bases (KBs) feeding com-

puter systems that support decision making processes, such as in medical or financial

applications. Unfortunately, the larger a KB is, the harder it is to ensure its consistency

and completeness. The problem of handling KBs of this kind has been studied in the AI

and databases communities, but most approaches focus on computing answers locally to

the KB, assuming there is some single, epistemically correct solution. It is important to

recognize that for some applications, as part of the decision making process, users con-

sider far more knowledge than that which is contained in the knowledge base, and that

sometimes inconsistent data may help in directing reasoning; for instance, inconsistency

in taxpayer records can serve as evidence of a possible fraud. Thus, the handling of this

type of data needs to be context-sensitive, creating a synergy with the user in order to

build useful, flexible data management systems.

Inconsistent and incomplete information is ubiquitous and presents a substantial

problem when trying to reason about the data: how can we derive an adequate model

of the world, from the point of view of a given user, from a KB that may be inconsis-

tent or incomplete? In this thesis we argue that in many cases users need to bring their

application-specific knowledge to bear in order to inform the data management process.

Therefore, we provide different approaches to handle, in a personalized fashion, some

of the most common issues that arise in knowledge management. Specifically, we focus

on (1) inconsistency management in relational databases, general knowledge bases, and a

special kind of knowledge base designed for news reports; (2) management of incomplete

information in the form of different types of null values; and (3) answering queries in the

presence of uncertain schema matchings. We allow users to define policies to manage

both inconsistent and incomplete information in their application in a way that takes both

the user’s knowledge of his problem, and his attitude to error/risk, into account. Using

the frameworks and tools proposed here, users can specify when and how they want to

manage/solve the issues that arise due to inconsistency and incompleteness in their data,

in the way that best suits their needs.

PERSONALIZABLE
KNOWLEDGE INTEGRATION

by

Maria Vanina Martinez

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2011

Advisory Committee:

Professor V.S. Subrahmanian, Chair/Advisor
Professor John Grant
Professor Sarit Kraus
Professor Dana Nau
Professor Jonathan Wilkenfeld

c© Copyright by
Maria Vanina Martinez

2011

Dedication

To: Gerardo, Cristina, Hector, Roman, and Mauricio.

ii

Acknowledgements

In the first place, I would like to thank my family for having been there uncon-

ditionally for me throughout my studies. To my husband Gerardo, who supported and

encouraged me to keep going forward in my good and bad moments, especially when

being so far from my family was sometimes too hard. I am most grateful to my beloved

parents, Cristina and Hector, and my brothers Mauricio and Roman. They were with me

all this time, even in the distance, missing me very much, but always encouraging me to

do what I wanted to do. They taught me the importance of learning and seeking knowl-

edge, and that an education is one of the most important things that a person can have,

independently of what path is taken in life. To them I owe who I am and what I have done

so far. To the rest of my family: Gabriela, Guillermo, Amalia, and Patricio, who have

also been there for me, and to my little nephew Sebastian.

I want to thank my advisor, Professor V.S. Subrahmanian, for giving me the oppor-

tunity to work and learn from him, and for giving me the opportunity of joining his group

even before officially starting the program. His expertise as a researcher in the area and

his seemingly endless generation of ideas was crucial for me to start building my career.

He taught me to be a good researcher, and I was lucky to have him as an advisor. Thanks

are also due to Professors John Grant, Sarit Kraus, Dana Nau, and Jonathan Wilkenfeld

for agreeing to serve on my thesis committee, which meant putting valuable time aside

to review the manuscript and provide feedback. Also to Professors John Grant, Avigdor

Gal, and Sarit Kraus, from which I have learned so much by working with them.

During my time at UMD, I had the opportunity to meet many great people. some

of them I collaborated with, and some became very good friends. My thanks then to Amy

Sliva, Cristian Molinaro, Andrea Pugliese, Francesco Parisi, Massimiliano Albanese,

Matthias Bröcheler, Paulo Shakarian, John Dickerson, and especially to Carlos Castillo

iii

and Gabriela Chavez, who became very good friends and with whom my husband and I

spent so many good times.

Finally, I want to thank my friends in Argentina, the rest of my family there, and

those who supported my decision of leaving my country to embark on this great adventure

that was getting my PhD.

iv

Contents

1 Introduction 1
1.1 Knowledge Integration:

Real World Application Issues . 1
1.2 Organization of this Thesis . 6

2 Related Work 11
2.1 Inconsistency Management . 11

2.1.1 Database Repairing and Consistent Query Answering 15
2.2 Partial Information . 19
2.3 Entity Resolution and Deduplication . 24
2.4 Schema Mappings and Data Exchange 26

3 Inconsistency Management Policies 29
3.1 Introduction and Motivating Example 29
3.2 Syntax and Notation . 32
3.3 Inconsistency Management Policies . 33

3.3.1 Singular IMPs . 34
3.3.2 Multi-Dependency Policies . 40

3.4 Specifying IMPs . 49
3.5 Relationship with belief change operators 53
3.6 Relationship with preference-based approaches in

Consistent Query Answering . 57
3.6.1 Active Integrity Constraints . 58
3.6.2 Prioritized Repairs and CQAs 61

3.7 Extensions of Classical Relational Algebra Operators with Multi-Dependency
Policies . 63

3.8 Applying IMPs . 74
3.8.1 Using DBMS-based Indexes . 74
3.8.2 Cluster Table . 76
3.8.3 Experimental Evaluation . 84

3.9 Concluding Remarks . 87

4 A General Framework for Reasoning about Inconsistency 90
4.1 Introduction . 90
4.2 Tarski’s Abstract Logic . 94

v

4.3 A General Framework for Handling Inconsistency 95
4.4 Algorithms . 106
4.5 Handling Inconsistency in Monotonic Logics 117

4.5.1 Propositional Horn-clause Logic 117
4.5.2 Propositional Probabilistic Logic 119
4.5.3 Propositional Linear Temporal Logic 126
4.5.4 Fuzzy Logic . 129
4.5.5 Belief Logic . 132
4.5.6 Spatial Logic . 136

4.6 Link with Existing Approaches . 138
4.7 Concluding Remarks . 144

5 PLINI: A Probabilistic Logic for Inconsistent News Information 147
5.1 Introduction and Motivating Example 147
5.2 What is an Event? . 152
5.3 PLINI Wffs: Syntax and Semantics . 153

5.3.1 Syntax of Multi-sorted Wffs . 153
5.4 Similarity Functions . 160
5.5 PLINI Probabilistic Logic Programs . 172
5.6 Model Theory and Fixpoint Theory . 177
5.7 Event Clustering Algorithm . 180
5.8 Implementation and Experiments . 185
5.9 Concluding Remarks . 189

6 Partial Information Policies 192
6.1 Introduction and Motivating Example 192
6.2 Preliminaries . 197
6.3 Partial Information Policies . 199
6.4 Efficiently Applying PIPs . 205

6.4.1 Tuple insertions . 210
6.4.2 Tuple deletions . 212
6.4.3 Tuple updates . 213
6.4.4 Applying PIPs . 214
6.4.5 Optimizations . 216

6.5 Relational Algebra and PIPs . 217
6.5.1 Projection and PIPs . 218
6.5.2 Selection and PIPs . 220
6.5.3 Cartesian Product and PIPs . 221
6.5.4 Join and PIPs . 222
6.5.5 Union and PIPs . 223
6.5.6 Difference and PIPs . 224
6.5.7 Intersection and PIPs . 225

6.6 Experimental Results . 225
6.6.1 Applying PIPs . 227
6.6.2 Updating the database . 229

vi

6.6.3 Execution times under different loads 230
6.6.4 Query answer quality . 231
6.6.5 Relational Algebra operators and PIPs 233

6.7 Concluding Remarks . 235

7 Query Answering under Uncertain Schema Mappings 237
7.1 Introduction and Motivating Example 237
7.2 Preliminaries . 243
7.3 Semantics . 244

7.3.1 Semantics of Probabilistic Mappings 244
7.4 Algorithms for Aggregate Query Answering 249

7.4.1 By-Table Semantics . 249
7.4.2 By-Tuple Semantics . 250
7.4.3 Summary of Complexity Results 267

7.5 Experimental Results . 267
7.6 Schema Mappings, Integrity Constraints, and Partial Information 274
7.7 Concluding Remarks . 278

8 Conclusions 280

Bibliography 284

vii

List of Tables

5.1 Examples of event descriptions . 153
5.2 Denotations for selected linguistically modified numeric predicates 158
5.3 Denotations for selected linguistically modified spatial predicates 159
5.4 Denotations for selected linguistically modified temporal predicates . . . 160
5.5 Similarity functions example . 165
5.6 Example of Event Database extracted from news sources 173
5.7 Degrees of similarity as given by lfp(TΠ)(ei ≡ ej) 183
5.8 Performance of J48 for different values of τ 187
5.9 Performance of JRIP for different values of τ 187
5.10 Average performance of JRIP . 189

7.1 An instance DS1 . 238
7.2 An instance DS2 . 240
7.3 New semantics for Aggregate Queries 249
7.4 Trace of ByTupleRANGE for query Q1 252
7.5 Trace of ByTuplePDCOUNT for query Q1 254
7.6 Trace of ByTupleRANGE for query Q2’ 257
7.7 Computing Q2′ under the by-tuple/expected value semantics 259

viii

List of Figures

3.1 Partial order ≤F for relational schema S. 43
3.2 Example relation . 78
3.3 Cluster Table Example . 78
3.4 Updating a cluster table after inserting a tuple 79
3.5 Updating a cluster table after deleting a tuple 80
3.6 Updating a cluster table after updating a tuple 81
3.7 Applying an IMP using a cluster table 83
3.8 Policy application running time 1-2M tuples 85
3.9 Policy application running time 0.1% inconsistency 86
3.10 Storage Results . 86

4.1 Two-dimensional examples for RCC-8 base relations. 136

5.1 Architecture of the PLINI-system . 151
5.2 Denotation examples . 161
5.3 Example of the application of similarity functions for sort ConnectedPlace 163
5.4 Example of application of similarity functions for sort Space 168
5.5 Some automatically learned PLINI-rules from T-REX data using JRIP . . 177
5.6 Algorithm PLINI-Cluster(Π, E , τ) . 183
5.7 Recall/Precision and F-measure for J48 and JRIP 188

6.1 Updating index structures after a tuple insertion. 211
6.2 Updating index structures after a tuple deletion. 212
6.3 Applying a PIP . 215
6.4 PIPs examples from experiments . 226
6.5 Policy application running time . 226
6.6 Policy application running times for index structure 227
6.7 Multiple policy application running time 228
6.8 Tuple insertion running time . 229
6.9 Tuple deletion running time . 230
6.10 Tuple update running time . 231
6.11 Execution times with different loads . 232
6.12 Query answer quality . 233
6.13 Running times of projection . 234
6.14 Running times of join . 235
6.15 Running times of union . 236

ix

7.1 Generic by-table algorithm . 249
7.2 Algorithm ByTupleRangeCOUNT . 250
7.3 Algorithm ByTuplePDCOUNT . 252
7.4 Algorithm ByTupleRangeSUM . 257
7.5 Algorithm ByTupleRangeMAX . 266
7.6 Summary of complexity for the different aggregates 268
7.7 Running times for small number of tuples 268
7.8 Running times for small number of mappings 269
7.9 Running times for medium number of tuples 271
7.10 Running times for medium number of mappings 272
7.11 Running times for large number of tuples 273
7.12 Running times for very large number of tuples 273

x

Chapter 1

Introduction

1.1 Knowledge Integration:

Real World Application Issues

The process of knowledge integration involves combining knowledge bases resid-

ing in different sources and providing users with a unified view of these data. Researchers

both in AI and databases, as well as in information retrieval, have been working on the

problems that arise with the integration of heterogeneous knowledge bases for decades.

The area of data integration is vast, and combines efforts from separate but related areas

of computer science. Work in this area has focused on many issues at different levels of

information integration during the last 30 years starting shortly after the global adoption

of relational databases, which naturally led to the need for sharing and/or merging existing

data repositories. Nowadays, solving problems associated with data integration applica-

tions is even more necessary given the information globalization produced by the WWW.

A huge number of data sets are published and shared over the Internet daily, increasing

the need for efficient and relatively accurate data integration tools.

1

The two main problems that arise when merging knowledge from different sources

are uncertainty and inconsistency. In data integration applications, uncertainty can appear

in different ways, but all of them can be traced to the subjectivity with which knowledge

bases are built: knowledge bases model the knowledge about the world, e.g., objects,

their relevant properties, and relations among them, based on the requirements of the

applications the were designed to serve. The same domain may be described in differ-

ent, sometimes conflicting, ways. Differences may arise in the particular aspects of the

domain they model, in the schemas designed for the domain (the structure of tables or

relations, attribute names, and types), and in the naming conventions used for data ob-

jects. Inconsistency appears also as a result of integration. On one side, different sources

of knowledge, which may be consistent in isolation, can each contain information that

contradict each other when they are considered together. On the other side, since many

data integration applications are based on structures that are automatically extracted from

unstructured data, there may even be uncertainty about the data itself, since the extrac-

tion techniques are approximate at best. As data integration applications strive to offer a

single objective and coherent integrated view of data sources, both uncertainty and incon-

sistency are bound to appear. These problems are pervasive especially in data integration

applications whose goal is to offer access to a large number of heterogeneous sources, for

instance when providing online services over the WWW. An everyday example of such

a service is a search engine serving consumer travel needs (flights, rental cars, hotels,

tourist packages, travel insurance, cruises, etc.); since different companies feed their data

to such a service the problems discussed above seem inevitable.

Furthermore, large repositories of data are readily accessible and used daily as

knowledge bases (KBs) that feed a wide variety of computer systems. One important

type of systems are those that support decision making processes, i.e., human users use

2

them to interpret the data contained in a KB in order to make real world decisions. Ex-

amples of these applications are found in many environments such as medical, financial,

cultural behavioral analysis, crime prevention, etc. Unfortunately, the larger a KB is, the

harder it is to ensure its consistency and completeness. Inconsistent and incomplete (or

partial) information is ubiquitous and presents a substantial problem when trying to rea-

son about the data: how can we derive an adequate model of the world from a KB that

we know may be inconsistent or incomplete? This situation can arise in the real world

when maintaining, for instance, a KB with information about vehicle position and status,

such as in robotics where Unmanned Ground Vehicles (UGVs) sense and act in an envi-

ronment. For many reasons, such as unreliable communication channels or redundancy,

there can be contradictory pieces of information regarding a vehicle in a certain instant of

time. Depending on how a data management system handles this inconsistency, the user

of this KB may have different options at hand when he comes into contact with the data.

In general, these applications are managed by power users: users that utilize advanced

features of programs which are beyond the abilities of “normal” or “end” users, but they

are not necessarily capable of programming or familiar with how database management

systems work. An important aspect to take into account in these applications is that, as

part of the decision making process, users consider far more knowledge than that which

is contained in the KB; they also incorporate into the process their domain expertise and

requirements, as well as their expectations.

The management of uncertain knowledge bases has been widely studied both in

the AI community and in the database community. Extensive work has been done in

AI regarding uncertain information for a long time now, especially in the areas of non-

monotonic reasoning [Rei80a, MD80, McC87, Gab85, Moo88, KLM90], and the var-

ious topics studied in probabilistic reasoning [Hai84, Nil86b, Pea88, FHM90, KTG92,

3

NS92, Poo93, FH94, Poo97, KIL04]. During the late 80’s and 90’s, proposals were

made in the database community to incorporate probabilities into deductive and relational

databases [CP87, BGMP92, LS94, NS94, LLRS97, FR97], each of them making different

dependency assumptions with respect to probabilities. More recently, the database com-

munity has regained interest in probabilistic approaches, particularly in the area of query

answering [AFM06, DS07, CKP03, BDSH+08] and top-k querying [LCcI+04, RDS07,

SI07]. There has also been interest in uncertainty produced by the presence of null values

or incomplete information [Gra80, IL84b, GJ86]. In this thesis we will focus on par-

ticular aspects of uncertainty related to inconsistency, schema matching, and incomplete

information.

The problem of identifying and solving inconsistency in knowledge bases has been

studied for many years by many different researchers [Gra78, BKM91, BDP97, BS98,

ABC99, BFFR05, CLR03, BC03, Cho07]. Traditionally, the artificial intelligence (AI)

and database theory communities held the posture that knowledge bases and software

specifications should be completely free of inconsistent and incomplete information, and

that inconsistency and incompleteness should be eradicated from them immediately. In

the last two decades, however, these communities have recognized that for many inter-

esting applications this posture is obsolete: Though approaches to allow inconsistency to

persist in relational DBs and KBs have existed since the late 80s ([BS98, KS92, KL92,

GS95, BKM91], etc.), there has been no method to date that gives the user the power to

bring his knowledge of the domain, his preferences, and his risks and objectives into ac-

count when reasoning about inconsistent data. In this thesis we argue that inconsistency

can often be resolved in different ways based on what the user wants. In the case of the

vehicle KB above, a data management system that ignores the inconsistency and gives an

“a priori” solution for it may hide the inconsistency from the user; this can be a problem

4

if it causes the user to make the wrong decision and, for instance, delay the sending of

rescue or support to disabled vehicles or to send it to the wrong location. Furthermore,

contradictory information can be used in detecting faulty sensors or communication chan-

nels.

Consider now a simpler database example, a database containing data about em-

ployees in a company. We will use it to show the importance of giving the user the power

to define and control the uncertainty in his data.

Name Salary Tax bracket Source

t1 John 70K 15 s1

t2 John 80K 20 s2

t3 John 70K 25 s3

t4 Mary 90K 30 s1

Let us assume that salaries are uniquely determined by names, which means that for

every two records in the database that have the exact same name, they should also have the

exact same amount for salary. Clearly, there is an inconsistency regarding employee John

in the table above. In this case, a user may want to resolve the inconsistency about John’s

salary in many different ways. (C1) If he were considering John for a loan, he might

want to choose the lowest possible salary of John to base his loan on. (C2) If he were

assessing the amount of taxes John has to pay, he may choose the highest possible salary

John may have. (C3) If he were just trying to estimate John’s salary, he may choose some

number between 70K and 80K (e.g., the average of the three reports of John’s salary) as

the number. (C4) if he had different degrees of confidence in the sources that provided

these salaries, he might choose a weighted mean of these salaries. (C5) He might choose

not to resolve the inconsistency at all, but to just let it persist until he can clear it up. (C6)

He might simply consider all the data about John unreliable and might want to ignore it

5

until it can be cleared up – this is the philosophy of throwing away all contaminated data.1

[BKM91, SA07, ABC99, BFFR05, CLR03, BC03, Cho07] can handle cases C1 and C2,

but not the other cases.

1.2 Organization of this Thesis

In this thesis we propose to provide users with tools to manage their data in a per-

sonalized way in order to reason about it according to their needs. Given that it is impor-

tant to enable users to bring their application-specific knowledge to bear when resolv-

ing inconsistency, we propose two different approaches to personalizable inconsistency

management: Inconsistency Management Policies for relational databases and a general

framework for handling inconsistent knowledge bases. For the first approach we define

the concept of a policy for managing inconsistency in relational databases with respect to

functional dependencies, which generalizes other efforts in the database community by

allowing policies to either remove inconsistency completely or to allow part or all of the

inconsistency to persist depending on the users’ application needs. In the example above,

each of the cases C1 through C6 reflects a policy that the user is applying to resolve in-

consistencies. We will discuss inconsistency management policies (IMPs for short) in

detail in Chapter 3.

Second, we propose a unified framework for reasoning about inconsistency that ex-

tends the work in [SA07]. This framework applies to any monotonic logic, including ones

for which inconsistency management has not been well studied (e.g., temporal, spatial,

and probabilistic logics), and the main goal is to allow end-users to bring their domain

knowledge to bear by taking into account their preferences. In the example above neither

1This is more likely to happen, for example, when there is a scientific experiment with inconsistent data
or when there is a critical action that must be taken, but cannot be taken on the basis of inconsistent data.

6

the bank manager nor the tax officer are making any attempt to find out the truth (thus

far) about John’s salary; however, both of them are making different decisions based on

the same facts. The basic idea behind this framework is to construct what we call options,

and then using a preference relation defined by the user to compute the set of preferred

options, which are intended to support the conclusions to be drawn from the inconsistent

knowledge base. Intuitively, an option is a set of formulas that is both consistent and

closed with respect to consequence in a given monotonic logic. In [SA07] preferred op-

tions are consistent subsets of a knowledge base, whereas here this is not necessarily the

case since a preferred option can be a consistent subset of the deductive closure of the

knowledge base. We will present this framework in Chapter 4.

Applications dealing with the collection and analysis of news reports are highly af-

fected by integration techniques, especially since millions of reports can be extracted daily

by automatic means from different web sources. Oftentimes, even the same news source

may provide widely varying data over a period of time about the same event. Past work on

inconsistency management and paraconsistent logics assume that we have “clean” defini-

tions of inconsistency. However, when reasoning about this type of data there is an extra

layer of uncertainty that comes from the following two phenomena: (i) do two reports

correspond to the same event or different ones?; and (ii) what does it mean for two event

descriptions to be mutually inconsistent, given that these events are often described us-

ing linguistic terms that do not always have a uniquely accepted formal semantics? We

propose a probabilistic logic programming language called PLINI (Probabilistic Logic

for Inconsistent News Information) within which users can write rules specifying what

they mean by inconsistency in situation (ii) above. Extensive work has also been done

in duplicate record identification and elimination [BD83, HS95, ME97, CR02, BM03,

BG04, BGMM+09]. The main difference between our approach and previous work is the

7

fact that the user is able to specify the notion of inconsistency that is of interest to him;

furthermore, news reports are in general unstructured data containing complex linguistic

modifiers which different users may interpret in different ways. We devote Chapter 5 to

the treatment of this problem.

Another issue related to data integration is that of reasoning in the presence of

incomplete information, or null values, in knowledge bases. Incomplete information can

appear, just to give a common example, when merging knowledge bases with disparate

schemas into a global schema. The consolidated knowledge base often contains null

values for attributes that were not present in every source schema. Incomplete information

makes the process of reasoning much harder since, if not treated carefully, results can

present incorrect or biased information.

The problem of representing incomplete information in relational databases and

understanding its meaning has been extensively studied since the beginnings of relational

database theory Early work in this problem appears in [Cod74, Gra77, Gra79, Gra80,

Lip79, Lip81]. Incomplete information is so widely spread in today’s applications that

practically any data analysis tool has to deal with null values in some way. Many data

modeling and analysis techniques deal with missing values by removing from consider-

ation whole records if one of the attribute values is missing, or using ad hoc methods of

estimation for such values. Even though a wide variety of methods to deal with incom-

plete information have been proposed, which are in general highly tuned for particular

applications, no tools have been provided to allow end-users to easily specify different

ways of managing this type of data according to their needs and based on their expertise.

Consider another employee database and the following instance:

8

Name Year Department Salary Category

t1 John 2008 CS 70K B

t2 John 2009 CS 80K B

t3 John 2010 Math ? A

t4 Mary 2010 Math 90K A

This relation contains a record for employee John for year 2009, in which the at-

tribute Salary holds a null value, meaning that we do not know how much John earned

that year. The classical approach in data cleaning and query answering would be to dis-

card that record completely: since no information about the salary is provided, it is not

possible to reason with that data. However, in many applications, users fill in this type of

null values following strategies that are appropriate for the type of data, the type of appli-

cation, or the decision process the application is supporting. For instance, a user of this

database could decide to fill in the missing salary for John by using a regression model

with the data for other years we have for the same employee and extrapolate a value for

the missing year. Another user could decide to use the salary information from Mary,

who was also in the Math department in 2010 and had the same category as John.

In this thesis, we propose a policy based framework to allow end-users to personal-

ize the management of incomplete information by defining their own Partial Information

Policies (PIPs for short) without having to depend on decisions made by, for instance,

DBMS managers that might not know the data or the needs of the users. PIPs can be used

in combination with relational operators allowing the user to issue queries that perform

an assumption-based treatment of null values. This approach is developed in Chapter 6.

Finally, in the presence of structured and semi-structured knowledge bases such as

relational databases, RDF databases, ontologies, etc., one important issue in the design

of data integration systems is that of providing the users with a unified view of the dif-

9

ferent sources that they can query, making the whole process of integration transparent

to the users. In such systems, the unified view is represented by a target or mediated

schema. One of the main tasks in the design of such systems is to establish the map-

ping between the source schemas and the target schema. There has been intense work

during the last few years on schema matching in order to answer queries over multi-

ple databases [LC00, MKIS00, MHH+01, DNH04, HMYW05, ESS05, Gal07, BMP+08,

CSD+08, BV08]. More recently, there has been a realization that methods to automati-

cally match schemas are uncertain. That is, when an algorithm for schema matching is

executed, it might say that there are many possible mappings between one schema and an-

other, and that a probability distribution over this set of mappings specifies the probability

that a specific mapping is the correct one [DHY07]. Work to date [DHY07, DSDH08] on

probabilistic schema mapping has studied the problem of answering SPJ (select-project-

join) queries over multiple databases. In Chapter 7 we extend previous work by focusing

on scalable algorithms for answering aggregate queries in the presence of probabilistic

schema mappings. We also study how the use of uncertain schema mappings relates to

inconsistency in the presence of integrity constraints.

In summary, the goal of this thesis is to attack particular problems of knowledge

integration and provide personalizable approaches to handle them. Previous works in

uncertainty and inconsistency management try to overcome these issues by considering

that there is one correct way of handling them. Using the frameworks and tools proposed

here, the users can specify when and how they want to manage/solve the issues that the

integration of several heterogeneous knowledge bases yield, in the way that best suits

their needs.

10

Chapter 2

Related Work

In this chapter, we will review the literature that is related to the work developed

in this thesis. In Section 2.1, we will review the literature on inconsistency management

both in artificial intelligence and database theory. Section 2.2 focuses on the work of

partial information, particularly in relational databases. Section 2.3 will focus on the area

of entity resolution and deduplication, which is related to our work described in Chapter 5

for identifying inconsistency in news reports about events. Finally, in support of the work

presented in Chapter 7, Section 2.4 reviews the literature on the problem of data exchange

and intregration, focusing on (probabilistic) schema matching.

2.1 Inconsistency Management

There has been a tremendous amount of work in inconsistency management since

the 60s and 70s, when paraconsistent logics where introduced [dC74, BS89] and logics of

inconsistency [Bel77, Gra78] were developed. In general, two kinds of approaches have

been proposed in the literature for solving the problem of inconsistency.

The first type focuses on revising the knowledge base and restoring its consistency.

This approach, initiated in [RM70], proposes to give up some formulas of the knowledge

11

base in order to get one or several consistent subbases. More specifically, [RM70] consid-

ers expressing preferences among the maximal consistent subsets of the original (propo-

sitional) knowledge base, so that preferred maximal consistent subsets are determined.

In the case of prioritized knowledge bases, Brewka [Bre89] has proposed a definition

of a preferred subbase. The basic idea is to take as much important information into

account as possible. More specifically, two generalizations of Poole’s approach [Poo88]

have been proposed: (1) stratified knowledge bases, in which formulas in the same stra-

tum are equally preferred, whereas formulas in a stratum are preferred over formulas in

lower strata; (2) the definition of a partial order among the formulas of a knowledge base.

Regarding inconsistency management based on a partial order on the formulas of a

knowledge base, in [Roo92] the author defines the concept of a reliability theory, based

on a partial reliability relation among the formulas in a first order logic knowledge base.

In terms of this theory, the set of all most reliable consistent sets of premisses is defined.

The set of theorems that can be proved from the theory is the set of propositions that

are logically entailed by every most reliable consistent set. The work defines a special

purpose logic based on first order calculus, and a deduction process to obtain the set of

premises that can be believed to be true. The deduction process is based on the computa-

tion of justifications (premisses used in the derivation of contradictions) for believing or

removing formulas, and it iteratively constructs and refines these justifications.

Priority-based management of inconsistent knowledge bases has been addressed

in [BCD+93] (see also [CLS95]). Specifically, propositional knowledge bases are con-

sidered and a knowledge base is supposed to be organized into strata, where each stratum

has higher priority than the one directly below. Priorities in the knowledge base are used

to select preferred consistent subbases. Inferences are made from the preferred subbases

of the knowledge base, that is the knowledge base entails a formula ψ iff ψ can be clas-

12

sically inferred from every preferred subbase. In Section 4.6 we show how all of these

works can be expressed in our general framework for inconsistency management, defined

in Chapter 4.

The second approach to inconsistency accepts it and copes with it, prohibiting the

logic from deriving trivial inferences; this includes multi-valued, paraconsistent, and de-

fault logics. The four valued logic in [Bel77] was used for handling inconsistency in logic

programming [BS89] and was extended to the case of lattices [KS89, KS92] and bilat-

tices [Fit91]. Subsequently, [Rei80a] introduced default logic — a database DB with

integrity constraints IC could easily be written as a default logic theory ∆ = (D,W)

where D = { :f
f
| f ∈ DB} and W = IC — the “extensions” of the default theory

∆ correspond exactly to maximal consistent subsets of DB that are consistent with IC.

Later, [BKM91, BKMS91] applied these ideas, together with algorithms, to integrate

multiple knowledge bases. Kifer and Lozinskii [KL92] extended annotated logics of in-

consistency developed by Blair and Subrahmanian [BS89] to handle a full first order case,

while [TK93] developed similar extensions to handle inheritance networks.

Finally, argumentation methods [SL92, PS97, AP07, BH05, AC02] have been used

for handling uncertainty and inconsistency by means of reasoning about how certain con-

tradictory arguments defeat each other. Argumentation frameworks range from abstract

argumentation to frameworks rooted in different types of logics. In abstract argumenta-

tion frameworks, proposed by Dung in [Dun95], arguments consist of just naming argu-

ments along with an attack relation representing the fact that an argument is challenged

by another, where no indication of the nature of that challenge is described in the re-

lation. Approaches to logical argumentation include argumentation frameworks based

on classical first-order argumentation [BH05], default logics [BDKT97], and defeasible

logics [GS04, PS97], among others.

13

The area of belief change in artificial intelligence is closely related to the manage-

ment of inconsistent information. Belief change aims to adequately model changes in

knowledge in belief systems, i.e., modeling the dynamics of the knowledge that consti-

tutes the set of beliefs of an agent when new information is presented. There are different

kinds of belief changes (belief change operations): revision, contraction, and consolida-

tion.

It seems reasonable to think that inconsistency management techniques are mate-

rializations of certain variations of belief change methods. However, the seminal works

on belief change [AGM85] are done under the assumption that the knowledge base to be

contracted or revised is a belief set, i.e., a set of sentences that is deductively closed. In the

setting of a relational database, considering the logical closure of the first-order encoding

of a database instance as the belief set to be revised or consolidated is not really prac-

tical since we would be considering as part of the knowledge base elements that do not

really have independent standing in the relational instance. For instance, for every record

of the form salary(John, 80K), the sentence salary(John, 80K) ∨ φ, where φ is any

other sentence that can be formed from the language, will hold. The latter sentence is a

mere logical consequence that should have no standing of its own, especially in relational

databases where we only desire to reason about the literals explicitly present as records

in the database. Knowledge bases in this setting are therefore belief bases, i.e., sets of

sentences that are not closed under logical consequence.

The AGM model proposed in [AGM85] presents a set of postulates for contraction

and revision operations. In [Gar78], the basic set of postulates for contraction and revision

operations were first presented; later, in [AGM85] , the set of postulates were extended

and partial meet contraction over belief sets was presented together with a representation

theorem that shows that partial meet contraction exactly characterizes the set of con-

14

traction operators that satisfy the rationality postulates from [Gar78]. Unfortunately, not

all rationality postulates and belief change operators that satisfy the postulates from the

AGM model [AGM85, Gar88b], and its derivations, are applicable to belief bases. Al-

ternatively, Hansson [Han94, Han97] defines a different set of rationality postulates, and

corresponding partial meet revision and contraction operators, to deal exclusively with

belief bases. In Section 3.5, we discuss the relationship between belief revision in belief

bases and IMPs, by studying the rationality postulates from [Han97] if we consider an

IMP as a belief revision operator. Partial meet contraction and revision as defined above

is actually applicable for both belief sets and belief bases. However, it is important to note

that K⊥α is the set of maximal subsets of K that do not imply α, and it is not enough

that they do not contain α. Consider as an example the belief base K = {p ∨ q, p ↔ q},

in this case K⊥p = {{p ∨ q}, {p ↔ q}}. Repairing a relational database by keeping the

intersection of all maximal consistent subsets w.r.t. a set of integrity constraints can be

shown to be a special case of partial meet revision (i.e., full meet revision).

Finally, there are also several important works [Loz94, HK05, GH06, MPS+07] on

measuring the amount of inconsistency in a database or knowledge base that can be used

in combination with any of the inconsistency management techniques described above.

2.1.1 Database Repairing and Consistent Query Answering

In databases, the integrity constraints (ICs) capture the semantics of data with re-

spect to the external reality that the database is expected to model. Therefore, an incon-

sistent database instance, together with the integrity constraints, may be represented as an

inconsistent set of formulas, where integrity constraints are closed first-order formulas.

Examples of the most common types of ICs treated in the literature are: (1) Universal

integrity constraints: allow the expression of constraints such as “the salary of every em-

15

ployee must be greater than or equal to zero”; (2) Denial constraints: allow the expression

of constraints such as “it is not possible for an employee to be married and single at the

same time”; (3) Functional Dependencies: allow expressions like “if two books have the

same ISBN then their titles must be the same”; and (4) Inclusion dependencies: allow ex-

pressions like “if a person is registered as a graduate student in the GradStudents relation,

then there must exist a record for that same person in the Students relation”.

A database instance I is said to be consistent w.r.t. a set of integrity constraints if it

satisfies the given set IC (in the standard model-theoretic sense), and inconsistent other-

wise. Methods to clean data and/or provide consistent query answers in the presence of

inconsistent data have been widely studied in the last decades [FUV83, FKUV86, JDR99,

SS03, Cho07, BFFR05]. [FUV83, FKUV86] introduced the use of maximal consistent

subsets (called “flocks”) to accommodate updates to a database that violate integrity con-

straints.

The field of database repairing and consistent query answering (CQA for short) has

gained much attention since the work of Arenas et al. [ABC99], which provided a model-

theoretic construct of a database repair: a repair of an inconsistent database is a model of

the set of ICs that is minimal, i.e., “as close as possible” to the original database. Clearly,

repairs may not be unique, and in the general case there can be a very large number of

them. The most widely accepted semantics for querying a possible inconsistent database

is that of consistent answers. A consistent answer for a query over a possibly inconsistent

database is comprised of the set of tuples that appear in the answer to the query over every

possible repair. CQA enforces consistency at query time as an alternative to enforcing it

at the instance level as conventional data cleaning techniques do. This allows us to focus

on a smaller portion of the database for which repairs can be computed more easily.

16

Furthermore, techniques have been developed so it is not necessary to materialize every

possible repair.

The work of [Cho07] addresses the basic concepts and results of the area of con-

sistent query answering. They consider universal and binary integrity constraints, de-

nial constraints, functional dependencies, and referential integrity constraints (e.g., for-

eign key constraints). [BFFR05] presents a cost-based framework that allows finding

“good” repairs for databases that exhibit inconsistencies in the form of violations to ei-

ther functional or inclusion dependencies. They propose heuristic approaches to con-

structing repairs based on equivalence classes of attribute values; the algorithms pre-

sented are based on greedy selection of least repair cost, and a number of performance

optimizations are also explored. The technique based on query rewriting introduced

in [ABC99] for quantifier-free conjunctive queries and binary universal constraints was

extended in [FM05, FFM05] to work for a subclass of conjunctive queries in the pres-

ence of key constraints. The complexity of the consistent query answer problem was

investigated in [CLR03] in the presence of both functional and inclusion dependencies,

and further studied in [CM05] in the presence of denial constraints and inclusion de-

pendencies. The notion of consistent answer was extended to the case of aggregate

queries in [ABC+03b], where the evaluation of consistent answers of aggregate queries

was investigated in the presence of functional dependencies. The logic-based frameworks

in [ABC03a, GGZ03, BB03] assume that tuple insertions and deletions are the basic prim-

itives for repairing inconsistent data. Repairs also consisting of value-update operations

were considered in [FLPL+01, BBFL05, Wij03, Wij05, BFFR05, FFP05, FFP07]. In

particular, [Wij03, Wij05, FFP05] investigated the complexity of the consistent query an-

swering problem when the basic primitive for repairing data is the attribute-value update,

17

whereas [FLPL+01, BBFL05, BFFR05, FFP07] focused on the problem of computing

repairs rather than computing consistent answers.

In CQA, an answer to a given query posed to an inconsistent database is said to

be consistent if the same answer is obtained from every possible repair of the database.

Clearly, this is a very cautious approach, and it can yield a great loss of information.

Even though several works investigated the problem of repairing and querying inconsis-

tent data considering different classes of queries and constraints, only recently there have

been two proposals which shifted attention towards improving the quality of consistent

answers [CGZ09, SCM09]. These approaches developed more specific repairing strate-

gies that reduce the number of possible repairs to be considered and improve their quality

according to some criteria specified by the database administrator on the basis of users’

preferences. We study these two approaches more in depth in Section 3.6 in comparison

with IMPs, our approach to inconsistency management in relational databases developed

in Section 3.5.

Almost all past approaches described above proceeded under the assumption that

there was some “epistemically correct” way of resolving inconsistencies or reasoning

in the presence of inconsistency. More recently, [SA07] argued that inconsistency can

often be resolved in different ways based on what the user wants, and they provided a

mechanism to reason about maximal consistent subsets using objective functions that the

user gets to choose.

With the exception of [SA07], to the best of our knowledge all past work on in-

consistency management in databases assumes that the database designer knows more

than the user about how to handle inconsistency, and hence, inconsistencies are resolved

within the database infrastructure. Unfortunately, this is not wise. A database designer

for Oracle is not likely to know how, for example, an astronomy database was collected,

18

what assumptions were made when collecting it, and how inconsistencies should be han-

dled in the context of such knowledge. In the same vein, a database developer for other

major DB vendors may not understand how some epidemiological data in a government’s

Health Ministry was collected, and what the ramifications and risks are to a policy-maker

using that data to make decisions. The policy-maker may wish to make decisions on the

basis of some inconsistent data taking into account not only information about how the

data was collected, which sources were reliable, and so forth, but also about his own risk

if he makes the wrong decision. A database designer who has embedded some form of

inconsistency management within the DB infrastructure will not know this a priori. This

is the main difference between the approaches described in this section and our propos-

als of IMPs, in Chapter 3, and the general framework for inconsistency management in

Chapter 4.

2.2 Partial Information

Incomplete information can appear in knowledge bases for very different reasons.

For instance, people filling out forms or surveys often leave fields incomplete, in many

cases due to security or privacy issues. Data integration techniques are also other sources

of incomplete information, especially when performed automatically. For instance, when

merging knowledge bases with disparate schemas into a global schema, the consolidated

knowledge base often contains null values for attributes that were not present in ev-

ery source schema. The problem of representing incomplete information in relational

databases has been extensively studied since the introduction of the relational data model

[Cod74, Bis79, Cod79, Gra77, IJ81, IL84b, AM86, LL99, Lie82, Jr.79, Zan84]. Incom-

19

plete information makes the process of reasoning much harder since, if not treated care-

fully, results can present incorrect or biased information.

It was recognized early on that there are different types of null values, each of

which reflects different intuitions about why a particular piece of information is missing.

Different types of null values have been proposed in the literature. [CGS97a] presents the

following list of types of null values:

• Existential Null. The value for an attribute A exists but it is not known. The actual

value for an existential null could be any value within the domain of A.

• Maybe Null. The value for an attribute A may exist but it is not known at the

moment of the record’s creation or may not exist at all, and it is not known which

is actually the case.

• Place holder Null. An attribute might not be applicable for a certain record.

• Partial Nulls. There exists a value for an attribute but it might be one out of a set of

possible values. The set of possible values is a subset of the attribute’s domain.

• Partial Maybe Nulls. An attribute may or may not be applicable for a particular

record, but if it is applicable then there exists a value and it must fall within a

specified set.

There is a clear trade-off between the expressivity of the model for incomplete

information and the difficulty of answering queries. Allowing more than one kind of null

value makes reasoning over the data even more complex, especially when several relations

are put together, since there might be inconsistency at the null value level. For instance,

in one relation the value for attribute Phone for an employee appears as an existential

null whereas in another database the record for the same employee contains a null value

20

for Phone but as a place holder. [CGS97a] presents a unified framework to deal with

different kinds of null values.

No-information nulls were introduced in [Zan84] to deal with the case where it

is not known whether a missing value exists or not. They have also been considered

in [Lie82] and [AM86, HL10], where integrity constraints in the presence of no-information

nulls are studied.

A greater amount of work has been devoted to the study of databases containing

only unknown nulls. In this context, different problems have been addressed, such as

query answering [AKG91, Gra91, IL84a, Rei86, YC88], the characterization of consis-

tency in the presence of integrity constraints [Gra91, IL83, LL98, LL99, Vas80] and up-

dating the database [AG85, Gra91]. As stated in [IL84a], a condition for correctness is

that if a null value has a specified semantic interpretation, that is, if we assume that a

specified relation exists between a table with nulls and the real world, then this relation

should be similar for the tables that are arguments of a relational operator and for the

relation obtained as the result (this is the requirement for a strong representation system).

Codd’s approach [Cod74] is based on a three-valued logic with truth values True,

False, and Unknown. Under this approach, a condition over a relation containing null val-

ues can evaluate to Unknown depending on the logical operators. For instance, Unknown∨

Unknown evaluates to Unknown. Codd’s semantics has been criticized on semantic

grounds by Grant [Gra77] and Lipski [Lip79]. Other works such as [Lip79, Lip81, Vas79]

propose different semantics for other subsets of the relational operators. Through the def-

inition of a representation system, [IL84a] formally presents the conditions that must be

satisfied in any semantically meaningful extension of the relational algebra to handle in-

complete information.

21

More expressive data models where the values that (labeled) unknown nulls can

take can be constrained have been considered in [AKG91, Gra91, IL84b]. Codd tables,

V-tables, and C-tables are analyzed in these works as possible representation systems. In

Codd tables, null values are represented by a special symbol, and the semantics for that

symbol is that it is an unknown value. Codd tables are a strong representation system

for projection and selection. V-tables allows many different (“marked”) null values, or

variables. The meaning of a null value X is that the value is unknown but it is the same

value every time X appears. For this representation system, [IL84a] shows that V-tables

are a strong representation system for projection, positive selection, union, join, and re-

naming of attributes; therefore, arbitrary conjunctive queries can be processed correctly.

Finally, C-tables (or conditional tables) are V-tables with an additional column, condition,

containing a condition for the variables that represent null values. C-tables are a strong

representation system for projection, selection, union, join, and renaming.

The most common adopted semantics for this kind of databases is given in terms

of completions, or possible worlds (we will provide the formal definition in Chapter 6).

Two largely accepted semantics of query answering are: (i) certain answers – a tuple is

a certain answer to a query Q if it is an answer to Q in every completion; (ii) possible

answers – a tuple is a possible answer to a query Q if it is an answer to Q in some

completion.

The main difference between the aforementioned approaches and the treatment of

partial information that we propose in Chapter 6, is that in the former no attempt at re-

solving incompleteness is made. On the contrary, in Chapter 6, we argue that data stored

in the database and the knowledge the user has of it can be profitably exploited to add

valuable new information to the database.

22

Outside the database theory community, the fields of data mining, data warehous-

ing, and data management have addressed the problem of data quality in the presence

of incomplete information mainly providing approaches based on cleaning techniques.

In general, simple estimates for numeric and categorical data are used [MST94, Pyl99,

Qui93]. A more complex approach in classification analysis was proposed in [BFOS84].

For numeric data analysis, methods based on regression techniques were also devel-

oped [FLMC02, Pyl99]. Probabilistic methods include probabilistic weighting methods

such as the one proposed in [Qui93] and Bayesian methods. In the last category, [CS86]

proposes a Bayesian procedure for estimating and replacing missing data based on some

prior knowledge about the distribution of the data; [CA03] estimates and replaces null val-

ues for categorical attributes using the uniform prior distribution and a Dirichlet posterior

distribution. Recently, in [Li09] the posterior probabilities of a missing value belonging

to a certain category are estimated using the simple Bayesian method and are used to

compute a replacement value.

The main difference between the works above and our approach is that the former

are ad-hoc statistical approaches tailored for particular domains and applications; in con-

trast, we develop a more general formal framework that allows users to specify a wide

set of strategies, and in particular those that he believes are adequate for the specific data

and application at hand. Furthermore, all of these works are designed, in general, to

be applied as “cleaning tools” to a database and they do not study the interaction of the

methods with relational algebra operators as we do in this work. Another difference is

that we adopt a richer data model which allows us to express different kinds of partial

information, whereas all the approaches mentioned above deal with unknown nulls only.

Our work also addresses the problem of supporting the efficient application of incom-

23

pleteness resolution methods, by providing index structures that allow us to manage large

databases, which is an issue addressed in none of the works above.

Finally, we mention that our work in Chapter 6 is also related to hypothetical rea-

soning [Res64], where one considers what follows from an assumption. Usually the as-

sumption is inconsistent with known information, requiring changes to the latter trying to

make it consistent with the assumption. In our case we may consider filling in a value as

a hypothesis.

Finally, many works in AI have tackled the issue of dealing with incompleteness.

These include logic program completions [Cla77], closed world assumption [Rei78],

auto-epistemic logic [Moo85], default logic [Rei80b], alternating-time temporal logic

with imperfect information [JD05, JD06], to mention a few. In these works, partial infor-

mation is defined in a different way, in a kind of uncertain information that does not deal

with null values.

2.3 Entity Resolution and Deduplication

The problem of event equivalence identification addressed in Chapter 5 is closely

related to a class of problems called entity resolution in machine learning [BG07]. Given

a set of (potentially different types of) entities, entity resolution asks for a partition of

this set such that entities are grouped together iff they are equivalent. In our problem,

the entities of primary interest are events, but we also reason about the equivalence of ac-

tors, locations, and objects, which are entities of secondary interest. Traditional machine

learning approaches to entity resolution focus on pairwise entity equivalence determi-

nation using established techniques such as Bayesian networks [Hec98], support vector

machines [CS00], or logistic regression [NJ02]. Hence, for each pair of entities a clas-

24

sifier is used to determine equivalence. In a post processing step, inconsistencies due to

violations of transitivity are resolved.

Recent work has considered joint entity resolution in the case when entities are re-

lated [GD05]. Such approaches are termed relational, because they determine all event

equivalences at once and take relationships between entities into account instead of mak-

ing a series of independent decisions. Some proposals for relational entity resolution de-

fine a joint probability distribution over the space of entity equivalences and approximate

the most likely configuration using sampling techniques, such as Gibbs sampling [SNB+08],

or message passing algorithms, such as loopy belief propagation [MWJ99]. While these

approaches are based on a probabilistic model, they provide no convergence guarantee

and allow little theoretical analysis. Other relational approaches are purely procedural in

that they apply non-relational classifiers in an iterative fashion until some convergence

criterion is met. While iterative methods are fast in practice, they are not amenable to

theoretical analysis or convergence guarantees. All these approaches are feature driven

and do not have a formal semantics.

Recently, [BGMM+09] proposed a generic approach to entity resolution (ER). In

this work the authors formalize the generic ER problem, treating the functions for com-

paring and merging records as black-boxes. They identify four important properties that,

if satisfied by the match and merge functions, enable much more efficient ER algorithms:

idempotence, commutativity, associativity, and representativity (a record obtained from

merging two records represents the original records, in the sense that any other record that

would have matched the first two will also match it). Three efficient ER algorithms are

developed: G-Swoosh for the case where the four properties do not hold, and R-Swoosh

and F-Swoosh that exploit the 4 properties. F-Swoosh in addition assumes knowledge of

the “features” (e.g., attributes) used by the match function. R-Swoosh (and F-Swoosh)

25

can be used also when the four match and merge properties do not hold, if an approximate

result is acceptable.

2.4 Schema Mappings and Data Exchange

Data exchange is the problem of taking data structured under a source schema and

translating into an instance of a target schema that reflects the source data as accurately

as possible. Data exchange is an old and recurrent problem in databases. The work

of [FKMP05] reviews the principal components and solutions to the problem, focusing

on query answering. In data exchange, it is assumed that there is a set of constraints

that define the relationship between the source schema and the target schema. These

constraints, called source-to-target dependencies, establish how and what source data

should appear in the target. The data exchange problem can then be specified as: giving

an instance I over a source schema S, materialize an instance J over schema target T such

that J satisfies the set of source-to-target dependencies between S and T . The problem

of query answering in a data exchange setting has been also studied in the last decade.

[FKP05, GN06] focus on complexity results for computing (universal) certain answers,

in the presence of tuple generating and equality generating dependencies, apart from a

set of source-to-target dependencies.

A related problem is that of data integration, where the goal is to query hetero-

geneous data in different sources via a virtual global schema. There has been intense

work during the last few years on schema matching in order to answer queries over multi-

ple databases [LC00, MKIS00, MHH+01, DNH04, HMYW05, ESS05, Gal07, BMP+08,

CSD+08, BV08]. The works mentioned above assume that it is possible to exactly map

the translation. However, the work of [DHY07] argues that this is not necessarily always

26

the case and that therefore uncertainty on how to map the source schema to the target

schema may arise. For instance, methods to automatically match schemas are uncertain

— when an algorithm for schema matching is executed, it might determine that there are

many possible mappings between one schema and another, and that a probability distri-

bution over this set of mappings specifies the probability that a specific mapping is the

correct one [DHY07, Gal06]. For example, in a residential or commercial real estate web

site that aggregates information from multiple realtors across the country, there is a need

to find mappings between disparate schemas. In such a case, there may be many different

ways of mapping one schema to another and a probability distribution might tell us the

probability that a given mapping is correct. Alternatively, a web search engine doing a

product search over the databases of multiple vendors needs to find mappings between

the product database of one vendor and the product database of another vendor. Multiple

ways of representing the data might lead to multiple possible schema mappings, together

with a probability distribution over the set of mappings.

Work to date [DHY07, DSDH08] on probabilistic schema mapping has studied

two semantics for answering queries over multiple databases using probabilistic schema

matches — a “by-table” semantics and a “by-tuple” semantics. In the “by-table” seman-

tics a single mapping should be applied to the entire set of tuples in the source relation.

Each query is answered separately and the answers are assigned a probability according to

the mappings that produced it. However, in the “by-tuple” semantics a choice of mapping

must be made for each tuple. So it is necessary to consider all possible ways of assign-

ing a mapping to a tuple, and answer the query for each one of them. Clearly, by-tuple

semantics is more complex and in the general case difficult to compute.

When aggregate queries are considered, then in addition to whether a by-table or

by-tuple semantics should be used, we need to consider the semantics of the aggregates

27

themselves in the presence of uncertainty. Some work has been done on aggregates over

uncertain data [RSG05, JKV07], yet none at all w.r.t. aggregate computations under prob-

abilistic schema mapping. In Chapter 7 we study answering aggregate queries in this

setting.

28

Chapter 3

Inconsistency Management Policies

The work described in this chapter appears in [MPP+08, MPP+10].

3.1 Introduction and Motivating Example

Almost all past approaches to inconsistency proceeded under the assumption that

there was some “epistemically correct” way of resolving inconsistencies or reasoning

in the presence of inconsistency. More recently, [SA07] argued that inconsistency can

often be resolved in different ways based on what the user wants, and they provided a

mechanism to reason about maximal consistent subsets (also called “repairs” by others

such as [ABC99]) using objective functions that the user gets to choose.

With the exception of [GH92, GH93], and [SA07], all past work on inconsistency

management in databases assumes that the database designer knows more than the user

about how to handle inconsistency, and hence, inconsistencies are resolved within the

database infrastructure. Unfortunately, this is not wise. A database designer for Ora-

cle is not likely to know how, for example, an astronomy database was collected, what

assumptions were made when collecting it, and how inconsistencies should be handled

in the context of such knowledge. In the same vein, a database developer for other ma-

29

jor DB vendors may not understand how some epidemiological data in a government’s

Health Ministry was collected, and what the ramifications and risks are to a policy maker

using that data to make decisions. The policy-maker may wish to make decisions on the

basis of some inconsistent data taking into account not only information about how the

data was collected, which sources were reliable, and so forth, but also about his own risk

if he makes the wrong decision. A database designer who has embedded some form of

inconsistency management within the DB infrastructure will not know this a priori.

The work in this chapter aims to support the two types of users mentioned above.

The main goal of this work is developing the theory and implementation support required

in databases so that end users can bring both their application specific knowledge as well

as their own personal risk to bear when resolving inconsistencies. To reiterate why this

is important, let us consider the following example.

Example 1. TheEmp relation below represents data about employees, their salaries and

tax brackets; each tuple ti in the relation is provided by a source sj (which is annotated

on the same row).

Name Salary Tax_bracket Source

t1 John 70K 15 s1

t2 John 80K 20 s2

t3 John 70K 25 s3

t4 Mary 90K 30 s1

Let us assume that salaries are uniquely determined by names. In this case, a user

may want to resolve the inconsistency about John’s salary in many different ways.

C1 If he were considering John for a loan, he might want to choose the lowest possible

salary of John to base his loan on. Here, the user’s decision is based on the risk he

would take if he gave John a loan amount based on a higher income.

30

C2 If he were assessing the amount of taxes John has to pay, he may choose the highest

possible salary John may have — in this case, the end user is basing his decision on

his own reward (assuming his salary is somehow based on the amount of additional

taxes he can collect).

C3 If he were just trying to estimate John’s salary, he may choose some number between

70K and 80K (e.g., the average of the three reports of John’s salary) as the number.

C4 If he has different degrees of confidence in the sources that provided these salaries,

he might choose a weighted mean of these salaries.

C5 He might choose not to resolve the inconsistency at all, but to just let it persist until

he can clear it up – there may be no need to deal with John’s salary with respect to

his current task.

C6 He might simply consider all the data about John unreliable and might want to ignore

it until it can be cleared up – this is the philosophy of throwing away all contami-

nated data.

Each of cases C1 through C6 reflects a policy that the user is using to resolve in-

consistencies. We are not aware of a single piece of past work that can handle all six

reasonable possibilities mentioned above. [BKM91, SA07, ABC99, BFFR05, CLR03,

BC03, Cho07] can handle cases C1 and C2, but not the other cases. Much as a carpenter

has tools like hammers and saws, we propose to put data cleaning policies in the hands of

users so that they can use them as tools, when appropriate, for reasoning about the data.

It is important to enable users to bring their application specific knowledge to bear when

resolving inconsistencies. Section 2.1 describes work in AI and databases that relate to

the work developed in this chapter.

31

The contributions of this chapter are as follows: in Section 3.3 we first define the

concept of a policy for managing inconsistency. Our notion of an inconsistency man-

agement policy generalizes [BKM91, BKMS91, ABC99] by allowing policies that either

remove inconsistency completely or allow part or all of the inconsistency to persist. Our

notion of a policy accounts for all six cases above, and many more. We start with policies

applicable to a single functional dependency (FD for short), one of the most common

kinds of integrity constraints used in databases, then we discuss policies to manage mul-

tiple FDs. In Sections 3.5 and 3.6 we give a detailed overview and results of how our

framework relates to postulates for the revision of belief bases [Han97] and to recent

research in the area of consistent query answering [CGZ09, SCM09]. In Section 3.7

we show that our policies can be embedded as operators within the relational algebra in

two different ways – one where the policy is applied first (before other relational opera-

tors) and another where it is applied last. We study the interaction of these policy usage

methods together with the standard relational operators and provide several interesting re-

sults. In Section 3.8 we present several approaches to efficiently implement an IMP-based

framework. Finally, Section 3.9 outlines conclusions.

3.2 Syntax and Notation

We assume the existence of relational schemas of the form S(A1, . . . , An) [Ull88]

where the Ai’s are attributes. Each attribute Ai has an associated domain, dom(Ai). A

tuple over S is a member of dom(A1)× · · · × dom(An), and a set of such tuples is called

a relation. We use t[Ai] to denote the value of the Ai attribute of tuple t. We use Attr(S)

to denote the set of all attributes in S.

32

Given the relational schema S(A1, . . . , An), a functional dependency (FD) fd over

S is an expression of the form A′1, . . . , A
′
k → A′k+1, . . . , A

′
m, where {A′1, . . . , A′m} ⊆

Attr(S). A relation R over the schema S satisfies the above FD iff ∀ t1, t2 ∈ R, t1[A′1] =

t2[A′1] ∧ . . . ∧ t1[A′k] = t2[A′k] ⇒ t1[A′k+1] = t2[A′k+1] ∧ . . . ∧ t1[A′m] = t2[A′m]. With-

out loss of generality, we assume that every functional dependency fd has exactly one

attribute on the right-hand side (i.e., k + 1 = m) and denote this attribute as RHS(fd).

Moreover, with a little abuse of notation, we write that fd is defined over R.

Definition 1. Let R be a relation and F a set of functional dependencies. A culprit is a

set c ⊆ R not satisfying F such that ∀ c′ ⊂ c, c′ satisfies F .

For instance, the culprits in the example of the Introduction are {t1, t2} and {t2, t3}.

We use culprits(R,F) to denote the set of culprits in R w.r.t. F .

Definition 2. Let R be a relation and F a set of functional dependencies. Given two

culprits c, c′ ∈ culprits(R,F), we say that c and c′ overlap, denoted c 4 c′, iff c∩c′ 6= ∅.

Definition 3. Let 4∗ be the reflexive transitive closure of relation 4. A cluster is a set

cl =
⋃
c∈e c where e is an equivalence class of4∗.

In the example of the Introduction, the only cluster is {t1, t2, t3}. We will denote

the set of all clusters in R w.r.t. F as clusters(R,F).

3.3 Inconsistency Management Policies

In this section, we introduce the concept of policy for managing inconsistency in

databases violating a given set of functional dependencies. Basically, applying an incon-

sistency management policy on a relation results in a new relation with the intention of

obtaining a lower degree of inconsistency.

33

Definition 4. An inconsistency management policy (IMP for short) for a relationR w.r.t. a

setF of functional dependencies overR is a function γF fromR to a relationR′ = γF(R)

that satisfies the following axioms:

Axiom A1 If t ∈ R −
⋃
c∈culprits(R,F) c, then t ∈ R′. This axiom says that tuples that do

not belong to any culprit cannot be eliminated or changed.

Axiom A2 If t′ ∈ R′ − R, then there exists a cluster cl and a tuple t ∈ cl such that for

each attribute A not appearing in any fd ∈ F , t.A = t′.A. This axiom says that

every tuple in R′ must somehow be linked to a tuple in R.

Axiom A3 ∀fd ∈ F , |culprits(R, {fd})| ≥ |culprits(R′, {fd})|. This axiom says that

the IMP cannot increase the number of culprits.

Axiom A4 |R| ≥ |R′|. This axiom says that the IMP cannot increase the cardinality of

the relation.

γF is a singular IMP iff F is a singleton. When F = {fd} we write γfd instead of

γ{fd}.

It is important to note that Axioms A1 through A4 above are not meant to be ex-

haustive. They represent a minimal set of conditions that we believe any inconsistency

management policy should satisfy. Specific policies may satisfy additional properties.

3.3.1 Singular IMPs

In this section, we define three important families of singular IMPs (tuple-based,

value-based, and interval-based), which satisfy Axioms A1 through A4 and cover many

possible real world scenarios. Clearly, Definition 4 allows to specify many other kinds of

IMPs, based on the user’s needs.

34

Definition 5 (tuple-based family of policies). An IMP τfd for a relation R w.r.t. a func-

tional dependency fd is said to be a tuple-based policy if each cluster cl ∈ clusters(R, {fd})

is replaced by cl′ ⊆ cl in τfd(R).

Tuple-based IMPs generalize the well known notion of maximal consistent sub-

sets [BKM91] and repairs [ABC99] by allowing a cluster to be replaced by any subset

of the same cluster. Notice that tuple-based IMPs allow inconsistency to persist – a user

may choose to retain all inconsistency (case C5) or retain part of the inconsistency. For

instance, if the user believes only sources s1, s2 in Example 1, he might choose to replace

the cluster {t1, t2, t3} by the cluster {t1, t2} as shown below.

Name Salary Tax_bracket

t1 John 70K 15

t2 John 80K 20

t4 Mary 90K 30

[BKM91, ABC99] do not allow this possibility. Observe that this kind of policy can cause

some information to be lost as a side effect. In our example, although the Tax bracket 25

is not involved in any FD, it is lost when the policy is applied. We now introduce two

kinds of policies that avoid this problem. The first kind of policy is based on the notion

of cluster simplification.

Definition 6. Given a cluster cl ∈ clusters(R, {fd}), cl′ is a cluster simplification of cl

iff ∀ t1, t2 ∈ cl such that t1[RHS(fd)] = t2[RHS(fd)], either t1, t2 ∈ cl′ or there exist

t′1, t
′
2 ∈ cl′ obtained from tuples t1, t2 by replacing t1[RHS(fd)] and t2[RHS(fd)] with

t3[RHS(fd)] where t3 ∈ cl.

A simplification allows replacement of values in tuples in the same cluster (in the attribute

associated with the right-hand side of an FD).

35

Example 2. A cluster simplification of the cluster cl = {t1, t2, t3} of Example 1 may be

the cluster cl′ = {t′1, t2, t′3} where t′1 and t′3 are obtained from t1 and t3 by replacing

t′1[Salary] = t′3[Salary] = 70K with the value t2[Salary] = 80K.

This leads to the following kind of IMP.

Definition 7 (value-based family of policies). An IMP νfd for a relation R w.r.t. a func-

tional dependency fd is said to be a value-based policy if each cluster cl ∈ clusters(R, {fd})

is replaced by a cluster simplification of cl in νfd(R).

Thus, a value-based IMP either leaves a cluster unchanged or reduces the number of

distinct values for the attribute in the right-hand side of the functional dependency. A user

may, for example, decide to use his knowledge that s1 reflects more recent information

than s2 to reset the s2 information to that provided by s1. In this case, the relation returned

by the value-based policy is:

Name Salary Tax_bracket

t1 John 70K 15

t2 John 70K 20

t3 John 70K 25

t4 Mary 90K 30

We now show that value-based policies satisfy Axiom A3, by deriving the number of

culprits in a cluster.

Theorem 1. Let R be a relation over the relational schema S(A1, . . . , An) and fd :

A′1, . . . , A
′
k → A′k+1 with {A′1, . . . , A′k+1} ⊆ Attr(S) a FD over S. For each cl ∈

clusters(R, {fd}), assume that the values t[A′k+1] of tuples t ∈ cl are the union of single-

value multi-sets V1, V2, . . . , V` (where every multi-set Vi contains the single value vi with

cardinality Ci). Then:

1. |culprits(cl, {fd})| =
∑

i<j CiCj;

36

2. |culprits(cl′, {fd})| ≤ |culprits(cl, {fd})|, where cl′ is a cluster simplification of cl.

Proof. The results follow from the fact that a cluster can be viewed as a complete `-

partite graph having vertices corresponding to values in V1, V2, . . . , V` where each edge

represents a culprit. The number of edges in this complete `-partite graph is the number

of possible edges in the complete graph decreased by the sum of edges that could be in

every multi-set Vi:

|culprits(cl, {fd})| = (
∑

iCi)((
∑

iCi)− 1)

2
−
∑
i

Ci(Ci − 1)

2

=
(C1 + C2 + · · ·+ Ck)(C1 + C2 + · · ·+ Ck − 1)

2
−
∑
i

C2
i − Ci

2

=

∑
iC

2
i +

∑
i 6=j CiCj −

∑
iCi

2
−
∑

iCi
2

2
+

∑
iCi
2

=

∑
i 6=j CiCj

2
=
∑
i<j

CiCj

As (
∑

iCi)
2 =

∑
iCi

2 +
∑

i<j 2CiCj we obtain

|culprits(cl, {fd})| =
∑
i<j

CiCj =
(
∑

iCi)
2 −

∑
iCi

2

2
.

With reference to Definition 6, it is easy to see that (i) the sum of cardinality Ci of the

multisets Vi does not change after a cluster simplification, that is,
∑

iCi does not change,

and therefore, (
∑

iCi)
2 is constant; (ii) every time there is a substitution of values va on

RHS(fd) of a group of tuples with values vb on RHS(fd) of another group of tuples, the

two multisets Va, Vb collapse into a single multiset whose cardinality is Ca + Cb. Hence,

after a cluster simplification, it is the case that

|culprits(cl′, {fd})| =
(
∑

iCi)
2 −

∑
i 6=a,i6=bCi

2 − (Ca + Cb)
2

2

37

=
(
∑

iCi)
2 −

∑
i 6=a,i6=bCi

2 − Ca2 − Cb2 − 2CaCb

2
=

(
∑

iCi)
2 −

∑
iCi

2 − 2CaCb
2

.

Therefore, after a cluster simplification which substitutes the values in Va with those in

Vb, the number of culprits decreases by CaCb.

The third family of policies we present are interval-based policies.

Definition 8 (interval-based family of policies). An IMP ξfd for a relation R w.r.t. a func-

tional dependency fd is said to be an interval-based policy if ∀cl ∈ clusters(R, {fd}), cl

is replaced by a set cl′ such that either cl′ = cl or cl′ = cl \ {t1, . . . , tn} ∪ {t′1, . . . , t′n}

where

• @t ∈ cl \ {t1, . . . , tn} such that t[RHS(fd)] = ti[RHS(fd)] for some i ∈ [1, n];

• let v be a value in [mint∈cl(t[RHS(fd)]),maxt∈cl(t[RHS(fd)])]; then, ∀i ∈ [1, n]

the following conditions hold:

– t′i[RHS(fd)] = v;

– ∀A ∈ Attr(R) s.t. A 6= RHS(fd), t′i[A] = ti[A].

Note that according to this definition, the set {t1, . . . , tn} is required to be “maximal” in

the sense that every time a tuple is in this set, the other tuples t ∈ cl having the same value

for [RHS(fd)] must be included too.

The interval-based policy allows any tuple in a cluster to be replaced by a new tuple

having a different value for attribute RHS(fd).1 For example, we may replace the values

of the Salary attribute of the tuples in cluster {t1, t2, t3} in Example 1 by a value equal

to 73.33K (the mean of the three salary values for John). Or, if the reliability of sources

1Another kind of policy could use the interval [mint∈cl(t[RHS(fd)]),maxt∈cl(t[RHS(fd)])] in the new
tuple, as the value for attribute RHS(fd). In order to store, for each attribute, an appropriate interval, this
kind of policy would require an extension of the database schema.

38

s1, s2, s3 are 1, 3, and 2, respectively, we might replace the values of the Salary attribute

with the weighted mean (70K∗1+80K∗3+70K∗2)/6 = 75K. Thus, the interval-based

policy allows cases C3 and C4 in the Introduction to be handled.

We now show that Axiom A3 is satisfied by interval-based policies.

Theorem 2. Let R be a relation, fd a functional dependency over R, and ξfd an interval-

based policy for R w.r.t. fd. Then, for each cl ∈ clusters(R, fd), it is the case that

|culprits(ξfd(cl), {fd})| < |culprits(cl, {fd})|.

Proof. Suppose R is a relation over the relational schema S(A1, . . . , An) and we have

an fd fd : A′1, . . . , A
′
k → A′k+1 with {A′1, . . . , A′k+1} ⊆ Attr(S) an FD over S. For

cl ∈ clusters(R, {fd}), assume that the values t[A′k+1] of tuples t ∈ cl are the union of

single-value multi-sets V1, V2, . . . , V` (where every multi-set Vi contains the single value

vi with cardinality Ci). Before applying the policy, |culprits(cl, {fd})| =
(
∑
i Ci)

2−
∑
i Ci

2

2
.

By Definition 8, after applying an interval-based policy, the subset {t1, . . . , tn} of cl is

such that different multisets Vi1 , . . . , Vip collapse into a single multiset Va with cardinality

Ca = Vi1 + · · ·+ Vip . Hence, |culprits(cl, {fd})| after a cluster simplification is

(
∑

iCi)
2 −

∑
i 6=i1,...,i 6=ip Ci

2 − Ca2

2
=

(
∑

iCi)
2 −

∑
iCi

2 − 2
∑

i,j∈[i1,...,ip],i<j CiCj

2

Thus, the number of culprits decreases by
∑

i,j∈[i1,...,ip],i<j CiCj .

Finally, we (i) ensure that all members of the families of policies we defined satisfy

our proposed axioms; (ii) characterize the relationships among the families; and (iii) en-

sure that all the kinds of IMPs we propose reduce the dirtiness or degree of inconsistency

of a database according to the approaches proposed by several authors [Loz94, GH06,

HK05, GH08] which focus on the logical structure of the inconsistency.

39

Proposition 1. All members of the families of tuple-based, value-based, and interval-

based policies satisfy Axioms A1, A2, A3, and A4.

Observation 1. Given a relation R over a schema S and a functional dependency fd :

A1, . . . , Ak → B over R,

• for each tuple-based policy τfd, there is a value-based policy νfd such that τfd(R) ⊆

νfd(R); moreover, if Attr(S) = {A1, . . . , Ak, B}, then τfd(R) = νfd(R).

• for each value-based policy νfd, there is an interval-based policy ξfd such that

νfd(R) = ξfd(R).

Proposition 2. Consider a relation R, a functional dependency fd over R, and an IMP

γfd that is either a tuple-based, value-based, or interval-based policy. The dirtiness of

γfd(R) is less than or equal to the dirtiness of R for any of the definitions of dirtiness

given in [Loz94, GH06, HK05, GH08].

3.3.2 Multi-Dependency Policies

Suppose each fd ∈ F has a single-dependency policy associated with it (specifying how

to manage the inconsistencies in the relation with respect to that FD). We assume that

the system manager specifies a partial ordering ≤F on the FDs, specifying their relative

importance. Let TOT≤F (F) be the set of all possible total orderings of FDs w.r.t. ≤F :

this can be obtained by topological sorting.

Definition 9. Given a relation R, a set of functional dependencies F , a partial or-

dering ≤F , and an order o = 〈fd1, . . . , fdk〉 ∈ TOT≤F (F), a multi-dependency IMP

(MDIMP for short) for R w.r.t. o and F is a function µoF from a relation R to a rela-

tion γfdk(. . . γfd2(γfd1(R)) . . .), where γfd1 , . . . , γfdk are the singular dependency policies

associated with fd1, . . . , fdk, respectively.

40

Basically, all that a total ordering does is to specify the order in which the conflicts

are resolved. We start by resolving the conflict involving the first FD in the ordering, then

the second, and so forth. However, different total orderings can lead to different results.

Example 3. Consider the Salary Example presented in the Introduction and the set of

FDs {fd1, fd2} where fd1 is Name → Salary and fd2 is Name → Tax bracket. Suppose

the tuple-based policy τfd1 selects the tuple with the highest value of the Salary attribute

(when inconsistency occurs), while τfd2 selects the lowest value of the Tax bracket at-

tribute. Under the total order o = 〈fd1, fd2〉, we get {(John, 80K, 20), (Mary, 90K, 30)}

as the result. Note that after τfd1 is applied, the other policy is not, because there is no fur-

ther inconsistency w.r.t. fd2. Therefore, τfd1 is solely responsible for deciding what tuples

are part of the final answer. Under the total order o = 〈fd2, fd1〉, the result of applying the

multi-dependency policy will be {(John, 70K, 15), (Mary, 90K, 30)}. Here, τfd2 decides

which tuples are in the answer, causing the application of τfd1 to have no effect.

Now consider the set of FDs {fd1, fd3} where fd3 is Salary → Tax bracket, and suppose

the value-based policy νfd1 states that, in case of inconsistency, the highest value for at-

tribute Salary should be preferred, while νfd3 states that the lowest value for attribute

Tax bracket should be preferred. In this case, depending on which order we choose, the

result of applying the multi-dependency policy will be: {(John, 80K, 15), (Mary, 90K, 30)}

(for 〈fd1, fd3〉), and {(John, 80K, 15), (John, 80K, 20), (Mary, 90K, 30)} (for 〈fd3, fd1〉).

It is clear that the order in which violations of FDs get resolved plays an important

role in determining the semantics of our system. One semantics assumes that the user

or the system administrator somehow chooses a fixed total ordering rather than a partial

ordering. This leads to the semantics specified in Definition 9. However, a natural ques-

tion is whether we should say that a tuple is in the answer if it is present in the answer

41

irrespective of which order is chosen. This is what we call the Core semantics below, and

is analogous to cautious reasoning.

Definition 10. Given a relation R, a set of functional dependencies F over R, and a

partial ordering ≤F on F , the result of applying a policy under the core semantics is the

set Core(R,F ,≤F) =
⋂
{µoF(R) | o ∈ TOT≤F (F)}.

Intuitively, the Core semantics looks at all total orderings compatible with the asso-

ciated partial ordering on F . If every such total ordering causes a tuple to be in the result

(according to Definition 9), then the tuple is returned in the answer. Of course, one may

also be interested in the following analogous “Possibility” problem.

Problem 1 (Possibility Problem). Given a relation R, a tuple t ∈ R, a set of functional

dependencies F over R, and a partial ordering ≤F , does there exist a total ordering

o ∈ TOT≤F (F) such that t ∈ µoF(R)?

We now state three complexity results.

Theorem 3. Given a relation R, a set of functional dependencies F , a partial order ≤F

over F , and a tuple t ∈ R:

1. Determining whether t ∈ Core(R,F ,≤F) is coNP-complete.

2. Determining whether there is a total ordering o ∈ TOT≤F (F) such that t ∈ µoF(R)

is NP-complete.

3. If the arity of R is bounded, then the complexity of the problems (1) and (2) above

is in PTIME.

Proof. Proof of Theorem 3

42

Bj → Vj Aj → Vj

Bj + 1 → Vj + 1 Aj + 1 → Vj + 1

B1 → V1 A1 → V1

….. …..

Bk → Vk Ak → Vk

….. …..

C → D

D → E

Figure 3.1: Partial order ≤F for relational schema S.

Statement 2. (Membership) A polynomial size witness for this problem is a total order-

ing o ∈ TOT≤F (F) such that t ∈ µoF(R). As any single FD policy can be computed in

polynomial time, this witness can be verified in polynomial time by applying the policies

one at a time, according to o, and finally checking whether t ∈ µoF(R).

(Hardness) We show a LOGSPACE reduction from 3SAT [Pap94]. An instance of

3SAT is a pair 〈U,Φ〉, where U = {P1, P2, . . . , Pk} is a set of propositional variables and

Φ is a propositional formula of the form C1 ∧ · · · ∧Cn defined over U . Specifically, each

Ci (with 1 ≤ i ≤ n) is a clause containing exactly three (possibly negated) propositional

variables in U .

43

We show how Φ can be encoded by an instance 〈R,F ,≤F , t′〉 of our problem.

Let S be the relational schema S(A1, B1, V1, . . . , Ak, Bk, Vk, C,D,E), where attributes

Aj, Bj, Vj correspond to variable Pj with j ∈ [1..k], and C,D,E are extra attribtues.

The set of functional dependencies F for S is {fdA,j : Aj → Vj, fdB,j : Bj →

Vj | j ∈ [1..k]} ∪ {fdC : C → D, fdD : D → E}. Consider the following tuple-based

total policies associated with the FDs in F : γfdA,j stating choose the highest value of

Vj for each cluster, γfdB,j stating to choose the lowest value of Vj for each cluster (with

j ∈ [1..k]), γfdC stating to delete the whole set of inconsistent tuples in each cluster,

and γfdD stating to delete the whole set of inconsistent tuples in each cluster. The partial

order for F is defined as follows: ∀j ∈ [1..k − 1] and Y ∈ {A,B}, fdY,j < fdY,j+1 and

fdY,k < fdC , and fdC < fdD. The partial order is ilustrated in Figure 3.1; note that for

each variable Pj only the precedence between fdA,j and fdB,j are not specified.

Let R be an instance of S defined as follows. Initially R is empty. Then, for each

Pj ∈ U and for each Ci ∈ Φ,

• if making Pj true makes Ci true we add to R the tuple t such that t[Aj] = t[Bj] =

pj , t[Vj] = 1, t[C] = ci, t[D] = t[E] = 1, and for each X 6∈ Attr(S) \

{Aj, Bj, Vj, C,D,E}, t[X] = k1 where k1 is a new symbol and pj and ci are sym-

bols that represent variable Pj and clause Ci, respectively;

• if making Pj false makes Ci true we add to R the tuple t such that t[Aj] = t[Bj] =

pj , t[Vj] = 0, t[C] = ci, t[D] = t[E] = 1, and for each X ∈ Attr(S) \

{Aj, Bj, Vj, C,D,E}, t[X] = k1.

Moreover, for each Ci ∈ Φ we add to R the tuple t such that t[C] = ci, t[D] = t[E] = 2,

and for eachX ∈ Attr(S)\{C,D,E}, t[X] = k2 where k2 is new symbol. Finally,R also

44

contains the tuple t′ such that t′[D] = 2, t′[E] = 3 and for each X ∈ Attr(S) \ {D,E},

t′[X] = k3 where k3 is new symbol.

We now prove that Φ is satisfiable iff there is a total ordering o ∈ TOT≤F (F) such

that t′ ∈ µoF(R).

(⇒) Assume that Φ is satisfiable, we must show that there exists a total order o ∈

TOT≤F (F) such that t′ ∈ µoF(R).

The total ordering o ∈ TOT≤F (F) is obtained as follows. Let U ′ ⊆ U be the set of

propositional variables made true by a satisfying assignment for Φ. For each Pj ∈ U ′, o

requires that fdA,j < fdB,j; this means that for the tuples t such that t[Aj] = t[Bj] = pj ,

the value t[Vj] = 1 is chosen by γfdA,j , and that γfdB,j will not have any effect on R. For

each Pj ∈ U \ U ′ (the variables that are assigned false by the satisfiable assignment), o

requires that fdB,j < fdA,j; this means that for the tuples t such that t[Aj] = t[Bj] = pj ,

the value t[Vj] = 0 is chosen by γfdB,j , and that γfdA,j will not have any effect on R. This

gives an order between each fdA,j fdB,j , and that is enough to define a total ordering

o according to the partial ordering ≤F , since the ordering for the other FDs is already

defined by ≤F .

Let R1 be the relation resulting from the application of the policies associated to

the FDs fdA,j and fdB,j (with j ∈ [1..k]) according with the above-specified order. At

this point, column C contains values for each of the clauses that are made true by the

assignment, and since this is a satisfiable assignment for Φ, it must be the case that all

clauses in Φ can be made true. Therefore, it has to be the case that πC(R1) = {c1, . . . , cn}.

Moreover, since for eachCi ∈ Φ, the relationR1 also contains a tuple t such that t[C] = ci

and t[D] = 2, there are n clusters w.r.t. fdC (one for each Ci). Order o states that γfdC

musr be applied to R1, and then each of these cluster is deleted (according to the policy

defined by γfdC); let relation R2 be the result of doing that. Therefore, the only tuple

45

which remains in R2 is t′. Finally, the application of the last policy γfdD does not have

any effect (since there are no inconsistent tuples w.r.t. fdD), and t′ belongs to µoF(R).

(⇐) Assume now that there is a total ordering o ∈ TOT≤F (F) such that t′ ∈

µoF(R). According to the partial ordering ≤F , γfdD must be the last policy applied to the

relation. In order for t′ to be part of TOT≤F (F) it has to be the case that after applying

all the other policies there is no cluster w.r.t. fdD (otherwise γfdD would have deleted the

whole cluster including t′).

The fact that there are no conflicting tuples in µoF(R) w.r.t. fdD entails that there is

no tuple t ∈ µoF(R) such that t[D] = 2 and t[E] 6= 3. Therefore, all the tuples t such that

t[C] = ci and t[D] = t[E] = 2 must have been deleted by γfdC , and this can happen only

if there was at least a cluster for each Ci. LetR1 be the relation obtained after applying all

the policies associated with the FDs fdA,j and fdB,j (with j ∈ [1..k]) according to o. R1

contains for each Ci ∈ Φ, a tuple t such that t[C] = ci. It is important to note that, with

respect to the assignment of truth values for variables in Φ, this means that it is possible

to make each Ci true, and therefore, Φ is satisfiable.

The satisfying assignment for Φ is obtained from R1 in the following way. Note

that, for each variable Pj the set πVj(σAj=pj(R1)) is a singleton, either {0} or {1}; this is

because no matter in which order fdA,j and fdB,j were applied, o ensures that either all 1’s

or all 0’s were deleted for each Pj . Therefore, for each variable Pj , if πVj(σAj=pj(R1)) =

{1} then Pj is assigned the truth value true, otherwise (i.e., πVj(σAj=pj(R1)) = {0}) Pj

is assigned false.

Statement 1. (Membership) A polynomial size witness for the complement of this prob-

lem is a total ordering o ∈ TOT≤F (F) such that t 6∈ µoF(R). As any single FD policy can

46

be computed in polynomial time, this witness can be verified in polynomial time by ap-

plying the policies one at a time, according to o, and finally checking whether t /∈ µoF(R).

(Hardness) The complement of the problem of determining whether tuple t ∈

Core(R,F ,≤F) is the problem of deciding whether there is a total ordering o ∈ TOT≤F (F)

such that t 6∈ µoF(R). We show a LOGSPACE reduction from the Possibility problem to

the complement of our problem.

Let 〈R1,F1,≤F1 , t1〉 be an instance of the problem of deciding whether there is

a total ordering o1 ∈ TOT≤F1 (F1) such that t1 ∈ µo1F1
(R1). We define an instance

〈R2,F2,≤F2 , t2〉 of our problem as follows.

Given the relational schema S1(A1, . . . , An) of R1, we define the relational schema

S2 of R2 as S2(A1, . . . , An, B, C). Let R2 be initially empty. For each tuple t ∈ R1 \{t1}

we add to R2 the tuple t′ such that t′[X] = t[X] ∀X ∈ Attr(S1) and t′[B] = t′[C] = k1,

where k1 is a new symbol. Moreover, we add to R2 the following tuples:

• t∗1 such that ∀X ∈ Attr(S1), t∗1[X] = t1[X], and t∗1[B] = k2, where k2 is a new

symbol, and t∗1[C] = 0.

• t2 such that ∀X ∈ Attr(S1), t2[X] = k3, where k3 is a new symbol, t2[B] = k2,

and t2[C] = 1.

Let F2 be F1 ∪ {fd : B → C}, γfd be a tuple-based total policy stating that

the lowest value of C must be chosen, and ≤F2 be the partial order defined by adding,

∀fd′ ∈ F1, fd′ < fd to ≤F2 .

We now prove that there is o1 ∈ TOT≤F1 (F1) such that t1 ∈ µo1F1
(R1) iff there is

o2 ∈ TOT≤F1 (F2) such that t2 6∈ µo2F2
(R2).

(⇒) Assume that there is a total ordering o1 ∈ TOT≤F1 (F1) such that t1 ∈ µo1F1
(R1).

We can define o2 ∈ TOT≤F1 (F2) such that t2 6∈ µo2F2
(R2) as follows: o2 is equal to o1

47

plus fd′ < fd where fd′ is the last FD in o1. The fact that t1 ∈ µo1F1
(R1) implies that the

tuple t∗1 ∈ R2 will be in µo1F2
(R2). Thus, as t2[B] = t∗1[B] and t2[C] > t∗1[C] the policy

γfd deletes t2 form R2. Hence, t2 6∈ µo2F2
(R2).

(⇐) Assume now that there is a total ordering o2 ∈ TOT≤F1 (F2) such that t2 6∈

µo2F2
(R2). As only γfd can delete t2, this implies that before applying γfd the tuple t∗1

was in the result of µo1F2
(R2) (where o1 is equal to o2 except the ordering relationships

involving fd). Hence, t1 ∈ µo1F1
(R1).

Statement 3. Assuming that the arity of R is bounded by a constant b, the cardinality

of F is bounded by 2b, and the number of possible ordering in TOT≤F (F) is bounded

by the factorial of 2b, which is still a constant w.r.t. the cardinality of R. Thus, since

any single FD policy can be computed in polynomial time, checking whether there is

total ordering o ∈ TOT≤F (F) such that t ∈ µoF(R) (or equivalently t /∈ µoF(R)) and

determining whether t ∈ Core(R,F ,≤F) are in PTIME.

Basically, the source of complexity is the fact that there may be exponentially many

total orderings in TOT≤F (F) induced by a given partial ordering ≤F on F . However, if

the arity of R is bounded by a constant b, the number of such total orderings is bounded

by a constant as well, leading to the PTIME result. 2

We do not specify a possible semantics which returns
⋃
{µoF(R) |o ∈ TOT≤F (F)},

since this can yield a relation with sources of inconsistency that were not present before

the application of the multi-dependency policy, violating in this way Axiom A3. In the

following, we show an example of how such a situation can arise.

Example 4. Consider the following relation R:

2It should be noted that we assume that policies can be computed in polynomial time. We do not
consider NP-hard policies such as, i.e., among a set V of inconsistent (possibly negative) values choose a
nonempty subset V ′ ⊂ V such that

∑
v∈V ′ v = 0.

48

Name Salary Tax bracket

t1 John 70K 15

t2 John 80K 20

Let fd1 be Name→ Salary, and fd2 be Salary→ Tax bracket. Suppose we have two

interval-based policies ξfd1 and ξfd2 , both stating that conflicting values must be replaced

by their mean. Assuming that fd1 and fd2 are incomparable w.r.t. ≤F , then there are two

possible total orders: 〈fd1, fd2〉 and 〈fd2, fd1〉. In the first case, the result of applying

the corresponding multi-dependency policy is R′ = {(John, 75K, 17.5)}, whereas in the

second case the result is R′′ = {(John, 75K, 15), (John, 75K, 20)}. It is easy to see that

|culprits(R′ ∪R′′, {fd1, fd2})| > |culprits(R, {fd1, fd2})|.

3.4 Specifying IMPs

The general characterization of IMPs provided in Definition 4 is highly expressive

and allows IMPs to specify very complex policies. In this section, we suggest possible

options for languages within which IMPs can be expressed.

IMPs can be viewed as a set of rules that a user specifies in order to manage in-

consistency with respect to sets of constraints. One specific approach towards designing

a policy specification language is to define these rules as logic programs [Llo87], which

provide clear and well-studied semantics. The relational instances may be represented in

a first-order language where the knowledge base consists of tuples and the inconsistency

structures (culprits and clusters) of the relation.

We assume standard logic programming notation, and in particular we will refer to

constants in the different domains with lowercase letters, whereas we use uppercase letters

for variables. Let R be a relation over schema S(A1, . . . , An), and let F be a set of func-

49

tional dependencies over S. We assume the existence of an (n+ 1)-ary predicate symbol

tuple R such that for each tuple (a1, . . . , an) ∈ R, the logic program ∆R contains the fact

tuple R(id, a1, . . . , an), where id is a number that uniquely identifies tuple (a1, . . . , an)

in R. Moreover, cluster is a 3-ary predicate symbol. Let c ∈ clusters(R, {fd}) where

fd ∈ F ; for each tuple (id, a1, . . . , an) ∈ c, the logic program ∆R contains the fact

cluster(id, c, fd).

Example 5. Consider relation Emp from Example 1, where F = {fd : Name →

Salary}; ∆R contains the following facts:

tuple_Emp(1, john, 70, 15).

tuple_Emp(2, john, 80, 20).

tuple_Emp(3, john, 70, 25).

tuple_Emp(4, mary, 90, 30).

cluster(1,1,fd).

cluster(2,1,fd).

cluster(3,1,fd).

An IMP may thus be simply described as a logic program that will be applied over

the knowledge base ∆R, and whose unique least model corresponds to γ(R). To this end,

given a policy γfd, we might use an (n + 1)-ary predicate symbol result γ fd. Intuitively,

result γ fd(id, a1, . . . , an) is true if and only if γfd(R) contains tuple (a1, . . . , an).3

Example 6. Suppose a user specifies policy PolMin fd for relation Emp; PolMin fd indi-

cates that all values for attribute Salary of tuples within a cluster w.r.t. Name→ Salary

should be changed to the minimum value for Salary among all tuples in the cluster. The

following logic program ΠPolMin fd describes policy PolMin fd. For this example we as-

3Observe that we are assuming that policies are being specified using Prolog programs; other semantics
for logic programs, such as Answer Set semantics or well-founded semantics could also be adopted.

50

sume the existence of predicate min, such that min(C,X, V) is true if and only if value V

is the minimum value for attribute X in a cluster with id C.

result_PolMin_fd(ID, Name, SalaryMin, _) <--

tuple_Emp(ID, Name, Salary, _),

cluster(ID, C, fd),

min(C, salary, SalaryMin).

Logic programs are a powerful formalism to express IMPs. If such a language were

to be implemented, an interesting problem would be that of checking whether a given

program corresponds to a valid IMP, i.e., identify the circumstances under which logic

programs satisfy Axioms A1 through A4 of Definition 4.

Another possible option is that of declaring IMPs as SQL stored procedures. Most

DBMSs provide a powerful procedural language that can be used to define procedures and

functions. A policy specified in this way can be implemented for a particular functional

dependency, or more general parametric procedures can be defined that take a functional

dependency as a parameter. For instance, the user could specify a policy that, for each

cluster, deletes every tuple whose value for the right-hand side attribute is not the mini-

mum of the cluster; the policy can be implemented generically to take any FD of the form

X → Y , where X is a list of attributes and Y a single attribute.

Moreover, appropriate extensions to SQL are needed to support the specification of

IMPs, in order to allow the user to:

• Associate a functional dependency with a relation. SQL does not provide an easy

way to specify functional dependencies; one possible syntactic extension to the

language to allow this could work in the same way a key constraint (or primary

key) is added to a relation.

51

• Associate a policy with a relation and a functional dependency, i.e., specify the

stored procedure that implements the policy and the corresponding constraint (for

instance, a statement of the form

ALTER TABLE Emp ADD POLICY P1 REFERENCES fd

could be used to associate policy P1 with relation Emp w.r.t. functional dependency

fd).

• Indicate what policy should be used in a query, and the order of application with

respect to relational operators. IMPs are designed to be usable in conjunction

with relational algebra operators (the relationships between IMPs and relational

operators will be studied in Section 3.7). When issuing a query, the user may want

to specify that a certain policy should be applied as part of the query, and whether

the policy or the relational operators are applied first. For instance, a query of the

form:

SELECT * FROM Emp WHERE

Name = ‘John’ USING POLICY P1 FIRST

asks for the set of tuples whose value for attribute Name is John and specifies that

policy P1 should be applied before the selection operator.

• Specify the semantics in the presence of multiple policies. Additional SQL exten-

sions should be used in order to express the semantics of the application of multiple

policies. For instance, a query of the form:

SELECT * FROM Emp WHERE

Name = ‘John’ USING POLICY P1, P2 LAST CORE

52

could state that after applying the selection operator, both policy P1 and P2 must

be applied under the core semantics.

Finally, for the cases where users are not familiar with (declarative or imperative)

programming, a simplified view of how policies are specified could be provided. For in-

stance, a simple and user-friendly graphical interface could allow the user to specify con-

ditions under which tuples should be kept or deleted (in the case of tuple-based policies),

or input functions that will generate the new values for the right-hand side of functional

dependencies in the case of value- or interval-based policies. This allows users to effec-

tively communicate how they want their data to be manipulated without having to worry

about how the policies will be internally represented and implemented.

3.5 Relationship with belief change operators

An important area of research related to inconsistency management is that of belief

change to belief sets (sets of formulas closed under consequence) and belief bases (sets

of formulas not necessarily closed under consequence), as discussed in Section 2.1.1. It

seems reasonable to think that inconsistency management techniques in relational databases

are materializations of some variations of belief change methods. This is true for some

of the methods proposed by [ABC99, Cho07, BFFR05], but the relationship w.r.t. IMPs

is less clear. The main goal of belief change frameworks is to maintain consistency while

contracting or revising belief systems. This is the fundamental difference with the IMPs

framework since, by design, policies can be defined that do not remove inconsistency

completely. However, the two approaches have a lot in common and it is interesting to

study their differences and similarities. In any practical database application, only belief

bases are relevant, and hence, in this chapter, we briefly discuss relationships between

53

IMPs and axioms for updating belief bases [Han93, Han97] as opposed to axioms to

update belief sets [AGM85, Gar88b]. Given an IMP based on a single functional depen-

dency, we first show how to define an associated revision operator.

Definition 11. Let R be a relation over relational schema S, fd be an FD over S, and let

γfd be any IMP for R w.r.t. fd. Let KR be the first-order belief base obtained from R by

treating the tuples in R as ground atoms and the FD as a logical formula in the obvious

way.4 We say that
.

+γfd is a belief revision operator that corresponds to γfd iff:

• for each tuple t ∈ γfd(R) there exists a sentence αt ∈ KR

.
+γfd fd, such that αt is

the first-order encoding of t,

• for each sentence α ∈ KR

.
+γfd fd either there exists a tuple t ∈ γfd(R) such that αt

is the first-order encoding of t, or α = fd, and

• γfd(R) is consistent w.r.t. fd iff fd ∈ KR

.
+γfd fd.

Intuitively,
.

+γfd is a revision operator in the sense of [Han93] that implements γfd.

[Han93] proposes the satisfaction of four axioms for belief bases revision operators ⊕.

These axioms are:

• Success. α ∈ K ⊕ α.

• Inclusion. K ⊕ α ⊆ K ∪ α.

• Relevance. If β ∈ K and β 6∈ K ⊕ α, then there is a set K ′ such that K ⊕ α ⊆

K ′ ⊆ K ∪ {α} such that K ′ is consistent but K ′ ∪ {β} is inconsistent.

4KR contains the atom R(~t) for each tuple ~t ∈ R. In addition, as described by [ABC+03b], if
X → Y is an FD over relation P such that X is the set of attributes corresponding to variables ~x
and Y is the set of attributes corresponding to variables ~y, then fd can be expressed as the formula:
∀~x, ~y, ~z, ~y′, ~z′.(¬P (~x, ~y, ~z) ∨ ¬P (~x, ~y′, ~z′) ∨ ~y = ~y′).

54

• Uniformity. If it holds for all subsets K ′ of K that K ′∪α is inconsistent if and only

if K ′ ∪ β is inconsistent, then K ∩ (K ⊕ α) = K ∩ (K ⊕ β).

The result below specifies when the belief revision operator
.

+γfd corresponding to an IMP

γfd satisfies the Success axiom.

Theorem 4. LetR be a relation over the relational schema S, let fd be the only functional

dependency over S, and let γfd be an IMP forR w.r.t. fd. IfKR is the first-order belief base

obtained from R then:
.

+γfd satisfies the Success axiom iff |culprits(γfd(R), {fd})| = 0,

i.e., the application of γfd over R removes all the inconsistency in R w.r.t. fd.

Proof. Operator
.

+γfd satisfies success iff fd ∈ KR

.
+γfd fd , which by definition of

.
+γfd

means that γfd(R) is consistent w.r.t. fd , which is true iff |culprits(γfd(R), fd)| = 0.

The result below specifies when the belief revision operator
.

+γfd corresponding to an IMP

γfd satisfies the Inclusion axiom.

Theorem 5. LetR be a relation over the relational schema S, let fd be the only functional

dependency over S, let γfd be an IMP for R w.r.t. fd, and let KR be the first-order belief

base obtained from R; operator
.

+γfd satisfies the Inclusion axiom iff γfd is a tuple-based

policy.

Proof. (⇒) If
.

+γfd satisfies inclusion then KR

.
+γfd fd ⊆ KR ∪ fd . If fd ∈ KR

.
+γfd fd

then KR

.
+γfd fd = K ′ ∪ {fd} and therefore K ′ ⊆ KR and since γfd(R) is effectively

the relational instance of K ′ we can conclude that γfd(R) ⊆ R, therefore γfd(R) is a

tuple-based policy. On the other hand, if fd 6∈ KR

.
+γfd fd then KR

.
+γfd fd ⊆ KR.

Since γfd(R) is effectively the relational instance of KR

.
+γfd fd we can conclude that

γfd(R) ⊆ R, therefore γfd(R) is a tuple-based policy.

55

(⇐) If γfd(R) is a tuple-based policy, then by definition γfd(R) ⊆ R ⊆ R∪{fd}. Let
.

+γfd

be the revision operator that corresponds to γfd(R) we have that KR

.
+γfd fd ⊆ KR ∪ fd .

Therefore,
.

+γfd satisfies inclusion.

Observation 2. The belief revision operator
.

+γfd corresponding to any IMP γfd is not

guaranteed to satisfy the Relevance axiom.

The Relevance axiom was introduced by Hansson in order to require minimum loss

of information in the revision process. In this sense this axiom ensures that the sentences

that are directly in conflict with the epistemic input are eliminated. In our approach, IMPs

are defined so users can apply any criterion for resolving inconsistency, including but not

restricted to minimum information loss. For instance, in Example 1 a user could decide

that sources s2 and s3 are not trustworthy and apply a policy that deletes both tuples t2

and t3. This is a valid IMP but it does not satisfy relevance: tuple t3 is removed even

though it is not directly in conflict with tuple t1, the one that remains in the knowledge

base. A weaker version of this axiom was introduced by Hansson [Han97] later on for

non-prioritized revision:

Core Retainment. If β ∈ K and β 6∈ K ⊕ α, then there is a set K ′ such that

K ′ ⊆ K ∪ {α} such that K ′ is consistent but K ′ ∪ {β} is inconsistent.

Theorem 6. LetR be a relation over the relational schema S, let fd be the only functional

dependency over S, let γfd be a tuple-based IMP for R w.r.t. fd, and let KR be the first-

order belief base obtained from R. Then,
.

+γfd satisfies Core Retainment.

Proof. Let t be a tuple in R that is not in γfd(R). As t ∈ R and t /∈ γfd(R), there is

c ∈ culprits(R, fd) such that t ∈ c (see Axiom A1 from Definition 4). Let t′ be a tuple

in R distinct from t and such that the culprit {t, t′} ∈ c. Suppose that β is the sentence

representing tuple t, and K ′ consists of the sentence representing t′ and that representing

56

fd. Clearly, β ∈ KR and β 6∈ KR

.
+γfd fd . Moreover, K ′ ⊆ KR ∪ {fd} and K ′ is

consistent but K ′ ∪ {β} is inconsistent.

Finally, we note that the Uniformity postulate holds trivially because the “if” part is equiv-

alent to saying that α = fd is equivalent to β = fd′. It is reasonable to assume that if there

exists fd′ ∈ F such that fd′ is logically equivalent to fd, then they are exactly the same

functional dependency; therefore, as operator
.

+γfd is defined exclusively for fd we can

conclude that fd and fd′ have the same associated policy.

3.6 Relationship with preference-based approaches in

Consistent Query Answering

In the last few years, a great deal of attention has been devoted by the databases

community to the problem of extracting reliable information from data inconsistent w.r.t.

integrity constraints. Most work dealing with this problem is based on the notions of

maximal consistent subsets introduced originally by [FUV83, FKUV86] as “flocks” in

the context of database updating, and later studied as maximal consistent subsets for in-

tegrating multiple knowledge bases [BKM91, BKMS91], and then defined as “repairs”

of databases and consistent query answers (CQA) introduced in [ABC99]. A repair of

an inconsistent database is a new database, on the same schema as the original database,

satisfying the given integrity constraints and that is “minimally” different from the orig-

inal database (the minimality criterion aims at preserving the information in the original

database as much as possible). Thus, an answer to a given query posed to an inconsis-

tent database is said to be consistent if the same answer is obtained from every possible

repair of the database. Even though several works investigated the problem of repairing

57

and querying inconsistent data considering different classes of queries and constraints,

only recently there have been two proposals which shifted attention towards improving

the quality of consistent answers. These approaches developed more specific repairing

strategies that reduce the number of possible repairs to be considered and improve their

quality according to some criteria specified by the database administrator on the basis

of users’ preferences. We will analyze the relationships between IMPs and each of the

proposals in turn.

3.6.1 Active Integrity Constraints

Active Integrity Constraints (AICs for short) are an extension of integrity constraints

for consistent database management introduced in [CGZ09]. Repairs in this work are

defined as minimal sets (under inclusion) of update actions (tuple deletions/insertions) and

AICs specify the set of update actions that are used to restore data consistency. Hence,

among the set of all possible repairs, only the subset of founded repairs consisting of

update actions supported by AICs is considered.

An AIC is a production rule where the body is a conjunction of literals, which

should be false for the database to be consistent, whereas the head is a disjunction of up-

date atoms that have to be performed if the body is true (that is the constraint is violated).

As an example, consider the relationEmp of Example 1 with the FD fd : Name→ Salary.

The following AIC specifies that if the FD is violated, then the tuple with the highest

salary has to be removed: ∀N,S, S ′, T, T ′[Emp(N,S, T), Emp(N,S ′, T ′), S < S ′ →

−Emp(N,S ′, T ′)]. In this case, among the set of possible repairs of relation Emp w.r.t.

fd which delete one of the conflicting tuples to restore data consistency, only founded

repairs deleting the tuple with the highest salary are considered.

58

Even though AICs are defined for a wider range of integrity constraints (universally

quantified and general integrity constraints), while IMPs are only defined for functional

dependencies, if we restrict our analysis to functional dependencies we can state the rela-

tionship between founded repairs and IMPs.

Let fr be a founded repair for the relation R w.r.t. a given set of AICs. The relation

which results by performing the update actions in fr on R is denoted R ◦ fr.

Theorem 7. Let R be a relation over the relational schema S(A1, . . . , An) and fd a

functional dependency over S. W.l.o.g., assume that fd is of the formA1, . . . , Ak → Ak+1,

where k + 1 ≤ n. Let µ be the AIC of the form

∀X [S(X1, . . . , Xk, Xk+1, . . . , Xn), S(X1, . . . , Xk, X
′
k+1, . . . , X

′
n),

Xk+1 6= X ′k+1, ϕ(X0)→ −S(X1, . . . , Xk, X
′
k+1, . . . , X

′
n)]

where X =
⋃k
i=1Xi ∪

⋃n
i=k+1(Xi ∪ X ′i) and ϕ(X0) is a conjunction of built-in atoms

with X0 ⊆ X . For each founded repair fr for R w.r.t. µ, there exists a tuple-based IMP

γfd such that R ◦ fr = γfd(R).

Proof. Let fr = {−α1, . . . ,−αk} be an arbitrary founded repair for R w.r.t. fd. We

define γfd as a tuple-based policy that for each update action −αi in fr, with 1 ≤ i ≤ k,

deletes the tuple αi from R. Clearly, R ◦ fr = γfd(R), since each −αi ∈ fr indicates

that tuple αi is deleted from R when fr is applied, and γfd(R) deletes from R exactly the

tuples αi for which the update action −αi appears in fr.

We now show that γfd satisfies the axioms from Definition 4. Let αi be an arbitrary

tuple in R that is not in γfd(R). By definition, γfd(R) only deletes a tuple αi from R if

−αi ∈ fr; if this is the case, then −αi is supported by µ, that is there is a substitution σ

of variables in X with constants of R such that

59

• αi = S(σ(X1), . . . , σ(Xk), σ(X ′k+1), . . . , σ(X ′n)), and

• t = S(σ(X1), . . . , σ(Xk), σ(Xk+1), . . . , σ(Xn)), with αi, t ∈ R, and

• σ(Xk+1) 6= σ(X ′k+1) and ϕ(σ(X0)) evaluates to true.

This means that αi is involved in a conflict w.r.t. fd, i.e., it belongs to a culprit and thus

Axiom A1 is satisfied. Given that γfd(R) only deletes tuples from R, then we have that

γfd(R) ⊆ R, and therefore Axiom A2 and Axiom A4 are satisfied. Lastly, as each αi ∈ R

that is not in γfd(R) belongs to a culprit w.r.t. R and fd, removing αi from R results in at

least one culprit disappearing, and therefore Axiom A3 is satisfied as well.

Moreover, there are tuple-based policies that are not expressible by AICs.

Observation 3. Given a relation R with the functional dependency fd, there are tuple-

based policies γfd for which there is no AIC µ (which extends fd) such that a founded

repair for R w.r.t. µ is equal to γfd(R); this fact holds even if γfd(R) is consistent w.r.t. fd.

For instance, consider the FD Name → Salary from Example 1 and an associated

tuple-based policy stating that every tuple except the ones containing the average value for

Salary in each cluster should be deleted; this is not expressible by AICs. Basically, this

limitation of AICs follows from the fact that aggregates on clusters cannot be expressed

in general.

Observation 4. Neither value- nor interval-based policies are expressible as update ac-

tions of AICs.

Value-based and interval-based policies could be implemented as a series of dele-

tion and insertion of tuples, e.g., modifying the value for Salary of tuple t2 in the Emp

relation of Example 1 from 80K to 70K so that fd : Name → Salary is satisfied can

60

be done with the update actions −Emp(John, 80K, 20) and +Emp(John, 70K, 20). How-

ever, there is no repair for the relation Emp w.r.t. fd consisting of both these update

actions since deleting t2 is already minimal (under inclusion) for restoring consistency.

As every founded repair is a repair, there is no founded repair consisting of both these

update actions.

3.6.2 Prioritized Repairs and CQAs

A general framework for priority-based consistent query answering is presented

in [SCM09], where an axiomatic approach is used to specify the desirable properties of

preferred repairs that are used to compute CQAs. Denial constraints are considered and

(preferred) repairs are maximal consistent subsets of the original database. Preferences

among repairs are established by exploiting a priority relation that is an acyclic relation

among tuples in the database. It is assumed that the priority relation can be obtained from

the user’s specifications.

The desirable properties that preferred repairs should satisfy are:

1. the set of preferred repairs cannot be empty;

2. extending the preference relation can only narrow the set of preferred repairs;

3. the set of preferred repairs coincide with the set of repairs if no preference is pro-

vided;

4. if the preference establishes a total order among all conflicting tuples then there is

a unique preferred repair;

5. every preferred repair is a repair.

61

Three families of preferred repairs are studied based on different notions of optimality:

common optimal (CO) repairs, globally optimal (GO) repairs, and Pareto optimal (PO)

repairs.

Functional dependencies are a special kind of denial constraints; the following ob-

servation shows the relationship between IMPs and preferred repairs.

Observation 5. Consider a relation R and a functional dependency fd over R. There

exist tuple-based policies γfd for which there is no CO repair for R w.r.t. fd that is equal

to γfd(R); this fact holds even if γfd(R) is consistent w.r.t. fd.

As an example of such kind of policy, consider a tuple-based policy that, for some

cluster, deletes all the tuples in the cluster. As CO repairs are maximal consistent subset

of the original database, the result of applying this policy cannot be equal to a CO repair.

As every CO repair is a GO repair, that in turn is a PO repair, the above observation holds

for GO and PO repairs as well.

Interestingly, PO repairs can be expressed by tuple-based policies.

Proposition 3. Consider a relation R, a functional dependency fd over R, and a priority

relation �. For every PO repair ρ for R w.r.t. fd and �, there is a tuple-based policy γfd

such that ρ = γfd(R).

Proof. PO repairs can be constructed by Algorithm 3 on Page 30 in [SCM09]. This

algorithm, constructs a repair R′ for R, if R′ is Pareto optimal w.r.t. � the algorithm

finishes returningR′; otherwise, it returns any common optimal repair w.r.t.� (it is always

possible to compute a common optimal repair in polynomial size of the database and the

priority relation, see Algorithm 4 in [SCM09]). Clearly, this algorithm can be seen as a

tuple-based IMP, since it satisfies Axioms A1 through A4 and complies with Definition

5.

62

Finally, it is easy to see that value- and interval-based IMPs are not expressible in

the framework of [SCM09] since attribute-value modifications are not allowed.

3.7 Extensions of Classical Relational Algebra Operators

with Multi-Dependency Policies

In this section, we study the relationship between IMPs and classical relational

algebra operators. We expand the relational algebra with operators that combine classical

relational operators with IMPs. Each relational operator can be augmented by an IMP by

either applying the IMP first and then applying the operator, or the other way around. The

following definition formalizes this.

Definition 12. Given two relations R1 and R2, a binary relational operator op, two func-

tional dependencies fd1, fd2 defined over R1 and R2, respectively, and two IMPs γfd1 and

γfd2:

- A policy-first inconsistency management operator (policy-first operator) is defined as

the 7-ary operator ωpolicy-first(R1, R2, op, fd1, fd2, γfd1 , γfd2) = op(γfd1(R1), γfd2(R2));

- A policy-last inconsistency management operator (policy-last operator) is defined as the

7-ary operator ωpolicy-last(R1, R2, op, fd1, fd2, γfd1 , γfd2) = γ{fd1}∪{fd2}(op(R1, R2)).

Observe that the use of a policy-last operator requires the union of the given sets of func-

tional dependencies to be handled by a multi-dependency policy that takes both sets into

account.

In the rest of this section, we study these policy-first and policy-last operators for

several relational algebra operators. The equivalence theorems in this section could form

the basis for query optimization in inconsistent DBs (to this aim, appropriate cost models

63

for our policy-first and policy-last operations can be developed). We conclude the section

with a discussion about the relationships between IMPs and aggregate functions.

Policy-first vs. Policy-last Operators for Projection

In the case of a policy-last projection operator, the projection is applied first and

then the policy. In order for the inconsistency management operation to make sense, the

projected attributes must include all attributes from the left-hand side of the functional

dependencies involved in the multi-dependency policy, and at least one of the attributes

from the right-hand side of each dependency. This is necessary to ensure that there will

still be enough data to be able to identify the inconsistent tuples regarding all functional

dependencies involved in the policy.

Example 7. Consider relation Emp in Example 1 and the functional dependency fd :

Name → Salary. Suppose also that we have a tuple-based policy τfd for fd that states

that in case of inconsistency the tuple with the highest salary must be preferred. Let

us consider a projection πsalary(Emp). If τfd is applied first to Emp then we obtain

{80K, 90K}. Otherwise, if πsalary(Emp) is applied first, we no longer have inconsis-

tency w.r.t. fd (and therefore no clusters at all), thus the application of τfd has no effect

and the result is {70K, 80K, 90K}.

The situation in this example can arise in the presence of both value- and interval-

based IMPs. The following theorem provides necessary and sufficient conditions for

which it does not matter if a policy is applied before or after the projection operator.

Theorem 8. Let R be a relation and fd : A1, . . . , Ak → B be a functional dependency

over R. Let X ⊆ Attr(R) be a superset of {A1, . . . , Ak, B}. For each (tuple-based,

value-based, or interval-based) IMP γfd, γfd(πX(R)) = πX(γfd(R)) iff

64

1. γfd(π
m
X (R)) = πmX (γfd(R)), and

2. γfd(π
m
X (R)) = γfd(πX(R)),

where πm is the multi-set projection operator (i.e., the projection operator that returns

multi-sets rather than sets).

Proof. (⇐) From conditions (1) and (2) we obtain that γfd(πX(R)) = πmX (γfd(R)). Clearly

the first term of this equality is a set, since the application of the policy γfd on the rela-

tion πX(R) is a relation. Hence, πmX (γfd(R)) is also a set. This implies that it is equal to

πX(γfd(R)).

(⇒) Assuming that either condition (1) or (2) is false, it is easy to see that γfd(πX(R)) 6=

πX(γfd(R)).

The first condition in Theorem 8 requires that the policy does not depend on the

values of attributes not involved in the functional dependency with which the policy is

associated. This property is valid for all the IMPs C1-C6 of the Introduction and, intu-

itively, for a large class of IMPs. The latter condition requires that the policy does not

depend on duplicate values of an attribute. This property is valid for IMPs C1, C2, C5,

and C6 and for a large class of IMPs like those stating choose the values lower/greater

than (or equal to) a constant, or choose all values except the lowest/highest ones, and so

on. The following example shows what can happen when a policy depends on duplicate

values.

Example 8. Consider relation Emp of Example 1 and the functional dependency fd :

Name → Salary. Let γfd be the policy C3, and X be the set {Name, Salary}. Thus,

γfd(πX(Emp)) = {(John, 75K), (Mary, 90K)}, but if we apply the policy first, then we

have πX(γfd(Emp)) = {(John, 73.33K), (Mary, 90K)}. None of these sets is subset of

the other one.

65

Policy-first vs. Policy-last Operators for Selection

We start by showing that for unrestricted policies, the order in which the policy and

the selection operators are applied makes a difference.

Example 9. Consider the following relationR and the functional dependency fd : Name→

Salary.

Name Salary

t1 John 70K

t2 John 80K

t3 John 90K

Let γfd be the tuple-based policy “choose all values except the lowest one”. It is easy

to see that σSalary≥80K(γfd(R)) = {t2, t3}, whereas γfd(σSalary≥80K(R)) = {t3}. Now

assume that the policy is “choose the lowest value”. We have σSalary≥80K(γfd(R)) = ∅,

whereas γfd(σSalary≥80K(R)) = {t2}.

Thus, in general, neither σC(γfd(R)) 6⊆ γfd(σC(R)) nor σC(γfd(R)) 6⊇ γfd(σC(R)).

Moreover, as a consequence of Observation 1, this is valid also for the value-based and

interval-based approaches. The following proposition identifies a kind of tuple-based

policy for which the order is irrelevant.

Proposition 4. Let R be a relation and fd be a functional dependency over R. Given a

tuple-based IMP γfd and a selection condition C, if there exists a selection condition Cγ

such that γfd is equivalent to σCγ , then γfd(σC(R)) = σC(γfd(R)).

As an example, suppose we consider the policy γ1
fd for the above example rela-

tion. Let γ1
fd be the tuple-based policy “choose the tuples whose value for Salary is

greater than or equal to 85K”. In this case we have σSalary≥80K(γ1
fd(R)) = {t3} =

γ1
fd(σSalary≥80K(R)). It is easy to see that in this case γ1

fd encodes a condition that can

be expressed as a selection condition in the relational algebra.

66

Policy-first vs. Policy-last Operators for Cartesian Product

In this section we discuss the use of the policy-first and policy-last strategies with

the cartesian product operator. The following definition identifies a class of (tuple-based,

value-based, or interval-based) IMPs which yield the same result when applied to a multi-

set S of tuples or on a multi-set which contains the same proportion of tuples w.r.t. S.

Definition 13. An IMP γ is said to be ratio-invariant iff for any multi-set S = {t1, t2 . . . , tn}

of tuples and for any integer k > 0 it is the case that γ(S) = γ(S ′), where S ′ is the multi-

set S ′ = {ti1, ti2 . . . , tin | tij = tj where tj ∈ S and i ∈ [1..k]}

Observe that all IMPs C1-C6 described in the Introduction are ratio-invariant. For

instance, policy C1 is ratio-invariant because the minimum value of a multi-set is inde-

pendent of the number of elements having the same value. The same happens with the

weighted mean used by C4: the weighted mean of the values in {v1, v2 . . . , vn} is the

same of that of {vi1, vi2 . . . , vin | vij = vj where vj ∈ S and i ∈ [1..k]} (if wij = wj). On the

other hand, a policy stating that “if there are at least K occurrences of a value V , then

choose V , otherwise choose 0” is not ratio-invariant.

The following theorem provides results regarding the use of (ratio-invariant) IMPs

with the Cartesian product operator. Observe that we are assuming the schemas ofR1 and

R2 do not intersect, thus the schema of R1 × R2 is the union of the schemas of R1 and

R2. Moreover, with a little abuse of notation we allow the application of γfd1 (resp. γfd2)

to R1 ×R2, even if they are defined for R1 (resp. R2).

Theorem 9. Let R1 and R2 be relations, and fd1 and fd2 be functional dependencies over

R1 and R2, respectively. For any pair of ratio-invariant (tuple-based, value-based, or

interval-based) IMPs γfd1 and γfd2 , it is the case that

1. γfd1(R1 ×R2) = γfd1(R1)×R2;

67

2. γfd2(R1 ×R2) = R1 × γfd2(R2);

3. γfd1(γfd2(R1 ×R2)) = γfd1(R1)× γfd2(R2);

4. γfd1(γfd2(R1 ×R2)) = γfd2(γfd1(R1 ×R2)).

Proof. We now prove the first case, the second case can be proved by analogous rea-

soning. Since fd1 works only on the attributes of R1 and is ratio-invariant, it holds that

γfd1(π
m
Attr(R1)(R1 × R2)) = γfd1(R

M
1) = γfd1(R1), where πm is the multi-set projection

operator, and RM
1 is the multi-set relation obtained by copying M = |R2| times every

tuple of R1. As R1 × R2 = {t1.t2 | t1 ∈ R1 ∧ t2 ∈ R2}, it is easy that γfd1(R1 × R2) is

equivalent to the set {t′1.t2 | t′1 ∈ γfd1(R1) ∧ t2 ∈ R2}, which is γfd1(R1)×R2.

As to the third case, since γfd2(R1 ×R2) = R1 × γfd2(R2), as a consequence of the

first statement we obtain γfd1(R1 × γfd2(R2)) = γfd1(R1)× γfd2(R2).

The result of the fourth case follows from the fact that γfd1(γfd2(R1 × R2)) =

γfd1(R1)× γfd2(R2) and γfd2(γfd1(R1 ×R2)) = γfd1(R1)× γfd2(R2).

Policy-first vs. Policy-last Operators for θ-Join

We now discuss the classical θ-join operator [Ull88], which is defined as R1 ./θ

R2 = σθ(R1 × R2) where R1 and R2 are relations and θ is a predicate over Attr(R1) ∪

Attr(R2). As we have already studied policy-first and policy-last operators for selection

and Cartesian product and this operator is defined as a simple combination of the two, we

have the following result.

Corollary 1. LetR1 andR2 be relations, and fd1 and fd2 be functional dependencies over

R1 and R2, respectively. For any pair of ratio-invariant tuple-based IMPs γfd1 and γfd2 , if

γfd1 and γfd2 are equivalent to σC1 and σC2 , respectively, for some selection conditions C1

and C2, then:

68

1. γfd1(R1 ./θ R2) = γfd1(R1) ./θ R2;

2. γfd2(R1 ./θ R2) = R1 ./θ γfd2(R2);

3. γfd1(γfd2(R1 ./θ R2)) = γfd1(R1) ./θ γfd2(R2);

4. γfd1(γfd2(R1 ./θ R2)) = γfd2(γfd1(R1 ./θ R2)).

Policy-first vs. Policy-last Operators for Union

In this section we discuss the use of the policy-first and policy-last strategies with

the union operator. We consider the case when the union is performed between two rela-

tions having the same schema and the functional dependency is defined over this schema.

We start by showing a case where different results are obtained when the policy is applied

before or after the union.

Example 10. Consider the relational schema S(Name, Salary) and the functional de-

pendency fd : Name → Salary. Assume that relation R1 is {t1 = (John, 75K),

t2 =(John, 80K)} and R2 is {t3 =(John, 70K), t4 =(John, 85K), t5 =(Mary, 90K)}.

Let γfd be the tuple-based policy “choose the tuples with highest value of Salary”. It is

easy to see that γfd(R1) = {t2}, γfd(R2) = {t4, t5}, and γfd(R1 ∪ R2) = {t4, t5}. Hence,

γfd(R1 ∪ R2) 6⊇ γfd(R1) ∪ γfd(R2). Now assume that the policy is “choose all the values

except the lowest one”. We obtain γfd(R1) = {t2}, γfd(R2) = {t4, t5}, but in this case

γfd(R1 ∪R2) = {t1, t2, t4, t5}. Hence, γfd(R1 ∪R2) 6⊆ γfd(R1) ∪ γfd(R2).

Similar cases can be identified for value-based and interval-based policies. The

following theorem presents a sufficient condition for which it does not matter if a policy

is applied before or after the union.

69

Theorem 10. Let R1 and R2 be relations over the relational schema S, and fd : X → B

be a functional dependency where X ⊆ Attr(S). For any (tuple-based, value-based, or

interval-based) IMPs γfd, γfd(R1 ∪R2) = γfd(R1) ∪ γfd(R2) if πX(R1) ∩ πX(R2) = ∅.

Proof. If πX(R1) ∩ πX(R2) = ∅ then clusters(R1, {fd}) ∩ clusters(R2, {fd}) = ∅,

and clusters(R1 ∪ R2, {fd}) = clusters(R1, {fd}) ∪ clusters(R2, {fd}). Thus, the

application of γfd toR1∪R2 yields the same result as when it is applied first on the portion

of R1 ∪R2 corresponding with R1 and then on the portion corresponding to R2.

Policy-first vs. Policy-last Operators for Difference

We discuss the use of the policy-first and policy-last strategies with the difference

operator.

Theorem 11. Let R1 and R2 be relations over schema S and fd be a functional de-

pendency over S. For any tuple-based IMP γfd, it is the case that: γfd(R1 − R2) ⊆

R1 − γfd(R2).

Proof. Suppose that γfd(R
′) 6⊆ R1 − γfd(R2). If this is the case, let t be a tuple in γfd(R

′)

such that t 6∈ R1 − γfd(R2). This means that either (1) t 6∈ R1 or (2) t ∈ R1 and

t ∈ γfd(R2). Let us analyze each case separately:

• If t 6∈ R1 then t 6∈ R′ = R1 − R2, therefore t 6∈ γfd(R
′) since γfd is a tuple-based

policy, which is a contradiction.

• If t ∈ R1 and t ∈ γfd(R2) then, given that γfd is a tuple-based policy, it must be the

case that t ∈ R2. However, this means that t 6∈ R′ = R1 − R2 and t 6∈ γfd(R
′),

which yields a contradiction.

70

Moreover, the following example shows that γfd(R1)−R2 6⊆ γfd(R1 −R2).

Example 11. Consider the relations R1 = {(a,−1), (a, 1), (a, 2)} and R2 = {(a,−1)}

over the schema S(A,B) with fd : A → B, and the tuple-based policy stating that for

each cluster, if there are no negative values then remove everything, otherwise do nothing.

Then, γfd(R1) = R1 and γfd(R1) − R2 = {(a, 1), (a, 2)}. However, γfd(R1 − R2) =

γfd({(a, 1), (a, 2)}) = ∅ which is not a superset of γfd(R1)−R2.

Relationship with Aggregate Functions

We conclude by discussing the relationships of the policy-first strategies with the

most common aggregate functions: count, max, min, sum, and avg. With a little abuse

of notation, we consider a relational algebraic expression of the form

G Ff(A)(R)

where f is an aggregate function, equivalent to an SQL query of the form

SELECT G, f(A) AS A’ FROM R GROUP BY G

Moreover, we write G Ff(A)(R1) v G Ff(A)(R2) to denote that ∀(t1, t2) such that t1 ∈

G Ff(A)(R1), t2 ∈ G Ff(A)(R2), t1[G] = t2[G], it holds that t1[A′] ≤ t2[A′].

Example 12. Consider relation Emp of Example 1. The relational algebraic expression

Name FAVG(Salary)(Emp) corresponds to an SQL query of the form

SELECT Name, AVG(Salary) AS Salary’ FROM Emp GROUP BY Name.

The result of the expression is the relation {(John, 73.33K), (Mary, 90K)} with

attributes Name and Salary′. Now consider a relation

Emp′ = {(John, 100K, 30), (John, 110K, 30), (Mary, 90K, 30), (Mary, 100K, 25)}.

71

The result of the application of the above expression to Emp′ is the relation

{(John, 105K), (Mary, 95K)}. We can write

Name FAVG(Salary)(Emp) v Name FAVG(Salary)(Emp
′)

since the value of Salary′ for both John and Mary is lower in the relation on the

left-hand side.

The above notation is trivially extended to the w and = operators.

Proposition 5. Let R be a relation over schema S, fd a functional dependency over R,

and E an attribute in S \ (LHS(fd) ∪RHS(fd)). The following relationships hold:

• For any IMP γfd,

– Fcount(∗)(γfd(R)) v Fcount(∗)(R);

– LHS(fd)Fcount(∗)(γfd(R)) v LHS(fd)Fcount(∗)(R).

• For any IMP γfd,

– Fmax(RHS(fd))(γfd(R)) v Fmax(RHS(fd))(R);

– LHS(fd)Fmax(RHS(fd))(γfd(R)) v LHS(fd)Fmax(RHS(fd))(R).

• For any tuple-based IMP γfd,

– Fmax(E)(γfd(R)) v Fmax(E)(R);

– LHS(fd)Fmax(E)(γfd(R)) v LHS(fd)Fmax(E)(R).

• For any value- or interval-based IMP γfd,

– Fmax(E)(γfd(R)) = Fmax(E)(R);

– LHS(fd)Fmax(E)(γfd(R)) = LHS(fd)Fmax(E)(R).

72

• For any IMP γfd,

– Fmin(RHS(fd))(γfd(R)) w Fmin(RHS(fd))(R);

– LHS(fd)Fmin(RHS(fd))(γfd(R)) w LHS(fd)Fmin(RHS(fd))(R).

• For any tuple-based IMP γfd,

– Fmin(E)(γfd(R)) w Fmin(E)(R);

– LHS(fd)Fmin(E)(γfd(R)) w LHS(fd)Fmin(E)(R).

• For any value- or interval-based IMP γfd,

– Fmin(E)(γfd(R)) = Fmin(E)(R);

– LHS(fd)Fmin(E)(γfd(R)) = LHS(fd)Fmin(E)(R).

• Let γfd be the interval-based IMP that replaces all inconsistent values with the

corresponding cluster’s average. Then,

LHS(fd)Favg(RHS(fd))(γfd(R)) = LHS(fd)Favg(RHS(fd))(R).

• Let γfd be the value-based IMP that replaces all inconsistent values with their min-

imum. Then:

– Fsum(RHS(fd))(γfd(R)) v Fsum(RHS(fd))(R);

– Fmin(RHS(fd))(γfd(R)) = Fmin(RHS(fd))(R);

– Favg(RHS(fd))(γfd(R)) v Favg(RHS(fd))(R);

– LHS(fd)Fsum(RHS(fd))(γfd(R)) v LHS(fd)Fsum(RHS(fd))(R);

– LHS(fd)Fmin(RHS(fd))(γfd(R)) = LHS(fd)Fmin(RHS(fd))(R);

– LHS(fd)Favg(RHS(fd))(γfd(R)) v LHS(fd)Favg(RHS(fd))(R).

73

• Let γfd be the value-based IMP that replaces all inconsistent values with their max-

imum. Then:

– Fsum(RHS(fd))(γfd(R)) w Fsum(RHS(fd))(R);

– Fmax(RHS(fd))(γfd(R)) = Fmax(RHS(fd))(R);

– Favg(RHS(fd))(γfd(R)) w Favg(RHS(fd))(R);

– LHS(fd)Fsum(RHS(fd))(γfd(R)) w LHS(fd)Fsum(RHS(fd))(R);

– LHS(fd)Fmax(RHS(fd))(γfd(R)) = LHS(fd)Fmax(RHS(fd))(R);

– LHS(fd)Favg(RHS(fd))(γfd(R)) w LHS(fd)Favg(RHS(fd))(R).

3.8 Applying IMPs

In this section, we tackle the problem: how can we implement IMPs efficiently? The

question of implementing inconsistency management approaches efficiently has not been

addressed to date because most past works try to address very general KBs. Furthermore,

even when simple kinds of KBs are used, efforts such as those proposed by the consistent

query answering community are intractable [CLR03].

The heart of the problem of applying an IMP lies in the fact that the clusters must

be identified. Thus, we start by discussing how classical DBMS indexes can be used to

carry out these operations, and then we present a new data structure that can be used to

identify the set of clusters more efficiently: the cluster table.

3.8.1 Using DBMS-based Indexes

A basic approach to the problem of identifying clusters is to directly define one

DBMS index (DBMSs in general provide hash indexes, B-trees, etc.) for each functional

74

dependency’s left-hand side. Assuming that the DBMS index used allows O(1) access to

individual tuples, this approach has several advantages:

• Takes advantage of the highly optimized implementation of operations which is

provided by the DBMS. Insertion, deletion, lookup, and update are therefore all

inexpensive operations in this case.

• Identifying a single cluster (for given values for the left-hand side of a certain func-

tional dependency) can be done by issuing a simple query to the DBMS, which

can be executed in O(maxcl∈clusters(R,fd) |cl|) time, in the (optimistic) assumption of

O(1) time for accessing a single tuple. However, the exact cost depends on the

particular DBMS implementation, especially that of the query planner.

• Identifying all clusters can be done in two steps, each in time in O(|R|):

1. issue a query with a GROUP BY on the left-hand side of the functional de-

pendency of interest and count the number of tuples associated with each one;

2. take those left-hand side values with a count greater than one and obtain the

cluster.

This can be easily done in a single nested query.

There is, however, one important disadvantage to this approach: clusters must be identi-

fied time and time again, and are not explicitly maintained. This means that, in situations

where a large portion of the table constitutes clean tuples (and we therefore have few

clusters), theO(|R|) operations associated with obtaining all clusters become quite costly

because they may entail actually going through the entire table.

75

3.8.2 Cluster Table

We now introduce a data structure that we call cluster table. For each fd ∈ F , we

maintain a cluster table focused on that one dependency. When relation R gets updated,

each FD’s associated cluster table must be updated. This section defines the cluster table

associated with an FD, how that cluster table gets updated, and how it can be employed to

efficiently apply an IMP. Note that even though we do not cover the application of multiple

policies, we assume that for each relation a set of cluster tables associated with F must be

maintained. Therefore, when a policy w.r.t. an FD is applied to a relation, the cluster tables

corresponding to other FDs in F might need to be updated as well. Moreover, we make

the assumption that the application of a policy can be done on a cluster-by-cluster basis,

i.e., applying a policy to a relation has the same effect as applying the policy to every

cluster independently. This is a rather important class of policies because (i) they are

intuitive from the user viewpoint, as they are easy to specify, and it is also easy to reason

about the effects they will have on the relations they are applied on; (ii) all repairing

strategies for functional dependency violations in the database research literature work in

this manner; (iii) they are easy to enforce in a policy specification language.

Definition 14 (Tuple group). Given a relation R and a set of attributes A ⊆ Attr(R), a

tuple group w.r.t. A is a maximal set g ⊆ R such that ∀t, t′ ∈ g, t[A] = t′[A].

We use groups(R,A) to denote the set of all tuple groups in R w.r.t. A, and M to

denote the maximum size of a group, i.e., M = maxg∈groups(R,A) |g|. The following result

shows that all clusters are groups, but not vice-versa.

Proposition 6. Given a relationR and a functional dependency fd defined overR, clusters(R, fd)

⊆ groups(R,LHS(fd)).

76

The reason a group may not be a cluster is because the FD may be satisfied by the

tuples in the group. In the cluster table approach, we store all groups associated with a

table together with an indication of whether the group is a cluster or not. When tuples are

inserted into the relation, or when they are deleted or modified, the cluster table can be

easily updated using procedures we will present shortly.

Definition 15 (Cluster table). Given a relationR and a functional dependency fd, a cluster

table w.r.t. (R, fd), denoted ct(R, fd) is a pair (G,D) where:

• G is a set containing, for each tuple group g ∈ groups(R,LHS(fd)) s.t. |g| > 1, a

tuple of the form (v,−→g , flag), where:

– v = t[LHS(fd)] where t ∈ g;

– −→g is a set of pointers to the tuples in g;

– flag is true iff g ∈ clusters(R, fd), false otherwise.

• D is a set of pointers to the tuples in R \
⋃
g∈groups(R,LHS(fd)),|g|>1 g;

• both G and D are sorted by LHS(fd).

Example 13. Consider the Flight relation in Fig. 3.2. This relation has the schema

Flight(Aline,FNo,Orig ,Dest ,Deptime,Arrtime) where dom(Aline) is a finite set of

airline codes, dom(FNo) is the set of all flight numbers, dom(Orig) and dom(Dest) are

the airport codes of all airports in the world, and dom(Deptime) and dom(Arrtime) is

the set of all times expressed in military time (e.g., 1425 hrs or 1700 hours and so forth).5

In this case, fd = Aline,FNo → Orig might be an FD that says that each (Aline,FNo)

pair uniquely determines an origin.

5For the sake of simplicity, we are not considering cases where flights arrive on the day after departure,
etc. – these can be accommodated through an expanded schema.

77

Figure 3.2: Example relation

It is easy to see that {t1, t2} and {t1, t3} are culprits w.r.t. (Flight, {fd}), and the only

cluster is {t1, t2, t3}. Moreover, {t1, t2, t3} is a group in groups(Flight, {Aline,FNo}),

as are {t4, t5} and {t6} – but {t4, t5} and {t6} are not clusters. For this relation, the

cluster table ct(Flight, fd) has the following form:

G = {((AF, 100), {−→t4 ,
−→
t5 }, false), ((BA, 299), {−→t1 ,

−→
t2 ,
−→
t3 }, true)}, D = {−→t6 }.

A graphical representation of ct(Flight, fd) is shown in Fig. 3.3.

Figure 3.3: Cluster table ct(Flight, fd). Shaded rows in G correspond to groups flagged
as clusters

A cluster table can be built through a simple procedure that, given an FD fd, iden-

tifies the clusters w.r.t. fd in a relation R by first sorting the tuples in R according to the

left-hand side of fd, then performing a linear scan of the ordered list of tuples.

Proposition 7. Given a relation R and a functional dependency fd defined over R, the

worst-case running time for building ct(R, fd) is O(|R| · log|R|).

78

Maintaining cluster tables

We now study how to update a cluster table for a relation R and a set fd under three kinds

of updates: (i) when a tuple is inserted into R, (ii) when a tuple is deleted from R, and

(iii) when a tuple in R is modified.

Insertion. Fig. 3.4 describes an algorithm for updating ct(R, fd) after inserting a new

tuple t in R. The algorithm starts by checking whether t belongs to a tuple group already

present in R (line 1) and, if this is the case, it (i) adds
−→
t to the corresponding entry in G

and (ii) checks if the group is a cluster (lines 3–6). If t does not already belong to a tuple

group, the algorithm checks whether it forms a new group when paired to a tuple pointed

to by D (line 8). If this is the case, it adds the new group to G (lines 9–11); otherwise, it

just adds
−→
t to D (line 13).

Algorithm CT-insert
Input: Relation R, functional dependency fd, cluster

table (G,D) = ct(R, fd), new tuple t

1 if ∃(t[LHS(fd)],−→g , flag) ∈ G then
2 add −→t to −→g
3 if flag = false then
4 pick the first

−→
t′ from −→g

5 if t[RHS(fd)] 6= t′[RHS(fd)] then
6 flag ← true
7 end-algorithm
8 if ∃

−→
t′ ∈ D s.t. t[LHS(fd)] = t′[LHS(fd)] then

9 remove
−→
t′ from D

10 add (t[LHS(fd)], {−→t ,
−→
t′ }, f lag) to G where

11 flag = true iff t[RHS(fd)] 6= t′[RHS(fd)]
12 end-algorithm
13 add −→t to D

Figure 3.4: Updating a cluster table after inserting a tuple

The following example shows how this algorithm works.

Example 14. Consider the cluster tables for Example 13 and suppose a new tuple t =

(AF, 100, CDG,LHR, 1100, 1200) is inserted into relation Flight. Algorithm CT-insert

79

first adds
−→
t to set −→g in the first row of the cluster table. Then, it picks

−→
t4 and, since

t[RHS(fd)] 6= t4[RHS(fd)], it assigns true to the flag of the first row. Now sup-

pose that the new tuple is t = (AF, 117, CDG,LHR, 1400, 1500). In this case, the

algorithm removes
−→
t6 from D and, since t[RHS(fd)] = t6[RHS(fd)], adds a new row

((AF, 117), {−→t ,−→t6 }, false) to G.

The following results ensure the correctness and complexity of CT-insert.

Proposition 8. Algorithm CT-insert terminates and correctly computes ct(R ∪ {t}, fd).

Proposition 9. The worst-case running time of Algorithm CT-insert is O(log(|G|) +

log(|D|)).

Deletion. Fig. 3.5 presents an algorithm for updating a cluster table ct(R, fd) after deleting

a tuple t from R. The algorithm checks whether t belongs to a tuple group (line 1) and, if

this is the case, it removes
−→
t from the corresponding entry in G and checks if the group

is a cluster (lines 3–4). Otherwise, it just removes
−→
t from D (line 6).

Algorithm CT-delete
Input: Relation R, functional dependency fd, cluster

table (G,D) = ct(R, fd), deleted tuple t

1 if ∃(t[LHS(fd)],−→g , flag) ∈ G then
2 remove −→t from −→g
3 if |−→g | = 1 then
4 remove (t[LHS(fd)],−→g , flag) from G
5 add −→g to D
6 else if flag = true and @−→t1 ,

−→
t2 ∈ −→g s.t.

t1[RHS(fd)] 6= t2[RHS(fd)] then
7 flag ← false
8 end-algorithm
9 remove −→t from D

Figure 3.5: Updating a cluster table after deleting a tuple

Example 15. Consider the cluster tables for Example 13 and suppose tuple t5 is removed

from relation Flight. Algorithm CT-delete first removes
−→
t5 from set −→g in the first row of

80

the cluster table. Then, since the group has been reduced to a singleton, it moves
−→
t to

set D and removes the first row from G. Now suppose that tuple t1 is removed from the

relation Flight. In this case, the algorithm removes
−→
t1 from set−→g in the second row of the

cluster table. As the group is no longer a cluster (t2 and t3 agree on the Orig attribute),

the algorithm sets the corresponding flag to false.

The following results specify the correctness and complexity of the CT-delete algo-

rithm.

Proposition 10. Algorithm CT-delete terminates and correctly computes ct(R \ {t}, fd).

Proposition 11. The worst-case running time of Algorithm CT-delete is O(log(|G|) +

log(|D|) +M).

Update. Fig. 3.6 shows an algorithm for updating a cluster table ct(R, fd) after updating

a tuple t to t′ in R (clearly,
−→
t =
−→
t′).

Algorithm CT-update
Input: Relation R, functional dependency fd, cluster

table (G,D) = ct(R, fd), tuples t, t′

1 if t[LHS(fd)] = t′[LHS(fd)] and t[RHS(fd)] = t′[RHS(fd)] then
2 end-algorithm
3 if t[LHS(fd)] = t′[LHS(fd)] and ∃(t[LHS(fd)],−→g , flag) ∈ G then
4 if flag = true and @

−→
t′′ ∈ −→g s.t. t′[RHS(fd)] 6= t′′[RHS(fd)] then

5 flag ← false
6 end-algorithm
7 if flag = false then
8 pick the first

−→
t′′ from −→g

9 if t′[RHS(fd)] 6= t′′[RHS(fd)] then
10 flag ← true
11 end-algorithm
12 if t[LHS(fd)] = t′[LHS(fd)] then
13 end-algorithm
14 execute CT-delete with t
15 execute CT-insert with t′

Figure 3.6: Updating a cluster table after updating a tuple

The algorithm first checks whether anything regarding fd has changed in the update

(lines 1–2). If this is the case and t belongs to a group (line 3), the algorithm checks if

81

the group was a cluster whose inconsistency has been removed by the update (lines 4–6)

or the other way around (lines 7-11). At this point, as t does not belong to any group and

the values of the attributes in the left-hand side of fd did not change, the algorithm ends

(lines 12–13) because this means that the updated tuple simply remains in D. If none of

the above conditions apply, the algorithm simply calls CT-delete and then CT-insert.

Example 16. Consider the cluster table for the flight example (Example 13). Suppose

the value of the Orig attribute of tuple t1 is changed to LGW . Tuple t1 belongs to the

group represented by the second row in G, which is a cluster. However, after the update

to t, no two tuples in the group have different values of Orig, and thus Algorithm CT-

update changes the corresponding flag to false. Now suppose the value of the Orig

attribute of tuple t5 is changed to LGW . In this case, the algorithm picks
−→
t4 and, since

t4[RHS(fd)] 6= t5[RHS(fd)], it assigns true to the flag of the second row.

The following results specify the correctness and complexity of CT-update.

Proposition 12. Algorithm CT-update terminates and correctly computes ct(R \ {t} ∪

{t′}, fd).

Proposition 13. The worst-case running time of Algorithm CT-update is O(log(|G|) +

log(|D|) +M).

Applying cluster tables to compute IMPs

We now show how to use the cluster table to compute an IMP over an RKB with an

FD. Fig. 3.7 shows the proposed algorithm. For each cluster inG, procedure apply(γfd,
−→g)

applies policy γfd to the set of tuples −→g . As a consequence of this, depending on the na-

ture of the policy, some tuples in −→g might be deleted or updated according to what the

policy determines. Therefore, changes keeps the list on changes performed by the policy

82

in a cluster. After applying the IMP, the algorithm updates the cluster table in order to

preserve its integrity; it checks whether all the inconsistencies have been removed (lines

3–4) and whether the cluster has been reduced to a single tuple (lines 5–7). The first

check is necessary so the flag can be updated and future applications of a policy do not

need to consider that group if it is no longer a cluster; in the latter case, the pointer is

moved from G to D since that tuple is no longer in conflict with any other tuple w.r.t.

fd. Finally, the changes performed by the policy are propagated to the rest of the cluster

tables for relation R. That is, for every other functional dependency in F either CT-delete

or CT-update are called on the corresponding cluster table depending on the nature of the

change.

Algorithm CT-applyIMP
Input: Relation R, functional dependency fd, cluster table (G,D) = ct(R, fd), IMP γfd

1 for all (v,−→g , true) ∈ G
2 changes ← apply(γfd,

−→g)

3 if @−→t1 ,
−→
t2 ∈ −→g s.t. t1[RHS(fd)] 6= t2[RHS(fd)] then

4 flag ← false
5 if |−→g | = 1 then
6 remove (v,−→g , true) from G
7 add −→g to D
8 for all fd′ ∈ F and fd’ 6= fd
9 let (G′, D′) be the cluster table associated with fd′

10 for all change ch ∈ changes

11 if ch = delete(t ,R) then CT-delete(R, fd′, (G′, D′), t)

12 if ch = update(t , t ′,R) then CT-update(R, fd′, (G′, D′), t, t′)

Figure 3.7: Applying an IMP using a cluster table

The following results show the correctness and complexity of the CT-applyIMP algorithm.

Proposition 14. Algorithm CT-applyIMP terminates and correctly computes γfd(R) and

ct(γfd(R), fd).

Proposition 15. The worst-case time complexity of CT-applyIMP is O(|G| · (poly(M) +

log|D|+ |F| · |M | · (log|G′|+ log|D′|+ M ′))), where G′ (resp. D′) is the largest set G

(resp. D) among all cluster tables, and M ′ is the maximum M among all cluster tables.

83

In the next section we will present the results of our experimental evaluation of

cluster tables vs. the DBMS-based approach discussed above.

3.8.3 Experimental Evaluation

Our experiments measure the running time performance of applying IMPs using

cluster tables; moreover, we analyzed the required storage space on disk. We compared

these measures with those obtained through the use of a heavily optimized DBMS-based

index. The parameters varied were the size of the database and the amount of inconsis-

tency present.

Our prototype JAVA implementation consists of roughly 9,000 lines of code, relying

on Berkeley DB Java Edition6 database for implementation of our disk-based index struc-

tures. The DBMS-based index was implemented on top of PostgreSQL version 7.4.16;

a B-Tree index (PostgreSQL does not currently allow hash indexes on more than one at-

tribute) was defined for the LHS of each functional dependency. All experiments were

run on multiple multi-core Intel Xeon E5345 processors at 2.33GHz, 8GB of memory,

running the Scientific Linux distribution of the GNU/Linux operating system (our im-

plementation makes use of only 1 processor and 1 core at a time, the cluster is used for

multiple runs). The numbers reported are the result of averaging between 5 and 50 runs

to minimize experimental error. All tables had 15 attributes and 5 functional dependen-

cies associated with them. Tables were randomly generated with a certain percentage

of inconsistent tuples7 divided in clusters of 5 tuples each. The cluster tables were im-

plemented on top of BerkeleyDB; for each table, both G and D were kept in the hash

structures provided by BerkeleyDB.

6http://www.oracle.com/database/berkeley-db/je/index.html
7Though of course tuples themselves are not inconsistent, we use this term to refer to tuples that are

involved in some inconsistency, i.e., belong to a cluster.

84

Fig. 3.8 shows comparisons of policy application times when varying the size of

the database and the percentage of inconsistent tuples. The operation carried out was the

application of a value-based policy that replaces the right-hand side of tuples in a cluster

with the median value in the cluster; this policy was applied to all clusters in the table.

20

30

40

50

60

P
o

li
cy

 a
p

p
li
ca

ti
o

n
 t

im
e

 (
se

co
n

d
s)

DBMS index

Cluster tables

DBMS index

Cluster tables

0

10

20

30

40

50

60

1M 2M

P
o

li
cy

 a
p

p
li
ca

ti
o

n
 t

im
e

 (
se

co
n

d
s)

1% inc. 1% inc.3% inc. 3% inc.5% inc. 4% inc.

DBMS index

Cluster tables

0.1% inc. 0.1% inc.2% inc. 2% inc. 5% inc.

DBMS index

Cluster tables

4% inc.

Figure 3.8: Average policy application times for (i) 1M and 2M tuples and (ii) varying
percentage of inconsistency

We can see that the amount of inconsistency clearly affected the cluster table-based

approach more than it did the DBMS-based index. For the runs with less than 3% incon-

sistent tuples, the cluster table outperformed the DBMS-based approach (in particular, in

the case of a database with 2 million tuples and 0.1% inconsistency, applying the policy

took 2.12 seconds with the cluster table and 27.56 seconds with the DBMS index). This is

due to the fact that relatively few clusters are present and thus many tuples can be ignored,

while the DBMS index must process all of them. Overall, our experiments suggest that

under about 3% inconsistency the cluster table approach is able to provide much better

performance in the application of IMPs. Further experiments with 0.1% inconsistency

(Fig. 3.9) show that the cluster table approach remains quite scalable over much larger

databases, while the performance of the DBMS index degrades quickly – for a database

with 5 millon tuples, applying the policy took 3.7 seconds with the cluster table and 82.9

seconds with the DBMS index.

85

20

30

40

50

60

70

80

P
o

li
cy

 a
p

p
li

ca
ti

o
n

 t
im

e
 (

se
co

n
d

s)

DBMS index

Cluster tables

DBMS index

Cluster tables

0

10

20

30

40

50

60

70

80

1M 2M 5M

P
o

li
cy

 a
p

p
li

ca
ti

o
n

 t
im

e
 (

se
co

n
d

s)

DBMS index

Cluster tables

DBMS index

Cluster tables

Figure 3.9: Average policy application times for 0.1 percentage of inconsistency for tables
from 1M to 5M tuples

Fig. 3.10 shows comparisons of disk footprints when varying the size of the database

and the percentage of inconsistent tuples – note that the numbers reported include the

sizes of the structures needed to index all of the functional dependencies used in the ex-

periments.

1000

1500

2000

2500

3000

3500

D
is

k
 f

o
o

tp
ri

n
t

(M
B

)

DBMS index

Cluster tables

0

500

1000

1500

2000

2500

3000

3500

1M 2M

D
is

k
 f

o
o

tp
ri

n
t

(M
B

)

0.1% inc. 0.1% inc.1% inc. 3% inc.5% inc. 5% inc.

DBMS index

Cluster tables

2% inc. 3% inc. 4% inc. 1% inc. 2% inc. 4% inc.

Figure 3.10: Disk footprint for (i) 1M and 2M tuples and (ii) varying percentage of in-
consistency

In this case, the cluster table approach provides a smaller footprint with respect to

the DBMS index in all cases except when 0.1% inconsistency is present. In the case of a

86

database with 2 million tuples and 5% inconsistency, the cluster tables size was 63% of

that of the DBMS index.8

In performing update operations, the cluster table approach performed at most 1

order of magnitude worse than the DBMS index. This result is not surprising since

these kinds of operations are the specific target of DBMS indexes, which are thus able

to provide extremely good performance in these cases (e.g., 2 seconds for 1,000 update

operations over a database containing 2 million tuples).

Overall, our evaluation showed that the cluster table approach is capable of provid-

ing very good performance in scenarios where 1%-3% inconsistency is present, which

are extremely common [BFFR05]. For lower inconsistency, the rationale behind this ap-

proach becomes even more relevant and makes the application of IMPs much faster.

3.9 Concluding Remarks

None of the past approaches to inconsistency management is capable of handling

cases C3, C4, C5, and C6 presented in the Introduction because past approaches adhere

to three important tenets: first, that no “new” data should be introduced into the database;

second, that as much of the original data as possible should be retained, and third, that

consistency must be restored.

Though we agree these are sometimes desirable goals, the fact remains that users

in specific application domains often know a lot more about the intricacies of their data

than a database designer who has never seen the data. In many of these cases, the end-

user wants to resolve inconsistencies by taking (i) his knowledge of the data into account

(which the DB designer has no chance of knowing a priori) and (ii) his mission risk into

8In addition, we point out that our current implementation is not yet optimized for an intelligent use of
disk space, as the DBMS is.

87

account — which also the DB designer has no chance of knowing a priori. Tools for

managing inconsistent data today do not support such users.

For example, there are many cases where end-users might actually want to introduce

“seemingly new” data – in case C3 and C4, the user wants to take an average or weighted

average of salaries. This may be what the user or his company determines is appropriate

for his application domain. Should he be stopped from doing this by database designers

who do not know the application a priori? No.

Likewise, consider case C6. When conducting a scientific experiment (biological,

atmospheric, etc.), inconsistent data might be collected for any number of reasons (faulty

measurements, incorrectly mixed chemicals, environmental factors). Should the results

of the experiments be based on dirty data? Some scientists at least would argue “No”

(perhaps for some experiments) and eliminate the dirty data and repeat all, or parts, of

the experiment. Databases should provide support for decisions users want to make, not

make decisions for them that users don’t like.

In response to these needs, we introduced in this work the concept of inconsis-

tency management policies as functions satisfying a minimal set of axioms. We proposed

several IMPs families that satisfy these axioms, and study relations between them in the

simplified case where only one functional dependency is present. We show that when

multiple FDs are present, multiple alternative semantics can result. We introduced new

versions of the relational algebra that are augmented by inconsistency management poli-

cies that are applied either before the operator or after. We develop theoretical results on

the resulting extended relational operators that could, in principle, be used in the future

for query optimization. Furthermore, we propose different approaches for implementing

an IMP-based framework and show that it is versatile, can be implemented based on the

needs and resources of the user and, according to our theoretical and experimental results,

88

the associated algorithms incur reasonable costs. As a consequence, IMPs are a power-

ful tool for end users to express what they wish to do with their data, rather than have a

system manager or a DB engine that does not understand their domain problem to dictate

how they should handle inconsistencies in their data.

89

Chapter 4

A General Framework for Reasoning about

Inconsistency

The work presented in this chapter is taken from [MM+11].

4.1 Introduction

Inconsistency management, as reviewed in Chapter 1 has been intensely studied in

various parts of AI, often in slightly disguised form [Gar88a, PL92, Poo85, RM70]. All

the excellent works described in 1 provide an a priori conflict resolution mechanism. A

user who uses a system based on these papers is forced to use the semantics implemented

in the system, and has little say in the matter (besides which most users querying KBs are

unlikely to be experts in even classical logic, let alone default logics and argumentation

methods).

The aims of this chapter are:

1. to propose a unified framework for reasoning about inconsistency, which captures

existing approaches as a special case and provides an easy basis for comparison;

90

2. to apply the framework using any monotonic logic, including ones for which in-

consistency management has not been studied before (e.g., temporal, spatial, and

probabilistic logics), and provide new results on the complexity of reasoning about

inconsistency in such logics;

3. to allow end-users to bring their domain knowledge to bear, allowing them to voice

an opinion on what works for them, not what a system manager decided was right

for them, in other words, to take into account the preferences of the end-user;

4. to propose the concept of an option that specifies the semantics of an inconsistent

theory in any of these monotonic logics and the notion of a preferred option that

takes the user’s domain knowledge into account; and

5. to propose general algorithms for computing the preferred options.

We do this by building upon Alfred Tarski and Dana Scott’s celebrated notion of an

abstract logic. We start with a simple example to illustrate why conflicts can often end

up being resolved in different ways by human beings, and why it is important to allow

end-users to bring their knowledge to bear when a system resolves conflicts. A database

system designer or an AI knowledge base designer cannot claim to understand a priori

the specifics of each application that his knowledge base system may be used for in the

future.

Example 17. Suppose a university payroll system says that John’s salary is 50K, while

the university personnel database says it is 60K. In addition, there may be an axiom that

says that everyone has exactly one salary. One simple way to model this is via the theory

91

S below.

salary(John, 50K) ← (4.1)

salary(John, 60K) ← (4.2)

S1 = S2 ← salary(X,S1) ∧ salary(X,S2). (4.3)

The above theory is obviously inconsistent. Suppose (4.3) is definitely known to be true.

Then, a bank manager considering John for a loan may choose the 50K number to de-

termine the maximum loan amount that John qualifies for. On the other hand, a national

tax agency may use the 60K figure to send John a letter asking him why he underpaid his

taxes.

Neither the bank manager nor the tax officer is making any attempt to find out the

truth (thus far); however, both of them are making different decisions based on the same

facts.

The following examples present theories expressed in different logics which are

inconsistent – thus the reasoning that can be done is very limited. We will continue these

examples later on to show how the proposed framework is suitable for handling all these

scenarios in a flexible way.

Example 18. Consider the temporal logic theory T below. The© operator denotes the

“next time instant” operator. Thus, the first rule says that if received is true at time

t (intuitively, a request is received at time t), then processed is true at time t + 1 (the

92

request is processed at the next time point).

©processed ← received. (4.4)

received. (4.5)

©¬processed. (4.6)

Clearly, the theory is inconsistent. Nevertheless, there might be several options that a

user might consider to handle it: for instance, one might replace the first rule with a

“weaker” one stating that if a request is received, it will be processed sometime in the

future, not necessarily at the next time point.

Example 19. Consider the probabilistic logic theory P consisting of three formulas

p : [0.3, 0.4], p : [0.41, 0.43], p : [0.44, 0.6]. In general, the formula p : [`, u] says

that the probability of proposition p lies in the interval [`, u]. The theory is easily seen to

be inconsistent under this informal reading. A user might choose to resolve the inconsis-

tency in different ways, such as by discarding a minimal set of formulas or modifying the

probability intervals as little as possible.

The rest of this chapter proceeds as follows. In Section 4.2, we recall Tarski’s notion

of what an abstract logic is [Tar56]. Then, in Section 4.3, we define our general frame-

work for reasoning about inconsistency for any Tarskian logic. In Section 4.4, we develop

general algorithms to compute preferred options based on various types of assumptions.

In Section 4.5, we show applications of our framework to several monotonic logics for

which no methods to reason about inconsistency exist to date - these logics include proba-

bilistic logics [Hal90, Nil86a], linear temporal logic of the type used extensively in model

checking [Eme90, GPSS80], fuzzy logic, Levesque’s logic of belief [Lev84] and spatial

logic captured via the region connection calculus [RCC92]. In many of these cases, we

93

are able to establish new results on the complexity of reasoning about inconsistency in

such logics. In Section 4.6, we show how certain existing works can be captured in our

general framework.

4.2 Tarski’s Abstract Logic

Alfred Tarski [Tar56] defines an abstract logic as a pair (L,CN) where the members

of L are called well-formed formulas, and CN is a consequence operator. CN is any

function from 2L (the powerset of L) to 2L that satisfies the following axioms (here X is

a subset of L):

1. X ⊆ CN(X) (Expansion)

2. CN(CN(X)) = CN(X) (Idempotence)

3. CN(X) =
⋃
Y⊆fX CN(Y) (Finiteness)

4. CN({x}) = L for some x ∈ L (Absurdity)

Notation: Y ⊆f X means that Y is a finite subset of X .

Intuitively, CN(X) returns the set of formulas that are logical consequences of X accord-

ing to the logic in question. It can be easily shown from the above axioms that CN is a

closure operator, that is, for any X,X ′, X ′′ ⊆ L, CN enjoys the following properties:

5. X ⊆ X ′ ⇒ CN(X) ⊆ CN(X ′). (Monotonicity)

6. CN(X) ∪ CN(X ′) ⊆ CN(X ∪X ′).

7. CN(X) = CN(X ′)⇒ CN(X ∪X ′′) = CN(X ′ ∪X ′′).

94

Almost all well-known monotonic logics (such as propositional logic [Sho67], first

order logic [Sho67], modal logic, temporal logic, fuzzy logic, probabilistic logic [FHM90],

etc.) can be viewed as special cases of Tarski’s notion of an abstract logic. AI introduced

non-monotonic logics [Bob80] which do not satisfy the monotonicity property.

Once (L,CN) is fixed, a notion of consistency arises as follows.

Definition 16 (Consistency). Let X ⊆ L. X is consistent w.r.t. the logic (L,CN) iff

CN(X) 6= L. It is inconsistent otherwise.

The previous definition says thatX is consistent iff its set of consequences is not the

set of all formulas. For any abstract logic (L,CN), we also require the following axiom

to be satisfied:

8. CN(∅) 6= L (Coherence)

The coherence requirement (absent from Tarski’s original proposal, but added here to

avoid considering trivial systems) forces the empty set ∅ to always be consistent - this

makes sense for any reasonable logic as saying emptiness should intuitively be consistent.

It can be easily verified that if a set X ⊆ L is consistent, then its closure under

CN is consistent as well as any subset of X . Moreover, if X is inconsistent, then every

superset of X is inconsistent.

4.3 A General Framework for Handling Inconsistency

This section proposes a general framework for handling inconsistency under any

monotonic logic. Basically, our approach to reason with an inconsistent knowledge base

(KB) is a process which follows three steps:

1. Determining consistent “subbases”;

95

2. Selecting among all the subbases the ones that are preferred;

3. Applying entailment on the preferred subbases.

Throughout the rest of this chapter, we assume that we have an arbitrary, but fixed mono-

tonic logic (L,CN).

The basic idea behind our framework is to construct what we call options, and then

to define a preference relation on these options. The preferred options are intended to

support the conclusions to be drawn from the inconsistent knowledge base. Intuitively, an

option is a set of formulas that is both consistent and closed w.r.t. consequence in logic

(L,CN).

Definition 17 (Options). An option is any set O of elements of L such that:

• O is consistent.

• O is closed, i.e., O = CN(O).

We use Opt(L) to denote the set of all options that can be built from (L,CN).

Note that the empty set is not necessarily an option. This depends on the value of

CN(∅) in the considered logic (L,CN). For instance, in propositional logic, it is clear that

∅ is not an option since all the tautologies will be inferred from it. Indeed, it is easy to see

that ∅ is an option iff CN(∅) = ∅.

Clearly, for each consistent subset X of L, it holds that CN(X) is an option (as

CN(X) is consistent and Idempotence axiom entails that CN(X) is closed). Since we are

considering generic logic, we can show that options do not always exist.

Proposition 16. The set Opt(L) = ∅ iff

1. ∀ψ ∈ L, CN({ψ}) is inconsistent, and

96

2. CN(∅) 6= ∅.

Proof. (⇒) Let us assume that Opt(L) = ∅. Let us also assume by contradiction that

∃ψ ∈ L such that CN({ψ}) is consistent. Since CN({ψ}) is closed by the Idempotence

axiom, CN({ψ}) is an option, which is a contradiction.

Assume now that CN(∅) = ∅. This means that ∅ is an option since it is closed and consis-

tent (CN(∅) 6= L), which is a contradiction.

(⇐) Let us assume that i) ∀ψ ∈ L, CN({ψ}) is inconsistent, and ii) CN(∅) 6= ∅.

Assume also by contradiction that Opt(L) 6= ∅ and let O ∈ Opt(L). There are two cases:

Case 1: O = ∅. Consequently, CN(∅) = ∅, which contradicts assumption ii).

Case 2: O 6= ∅. Since O is consistent, ∃ψ ∈ O s.t. {ψ} is consistent and thus CN({ψ})

is consistent. This contradicts assumption i).

So far, we have defined the concept of option for any logic (L,CN) in a way that is

independent of a knowledge base. We now show how to associate a set of options with an

inconsistent knowledge base.

In most approaches for handling inconsistency, the maximal consistent subsets of a

given inconsistent knowledge base have an important role. This may induce one to think

of determining the options of a knowledge base as the closure of its maximal consistent

subsets. However, this approach has the side effect of dropping entire formulas, whereas

more fine-grained approaches could be adopted in order to preserve more information of

the original knowledge base. This is shown in the following example.

Example 20. Consider the propositional knowledge base K = {(a ∧ b);¬b}. There are

two maximal consistent subsets, namelyMCS1 = {a ∧ b} andMCS2 = {¬b}. However,

97

one could argue that MCS2 is too weak, since we could have included a by “weakening”

the formula (a ∧ b) instead of dropping it altogether.

The “maximal consistent subset” approach, as well as the one suggested in the

previous example, can be seen as a particular case of a more general approach, where

one considers consistent “relaxations” (or weakenings) of a given inconsistent knowledge

base. The ways in which such weakenings are determined might be different, as the

following examples show.

Example 21. Consider again the temporal knowledge base of Example 18. An intuitive

way to “weaken” the knowledge base might consist of replacing the © (next moment

in time) connective with the ♦ (sometime in the future) connective. So, for instance,

©processed← received might be replaced by ♦processed← received, thus saying that

if received is true at time t, then processed is true at some subsequent time t′ ≥ t (not

necessarily at time t+ 1). This would lead to a consistent knowledge base, whose closure

is clearly an option. Likewise, we might weaken only (4.6), obtaining another consistent

knowledge base whose closure is an option.

Example 22. Consider the probabilistic knowledge base of Example 19. A reasonable

way to make a probabilistic formula φ : [`, u] weaker, might be to replace it with another

formula φ : [`′, u′] where [`, u] ⊆ [`′, u′].

The preceding examples suggest that a flexible way to determine the options of a

given knowledge base should be provided, since what is considered reasonable to be an

option might depend on the logic and the application domain at hand, and, more impor-

tantly, it should depend on the user’s preferences. The basic idea is to consider weakenings

of a given knowledge base K whose closures yield options. For instance, as said before,

weakenings might be subsets of the knowledge base. Although such a weakening mecha-

98

nism is general enough to be applicable to many logics, more tailored mechanisms could

be defined for specific logics. For instance, the two reasonable approaches illustrated

in Example 21 and 22 above cannot be captured by considering subsets of the original

knowledge bases; as another example, let us reconsider Example 20: by looking at sub-

sets of the knowledge base, it is not possible to get an option containing both a and ¬b.

We formally introduce the notion of weakening as follows.

Definition 18. Given an element ψ of L,

weakening(ψ) =

 CN({ψ}) if ψ is consistent

∅ otherwise

Definition 19. Given a knowledge base K,

weakening(K) = {K′ | ∀ψ′∈K′ (∃ψ ∈ K. ψ′ ∈ weakening(ψ))}

According to the preceding definitions, to weaken a knowledge base intuitively

means to weaken formulas in it; to weaken a formula ψ means to take some formulas

in CN({ψ}) if ψ is consistent, or to otherwise drop ψ altogether (note that a consis-

tent formula could also be dropped). weakening(K) can be computed by first finding

weakening(ψ) for all ψ ∈ K and then returning the subsets of
⋃
ψ∈K weakening(ψ). It

is easy to see that if K′ ∈ weakening(K), then CN(K′) ⊆ CN(K).

Observe that although a knowledge base in weakening(K) does not contain any

inconsistent formulas, it could be inconsistent.

Definition 20. A weakening mechanism is a functionW : 2L → 22L such thatW(K) ⊆

weakening(K) for any K ∈ 2L.

99

The preceding definition says that a weakening mechanism is a function that maps

a knowledge base into knowledge bases that are weaker in some sense. For instance,

an example of a weakening mechanism is W(K) = weakening(K). This returns all

the weaker knowledge bases associated with K. We use Wall to denote this weakening

mechanism.

We now define the set of options for a given knowledge base (w.r.t. a selected weak-

ening mechanism).

Definition 21. Let K be a knowledge base in logic (L,CN) andW a weakening mecha-

nism. We say that an option O ∈ Opt(L) is an option for K (w.r.t. W) iff there exists K′

inW(K) such that O = CN(K′).

Thus, an option for K is the closure of some weakening K′ of K. Clearly, K′ must

be consistent because O is consistent (by virtue of being an option) and because O =

CN(K′). In other words, the options for K are the closure of consistent weakenings of K.

We use Opt(K,W) to denote the set of options forK under the weakening mechanismW .

WheneverW is clear from the context, we simply write Opt(K) instead of Opt(K,W).

Note that if we restrictW(K) to be {K′ | K′ ⊆ K}, Definition 21 corresponds to that

presented in [SA07] (we will refer to such a weakening mechanism asW⊆). Moreover,

observe that every option for a knowledge base w.r.t. this weakening mechanism is also

an option for the knowledge base when Wall is adopted, that is, the options obtained in

the former case are a subset of those obtained in the latter case.

Example 23. Consider again the knowledge base of Example 20 and let Wall be the

adopted weakening mechanism. Our framework is flexible enough to allow to have the

set CN({a,¬b}) as an option for K. This weakening mechanism preserves more informa-

tion from the original knowledge base than the classical “maximal consistent subsets”

approach.

100

In Section 4.5 we will consider specific monotonic logics and show more tailored

weakening mechanisms.

The framework for reasoning about inconsistency has three components: the set

of all options for a given knowledge base, a preference relation between options, and an

inference mechanism.

Definition 22 (General framework). A general framework for reasoning about inconsis-

tency in a knowledge base K is a triple 〈Opt(K,W),�, |∼ 〉 such that:

• Opt(K,W) is the set of options for K w.r.t. the weakening mechanismW .

• � ⊆ Opt(K,W)× Opt(K,W). � is a partial (or total) preorder (i.e., it is reflexive

and transitive).

• |∼ : 2Opt(K,W)→ Opt(L).

The second important concept of the general framework above is the preference

relation � among options. Indeed, O1 � O2 means that the option O1 is at least as

preferred as O2. This relation captures the idea that some options are better than oth-

ers because, for instance, the user has decided that this is the case, or because those

preferred options satisfy the requirements imposed by the developer of a conflict man-

agement system. For instance, in Example 17, the user chooses certain options (e.g.,

the options where the salary is minimal or where the salary is maximal based on his

needs). From the partial preorder � we can derive the strict partial order � (i.e., it is

irreflexive and transitive) over Opt(K,W) as follows: for any O1,O2 ∈ Opt(K,W) we

say O1 � O2 iff O1 � O2 and O2 6� O1. Intuitively, O1 � O2 means that O1 is

strictly preferable to O2. The set of preferred options in Opt(K,W) determined by � is

Opt�(K,W) = {O | O ∈ Opt(K,W) ∧ @O′ ∈ Opt(K,W) with O′ � O}. Whenever

W is clear from the context, we simply write Opt�(K) instead of Opt�(K,W).

101

In the following three examples, we come back to the example theories of Sec-

tion 4.1 to show how our framework can handle them.

Example 24. Let us consider again the knowledge base S of Example 17. Consider the

optionsO1 = CN({(1), (3)}),O2 = CN({(1), (2)}),O3 = CN({(2), (3)}), and let us say

that these three options are strictly preferable to all other options for S; then, we have

to determine the preferred options among these three. Different criteria might be used to

determine the preferred options:

• Suppose the score sc(Oi) of option Oi is the sum of the elements in the multiset

{S | salary(John, S) ∈ Oi}. In this case, the score of O1 is 50K, that of O2

is 110K, and that of O3 is 60K. We could now say that Oi � Oj iff sc(Oi) ≤

sc(Oj). In this case, the only preferred option isO1, which corresponds to the bank

manager’s viewpoint.

• On the other hand, suppose we say that Oi � Oj iff sc(Oi) ≥ sc(Oj). In this case,

the only preferred option is O2; this corresponds to the view that the rule saying

everyone has only one salary is wrong (perhaps the database has John being paid

out of two projects simultaneously and 50K of his salary is charged to one project

and 60K to another).

• Now consider the case where we change our scoring method and say that sc(Oi) =

min{S | salary(John, S) ∈ Oi}. In this case, sc(O1) = 50K, sc(O2) =

50K, sc(O3) = 60K. Let us suppose that the preference relation says thatOi � Oj

iff sc(Oi) ≥ sc(Oj). Then, the only preferred option is O3, which corresponds ex-

actly to the tax agency’s viewpoint.

Example 25. Let us consider the temporal logic theory T of Example 18. We may choose

to consider just three options for determining the preferred ones: O1 = CN({(4.4), (4.5)}),

102

O2 = CN({(4.4), (4.6)}), O3 = CN({(4.5), (4.6)}). Suppose now that we can associate

a numeric score with each formula in T , describing the reliability of the source that pro-

vided the formula. Let us say these scores are 3, 1, and 2 for formulas (4.4), (4.5) and

(4.6), respectively, and the weight of an optionOi is the sum of the scores of the formulas

in T ∩ Oi. We might say Oi � Oj iff the score ofOi is greater than or equal to the score

of Oj . In this case, the only preferred option is O2.

Example 26. Consider the probabilistic logic theory P of Example 19. Suppose that

in order to determine the preferred options, we consider only options that assign a single

non-empty probability interval to p, namely options of the form CN({p : [`, u]}). For

two atoms A1 = p : [`1, u1] and A2 = p : [`2, u2], let diff(A1, A2) = abs(`1 − `2) +

abs(u1−u2). Let us say that the score of an optionO = CN({A}), denoted by score(O),

is given by
∑

A′∈P diff(A,A′). Suppose we say that Oi � Oj iff score(Oi) ≤ score(Oj).

Intuitively, this means that we are preferring options that change the lower and upper

bounds in P as little as possible. In this case, CN({p : [0.41, 0.43]}) is a preferred

option.

Thus, we see that our general framework for managing inconsistency is very pow-

erful - it can be used to handle inconsistencies in different ways based upon how the

preference relation between options is defined. In Section 4.5, we will consider more

logics and illustrate more examples showing how the proposed framework is suitable for

handling inconsistency in a flexible way.

The following definition introduces a preference criterion where an option is prefer-

able to another if and only if the latter is a weakening of the former.

Definition 23. Consider a knowledge base K and a weakening mechanism W . Let

O1,O2 ∈ Opt(K,W). We say O1�WO2 iff O2 ∈ weakening(O1).

103

Proposition 17. Consider a knowledge base K and a weakening mechanism W . Let

O1,O2 ∈ Opt(K,W). O1�WO2 iff O1 ⊇ O2.

Proof. (⇒) Let ψ2 ∈ O2. By definition of �W , there exists ψ1 ∈ O1 s.t. ψ2 ∈

weakening(ψ1); that is ψ2 ∈ CN({ψ1}). Since {ψ1} ⊆ O1, it follows that CN({ψ1}) ⊆

O1 (by Monotonicity and the fact that O1 is closed). Hence, ψ2 ∈ O1.

(⇐) Let ψ2 ∈ O2. Clearly, ψ2 ∈ weakening(ψ2), since ψ2 is consistent and ψ2 ∈

CN({ψ2}) (Expansion axiom). As ψ2 ∈ O1, the condition expressed in Definition 19

trivially holds and O1�WO2.

The following corollary states that �W is indeed a preorder (in particular, a partial

order).

Corollary 2. Consider a knowledge base K and a weakening mechanism W . �W is a

partial order over Opt(K,W).

Proof. Straightforward from Proposition 17.

If the user’s preferences are expressed according to �W , then the preferred options

are the least weak or, in other words, in view of Proposition 17, they are the maximal ones

under set inclusion.

The third component of the framework is a mechanism for selecting the inferences

to be drawn from the knowledge base. In our framework, the set of inferences is itself an

option. Thus, it should be consistent. This requirement is of great importance, since it

ensures that the framework delivers safe conclusions. Note that this inference mechanism

returns an option of the language from the set of options for a given knowledge base. The

set of inferences is generally computed from the preferred options. Different mechanisms

104

can be defined for selecting the inferences to be drawn. Here is an example of such a

mechanism.

Definition 24 (Universal Consequences). Let 〈Opt(K,W),�, |∼ 〉 be a framework. A

formula ψ ∈ L is a universal consequence of K iff (∀O ∈ Opt�(K,W))ψ ∈ O.

We can show that the set of inferences made using the universal criterion is itself an

option ofK, and thus the universal criterion is a valid mechanism of inference. Moreover,

it is included in every preferred option.

Proposition 18. Let 〈Opt(K,W),�, |∼ 〉 be a framework. The set {ψ | ψ is a universal

consequence of K} is an option in Opt(L).

Proof. Let C = {ψ | ψ is a universal consequence of K}. As each Oi ∈ Opt�(K,W) is

an option, Oi is consistent. Thus, C (which is a subset of every Oi) is also consistent.

Moreover, since C ⊆ Oi, thus CN(C) ⊆ Oi (by Monotonicity and Idempotence axioms),

∀Oi ∈ Opt�(K,W). Consequently, CN(C) ⊆ C (according to the above definition of

universal consequences). In particular, CN(C) = C because of the expansion axiom.

Thus, C is closed and consistent, and is therefore an option in Opt(L).

However, the following criterion

K |∼ψ iff ∃O ∈ Opt�(K,W) such that ψ ∈ O

is not a valid inference mechanism since the set of consequences returned by it may be

inconsistent, thus, it is not an option.

105

4.4 Algorithms

In this section, we present general algorithms for computing the preferred options

for a given knowledge base. Throughout this section, we assume that CN(K) is finite for

any knowledge base K. The preferred options could be naively computed as follows.

procedure CPO-Naive(K,W ,�)

1. Let X = {CN(K′) | K′ ∈ W(K) ∧ K′ is consistent}

2. Return any O ∈ X s.t. there is no O′ ∈ X s.t. O′ � O

Clearly, X is the set of options for K. Among them, the algorithm chooses the

preferred ones according to �. Note that CPO-Naive, as well as the other algorithms

we present in the following, relies on the CN operator, which makes the algorithm in-

dependent of the underlying logic; in order to apply the algorithm to a specific logic it

suffices to provide the definition of CN for that logic. One reason for the inefficiency

of CPO-Naive is that it makes no assumptions about the weakening mechanism and the

preference relation.

The next theorem identifies the set of preferred options for a given knowledge base

when Wall and �W are the weakening mechanism and the preference relation, respec-

tively.

Theorem 12. Consider a knowledge base K. LetWall and �W be the weakening mecha-

nism and preference relation, respectively, that are used. Let Φ =
⋃
ψ∈K weakening(ψ).

Then, the set of preferred options for K is equal to PO where

PO = {CN(K′) | K′ is a maximal consistent subset of Φ}

106

Proof. First, we show that any O ∈ PO is a preferred option for K. Let K′ be a maximal

consistent subset of Φ s.t. O = CN(K′). It is easy to see that K′ is inWall(K). Since K′

is consistent and O = CN(K′), then O is an option for K. Suppose by contradiction that

O is not preferred, i.e., there exists an optionO′ forK s.t. O′ � O. Proposition 17 entails

that O′ ⊃ O. Since O′ is an option for K, then there exists a weakeningW ′ ∈ Wall(K)

s.t. O′ = CN(W ′). There must be a formula ψ′ ∈ W ′ which is not in O (hence ψ′ 6∈ K′),

otherwise it would be the case thatW ′ ⊆ O and thus CN(W ′) ⊆ O (from Monotonicity

and Idempotence axioms), that is O′ ⊆ O. Since ψ′ is in a weakening of K, then there

is a (consistent) formula ψ ∈ K s.t. ψ′ ∈ weakening(ψ) and therefore ψ′ ∈ Φ. As

K′ ⊆ O ⊂ O′ and ψ′ ∈ O′, then K′ ∪ {ψ′} is consistent. Since ψ′ 6∈ K′, ψ′ ∈ Φ,

and K′ ∪ {ψ′} is consistent, then K′ is not a maximal consistent subset of Φ, which is a

contradiction.

We now show that every preferred optionO forK is inPO. LetW be a (consistent)

weakening of K s.t. CN(W) = O. It is easy to see thatW ⊆ Φ. Then, there is a maximal

consistent subset K′ of Φ s.t. W ⊆ K′. Clearly, O′ = CN(K′) is in PO, and thus, as

shown above, it is a preferred option for K. Monotonicity entails that CN(W) ⊆ CN(K′),

that is O ⊆ O′. In particular, O = O′, otherwise Proposition 17 would entail that O is

not preferred.

Example 27. Consider again the knowledge base K = {(a ∧ b);¬b} of Example 20. We

have that Φ = CN({a ∧ b}) ∪ CN({¬b}). Thus, it is easy to see that a preferred option

for K is CN({a,¬b}) (note that a ∈ Φ since a ∈ CN({a ∧ b})).

Clearly, we can straightforwardly derive an algorithm to compute the preferred op-

tions from the theorem above: first Φ is computed and then CN is applied to the maximal

consistent subsets of Φ. Thus, such an algorithm does not need to compute all the options

for a given knowledge base in order to determine the preferred ones (which is the case in

107

the CPO-Naive algorithm) as every option computed by the algorithm is ensured to be

preferred.

Example 28. Consider the following inconsistent propositional Horn1 knowledge base

K:

a1

a2 ← a1

a3 ← a2

...

an−1 ← an−2

¬a1 ← an−1

Suppose we want to compute one preferred option forK (Wall and�W are the weakening

mechanism and preference relation, respectively). If we use Algorithm CPO-Naive, then

all the options for K w.r.t. Wall need to be computed in order to determine a preferred

one. Observe that the closure of a proper subset of K is an option for K, and thus the

number of options is exponential. According to Theorem 12, a preferred option may be

computed as CN(K′), where K′ is a maximal consistent subset of
⋃
ψ∈K weakening(ψ).

Note that Theorem 12 entails that if both computing CN and consistency checking

can be done in polynomial time, then one preferred option can be computed in polyno-

mial time. For instance, this is the case for propositional Horn knowledge bases (see

Section 4.5). Furthermore, observe that Theorem 12 also holds when ⊇ is the preference

relation simply because ⊇ coincides with �W (see Proposition 17).

Let us now consider the case whereW⊆ and ⊇ are the adopted weakening mecha-

nism and preference relation, respectively.

1Recall that a Horn clause is a disjunction of literals containing at most one positive literal.

108

Theorem 13. Consider a knowledge base K. Let W⊆ and ⊇ respectively be the weak-

ening mechanism and preference relation used. Then, a knowledge base O is a preferred

option for K iff K′ = O ∩K is a maximal consistent subset of K and CN(K′) = O.

Proof. (⇐) Clearly, O is an option for K. Suppose by contradiction that O is not pre-

ferred, i.e., there exists an option O′ for K s.t. O ⊂ O′. Since O′ is an option for K, then

there existsW ⊆ K s.t. O′ = CN(W). There must be a formula ψ ∈ W which is not in

O (hence ψ 6∈ K′), otherwise it would be the case that W ⊆ O and thus CN(W) ⊆ O

(from Monotonicity and Idempotence axioms), that is O′ ⊆ O. As K′ ⊆ O ⊂ O′ and

ψ ∈ O′, then K′ ∪ {ψ} is consistent, that is K′ is not a maximal consistent subset of K,

which is a contradiction.

(⇒) Suppose by contradiction that O is a preferred option for K and a case of the

following occurs: (i) CN(K′) 6= O, (ii) K′ is not a maximal consistent subset of K.

(i) Since K′ ⊆ O, then CN(K′) ⊆ O (Monotonicity and Idempotence axioms). As

CN(K′) 6= O, then CN(K′) ⊂ O. Since O is an option, then there existsW ⊆ K

s.t. O = CN(W). Two cases may occur:

– W ⊆ K′. Thus, CN(W) ⊆ CN(K′) (Monotonicity), i.e., O ⊆ CN(K′), which

is a contradiction.

– W 6⊆ K′. Thus, there exists a formula ψ which is in W but not in K′. Note

that ψ ∈ K (as W ⊆ K) and ψ ∈ O (from the fact that O = CN(W) and

Expansion axiom). Since K′ = K∩O, then ψ ∈ K′, which is a contradiction.

(ii) Since K′ ⊆ O then K′ is consistent and is not maximal. Thus, there exists K′′ ⊆ K

which is consistent and K′ ⊂ K′′. Monotonicity implies that CN(K′) ⊆ CN(K′′),

i.e.,O ⊆ CN(K′′) since we have proved before thatO = CN(K′). Let ψ ∈ K′′−K′.

Since ψ ∈ K (as K′′ ⊆ K) and ψ 6∈ K′, then ψ 6∈ O (because K′ = O ∩ K). Thus,

109

O ⊂ CN(K′′). Since K′′ is consistent, then CN(K′′) is an option and O is not

preferred, which is a contradiction.

The following corollary identifies the set of preferred options for a knowledge base

when the weakening mechanism and the preference relation areW⊆ and ⊇, respectively.

Corollary 3. Consider a knowledge base K. LetW⊆ and ⊇ be the employed weakening

mechanism and preference relation, respectively. Then, the set of preferred options for K

is:

{CN(K′) | K′ is a maximal consistent subset of K}

Proof. Straightforward from Theorem 13.

The preceding corollary provides a way to compute the preferred options: first the

maximal consistent subsets of K are computed, then CN is applied to them. Clearly, such

an algorithm avoids the computation of every option. Note that this corollary entails that

if both computing CN and consistency checking can be done in polynomial time, then

one preferred option can be computed in polynomial time. Moreover, observe that both

the corollary above and Theorem 13 also hold in the case where the adopted preference

criterion is �W because ⊇ coincides with �W (see Proposition 17).

We now consider the case where different assumptions on the preference relation

are made. The algorithms below are independent of the weakening mechanism that we

choose to use. For the sake of simplicity, we will use Opt(K) instead of Opt(K,W) to

denote the set of options for a knowledge base K.

Definition 25. A preference relation � is said to be monotonic iff for any X, Y ⊆ L, if

X ⊆ Y , then Y � X . � is said to be anti-monotonic iff for any X, Y ⊆ L, if X ⊆ Y ,

then X � Y .

110

We now define the set of minimal expansions of an option.

Definition 26. Let K be a knowledge base and O an option for K. We define the set of

minimal expansions of O as follows:

exp(O) = {O′ | O′ is an option for K ∧

O ⊂ O′ ∧

there does not exist an option O′′ for K s.t. O ⊂ O′′ ⊂ O′}

Given a set S of options, we define exp(S) =
⋃
O∈S exp(O).

Clearly, the way exp(O) is computed depends on the adopted weakening mech-

anism. In the following algorithm, the preference relation � is assumed to be anti-

monotonic.

procedure CPO-Anti(K,�)

1. S0 = {O | O is a minimal (under ⊆) option for K}

2. Construct a maximal sequence S1, . . . , Sn s.t. Si 6= ∅ where

Si = {O | O ∈ exp(Si−1) ∧ 6 ∃O′ ∈ S0(O′ ⊂ O ∧O 6� O′)}, 1 ≤ i ≤ n

3. S =
⋃n
i=0 Si

4. Return the �-preferred options in S

Clearly, the algorithm always terminates, since each option in Si is a proper superset

of some option in Si−1 and the size of an option for K is bounded. The algorithm exploits

the anti-monotonicity of � to reduce the set of options from which the preferred ones

are determined. First, the algorithm computes the minimal options for K. Then, the

algorithm computes bigger and bigger options and the anti-monotonicity of � is used to

discard those options that are not preferred for sure: when Si is computed, we consider

111

every minimal expansionO of some option in Si−1; ifO is a proper superset of an option

O′ ∈ S0 and O 6� O′, then O can be discarded since O′ � O by the anti-monotonicity of

� and therefore O′ � O (note that any option that is a superset of O will be discarded as

well).

Observe that in the worst case the algorithm has to compute every option for K

(e.g., when O1 � O2 for any O1,O2 ∈ Opt(K) as in this case every option is preferred).

Example 29. Consider the following knowledge baseK containing check-in times for the

employees in a company for a certain day.

ψ1 checkedIn Mark 9AM

ψ2 checkedIn Claude 8AM

ψ3 checkedIn Mark 10AM

ψ4 ¬(checkedIn Mark 9AM ∧ checkedIn Mark 10AM)

Formula ψ1 and ψ2 state that employee Mark and Claude checked in for work at 9 AM and

8 AM, respectively. However, formula ψ3 records that employee Mark checked in for work

at 10 AM that day. Furthermore, as it is not possible for a person to check in for work

at different times on the same day, we also have formula ψ4, which is the instantiation of

that constraint for employee Mark.

Assume that each formula ψi has an associated non-negative weight wi ∈ [0, 1]

corresponding to the likelihood of the formula being wrong, and suppose those weights

are w1 = 0.2, w2 = 0, w3 = 0.1, and w4 = 0. Suppose that the weight of an option

O is w(O) =
∑

ψi∈K∩O wi. Let W⊆ be the weakening mechanism used, and consider

the preference relation defined as follows: Oi � Oj iff w(Oi) ≤ w(Oj). Clearly, the

preference relation is anti-monotonic. Algorithm CPO-Anti first computes S0 = {O0 =

CN(∅)}. It then looks for the minimal expansions of O0 which are preferable to O0. In

112

this case, we have O1 = CN({ψ2}) and O2 = CN({ψ4}); hence, S1 = {O1,O2}. Note

that neither CN({ψ1}) nor CN({ψ3}) is preferable to O0 and thus they can be discarded

because O0 turns out to be strictly preferable to them. The algorithm then looks for the

minimal expansions of some option in S1 which are preferable to O0; the only one is

O3 = CN({ψ2, ψ4}), so S3 = {O3}. It is easy to see that S4 is empty and thus the

algorithm returns the preferred options from those in S0 ∪ S1 ∪ S2 ∪ S3, which are O0,

O1, O2, and O3. Note that the algorithm avoided the computation of every option for K.

We now show the correctness of the algorithm.

Theorem 14. Let K be a knowledge base and � an anti-monotonic preference relation.

Then,

• (Soundness) If CPO-Anti(K,�) returns O, then O is a preferred option for K.

• (Completeness) For any preferred option O for K, O is returned by

CPO-Anti(K,�).

Proof. Let S be the set of options for K computed by the algorithm. First of all, we show

that for any option O′ ∈ Opt(K) − S there exists an option O′′ ∈ S s.t. O′′ � O′.

Suppose by contradiction that there is an optionO′ ∈ Opt(K)−S s.t. there does not exist

an option O′′ ∈ S s.t. O′′ � O′. Since O′ 6∈ S0, then O′ is not a minimal option for K.

Hence, there exist an option O0 ∈ S0 and n ≥ 0 options O1, . . . ,On s.t. O0 ⊂ O1 ⊂

· · · ⊂ On ⊂ On+1 = O′ and Oi ∈ exp(Oi−1) for 1 ≤ i ≤ n + 1. Since 6 ∃O′′ ∈ S0 s.t.

O′′ � O′, then 6 ∃O′′ ∈ S0 s.t. O′′ � Oi for 0 ≤ i ≤ n, otherwise O′′ � Oi and Oi � O′

(by anti-monotonicity of �) would imply O′′ � O′, which is a contradiction. It can be

easily verified, by induction on i, that Oi ∈ Si for 0 ≤ i ≤ n + 1, and then O′ ∈ Sn+1,

which is a contradiction.

113

(Soundness). Clearly, O is an option for K. Suppose by contradiction that O is not

preferred, i.e., there exists an option O′ for K s.t. O′ � O. Clearly, O′ ∈ Opt(K) − S,

otherwise it would be the case that O′ ∈ S and then O is not returned by the algorithm

(see step 4). We have proved above that there exists O′′ ∈ S s.t. O′′ � O′. Since

O′′ � O′ and O′ � O, then O′′ � O (by the transitivity of �), which is a contradiction

(as O,O′′ ∈ S and O is a �-preferred option in S).

(Completeness). Suppose by contradiction that O is not returned by the algorithm.

Clearly, this means that O ∈ Opt(K) − S. We have proved above that this implies that

there exists an option O′′ ∈ S s.t. O′′ � O, which is a contradiction.

Observe that when the adopted weakening mechanism is either W⊆ or Wall, the

first step becomes S0 = {CN(∅)}, whereas the second step can be specialized as follows:

Si = {O | O ∈ exp(Si−1) ∧ O � CN(∅)}.

We now consider the case where � is assumed to be monotonic.

Definition 27. Let K be a knowledge base and O an option for K. We define the set of

minimal contractions of O as follows:

contr(O) = {O′ | O′ is an option for K ∧

O′ ⊂ O ∧

there does not exist an option O′′ for K s.t. O′ ⊂ O′′ ⊂ O}.

Given a set S of options, we define contr(S) =
⋃
O∈S contr(O).

Observe that how to compute contr(O) depends on the considered weakening

mechanism. In the following algorithm the preference relation � is assumed to be mono-

tonic.

114

procedure CPO-Monotonic(K,�)

1. S0 = {O | O is a maximal (under ⊆) option for K};

2. Construct a maximal sequence S1, . . . , Sn s.t. Si 6= ∅ where

Si = {O | O ∈ contr(Si−1) ∧ 6 ∃O′ ∈ S0(O ⊂ O′ ∧ O 6� O′)}, 1 ≤ i ≤ n

3. S =
⋃n
i=0 Si

4. Return the �-preferred options in S.

Clearly, the algorithm always terminates, since each option in Si is a proper subset

of some option in Si−1. The algorithm exploits the monotonicity of � to reduce the set of

options from which the preferred ones are determined. The algorithm first computes the

maximal (under ⊆) options for K. It then computes smaller and smaller options and the

monotonicity of � is used to discard those options that are not preferred for sure: when

Si is computed, we consider every minimal contraction O of some option in Si−1; if O is

a proper subset of an optionO′ ∈ S0 andO 6� O′, thenO can be discarded sinceO′ � O

by the monotonicity of � and therefore O′ � O. Note that any option that is a subset of

O will be discarded as well.

Observe that in the worst case the algorithm has to compute every option for K

(e.g., when O1 � O2 for any O1,O2 ∈ Opt(K) as in this case every option is preferred).

It is worth noting that when the adopted weakening mechanism is Wall, the first

step of the algorithm can be implemented by applying Theorem 12 since it identifies the

options which are maximal under set inclusion (recall that �W coincides with ⊇, see

Proposition 17). Likewise, when the weakening mechanism is W⊆, the first step of the

algorithm can be accomplished by applying Corollary 3.

Example 30. Consider again the knowledge base of Example 29. Suppose now that

each formula ψi has associated a non-negative weight wi ∈ [0, 1] corresponding to the

115

reliability of the formula, and let those weights be w1 = 0.1, w2 = 1, w3 = 0.2, and

w4 = 1. Once again, the weight of an option O is w(O) =
∑

ψi∈K∩O wi. Let W⊆

be the weakening mechanism, and consider the preference relation defined as follows:

Oi � Oj iff w(Oi) ≥ w(Oj). Clearly, the preference relation is monotonic. Algorithm

CPO-Monotonic first computes the maximal options, i.e., S0 = {O1 = CN({ψ2, ψ3, ψ4}),

O2 = CN({ψ1, ψ2, ψ4}), O4 = CN({ψ1, ψ2, ψ3})}. After that, the algorithm looks for a

minimal contraction O of some option in S0 s.t. there is no superset O′ ∈ S0 of O s.t.

O 6� O′. It is easy to see that in this case there is no option that satisfies this property,

i.e., S1 = ∅. Thus, the algorithm returns the preferred options in S0, namely O1. Note

that the algorithm avoided the computation of every option for K.

We now show the correctness of the algorithm.

Theorem 15. Let K be a knowledge base and � a monotonic preference relation. Then,

• (Soundness) If CPO-Monotonic(K,�) returns O, then O is a preferred option for

K.

• (Completeness) For any preferred option O for K, O is returned by

CPO-Monotonic(K,�).

Proof. Let S be the set of options for K computed by the algorithm. First of all, we show

that for any option O′ ∈ Opt(K) − S, there exists an option O′′ ∈ S s.t. O′′ � O′.

Suppose by contradiction that there is an option O′ ∈ Opt(K) − S s.t. there does not

exist an option O′′ ∈ S s.t. O′′ � O′. Since O′ 6∈ S0, then O′ is not a maximal

option for K. Hence, there exist an option O0 ∈ S0 and n ≥ 0 options O1, . . . ,On s.t.

O0 ⊃ O1 ⊃ · · · ⊃ On ⊃ On+1 = O′ and Oi ∈ contr(Oi−1) for 1 ≤ i ≤ n + 1. Since

6 ∃O′′ ∈ S0 s.t. O′′ � O′, then 6 ∃O′′ ∈ S0 s.t. O′′ � Oi for 0 ≤ i ≤ n, otherwise O′′ � Oi

and Oi � O′ (by monotonicity of �) would imply O′′ � O′, which is a contradiction.

116

It can be easily verified, by induction on i, that Oi ∈ Si for 0 ≤ i ≤ n + 1, and then

O′ ∈ Sn+1, which is a contradiction.

The soundness and completeness of the algorithm can be shown in the same way as

in the proof of Theorem 14.

4.5 Handling Inconsistency in Monotonic Logics

In this section, we consider several monotonic logics and show how our framework

is well-suited to handle inconsistency in these logics. It is particularly important to note

that reasoning about inconsistency in many of these logics has not been studied before.

As a consequence, our general framework for reasoning about inconsistency is not only

new, it also yields new algorithms and new results for such reasoning in existing logics.

We also study the complexity of the universal inference problem for many of these logics.

4.5.1 Propositional Horn-clause Logic

Let us consider knowledge bases consisting of propositional Horn clauses. Recall

that a Horn Clause is an expression of the form L1 ∨ · · ·∨ Ln where each Li is a proposi-

tional literal such that at most one Li is positive.2 We will assume that the consequences

of a knowledge base are those determined by the application of modus ponens.

Proposition 19. Consider a propositional Horn knowledge base K. Let W⊆ and ⊇ re-

spectively be the weakening mechanism and preference relation that are used. A preferred

option for K can be computed in polynomial time.

Proof. Corollary 3 entails that a preferred option can be computed by finding a maximal

consistent subset K′ of K and then computing CN(K′). Since both checking consistency
2Note that a definite clause is a Horn clause where exactly one Li is positive. It is well known that any

set of definite clauses is always consistent.

117

and computing consequences can be accomplished in polynomial time [Pap94], the over-

all computation is in polynomial time.

Nevertheless, the number of preferred options may be exponential, as shown in the

following example.

Example 31. Consider the propositional Horn knowledge base

K = {a1,¬a1, . . . , an,¬an}

containing 2n formulas, where the ai’s are propositional variables. It is easy to see that

the set of preferred options for K is

{CN({l1, . . . , ln}) | li ∈ {ai,¬ai} for i = 1..n}

whose cardinality is 2n (W⊆ and⊇ are, respectively, the weakening mechanism and pref-

erence relation used).

The following theorem addresses the complexity of computing universal conse-

quences of propositional Horn knowledge bases.

Proposition 20. LetK and ψ be a propositional Horn knowledge base and clause, respec-

tively. Let W⊆ and ⊇ respectively be a weakening mechanism and preference relation.

The problem of deciding whether ψ is a universal consequence of K is coNP-complete.

Proof. It follows from Corollary 3 and the result in [CLS94] stating that the problem

of deciding whether a propositional Horn formula is a consequence of every maximal

consistent subset of a Horn knowledge base is coNP-complete.

Note that when the weakening mechanism and the preference relation areWall and

�W , respectively, both the set of options and preferred options do not differ from those

118

obtained when W⊆ and ⊇ are considered. In fact, since weakening(ψ) = {ψ} for any

propositional Horn formula ψ, thenW⊆ andWall are the same. Proposition 17 states that

⊇ and �W coincide. Thus, the previous results are trivially extended to the case where

Wall and �W are considered.

Corollary 4. Consider a propositional Horn knowledge base K. Let Wall and �W re-

spectively be the weakening mechanism and preference relation that are used. A preferred

option for K can be computed in polynomial time.

Proof. Follows immediately from Proposition 19.

Corollary 5. Let K and ψ be a propositional Horn knowledge base and clause, respec-

tively. LetWall and �W respectively be the weakening mechanism and preference rela-

tion that are used. The problem of deciding whether ψ is a universal consequence of K is

coNP-complete.

Proof. Follows immediately from Proposition 20.

4.5.2 Propositional Probabilistic Logic

In this section, we consider the probabilistic logic of [Nil86a] extended to probabil-

ity intervals, i.e., formulas are of the form φ : [`, u], where φ is a classical propositional

formula and [`, u] is a subset of the real unit interval.

The existence of a set of propositional symbols is assumed. A world is any set

of propositional symbols; we use W to denote the set of all possible worlds. A prob-

abilistic interpretation I is a probability distribution over worlds, i.e., it is a function

I : W → [0, 1] such that
∑

w∈W I(w) = 1. Then, I satisfies a formula φ : [`, u] iff

` ≤
∑

w∈W,w|=φ I(w) ≤ u. Consistency and entailment are defined in the standard way.

119

Example 32. Consider a network of sensors collecting information about people’s po-

sitions. Suppose the following knowledge base K is obtained by merging information

collected by different sensors.

ψ1 loc John X : [0.6, 0.7]

ψ2 loc John X ∨ loc John Y : [0.3, 0.5]

The first formula in K says that John’s position is X with a probability between 0.6

and 0.7. The second formula states that John is located either in positionX or in position

Y with a probability between 0.3 and 0.5. The knowledge base above is inconsistent:

since every world in which the first formula is true satisfies the second formula as well,

the probability of the latter has to be greater than or equal to the probability of the former.

As already mentioned before, a reasonable weakening mechanism for probabilistic

knowledge bases consists of making probability intervals wider.

Definition 28. For any probabilistic knowledge baseK = {φ1 : [`1, u1], . . . , φn : [`n, un]},

the weakening mechanismWP is defined as follows: WP (K) = {{φ1 : [`′1, u
′
1], . . . , φn :

[`′n, u
′
n]} | [`i, ui] ⊆ [`′i, u

′
i], 1 ≤ i ≤ n}.

Example 33. Consider again the probabilistic knowledge base K of Example 32. The

weakenings of K determined byWP are of the form:

ψ′1 loc John X : [`1, u1]

ψ′2 loc John X ∨ loc John Y : [`2, u2]

where [0.6, 0.7] ⊆ [`1, u1] and [0.3, 0.5] ⊆ [`2, u2]. The options for K (w.r.t. WP) are the

closure of those weakenings s.t. [`1, u1]∩ [`2, u2] 6= ∅ (this condition ensures consistency).

120

Suppose that the preferred options are those that modify the probability intervals

as little as possible: Oi �P Oj iff sc(Oi) ≤ sc(Oj) for any options Oi,Oj for K,

where sc(CN({ψ′1, ψ′2})) = diff(ψ1, ψ
′
1) + diff(ψ2, ψ

′
2) and diff(φ : [`1, u1], φ : [`2, u2]) =

`1 − `2 + u2 − u1. The preferred options are the closure of:

loc John X : [`, 0.7]

loc John X ∨ loc John Y : [0.3, `]

where 0.5 ≤ ` ≤ 0.6.

We now define the preference relation introduced in the example above.

Definition 29. Let K = {φ1 : [`1, u1], . . . , φn : [`n, un]} be a probabilistic knowledge

base. We say that the score of an option O = CN({φ1 : [`′1, u
′
1], . . . , φn : [`′n, u

′
n]}) in

Opt(K,WP) is sc(O) =
∑n

i=1(`i− `′i) + (u′i− ui). We define the preference relation �P

as follows: for any O,O′ ∈ Opt(K,WP), O �P O′ iff sc(O) ≤ sc(O′).

The weakenings (underWP) whose closure yields the preferred options (w.r.t. �P)

can be found by solving a linear program derived from the original knowledge base. We

now show how to derive such a linear program.

In the following definition we use W to denote the set of possible worlds for a

knowledge base K, that is, W = 2Σ, Σ being the set of propositional symbols appearing

in K.

121

Definition 30. Let K = {φ1 : [`1, u1], . . . , φn : [`n, un]} be a probabilistic knowledge

base. Then, LP(K) is the following linear program:

minimize
∑n

i=1(`i − `′i) + (u′i − ui)

subject to

`′i ≤
∑

w∈W,w|=φi pw ≤ u′i, 1 ≤ i ≤ n∑
w∈W pw = 1

0 ≤ `′i ≤ `i, 1 ≤ i ≤ n

ui ≤ u′i ≤ 1, 1 ≤ i ≤ n

Clearly, in the definition above, the `′i’s, ui’s and pw’s are variables (pw denotes

the probability of world w). We denote by Sol(LP(K)) the set of solutions of LP(K).

We also associate a knowledge base KS to every solution S as follows: KS = {φi :

[S(`′i),S(u′i)] | 1 ≤ i ≤ n}, where S(x) is the value assigned to variable x by solution S.

Intuitively, the knowledge base KS is the knowledge base obtained by setting the bounds

of each formula in K to the values assigned by solution S.

The following theorem states that the solutions of the linear program LP(K) derived

from a knowledge baseK “correspond to” the preferred options ofK when the weakening

mechanism isWP and the preference relation is �P .

Theorem 16. Given a probabilistic knowledge base K,

1. if S ∈ Sol(LP(K)), then ∃O ∈ Opt�P (K,WP) s.t. O = CN(KS),

2. if O ∈ Opt�P (K,WP), then ∃S ∈ Sol(LP(K)) s.t. O = CN(KS).

Proof. Let LP′ be the linear program obtained from LP(K) by discarding the objective

function.

122

(a) We first show that if S ∈ Sol(LP′), then ∃O ∈ Opt(K,WP) s.t. O = CN(KS).

Clearly, KS ∈ WP (K) as the third and fourth sets of constraints in LP′ ensure that

[`i, ui] ⊆ [`′i, u
′
i] for any φi : [`i, ui] ∈ K. The first and second sets of constraints

in LP′ ensure that KS is consistent – a model for KS is simply given by the pw’s.

Thus, CN(KS) is an option for K.

(b) We now show that if O ∈ Opt(K,WP), then ∃S ∈ Sol(LP′) s.t. O = CN(KS).

Since O is an option, then there exists K′ ∈ WP (K) s.t. O = CN(K′). Clearly, K′

is consistent. Let I be a model of K′. It is easy to see that if we assign pw to I(w)

for every world w and the `′i’s and u′i’s are assigned to the bounds of φi in K′, then

such an assignment satisfies every constraint of LP′.

It is easy to see that given a solution S of LP′, the value of the objective function of LP(K)

for S is exactly the score sc assigned to the option CN(KS) by �P (see Definition 29).

1. Suppose that S ∈ Sol(LP(K)). As shown above, since S satisfies the constraints of

LP(K), then there exists an option O s.t. O = CN(KS). Suppose by contradiction

that O is not preferred, that is, there is another option O′ s.t. sc(O′) < sc(O).

Then, there is a solution S ′ of LP′ s.t. O′ = CN(KS′). Since the objective function

of LP(K) corresponds to sc, then S does not minimize the objective function, which

is a contradiction.

2. Suppose that O ∈ Opt�P (K,WP). As shown above, since O is an option, then

there exists a solution S of LP′ s.t. O = CN(KS). Suppose by contradiction that

S is not a solution of LP(K). This means that it does not minimize the objective

function. Then, there is a solution S ′ of LP(K) which has a lower value of the

objective function. As shown before, O′ = CN(KS′) is an option and has a score

lower than O, which is a contradiction.

123

We refer to probabilistic knowledge bases whose formulas are built from propo-

sitional Horn formulas as Horn probabilistic knowledge bases. The following theorem

states that already for this restricted subset of probabilistic logic, the problem of deciding

whether a formula is a universal consequence of a knowledge base is coNP-hard.

Theorem 17. Let K and ψ be a Horn probabilistic knowledge base and formula, respec-

tively. Suppose that the weakening mechanism returns subsets of the given knowledge

base and the preference relation is ⊇. The problem of deciding whether ψ is a universal

consequence of K is coNP-hard.

Proof. We reduce 3-DNF VALIDITY to our problem. Let φ = C1 ∨ · · · ∨ Cn be an

instance of 3-DNF VALIDITY, where the Ci’s are conjunctions containing exactly three

literals, and X the set of propositional variables appearing in φ. We derive from φ a Horn

probabilistic knowledge base K∗ as follows. Given a literal ` of the form x (resp. ¬x),

with x ∈ X , we denote with p(`) the propositional variable xT (resp. xF). Let

K1 = {u← p(`1) ∧ p(`2) ∧ p(`3) : [1, 1] | `1 ∧ `2 ∧ `3 is a conjunction of φ}

and

K2 = {u← xT ∧ xF : [1, 1] | x ∈ X}

Given a variable x ∈ X , let

Kx = { xT : [1, 1],

xF : [1, 1],

← xT ∧ xF : [1, 1]}

124

Finally,

K∗ = K1 ∪ K2 ∪
⋃
x∈X

Kx

The derived instance of our problem is (K∗, u : [1, 1]). First of all, note that K∗ is incon-

sistent since Kx is inconsistent for any x ∈ X . The set of maximal consistent subsets of

K∗ is:

M =

{
K1 ∪ K2 ∪

⋃
x∈X

K′x | K′x is a maximal consistent subset of Kx

}

Note that a maximal consistent subset of Kx is obtained from Kx by discarding exactly

one formula. Corollary 3 entails that the set of preferred options for K∗ is Opt�(K∗) =

{CN(S) | S ∈ M}. We partition Opt�(K∗) into two sets: O1 = {O | O ∈ Opt�(K∗) ∧

∃x ∈ X s.t. xT : [1, 1], xF : [1, 1] ∈ O} and O2 = Opt�(K∗)−O1. We now show that φ

is valid iff u : [1, 1] is a universal consequence of K∗.

(⇒) It is easy to see that every preferred option O in O1 contains u : [1, 1], since

there exists x ∈ X s.t. xT : [1, 1], xF : [1, 1] ∈ O and u← xT ∧xF : [1, 1] ∈ O. Consider

now a preferred option O ∈ O2. For any x ∈ X either xT : [1, 1] or xF : [1, 1] belongs

to O. Let us consider the truth assignment I derived from O as follows: for any x ∈ X ,

I(x) is true iff xT : [1, 1] ∈ O and I(x) is false iff xF : [1, 1] ∈ O. Since φ is valid, then

I satisfies φ, i.e., there is a conjunction `1 ∧ `2 ∧ `3 of φ which is satisfied by I . It is easy

to see that u : [1, 1] can be derived from the rule u← p(`1) ∧ p(`2) ∧ p(`3) : [1, 1] in K1.

Hence, u : [1, 1] is a universal consequence of K∗.

(⇐) We show that if φ is not valid then there exists a preferred option O for K∗

s.t. u : [1, 1] 6∈ O. Consider a truth assignment for φ which does not satisfy φ and let

True and False be the set of variables of φ made true and false, respectively, by such an

125

assignment. Consider the following set

S = K1 ∪ K2

∪
⋃
x∈True{xT : [1, 1],← xT ∧ xF : [1, 1]}

∪
⋃
x∈False{xF : [1, 1],← xT ∧ xF : [1, 1]}

It is easy to see that S is a maximal consistent subset of K∗, and thus O = CN(S) is a

preferred option for K∗. It can be easily verified that u : [1, 1] 6∈ O.

4.5.3 Propositional Linear Temporal Logic

Temporal logic has been extensively used for reasoning about programs and their

executions. It has achieved a significant role in the formal specification and verification

of concurrent and distributed systems [Pnu77]. In particular, a number of useful con-

cepts such as safety, liveness and fairness can be formally and concisely specified using

temporal logics [MP92, Eme90].

In this section, we consider Propositional Linear Temporal Logic (PLTL) [GPSS80]

- a logic used in verification of systems and reactive systems. Basically, this logic extends

classical propositional logic with a set of temporal connectives. The particular variety

of temporal logic we consider is based on a linear, discrete model of time isomorphic to

the natural numbers. Thus, the temporal connectives operate over a sequence of distinct

“moments” in time. The connectives that we consider are ♦ (sometime in the future), �

(always in the future) and© (at the next point in time).

Assuming a countable set Σ of propositional symbols, every p ∈ Σ is a PLTL

formula. If φ and ψ are PLTL formulas, then the following are PLTL formulas as well:

φ ∨ ψ, φ ∧ ψ, ¬φ, φ← ψ, �φ, ©φ, ♦φ

126

The notion of a timeline can be formalized with a function I : N → 2Σ that maps

each natural number (representing a moment in time) to a set of propositional symbols

(intuitively, this is the set of propositional symbols which are true at that moment). We

say that

• (I, i) |= p iff p ∈ I(i), where p ∈ Σ;

• (I, i) |=©φ iff (I, i+ 1) |= φ;

• (I, i) |= ♦φ iff ∃j. j ≥ i ∧ (I, j) |= φ;

• (I, i) |= �φ iff ∀j. j ≥ i implies (I, j) |= φ.

The semantics for the standard connectives is as expected. I is a model of a PLTL formula

φ iff (I, 0) |= φ. Consistency and entailment are defined in the standard way.

Example 34. Consider the PLTL knowledge base reported below [Art08] which specifies

the behavior of a computational system.

ψ1 �(♦received ← requested)

ψ2 �(©processed ← received)

The first statement says that it is always the case that if a request is issued, then it will be

received at some future time point. The second statement says that it is always the case

that if a request is received, then it will be processed at the next time point. The state-

ments above correspond to the definition of the system, i.e., how the system is supposed

to behave. Suppose now that there is a monitoring system which reports data regarding

the system’s behavior and, for instance, the following formula is added to the knowledge

base:

ψ3 received ∧©¬processed ∧©© processed

127

The inclusion of ψ3 makes the knowledge base inconsistent, since the monitoring system

is reporting that a request was received and was not processed at the next moment in time,

but two moments afterwards.

Consider a weakening function that replaces the © operator with the ♦ opera-

tor in a formula ψ, provided that the formula thus obtained is a consequence of ψ.

Suppose that preferred options are those that keep as many monitoring system formu-

las unchanged (i.e. unweakened) as possible. In this case, the only preferred option is

CN({ψ1,�(♦processed ← received), ψ3}), where formula ψ2, stating that if a request is

received then it will be processed at the next moment in time, has been weakened into a

new one stating that the request will be processed at a future point in time.

Theorem 18. Let K and ψ be a temporal knowledge base and formula, respectively.

Suppose the weakening mechanism returns subsets of the given knowledge base and the

preference relation is ⊇. The problem of deciding whether ψ is a universal consequence

of K is coNP-hard.

Proof. A reduction from 3-DNF VALIDITY to our problem can be carried out in a similar

way to the the proof of Theorem 17. Let φ = C1 ∨ · · · ∨ Cn be an instance of 3-DNF

VALIDITY, where the Ci’s are conjunctions containing exactly three literals, and X the

set of propositional variables appearing in φ. We derive from φ a temporal knowledge

base K∗ as follows. Given a literal ` of the form x (resp. ¬x), with x ∈ X , we denote

with p(`) the propositional variable xT (resp. xF). Let

K1 = {� (u← p(`1) ∧ p(`2) ∧ p(`3)) | `1 ∧ `2 ∧ `3 is a conjunction of φ}

and

K2 = {� (u← xT ∧ xF) | x ∈ X}

128

Given a variable x ∈ X , let

Kx = { �xT ,

�xF ,

� (← xT ∧ xF)}

Finally,

K∗ = K1 ∪ K2 ∪
⋃
x∈X

Kx

The derived instance of our problem is (K∗,�u). The claim can be proved in a similar

way to the proof of Theorem 17.

4.5.4 Fuzzy Logic

In this section we consider fuzzy logic. Formulas are of the form φ : v, where φ is

a propositional formula built from a set Σ of propositional symbols and the logical con-

nectives ¬,∧,∨, and v ∈ [0, 1] (we call v the degree of truth). An interpretation I assigns

a value in [0, 1] to each propositional symbol in Σ. Moreover, given two propositional

formulas φ1 and φ2, we have

• I(¬φ1) = 1− I(φ1)

• I(φ1 ∧ φ2) = min{I(φ1), I(φ2)}

• I(φ1 ∨ φ2) = max{I(φ1), I(φ2)}

We say that I satisfies a formula φ : v iff I(φ) ≥ v. Consistency and entailment are

defined in the standard way.

129

Example 35. Consider the following inconsistent knowledge base:

ψ1 : a : 0.7

ψ2 : b : 0.6

ψ3 : ¬(a ∧ b) : 0.5

Suppose that the weakening mechanism is defined as follows: for any formula φ : v,

we defineW(φ : v) = {φ : v′| v′ ∈ [0, 1] ∧ v′ ≤ v}; then,W(K) = {{ψ′1, ψ′2, ψ′3} | ψ′i ∈

W(ψi) 1 ≤ i ≤ 3}. Thus, options are the closure of

ψ1 : a : v1

ψ2 : b : v2

ψ3 : ¬(a ∧ b) : v3

where v1 ≤ 0.7, v2 ≤ 0.6, v3 ≤ 0.5, and 1−min{v1, v2} ≥ v3. Suppose that the preferred

options are those that modify a minimum number of formulas. Thus, the preferred options

are of the form

CN({a : v1, ψ2, ψ3}) where v1 ≤ 0.5, or

CN({b : v2, ψ1, ψ3}) where v2 ≤ 0.5, or

CN({¬(a ∧ b) : v3, ψ1, ψ2}) where v3 ≤ 0.4

Finally, suppose that the preference relation is expressed as before but, in addition, we

would like to change the degree of truth as little as possible. In this case, the preferred

options are:

CN({b : 0.5, ψ1, ψ3})

CN({¬(a ∧ b) : 0.4, ψ1, ψ2})

We refer to fuzzy knowledge bases whose formulas are built from propositional

Horn formulas as Horn fuzzy knowledge bases. The following theorem states that even

130

for this restricted subset of fuzzy logic, the problem of deciding whether a formula is a

universal consequence of a knowledge base is coNP-hard.

Theorem 19. LetK and ψ be a Horn fuzzy knowledge base and formula, respectively. Let

W⊆ and ⊇ be the adopted weakening mechanism and preference relation, respectively.

The problem of deciding whether ψ is a universal consequence of K is coNP-hard.

Proof. A reduction from 3-DNF VALIDITY to our problem can be carried out in a way

similar to the the proof of Theorem 17. Let φ = C1 ∨ · · · ∨ Cn be an instance of 3-

DNF VALIDITY, where the Ci’s are conjunctions containing exactly three literals, and X

is the set of propositional variables appearing in φ. We derive from φ a Horn temporal

knowledge base K∗ as follows. Given a literal ` of the form x (resp. ¬x), with x ∈ X , we

denote with p(`) the propositional variable xT (resp. xF). Let

K1 = {u ∨ ¬p(`1) ∨ ¬p(`2) ∨ ¬p(`3) : 1 | `1 ∧ `2 ∧ `3 is a conjunction of φ}

and

K2 = {u ∨ ¬xT ∨ ¬xF : 1| x ∈ X}

Given a variable x ∈ X , let

Kx = { xT : 1,

xF : 1,

¬xT ∨ ¬xF : 1}

Finally,

K∗ = K1 ∪ K2 ∪
⋃
x∈X

Kx

131

The derived instance of our problem is (K∗, u : 1). The claim can be proved in a way

similar to the proof of Theorem 17.

4.5.5 Belief Logic

In this section we focus on the belief logic presented in [Lev84]. Formulas are

formed from a set Σ of primitive propositions, the standard connectives ∨, ∧, and ¬, and

two unary connectives B and L. Neither B nor L appear within the scope of the other.

Connective B is used to express what is explicitly believed by an agent (a sentence that

is actively held to be true by the agent), whereas L is used to express what is implicitly

believed by the agent (i.e., the consequences of his explicit beliefs).

Semantics of sentences is given in terms of a model structure 〈S,B,T,F〉, where S is

a set of situations, B is a subset of S (the situations that could be the actual ones according

to what is believed), and T and F are functions from Σ to subsets of S. Intuitively, T (p)

are the situations that support the truth of p and F (p) are the situations that support the

falsity of p. A primitive proposition may be true, false, both, or neither in a situation. A

complete situation (or possible world) is one that supports either the truth or the falsity

(not both) of every primitive proposition. A complete situation s is compatible with a

situation s′ if s and s′ agree whenever s′ is defined, i.e., if s′ ∈ T (p) then s ∈ T (p), and

if s′ ∈ F (p) then s ∈ F (p), for each primitive proposition p. Let W(B) consist of all

complete situations in S compatible with some situation in B.

Two support relations |=T and |=F between situations and formulas are defined in

the following way:

• s |=T p iff s ∈ T (p), where p is a primitive proposition ,

• s |=F p iff s ∈ F (p), where p is a primitive proposition ;

132

• s |=T (α ∨ β) iff s |=T α or s |=T β,

• s |=F (α ∨ β) iff s |=F α and s |=F β;

• s |=T (α ∧ β) iff s |=T α and s |=T β,

• s |=F (α ∧ β) iff s |=F α or s |=F β;

• s |=T ¬α iff s |=F α,

• s |=F ¬α iff s |=T α;

• s |=T Bα iff for every s′ ∈ B, s′ |=T α,

• s |=F Bα iff s 6|=T Bα;

• s |=T Lα iff for every s′ ∈ W(B), s′ |=T α,

• s |=F Lα iff s 6|=T Lα.

Given a complete situation s in S, then if s |=T α, then α is true at s, otherwise α is said

to be false at s. Finally, α is said to be valid (|= α) iff for any model structure 〈S,B,T,F〉

and any complete situation s in S, α is true at s. The satisfiability of a sentence is defined

analogously; entailment is defined in the expected way.

Note that belief logic allows an agent to believe contradictory sentences, e.g., {Bp,B¬p}

is a consistent knowledge base. However, {Bp,¬Bp} is inconsistent.

133

Example 36. Consider the following inconsistent knowledge base K that represents the

knowledge of an agent regarding a city’s subway system:

ψ1 : goingNorthTrain1

ψ2 : B goingNorthTrain1

ψ3 : goingNorthTrain1→ canGetUpTownFromStationA

ψ4 : B(goingNorthTrain1→ canGetUpTownFromStationA)

ψ5 : ¬(canGetUpTownFromStationA)

Using a train schedule associated with train station A, we might be able to express

formulas ψ1 and ψ3. ψ1 states that Train 1 goes north, whereas ψ3 states that if Train 1

goes north, then the agent can get uptown from station A. Formulas ψ2 and ψ4 state that

the agent explicitly believes in the information that he got from the schedule. However,

this knowledge base is inconsistent because of the presence of formula ψ5, which states

that it is not possible to get uptown from station A, for instance, because that route is

closed for repairs.

Suppose that each formula ψi is associated with a time stamp t(ψi) that represents

the moment in time in which the agent acquired that piece of information. In this case,

we consider the subsets of K as its weakenings, and the preference relation is defined in

such a way that maximal (under⊆) options are preferable to the others, and among these

we say that Oi � Oj iff sc(Oi) ≥ sc(Oj) where sc(O) =
∑

ψ∈O∩K t(ψ), i.e., we would

like to preserve as many formulas as possible and more up to date information. If in our

example we have t(ψ1) = t(ψ2) = 1, t(ψ3) = t(ψ4) = 3, and t(ψ5) = 5, then the only

preferred option is CN({ψ2, ψ3, ψ4, ψ5}).

Theorem 20. Let K and ψ be a belief knowledge base and formula, respectively. Sup-

pose that the weakening mechanism returns subsets of the given knowledge base and the

134

preference relation is ⊇. The problem of deciding whether ψ is a universal consequence

of K is coNP-hard.

Proof. A reduction from 3-DNF VALIDITY to our problem can be carried out in a similar

way to the the proof of Theorem 17 by using only propositional formulas. Let φ =

C1 ∨ · · · ∨ Cn be an instance of 3-DNF VALIDITY, where the Ci’s are conjunctions

containing exactly three literals, and X is the set of propositional variables appearing in

φ. We derive from φ a belief knowledge base K∗ as follows. Given a literal ` of the form

x (resp. ¬x), with x ∈ X , we denote by p(`) the propositional variable xT (resp. xF). Let

K1 = {u ∨ ¬p(`1) ∨ ¬p(`2) ∨ ¬p(`3) | `1 ∧ `2 ∧ `3 is a conjunction of φ}

and

K2 = {u ∨ ¬xT ∨ ¬xF | x ∈ X}

Given a variable x ∈ X , let

Kx = { xT ,

xF ,

¬xT ∨ ¬xF}

Finally,

K∗ = K1 ∪ K2 ∪
⋃
x∈X

Kx

The derived instance of our problem is (K∗, u). The claim can be proved in a similar way

to the proof of Theorem 17.

135

4.5.6 Spatial Logic

In this section we consider the Region Connection Calculus (RCC) proposed in

[RCC92]. This logic is a topological approach to qualitative spatial representation and

reasoning (see [CR08]) where spatial regions are subsets of a topological space. Rela-

tionships between spatial regions are defined in first order logic in terms of a primitive

binary relation C(x, y), which means “x connects with y”; this relation is reflexive and

symmetric and holds when regions x and y share a common point. RCC-8 considers the

following eight base relations: DC (disconnected),EC (externally connected), PO (par-

tial overlap), EQ (equal), TPP (tangential proper part), NTPP (non-tangential proper

part), TPP−1 (the inverse of TPP), NTPP−1 (the inverse of NTPP). These relations are

jointly exhaustive and pairwise disjoint, i.e., exactly one of them holds between any two

spatial regions. Figure 4.1 shows two-dimensional examples of the 8 basic relations. If

Figure 4.1: Two-dimensional examples for RCC-8 base relations.

the exact relation is not known, we can also use the union of different base relations, e.g.,

a {NTPP,NTPP−1} b means that either a is a non-tangential proper part of b or vice

versa.

136

Example 37. Consider the following knowledge base K:

ψ1 a {NTPP} b

ψ2 b {EC} c

ψ3 a {EC} c

The knowledge base is inconsistent since the first two formulas imply that a and c

are disconnected, whereas the last one states that they are externally connected.

Suppose the weakening mechanism used isWall. In this case, the knowledge base

is weakened by making its formulas more undefined. For instance, some options forK are

O1 = CN({a {NTPP, TPP} b, ψ2, ψ3})

O2 = CN({b {EC,PO,NTPP−1} c, ψ1, ψ3})

O3 = CN({b {EC,NTPP−1} c, ψ1, ψ3})

O4 = CN({a {NTPP, TPP} b, b {EC,DC} c, ψ3})

Suppose the preference relation chooses those options that weaken a minimum number of

formulas as the preferred options. In this case,O1,O2,O3 are preferred options, whereas

O4 is not.

Suppose the preference relation is �W . Then O1 and O3 are preferred options,

whereas O2 and O4 are not. In fact, it is easy to see that O3�WO2 but not vice versa,

and O1�WO4 but not vice versa.

Finally, suppose that options that only weaken formulas of the form x {NTPP} y

or x {TPP} y into x {NTPP, TPP} y are preferable to the others (e.g., because we

are not sure if a region is a tangential or non-tangential proper part of another, but the

information about the other topological relations is reliable and we would prefer not to

change it). In this case, O1 is a preferred option whereas the others are not.

137

4.6 Link with Existing Approaches

As discussed in Section 2.1, two kinds of approaches have been proposed in the

literature for solving the problem of inconsistency. The first type focuses on revising

the knowledge base and restoring its consistency. The second approach accepts inconsis-

tency and copes with it, prohibiting the logic from deriving trivial inferences. We have

described some of the works in the literature for both types of approaches in Section 2.1.

In this section we will analyze some of the works in the literature for the first approach

and establish the relationship with the general framework for inconsistency management

proposed in this chapter.

We will start analyzing the proposal of [RM70]; this work considers propositional

knowledge bases. Preferences among the maximal consistent subsets of the original

knowledge may be expressed, so that preferred maximal consistent subsets are deter-

mined. A formula is a P-consequence of a possibly inconsistent knowledge base K,

where P is the preference criterion, if it is a consequence of every preferred (accord-

ing to P) maximal consistent subset ofK. The paper discusses various preference criteria.

Given a knowledge base K and a preference criterion P, we use MCS(K, P) to denote

the set of preferred maximal consistent subsets of K.

Definition 31. Consider a knowledge base K and a preference criterion P on the max-

imal consistent subsets of K. Suppose W⊆ is the weakening mechanism used. For

any O1,O2 ∈ Opt(K), we say that O1 � O2 iff there exists K1 ∈ MCS(K, P) s.t.

O1 = CN(K1).

As stated in the following proposition, the preferred maximal consistent subsets

correspond to the preferred options when the weakening mechanism isW⊆ and the pref-

erence relation is the one of the definition above.

138

Proposition 21. Let K be a knowledge base and P a preference criterion on the max-

imal consistent subsets of K. Let W⊆ be the adopted weakening mechanism and � the

preference relation of Definition 31. Then:

• ∀S ∈MCS(K, P), ∃O ∈ Opt�(K) such that O = CN(S).

• ∀O ∈ Opt�(K), ∃S ∈MCS(K, P) such that O = CN(S).

Proof. Straightforward.

Clearly, P -consequences correspond to our notion of universal consequence (Def-

inition 24). Note that our framework is not restricted to propositional knowledge bases

only and gives the flexibility to choose a weakening mechanism different fromW⊆.

We focus now on prioritized knowledge bases, such as those in [Bre89]. We will

analyze two generalizations of Poole’s approach [Poo88]. In the following, a knowledge

base is a set of classical first order formulas. In the first generalization, a knowledge base

K is supposed to be stratified into K1, . . . , Kn (K = K1 ∪ . . .∪Kn) such that the formulas

in the same stratum are equally preferred, whereas formulas in a stratum Ki are preferred

to formulas in Kj with i < j.

Definition 32. ([Bre89]) Let K = K1 ∪ . . .∪Kn be a knowledge base. S = S1 ∪ . . .∪ Sn

is a preferred subbase of K if and only if ∀j, 1 ≤ j ≤ n, S1∪ . . .∪Sj is a maximal (under

set-inclusion) consistent subset of K1 ∪ . . . ∪ Kj .

P1(K) denotes the set of preferred subbases of K.

We show that the approach above can be captured by our framework by defining

the appropriate weakening mechanism and preference relation.

139

Definition 33. Consider a knowledge base K and let W⊆ be the adopted weakening

mechanism. For any O1,O2 ∈ Opt(K), we say that O1 � O2 iff there exists K1 ∈ P1(K)

s.t. O1 = CN(K1).

Proposition 22. Let K be a knowledge base, W⊆ the weakening mechanism and � the

preference relation of Definition 33. Then,

• ∀S ∈ P1(K), ∃O ∈ Opt�(K) such that O = CN(S).

• ∀O ∈ Opt�(K), ∃S ∈ P1(K) such that O = CN(S).

Proof. Straightforward.

The second generalization is based on a partial order on the formulas of a knowl-

edge base.

Definition 34. Let < be a strict partial order on a knowledge base K. S is a preferred

subbase of K if and only if there exists a strict total order ψ1, . . . , ψn of K respecting <

such that S = Sn with

S0 = ∅

Si =

 Si−1 ∪ {ψi} if Si−1 ∪ {ψi} is consistent

Si−1 otherwise

1 ≤ i ≤ n

P2(K) denotes the set of preferred subbases of K.

In addition, the second generalization can be easily expressed in our framework.

Definition 35. Consider a knowledge base K and let W⊆ be the adopted weakening

mechanism. For any O1,O2 ∈ Opt(K), we say that O1 � O2 iff there exists K1 ∈ P2(K)

s.t. O1 = CN(K1).

140

Proposition 23. Let K be a knowledge base,W⊆ the weakening mechanism used, and �

the preference relation of Definition 35. Then,

• ∀S ∈ P2(K), ∃O ∈ Opt�(K) such that O = CN(S).

• ∀O ∈ Opt�(K), ∃S ∈ P2(K) such that O = CN(S).

Proof. Straightforward.

Brewka [Bre89] provides a weak and strong notion of provability for both the gen-

eralizations described above. A formula ψ is weakly provable from a knowledge base K

iff there is a preferred subbase S of K s.t. ψ ∈ CN(S); ψ is strongly provable from K

iff for every preferred subbase S of K we have ψ ∈ CN(S). Clearly, the latter notion of

provability corresponds to our notion of universal consequence (Definition 24), whereas

the former is not a valid inference mechanism, since the set of weakly provable formulas

might be inconsistent. Observe that Brewka’s approach is committed to a specific logic,

weakening mechanism and preference criterion, whereas our framework is applicable to

different logics and gives the flexibility to choose the weakening mechanism and the pref-

erence relation that the end-user believes more suitable for his purposes.

Looking at inconsistency management approaches based on a partial order on the

formulas of a knowledge, the work of [Roo92] proposes the concept of a reliability theory,

based on a partial reliability relation among the formulas in a first order logic knowledge

base K. Clearly, this approach can be expressed in our framework in a manner analogous

to Definition 35 for Brewka’s approach. The author defines a special purpose logic based

on first order calculus, and a deduction process to obtain the set of premises that can be

believed to be true. The deduction process is based on the computation of justifications

(premisses used in the derivation of contradictions) for believing or removing formulas,

141

and it iteratively constructs and refines these justifications. At each step, the set of for-

mulas that can be believed from a set of justifications can be computed in time O(n ∗m)

where n is the number of justifications used in that step and m is the number of formulas

in the theory.

Finally, we focus on priority-based management of inconsistent knowledge bases,

as in [BCD+93, CLS95]. Propositional knowledge bases are considered and a knowl-

edge base K is supposed to be stratified into strata K1, . . . ,Kn, where K1 consists of the

formulas of highest priority whereas Kn contains the formulas of lowest priority. Priori-

ties in K are used to select preferred consistent subbases. Inferences are made from the

preferred subbases of K, that is K entails a formula ψ iff ψ can be classically inferred

from every preferred subbase of K. The work in [BCD+93] presents different meaning of

“preferred”, which are reported in the following definition.

Definition 36. ([BCD+93]) Let K = (K1∪ · · · ∪Kn) be a propositional knowledge base,

X = (X1 ∪ · · · ∪ Xn) and Y = (Y1 ∪ · · · ∪ Yn) two consistent subbases of K, where

Xi = X ∩ Ki and Yi = Y ∩ Ki. We define:

• best-out preference: let a(Z) = min{i | ∃ψ ∈ Ki − Z} for a consistent subbase

Z of K, with the convention min ∅ = n + 1. The best-out preference is defined by

X �bo Y iff a(X) ≤ a(Y);

• inclusion-based preference is defined by X �incl Y iff ∃i s.t. Xi ⊂ Yi and

∀j s.t. 1 ≤ j < i,Xj = Yj;

• lexicographic preference is defined by X �lex Y iff ∃i s.t. |Xi| < |Yi| and

∀j s.t. 1 ≤ j < i, |Xj| = |Yj|.

Let us consider the best-out preference and let amax(K) = max{i | K1 ∪ · · · ∪

Ki is consistent}. If amax(K) = k, then the best-out preferred consistent subbases of

142

K are exactly the consistent subbase of K which contain (K1∪ · · ·∪Kk); we denote them

by Pbo(K). This approach can be easily captured by our framework by adoptingW⊆ as

weakening mechanism and defining the preference relation as follows.

Definition 37. Consider a knowledge base K and let W⊆ be the adopted weakening

mechanism. For anyO1,O2 ∈ Opt(K), we say thatO1 � O2 iff there exists K1 ∈ Pbo(K)

s.t. O1 = CN(K1).

Proposition 24. Let K be a knowledge base, W⊆ the weakening mechanism and � the

preference relation of Definition 37. Then,

• ∀S ∈ Pbo(K), ∃O ∈ Opt�(K) such that O = CN(S).

• ∀O ∈ Opt�(K), ∃S ∈ Pbo(K) such that O = CN(S).

Proof. Straightforward.

The inclusion-based preferred subbases are of the form (X1 ∪ · · · ∪Xn) s.t. (X1 ∪

· · · ∪ Xi) is a maximal (under set inclusion) consistent subbase of (K1 ∪ · · · ∪ Ki), for

i = 1..n. Note these preferred subbases coincide with Brewka’s preferred subbases of

Definition 32 above, which can be expressed in our framework.

Finally, the lexicographic preferred subbases are of the form (X1 ∪ · · · ∪ Xn) s.t.

(X1∪· · ·∪Xi) is a cardinality-maximal consistent subbase of (K1∪· · ·∪Ki), for i = 1..n;

we denote them by Plex(K).

Definition 38. Consider a knowledge base K and let W⊆ be the adopted weakening

mechanism. For anyO1,O2 ∈ Opt(K), we say thatO1 � O2 iff there existsK1 ∈ Plex(K)

s.t. O1 = CN(K1).

Proposition 25. Let K be a knowledge base, W⊆ the weakening mechanism and � the

preference relation of Definition 38. Then,

143

• ∀S ∈ Plex(K), ∃O ∈ Opt�(K) such that O = CN(S).

• ∀O ∈ Opt�(K), ∃S ∈ Plex(K) such that O = CN(S).

Proof. Straightforward.

As already said before, once a criterion for determining preferred subbase has been

fixed, a formula is a consequence of K if can be classically inferred from every preferred

subbase, which corresponds to our universal inference mechanism (Definition 24).

In [CLS95], the same criteria for selecting preferred consistent subbases are con-

sidered, and three entailment principles are presented. The UNI principle is the same as

in [BCD+93], i.e. it corresponds to our universal inference mechanism. According to the

EXI principle, a formula ψ is inferred from a knowledge baseK if ψ is classically inferred

from at least one preferred subbase of K. According to the ARG principle, a formula ψ is

inferred from a knowledge base K if ψ is classically inferred from at least one preferred

subbase and no preferred subbase classically entails ¬ψ. The last two entailment prin-

ciples are not valid inference mechanisms in our framework, since the set of EXI (resp.

ARG) consequences might be inconsistent.

4.7 Concluding Remarks

Past works on reasoning about inconsistency in AI have suffered from multiple

flaws: (i) they apply to one logic at a time and are often invented for one logic after

another. (ii) They assume that the AI researcher will legislate how applications resolve

inconsistency even though the AI researcher may often know nothing about a specific ap-

plication which may be built in a completely different time frame and geography than the

AI researcher’s work – in the real world, users are often stuck with the consequences of

144

their decisions and would often like to decide what they want to do with their data (includ-

ing what data to consider and what not to consider when there are inconsistencies). An

AI system for reasoning about inconsistent information must support the user in his/her

needs rather than forcing something down their throats. (iii) Most existing frameworks

use some form or the other of maximal consistent subsets.

In this chapter, we attempt to address all these three flaws through a single uni-

fied approach that builds upon Tarksi’s axiomatization of what a logic is. Most existing

monotonic logics such as classical logic, Horn logic, probabilistic logic, temporal logic

are special cases of Tarski’s definition of a logic. Thus, we develop a framework for rea-

soning about inconsistency in any logic that satisfies Tarski’s axioms. Second, we propose

the notion of an “option” in any logic satisfying Tarski’s axioms. An option is a set of

formulas in the logic that is closed and consistent – however, the end user is not forced

to choose a maximal consistent subset and options need not be maximal or even subsets

of the original inconsistent knowledge base. Another element of our framework is that of

preference. Users can specify any preference relation they want on their options.

Once the user has selected the logic he is working with, the options that he consid-

ers appropriate, and his preference relation on these options, our framework provides a

semantics for a knowledge base taking these user inputs into account.

Our framework for reasoning about inconsistency has three basic components: (i)

a set of options which are consistent and closed sets of formulas determined from the

original knowledge base by means of a weakening mechanism which is general enough

to apply to arbitrary logics and that allows users to flexibly specify how to weaken a

knowledge base according to their application domains and needs. (ii) A general notion

of preference relation between options. We show that our framework not only captures

maximal consistent subsets, but also many other criteria that a user may use to select

145

between options. We have also shown that by defining an appropriate preference rela-

tion over options, we can capture several existing works such as the subbases defined

in [RM70] and Brewka’s subtheories. (iii) The last component of the framework consists

of an inference mechanism that allows the selection of the inferences to be drawn from

the knowledge base. This mechanism should return an option. This forces the system to

make safe inferences.

We have also shown through examples how this abstract framework can be used in

different logics, provided new results on the complexity of reasoning about inconsistency

in such logics, and proposed general algorithms for computing preferred options.

In short, our framework empowers end-users to make decisions about what they

mean by an option, what options they prefer to what other options, and prevents them

from being dragged down by some systemic assumptions made by a researcher who might

never have seen their application or does not understand the data and/or the risks posed

to the user in decision making based on some a priori definition of what data should be

discarded when an inconsistency arises.

146

Chapter 5

PLINI: A Probabilistic Logic for Inconsistent

News Information

The work described in this chapter appears in [AMB+11].

5.1 Introduction and Motivating Example

Google alone tracks thousands news sites around the world on a continuous basis,

collecting millions of news reports about a wide range of phenomena. While a large

percentage of news reports are about different types of events (such as terrorist attacks,

meetings of G-8 leaders, results of sporting events, to name a few), there are also other

types of news reports such as editorials and style sections that may not always be linked

to events, but to certain topics (which in turn may include events). For example, it is quite

common to read editorials about a nuclear nonproliferation treaty or about a political

candidate’s attacks on his rival. Thus, even in news pieces that may not directly be about

an event, there are often references to events.

In this chapter, we study the problem of identifying inconsistency in news reports

about events. The need to reason about inconsistency is due to the fact that different

147

news sources generate their individual stories about an event which may differ from one

another. We do not try to develop methods to resolve the inconsistency or perform para-

consistent reasoning in this work. Existing methods for inconsistency resolution and para-

consistent logics [Bel77, BDP97, BS98, BS89, dC74, Fit91, FFP05, FFP07] can be used

on top of what we propose.

For instance, we may have a single event (a bombing in Ahmedabad, India in July

2008) that generates the following different news reports.

(S1) An obscure Indian Islamic militant group is claiming responsibility for a bombing

attack that killed at least 45 people in a western Indian city.1

(S2) Police believe an e-mail claiming responsibility for the bombing that killed 45 peo-

ple Saturday was sent from that computer in a Mumbai suburb.2

(S3) MUMBAI – Police carried out a manhunt here Tuesday, believing that the serial

blasts that rocked the western Indian city of Ahmedabad over the weekend, killing 42

people, were hatched in a Mumbai suburb.3

Any reader who reads these reports will immediately realize that, despite the incon-

sistencies, they all refer to the same event. The inconsistencies in the above reports fall

into the categories below.

1. Linguo-Numerical Inconsistencies. (S1) says at least 45 people were killed; (S2)

says 45 people were killed; (S3) says 42 people were killed. (S1) and (S3) as well

as (S2) and (S3) are inconsistent.
1Canadian TV report on July 27, 2008.
2WBOC, based on an AP news report of July 28, 2008.
3The Wall Street Journal, based on an AP news report of July 30, 2008.

148

2. Spatial Inconsistencies. (S1) and (S3) are apparently (but not intuitively) incon-

sistent in terms of the geospatial location of the event. (S1) says the event occurred

in a “western Indian city”, while (S3) says the event occurred in Ahmedabad. An

automated computational system may flag this as an inconsistency if it does not

recognize that Ahmedabad is in fact a western Indian city.

3. Temporal Inconsistencies. (S2) says the bombing occurred on Saturday, while

(S3) says the bombing occurred over the weekend. When analyzing when the event

occurred, we need to realize that the “Saturday” in (S2) refers to the past Saturday,

while the “weekend” referred to in (S3) is the past weekend. Without this realiza-

tion - and the realization that Saturday is typically a part of a weekend, a system

may flag this as inconsistent.

In fact, when reasoning about events, many other kinds of inconsistencies or ap-

parent inconsistencies can also occur. For example, a report that says an event occurred

within 5 miles of College Park, MD and another report that says the event occurred in

Southwest DC would (intuitively) be mutually inconsistent. When reasoning about in-

consistency in reporting about news events, we need to recognize several factors.

• Are two news reports referring to the same event or not? The answer to this question

determines whether integrity constraints (e.g. ones that say that if two violent events

are the same, then the number of victims should be the same) are applicable or not?

• Are the two event reports inconsistent or not? If the two events are deemed to be the

same, then they should have “similar” attribute values. However, if the two events

are considered to be different, then they may have dissimilar attribute values.

149

• A third problem, as mentioned above, is that inconsistency can arise in the linguistic

terms used to describe news events. When should varying numbers, temporal ref-

erences, and geospatial references be considered to be “close enough”? This plays

an important role in determining whether news reports are inconsistent or not.

A problem arises because of circularity. The answer to the first question is based

on whether the events in question have similar attribute values, while the answer to the

second question says that equivalent events should have similar attribute values. The

ability to distinguish whether two reports refer to the same event or not, and whether they

are inconsistent or not, is key to the theory underlying PLINI. We start in Section 5.2 with

an informal definition of what we mean by an event. In Section 5.3, we provide a formal

syntax and semantics for PLINI-formulas that contain linguistically modified terms such

as “about 5 miles from Ahmedabad”, “over 50 people” and “the first weekend of May

2009.” We briefly show how we can reason about linguistic modifications to numeric,

temporal, and geospatial data. We discuss similarity functions in Section 5.4. Then,

in Section 5.5, we provide a syntax for PLINI-programs. Section 5.6 provides a formal

model theory and fixpoint semantics for PLINI-programs that is a variant of the semantics

of generalized annotated programs [KS92]. The least fixpoint of the fixpoint operator

associated with PLINI-programs allows us (with additional clustering algorithms) to infer

that certain events should be considered identical, while other events should be considered

different. This additional clustering algorithm is briefly described in Section 5.7. Finally,

in Section 6.6, we describe our prototype implementation and experiments.

Figure 5.1 shows the architecture of our PLINI framework. We start with an in-

formation extraction program that extracts event information automatically from text

sources. Our implementation uses T-REX [AS07], though other IE programs may be

used as well. Information extracted from news sources is typically uncertain and may

150

Figure 5.1: Architecture of the PLINI-system

include information that is linguistically modified such that from sentences (S1), (S2),

(S3) above. Once the information extractor has identified events and extracted properties

of those events, we need to identify which events are similar (and this in turn requires

determining which properties of events are similar). To achieve this, we assume the exis-

tence of similarity functions on various data types – we propose several such functions for

certain data types that are common in processing news information. PLINI-programs may

be automatically extracted from training data using standard machine learning algorithms

and a training corpus. The rules in a PLINI-program allow us to determine the similarity

between different events. Our PLINI-Cluster algorithm clusters events together based

on the similarity determined by the rules. All events within the same cluster are deemed

equivalent. Once this is done, we can determine whether a real inconsistency exists or

not.

Our experiments are based on event data extracted by the T-REX [AS07] system.

T-REX has been running continuously for over three years. It primarily extracts informa-

tion on violent events worldwide from over 400 news sources located in 130 countries.

Over 126 million articles have been processed to date by T-REX which has automatically

extracted a database of approximately 19 million property-value pairs related to violent

events. We have conducted detailed experiments showing that the PLINI-architecture can

identify inconsistencies with high precision and recall.

151

5.2 What is an Event?

We assume that every event has three kinds of properties: a spatial property de-

scribing the region where the event occurred, a temporal property describing the period

of time when the event occurred, and a set of event-specific properties describing various

aspects of the event itself. The event specific properties vary from one type of event to

another. Some examples of events are the following.

• Terrorist act: Here, the spatial property describes the region where the event oc-

curred (e.g. Mumbai suburb), and various event-specific properties such as num-

ber of victims, number injured, weapon, claimed responsibility, arrested, etc.,

can be defined.

• Political meeting: Here, the event specific properties might include attendee,

photo, agreement reached, etc.

• Natural disaster: The spatial properties in this case may be somewhat differ-

ent from those above. For instance, if we consider the 2004 tsunami in the In-

dian ocean, the region where the event occurred may be defined as a set of re-

gions (e.g. Aceh, Sri Lanka, and so forth), while the time scales may also be

different based on when the tsunami hit the affected regions. The event-specific

attributes might include properties such as number of victims, number injured,

number houses destroyed, property damage value, and so forth.

An event can be represented as a set of (property , value) pairs. Table 5.1 describes the

events presented in Section 5.1.

152

eS1 (type, ′′bombing attack ′′), (perpetrator , ′′Indian Islamic Militant Group ′′),
(place, ′′western Indian city ′′), (number of victims, ′′at least 45 ′′)

eS2 (type, ′′bombing ′′), (date, ′′Saturday ′′),
(report time, 7/28/2008), (number of victims, 45)

eS3 (type, ′′serial blast ′′), (number of victims , 42), (report time, 7/30/2008)
(place, ′′Ahmedabad ′′), (date, ′′over the weekend ′′)

Table 5.1: Examples of event descriptions

5.3 PLINI Wffs: Syntax and Semantics

As shown in Section 5.1, news reports contain statements that have numeric, spatial,

and temporal indeterminacy. In this section, we introduce a multi-sorted logic syntax to

capture such statements.

5.3.1 Syntax of Multi-sorted Wffs

Our definition of multi-sorted well formed formulas (mWFFs for short) builds upon

well-known multi-sorted logics [RCC92] and modifies them appropriately to handle the

kinds of linguistic modifiers used in news articles as exemplified in sentences (S1), (S2)

and (S3). In this section, we introduce the syntax of mWFFs.

Throughout this chapter, we assume the existence of a set S of sorts. The set

S includes sorts such as Real , Time, Time Interval , Date, NumericInterval , Point ,

Space, and ConnectedPlace. Each sort s has an associated set dom(s) whose elements

are called constants of sort s. For each sort s ∈ S, we assume the existence of an infinite

set Vs of variable symbols.

Definition 39 (Term). A term t of sort s is any member of dom(s) ∪ Vs. A ground term

is a constant.

153

We assume the existence of a set P of predicate symbols. Each predicate symbol

p ∈ P has an associated arity, arity(p), and a signature. If a predicate symbol p ∈ P has

arity n, then its signature is of the form (s1, . . . , sn) where each si ∈ S is a sort.

Definition 40 (Atom). If p ∈ P is a predicate symbol with signature (s1, . . . , sn), and

t1, . . . , tn are (resp. ground) terms of sorts s1, . . . , sn respectively, then p(t1, . . . , tn) is a

(resp. ground) atom.

Definition 41 (mWFF). A multi-sorted well formed formula (mWFF) is defined as fol-

lows:

• Every atom is an mWFF (atomic mWFF).

• If A and B are mWFFs, then so are A ∧B, A ∨B, and ¬A.

• If s ∈ S, X ∈ Vs, and A is an mWFF, then ∀sX.A and ∃sX.A are also mWFFs.

We are now ready to give a semantics for the syntactic objects introduced above.

We start with the definition of denotation of various syntactic constructs.

Definition 42 (Denotation). Suppose s ∈ S is a sort, and c ∈ dom(s). Each sort s has a

fixed associated denotation universe Us. Each ground term t of sort s and each predicate

symbol p ∈ P has a denotation JtK (JpK resp.), defined as follows.

• JcK is an element of Us for each c ∈ dom(s).

• If p ∈ P is a predicate symbol with signature (s1, . . . , sn), then JpK is a subset of

Us1 × . . .× Usn .

This work considers the sorts: Real , Time, Time Interval , Date, Point , Space,

and ConnectedPlace. We describe each of these sorts below.

154

Real. Real is a sort whose domain is the set R of real numbers. The denotation of

symbols in dom(Real) is:

• The denotation universe is UReal = R.4

• For each symbol r ∈ Real , JrK = r ∈ R, i.e., real numbers denote themselves.

Time. Let us assume that Time is a sort having the set of symbols such as 2008, 08/2008,

08/01/2008, etc. as its domain.5 The denotation of symbols in dom(Time) can be de-

fined as follows:

• The denotation universe is UTime = ℘(Z) where Z is the set of non-negative integers

and each t ∈ Z encodes a point in time, i.e. the number of time units elapsed since

the origin of the time scale adopted by the user. As an example, t ∈ Z may encode

the number of seconds elapsed since January 1st 1970, 0:00:00 GMT.

• The denotation of each symbol t′ ∈ dom(Time) is an element of ℘(Z), i.e. an

unconstrained set of points in time.

TimeInterval. Time Interval is a sort whose domain is the set of symbols of the form

(start, end) where start, end ∈ Z. The denotation of symbols in dom(Time Interval)

can be defined as follows:

• The denotation universe is UTime Interval = {I ∈ ℘(Z) | I is connected}.
4Though the domain and denotation universe of Real are identical, this is not the case for all sorts (the

sorts Space and ConnectedPlace below are examples).
5Formally, we could define this set of symbols as follows. Every non-negative integer is a year. Every

integer from 1 to 12 is a month. Every integer from 1 to 31 is a day. Every year is in dom(Time). If m
is a month and y is a year, then m/y is in dom(Time). If d is a day, m is a month, and y is a year, then
d/m/y is in dom(Time). The fact that 31/2/2009 is not a valid date can be handled by adding an additional
“validity” predicate. We do not go into this as this is not the point of this work.

155

• The denotation of each symbol (start, end) ∈ dom(Time Interval) is defined in

the obvious manner: J(start, end)K = [start, end) — note that this is a left-closed,

right open interval.

Date. Let us assume that Date is a sort having the set of symbols of the form month-

day-year as its domain and dom(Date) ⊂ dom(Time Interval). The denotation of

symbols in dom(Date) can be defined as follows:

• The denotation universe is UDate = {D ∈ UTime Interval | sup(D)− inf(D) = τ

∧ inf(D) mod τ = 0}, where τ is the number of time units, in the selected time

scale, contained in a day. For example, if the adopted time scale has a granularity

of hours, then τ = 24.

Point. Point is a sort whose domain is the set R × R. The denotation of symbols in

dom(Point) can be defined as follows:

• The denotation universe is UPoint = R× R.

• For each symbol p = (r1, r2) ∈ dom(Point), JpK is the point p = (r1, r2) ∈ R×R.

Space. Space is a sort whose domain is an enumerated set of strings such as Atlantic

Ocean, Great Lakes, WashingtonDC, etc. The denotation of symbols in dom(Space)

can be defined as follows:

• The denotation universe is USpace = ℘(R×R), where ℘(R×R) is the power set of

R× R.

• For each symbol a ∈ dom(Space), JaK is a member of ℘(R × R), i.e. an uncon-

strained set of points in R× R.

156

For instance, the denotation, JParisK, of Paris, is a set of points on the 2-dimensional

Cartesian plane that corresponds to the region referred to as Paris. Another example of

an element of sort Space is United States, whose denotation is the set of points that is the

union of all points in the real plane corresponding to each of the regions that form the

country (continental US, Alaska, Hawaii, etc.).

Connected Place. ConnectedPlace’s domain is the subset of Space’s domain that con-

sists of connected regions. The denotation of symbols in dom(ConnectedPlace) can be

defined as follows:

• The denotation universe is UConnectedPlace = {a ∈ USpace | a is connected}.

• For each symbol l ∈ dom(ConnectedPlace), JlK is a connected element l of ℘(R×

R), i.e. a connected region in R×R that corresponds to l. Thus, JWashington DC K

might be the set {(x, y) | 10 ≤ x ≤ 12 ∧ 36 ≤ y ≤ 40} and JParisK might be

similarly defined.

Note that while continental US is an element of sort ConnectedPlace, United States is

not because the US is not a connected region. Throughout the rest of this chapter we

assume an arbitrary but fixed denotation function J.K for each constant and predicate

symbol in our language.

Definition 43 (Assignment). An assignment σ is a mapping, σ : ∪s∈SVs → ∪s∈SUs such

that for every X ∈ Vs, σ(X) ∈ Us.

Thus σ assigns an element of the proper sort for every variable. We write σ[A] to

denote the simultaneous replacement of each variable X in A by σ(X).

Definition 44 (Semantics of mWFFs). The evaluation of an mWFF under assignment σ

is defined as follows:

157

Predicate Symbol Signature Denotation Associated Region

almost (Real,Real,Real) {(x, ε, y) | x, ε, y ∈ R The interval [(1− ε)× x, x)
(0 < JεK ≤ 1) ∧ ((1− ε)× x ≤ y < x)}

at least (Real,Real,Real) {(x, ε, y) | x, ε, y ∈ R The interval [x, x + (ε× x)]
(0 ≤ JεK ≤ 1) ∧ (x ≤ y ≤ (x + (x× ε))}

around (Real,Real,Real) {(x, ε, y) | x, ε, y ∈ R ∧ (0 ≤ JεK ≤ 1) The interval [x− (ε× x), x + (ε× x)]
(x− (x× ε) ≤ y ≤ x + (x× ε))}

most of (Real,Real,Real) {(x, ε, y) | x, ε, y ∈ R ∧ (0.0 < JεK < 0.5) The interval [x− (x× ε), x)
(x× (1− ε) ≤ y < x)}

between (Real,Real,Real,Real) {(x, y, ε, z) | x, y, z, ε ∈ R ∧ (0 ≤ JεK ≤ 1) The interval [x− (x× ε), y + (y × ε)]
(x− (x× ε) ≤ z ≤ y + (y × ε))}

Table 5.2: Denotations for selected linguistically modified numeric predicates

1. If p is a predicate symbol of arity n and signature (s1, . . . , sn), and t1, . . . , tn are

terms of sort s1, . . . , sn respectively, then the atomic mWFF σ[p(t1, . . . , tn)] is true

iff (Jσ(t1)K, . . . , Jσ(tn)K) ∈ JpK.

2. If A is an mWFF, then σ[¬A] is true iff σ[A] is not true.

3. If A and B are both mWFFs, then σ[A∧B] is true iff σ[A] is true and σ[B] is true.

4. If A and B are both mWFFs, then σ[A ∨B] is true iff σ[A] is true or σ[B] is true.

5. If A is an mWFF and X ∈ Vs, then σ[∀sX.A] is true iff for each possible assign-

ment τ , identical to σ except possibly for X , τ [A] is true.

6. If A is an mWFF and X ∈ Vs, then σ[∃X.A] is true iff there is an assignment τ ,

identical to σ except possibly for X , for which τ [A] is true.

An mWFF A is true iff σ[A] is true for all assignments σ.

The above definitions describe the syntax and semantics of mWFFs. It should be

clear from the preceding examples that we can use the syntax of mWFFs to reason about

numbers with attached linguistic modifiers (e.g. “around 25”, “between 25 and 30”. “at

least 40”), about time with linguistic modifiers (e.g. “last month”, “morning of June 1,

2009”,) and spatial information with linguistic modifiers (e.g. “center of Washington

DC”, “southwest of Washington DC”).

158

Predicate Symbol Signature Denotation Associated Region

Positional Indeterminacy
center (ConnectedPlace,Real,Point) {(l, δ, p) | l ∈ UConnectedPlace ∧ δ ∈ [0, 1] Circle centered at the center of the

∧ p ∈ UPoint ∧ d(p, Cent(l)) ≤ δ · hside(l)} rectangle maximally contained
in l6 , with radius equal to a
fraction δ of half the length of the
smaller side of the rectangle

boundary (Space,Point) {(a, p) | a ∈ USpace ∧ p ∈ UPoint

∧ (∀ε > 0 : (∃p1 ∈ a, p2 /∈ a : d(p1, p) < ε Points on the edge of a
∧ d(p2, p) < ε))}

Distance Indeterminacy
distance (Space,Real,Point) {(a, r, p) | a ∈ USpace ∧ r ∈ R ∧ p ∈ UPoint Points at a distance r from a point

∧ (∃p0 ∈ a : d(p0, p) = r)} in a
within (Space,Real,Point) {(a, r, p) | a ∈ USpace ∧ r ∈ R ∧ p ∈ UPoint Points at a distance r or less from

∧ (∃p0 ∈ a : d(p0, p) ≤ r)} a point in a

Directional Indeterminacy
north (Space,Real, Space) {(a, θ, p) | a ∈ USpace ∧ θ ∈ R ∧ p ∈ UPoint NCone(θ, p): `0 upwards

∧ (∃p0 ∈ a : p ∈ NCone(θ, p0))} parallel to the Y -axis
ne (Space,Real, Space) {(a, θ, p) | a ∈ USpace ∧ θ ∈ R ∧ p ∈ UPoint NECone(θ, p): `0 to the right

∧ (∃p0 ∈ a : p ∈ NECone(θ, p0))} with slope 1
nw (Space,Real, Space) {(a, θ, p) | a ∈ USpace ∧ θ ∈ R ∧ p ∈ UPoint NWCone(θ, p): `0 to the left

∧ (∃p0 ∈ a : p ∈ NWCone(θ, p0))} with slope−1

south (Space,Real, Space) {(a, θ, p) | a ∈ USpace ∧ θ ∈ R ∧ p ∈ UPoint SCone(θ, p): `0 downwards
∧ (∃p0 ∈ a : p ∈ SCone(θ, p0))} parallel to the Y -axis

Table 5.3: Denotations for selected linguistically modified spatial predicates

Table 5.2 shows denotations of some predicate symbols for linguistically modified

numbers, while and Tables 5.3 and 5.4 do the same for linguistically modified geospatial

and temporal quantities, respectively.

Example 38 (Semantics for linguistically modified numbers). Consider the predicate

symbol most of in Table 5.2. Given 0 < ε < 0.5, we say that most of(x, ε, y) is true (y

is “most of” x) iff x× (1− e) ≤ y ≤ x. Thus, when x = 4, e = 0.3, y = 3.1, we see that

y lies between 2.8 and 4 and hence most of(4, 0.3, 3.1) holds. However, if e = 0.2, then

most of(4, 0.2, 3.1) does not hold because y must lie in the interval [3.2, 4].

Example 39 (Semantics for linguistically modified spatial concepts). Consider the pred-

icate symbol boundary defined in Table 5.3 (boundary is defined with respect to a set of

points in a 2-dimensional space) and consider the rectangle a′ defined by the constraints

1 ≤ x ≤ 4 and 1 ≤ y ≤ 5. A point p is on the boundary of a iff for all ε > 0, there is a

point p1 ∈ a and a point p2 /∈ a such that the distance between p and each of p1, p2 is less

6We are assuming there is one such rectangle; otherwise a more complex method is used.

159

Predicate Symbol Signature Denotation Associated Region

morning (Date,Date) {(d1, d2) | d1, d2 ∈ UDate ∧ The entire first half
GLB(d1) ≤ d2 ≤ (GLB(d1) + LUB(d1)/2} of a day

last month (Date,Date) form = 1, {((m, d0, y), z) | (m, d0, y), z ∈ UDate ∧ The denotation of the
(∃i) s.t. (12, i, y − 1) ∈ Date ∧ z ∈ J(12, i, y − 1)K} month immediately
form ≥ 2, {((m, d0, y), z) | (m, d0, y) ∈ UDate , z ∈ UTime preceding m
∧ (∃i) s.t. (m− 1, i, y) ∈ Date ∧ z ∈ J(m− 1, i, y)K}

around (Date,Real,Time Interval) {((m, d0, y), k, (zs, ze)) | (m, d0, y) ∈ UDate The time points which
∧ zs, ze ∈ UTime ∧ k ∈ Real ∧ zs = inf((ms, ds, ys) ∧ are within a few days
ze = sup((me, de, ye))}, where (ms, ds, ys) and (me, de, ye) of a given date
refer to the days which are exactly k days before and after (m, d0, y)

shortly before (Date,Real,Time Interval) {((m, d0, y), k, (zs, ze)) | (m, d0, y) ∈ UDate The period shortly
∧ zs, ze ∈ UTime ∧ k ∈ UReal ∧ zs = inf((ms, ds, ys)) before a given date
∧ ze = inf((m, d0, y))]}, where (ms, ds, ys) refers to the day
which is exactly k days before (m, d0, y)

shortly after (Date,Real,Time Interval) {((m, d0, y), k, (zs, ze)) | (m, d0, y) ∈ UDate The period shortly
∧ zs, ze ∈ UTime ∧ k ∈ UReal ∧ zs = sup((m, d0, y)) after a given date
∧ ze = inf((me, de, ye))]}, where (me, de, ye) refers to the day
which is exactly k days after (m, d0, y)

Table 5.4: Denotations for selected linguistically modified temporal predicates

than ε. Using this definition, we see immediately that the point (1, 1) is on the boundary

of the rectangle a′, but (1, 2) is not.

Now consider the predicate symbol nw defining the northwest of a region (set of

points). According to this definition, a point p is to the northwest of a region a w.r.t. cone-

angle θ iff there exists a point p0 in a such that p is inNWCone(θ, p0). NWCone(θ, p0)7

is defined to be the set of all points p′ obtained by (i) drawing a ray L0 of slope −1 to the

left of vertex p0, (ii) drawing two rays with vertex p0 at an angle of ±θ from L0 and (iii)

looking at between the two rays in item (ii). Figure 5.2(a) shows this situation. Suppose a

is the shaded region and θ = 20 (degrees). We see that p is to the northwest of this region

according to the definition in Table 5.3.

5.4 Similarity Functions

We now propose similarity functions for many of the major sorts discussed in this

chapter. We do not claim that these are the only definitions – many definitions are possi-

ble, often based on application needs. We merely provide a few in order to illustrate that

reasonable definitions of this kind exist.
7The other cones referenced in Table 5.3 can be similarly defined.

160

(a) (b)

Figure 5.2: Example of (a) point p in the northwest of a region a; (b) application of simP
1

and simP
2

We assume the existence of an arbitrary but fixed denotation function for each sort.

Given a sort s, a similarity function is a function sims : dom(s)×dom(s)→ [0, 1], which

assigns a degree of similarity to each pair of elements in dom(s). All similarity functions

are required to satisfy two very basic axioms.

sims(a, a) = 1 (5.1)

sims(a, b) = sims(b, a) (5.2)

161

Sort Point

Consider the sort Point , with denotation universe UPoint = R × R. Given two terms a

and b of sort Point , we can define the similarity between a and b in any of the following

ways.

simP
1 (a, b) = e−α·d(JaK,JbK) (5.3)

where d(JaK, JbK) is the distance in R×R between the denotations of a and b8, and α is a

factor that controls how fast the similarity decreases as the distance increases.

simP
2 (a, b) =

1

1 + α · d(JaK, JbK)
(5.4)

where d() and α have the same meaning as in Equation 5.3.

Example 40. Assuming that street addresses can be approximated as points, consider the

points a = “8500 Main St.” and b = “1100 River St.” in Figure 5.2(b), with denotations

(4, 8) and (9, 2) respectively. Assuming α = 0.3, then d(JaK, JbK) = 7.81, simP
1 (a, b) =

0.096, and simP
2 (a, b) = 0.299.

Sort ConnectedPlace

Consider the sort ConnectedPlace, with denotation universe UConnectedPlace =

{a ∈ USpace | a is connected}. Given two terms a and b of sort ConnectedPlace, the sim-

ilarity between a and b can be defined in any of the following ways.

simCP
1 (a, b) = e−α·d(c(JaK),c(JbK)) (5.5)

8If elements in UPoint are pairs of latitude, longitude coordinates, then d() is the great-circle distance.
We will assume that d() is the Euclidean distance, unless otherwise specified.

162

(a) (b)

Figure 5.3: Example of the application of similarity functions for sort ConnectedPlace

where c(JaK), c(JbK) in R×R are the centers of JaK and JbK respectively, d(c(JaK), c(JbK))

is the distance between them, and α is a factor that controls how fast the similarity de-

creases as the distance between the centers of the two places increases. This similarity

function works well when comparing geographic entities at the same level of granularity.

When places can be approximated with points, it is equivalent to simP
1 (a, b).

simCP
2 (a, b) =

1

1 + α · d(c(JaK), c(JbK))
(5.6)

where c(), d() and α have the same meaning as in Equation 5.5.

Example 41. Consider the two places a = “Lake District” and b = “School District” in

Figure 5.3(a), and suppose their denotations are the two shaded rectangles in the figure.

It is easy to observe that c(JaK) = (13, 7.5), c(JbK) = (9.5, 2.5), and d(c(JaK), c(JbK)) =

6.103. Hence, for α = 0.3, simCP
1 (a, b) = 0.160 and simCP

2 (a, b) = 0.353.

Other two similarity functions can be defined in terms of the areas of the two regions.

simCP
3 (a, b) =

A(JaK ∩ JbK)
A(JaK ∪ JbK)

(5.7)

163

where A(JtK) is a function that returns the area of JtK. Intuitively, this function uses the

amount of overlap between the denotations of a and b as their similarity.

simCP
4 (a, b) =

A(JaK ∩ JbK)
maxt∈{a,b}A(JtK)

(5.8)

where A(JtK) has the same meaning as in Equation 5.7.

Example 42. Consider the two connected places a = and b = in Figure 5.3(a), and

their respective denotations. The intersection of the two denotations is the darker shaded

region, whereas their union is the whole shaded region. It is straightforward to see

that A(JaK) = 42, A(JbK) = 65, A(JaK ∩ JbK) = 6, and A(JaK ∪ JbK) = 101. Thus,

simCP
3 (a, b) = 0.059 and simCP

4 (a, b) = 0.092

In order to better illustrate the great expressive power of our framework, we now

consider a more complex scenario, where the terms being compared are linguistically

modified terms. We show how the similarity of such terms depends on the specific deno-

tations assumed by the user for each predicate symbol.

Example 43. Consider the two linguistically modified terms of sort ConnectedPlace a =

“In the center of Weigfield” and b = “Northeast of Oak St. Starbucks”, where Weigfield

is the fictional city depicted in Figure 5.3. Assuming the denotation of center and ne

shown in Table 5.3, we now compute the similarity between a and b for different values

of δ and θ. Figure 5.3(b) shows denotations of a for values of δ of 0.2, 0.4, 0.6, and 0.8,

and denotations of b for values of θ of 15◦, 30◦, and 45◦. In order to simplify similarity

computation, we make the following assumptions (without loss of generality): (i) the term

“Oak St. Starbucks” can be interpreted as a term of sort Point; (ii) the denotation of

“Oak St. Starbucks” coincides with the geometrical center (8, 5.5) of the bounding box

of J“Weigfield”K; (iii) the cones do not extend indefinitely, but rather within a fixed radius

164

δ = 0.2 δ = 0.4 δ = 0.6 δ = 0.8

θ = 15◦ 0.0132 0.0276 0.0346 0.0380
θ = 30◦ 0.0157 0.0413 0.0593 0.0699
θ = 45◦ 0.0167 0.0494 0.0777 0.0970

Table 5.5: Value of simCP
3 (a, b) for different values of δ and θ

(8 units in this example) from their vertex. Table 5.5 reports the value of simCP
3 (a, b) for

different values of δ and θ. The highest similarity corresponds to the case where δ = 0.8

and θ = 45◦, which maximizes the overlap between the two regions. Intuitively, this result

tells us that a user with a very restrictive interpretation of center and ne (i.e., δ � 1 and

θ � 90◦ respectively) will consider a and b less similar than a user with a more relaxed

interpretation of the same predicates.

Another similarity function can be defined in terms of the Hausdorff distance [Mun74].

simCP
5 (a, b) = e−α·H(JaK,JbK) (5.9)

where H(P,Q) = max(h(P,Q), h(Q,P)), with P,Q ∈ ℘(R × R), is the Hausdorff

distance, where h(P,Q) = maxp∈P minq∈Qd(p, q) is the distance between the point

p ∈ P that is farthest from any point in Q and the point q ∈ Q that is closest to p.

Intuitively, the Hausdorff distance is a measure of the mismatch between P and Q; if the

Hausdorff distance is d, then every point of P is within distance d of some point of Q and

vice versa.

Example 44. Consider again the two connected places a = “Lake District” and b =

“School District” in Figure 5.3, and their respective denotations. In this example, the

Hausdorff distance between JaK and JbK can be interpreted as the distance between the two

points A and B shown in the figure. Therefore, H(JaK, JbK) = 8.062 and simCP
5 (a, b) =

165

0.089 for α = 0.3. Exchanging the roles of JaK and JbK would lead to a shorter value of

the distance, whereas H() selects the maximum.

simCP
6 (a, b) = e−α·d(c(JaK),c(JbK)) · e−β·(1−o(JaK,JbK)) (5.10)

where c(), d() and α have the same meaning as in Equation 5.5, o(JaK, JbK) = A(JaK∩JbK)
A(JaK∪JbK)

is the amount of overlap between JaK and JbK, and β is a factor that controls how fast the

similarity decreases as the amount of overlap between the two places decreases9.

Example 45. Consider again the two connected places in Figure 5.3, and their respective

denotations. In this example, simCP
6 (a, b) = 0.056 for α = 0.3 and β = 0.5.

The similarity function simCP
1′

below considers two places equivalent when their

denotations are included into one another. We can define simCP
2′
, . . . , simCP

6′
in a similar

way by modifying simCP
2 , . . . , simCP

6 analogously.

simCP
1′

(a, b) =

 1 if JaK ⊆ JbK ∨ JbK ⊆ JaK

simCP
1 (a, b) otherwise

(5.11)

Sort Space

Consider the sort Space, with denotation universe USpace = ℘(R × R), where ℘(R × R)

is the power set of R × R. Given a term a of sort Space, let P (JaK) denote a subset of

UConnectedPlace such that
⋃
x∈P (JaK) x = JaK, elements in P (JaK) are pairwise disjoint and

maximal, i.e. @y ∈ UConnectedPlace , x1, x2 ∈ P (JaK) s.t. y = x1 ∪ x2. Intuitively, P (JaK)

is the set of the denotations of all the connected components of a. Given two terms a and

9Alternatively, one could specify o(JaK, JbK) = A(JaK∩JbK)
maxt∈{a,b} A(JtK)

166

b of sort Space, the distance between a and b may be defined in many ways – two are

shown below.

dSc (a, b) = avg
ai∈P (JaK),bi∈P (JbK)

d(c(ai), c(bi)) (5.12)

where c() and d() have the same meaning as in Equation 5.5.

dSh(a, b) = avg
ai∈P (JaK),bi∈P (JbK)

H(ai, bi) (5.13)

where H() is the Hausdorff distance.

Intuitively dSc and dSh measure the average distance between any two connected

components of the two spaces being compared. Alternatively, the avg operator could

be replaced by either min or max. As in the case of sort ConnectedPlace, a similarity

function over sort Space can be defined in any of the following ways.

simS
1 (a, b) = e−α·d

S
c (a,b) (5.14)

simS
2 (a, b) =

1

1 + α · dSc (a, b)
(5.15)

where dSc is the distance defined by Equation 5.12 and α is a factor that controls how fast

the similarity decreases as the distance increases.

Example 46. Consider the terms a = “City buildings” and b = “Schools” of sort Space

in Figure 5.4 with denotations JaK = {a1, a2} and JbK = {b1, b2} respectively. By comput-

ing and averaging the distances between the centers of all pairs ai, bj ∈ P (JaK)×P (JbK)

167

Figure 5.4: Example of application of similarity functions for sort Space

(see dashed lines in the figure), we obtain dSc (a, b) = 7.325 and simS
1 (a, b) = 0.111, and

simS
2 (a, b) = 0.313 for α = 0.3.

simS
3 (a, b) =

A(JaK ∩ JbK)
A(JaK ∪ JbK)

(5.16)

simS
4 (a, b) =

A(JaK ∩ JbK)
maxt∈{a,b}A(JtK)

(5.17)

where A(JtK) is a function that returns the area of JtK.

simS
5 (a, b) = e−α·d

S
h (a,b) (5.18)

where dSh is the distance defined by Equation 5.13 and α is a factor that controls how fast

the similarity decreases as the distance increases.

simS
6 (a, b) = e−α·d

S
c (a,b) · e−β·(1−o(JaK,JbK)) (5.19)

168

where dSc is the distance defined by Equation 5.12, α has the usual meaning, o(JaK, JbK) =

A(JaK∩JbK)
A(JaK∪JbK) is the amount of overlap between JaK and JbK, and β is a factor that controls how

fast the similarity decreases as the overlap between the two places decreases.

Example 47. Consider again the two terms of sort Space in Figure 5.4. It is straightfor-

ward to see that A(JaK) = 30, A(JbK) = 32.5, A(JaK∩JbK) = 4.5, and A(JaK∪JbK) = 58.

Therefore, simS
3 (a, b) = 0.078, simS

4 (a, b) = 0.138, and simS
6 (a, b) = 0.044, for α = 0.3

and β = 1.

Sort Time Interval

Consider the sort Time Interval , with denotation universe UTime Interval = {I ∈ ℘(Z) |

I is connected}10. Given two terms a and b of sort Time Interval , the similarity between

a and b can be defined in any of the following ways.

simTI
1 (a, b) = e−α·|c(JaK)−c(JbK)| (5.20)

where, for each time interval t ∈ dom(Time Interval), c(JtK) = avgz∈JtK z is the center

of JtK, and α is a factor that controls how fast the similarity decreases as the distance

between the centers of the two time intervals increases.

simTI
2 (a, b) =

1

1 + α · |c(JaK)− c(JbK)|
(5.21)

where c() and α have the same meaning as in Equation 5.20.

Example 48. Consider the two terms of sort Time Interval a = “around May 13, 2009”

and b = “shortly before May 16, 2009”, and assume that the denotation of around is a

10Each t ∈ Z encodes a point in time, i.e. the number of time units elapsed since the origin of the time
scale adopted by the user.

169

time interval extending 4 days before and after the indeterminate date, and the deno-

tation of shortly before is the time interval extending 2 days before the indeterminate

date. Then, JaK is the time interval [05/9/09, 05/17/09] and JbK is the time interval

[05/14/09, 05/16/09]. Assuming a time granularity of days, we have c(JaK) = 05/13/09

and c(JbK) = 05/15/0911. Therefore, assuming α = 0.3, we conclude that simTI
1 (a, b) =

0.549 and simTI
2 (a, b) = 0.625.

simTI
3 (a, b) =

|JaK ∩ JbK|
|JaK ∪ JbK|

(5.22)

Intuitively, simTI
3 is the ratio of the number of time units in the intersection of the deno-

tations of a and b to the number of time units in the union.

simTI
4 (a, b) =

|JaK ∩ JbK|
maxt∈{a,b} |JtK|

(5.23)

simTI
5 (a, b) = e−α·H(JaK,JbK) (5.24)

where H(P,Q)=max(h(P,Q), h(Q,P)), with P,Q∈℘(Z), is the Hausdorff distance.

simTI
6 (a, b) = e−α·|c(JaK)−c(JbK)| · e−β·(1−o(JaK,JbK)) (5.25)

where c() and α have the same meaning as in Equation 5.20, o(JaK, JbK) = |JaK∩JbK|
|JaK∪JbK| is

the amount of overlap between JaK and JbK, and β is a factor that controls how fast the

similarity decreases as the amount of overlap between the two time intervals decreases.

Example 49. Consider again the two terms of sort Time Interval of Example 48. We

observe that |JaK| = 9, |JbK| = 3, |JaK ∩ JbK| = 3, and |JaK ∪ JbK| = 9. Therefore,

11Since we are assuming a time granularity of days, we are abusing notation and using 05/13/09 instead
of the corresponding value z ∈ Z.

170

simTI
3 (a, b) = 0.333 and simTI

4 (a, b) = 0.333. In addition, H(JaK, JbK) = 5, which

implies simTI
5 (a, b) = 0.22 and simTI

6 (a, b) = 0.469, when α = 0.045 and β = 1.

Sort NumericInterval

Consider the sort NumericInterval , with denotation universe UNumericInterval = {I ∈

℘(N) | I is connected}12. As in the case of the sort Time Interval , given two terms a

and b of sort NumericInterval , the similarity between a and b can be defined in any of

the following ways.

simNI
1 (a, b) = e−α·|c(JaK)−c(JbK)| (5.26)

where, for each numeric interval t ∈ dom(NumericInterval), c(JtK) = avgn∈JtK n is

the center of JtK, and α is a factor that controls how fast the similarity decreases as the

distance between the centers of the two numeric intervals increases.

simNI
2 (a, b) =

1

1 + α · |c(JaK)− c(JbK)|
(5.27)

where c() and α have the same meaning as in Equation 5.26

Example 50. Consider the two terms of sort NumericInterval a = “between 10 and 20”

and b = “at least 16”, and assume that the denotation of between and at least are those

shown in Table 5.2, with ε = 0.1 and ε = 0.5 respectively. Then, JaK is the interval [9, 22]

and JbK is the interval [16, 24]. We have c(JaK) = 16 and c(JbK) = 20. Therefore, for

α = 0.3, simNI
1 (a, b) = 0.301 and simNI

2 (a, b) = 0.455.

12This seems to be a natural denotation for indeterminate expressions such as “between 3 and 6”, “more
than 3”, etc. An exact quantity can be also represented as a singleton.

171

simNI
3 (a, b) =

|JaK ∩ JbK|
|JaK ∪ JbK|

(5.28)

simNI
4 (a, b) =

|JaK ∩ JbK|
maxt∈{a,b} |JtK|

(5.29)

simNI
5 (a, b) = e−α·H(JaK,JbK) (5.30)

where H(P,Q) is the Hausdorff distance.

simNI
6 (a, b) = e−α·|c(JaK)−c(JbK)| · e−β·(1−o(JaK,JbK)) (5.31)

where c() and α have the same meaning as in Equation 5.26, o(JaK, JbK) = |JaK∩JbK|
|JaK∪JbK| is the

amount of overlap between JaK and JbK, and β controls how fast the similarity decreases

as the amount of overlap between the two numeric intervals decreases.

Example 51. Consider again the two terms of sort NumericInterval of Example 50. We

observe that |JaK| = 14, |JbK| = 9, |JaK ∩ JbK| = 7, and |JaK ∪ JbK| = 16. Therefore,

simNI
3 (a, b) = 0.438 and simNI

4 (a, b) = 0.5. Moreover, H(JaK, JbK) = 7, which implies

simNI
5 (a, b) = 0.122 and simNI

6 (a, b) = 0.447, when α = 0.045 and β = 1.

5.5 PLINI Probabilistic Logic Programs

In this section, we define the concept of a PLINI-rule and a PLINI-program. Infor-

mally speaking, a PLINI-rule states that when certain similarity-based conditions associ-

ated with two events e1, e2 are true, then the two events are equivalent with some proba-

bility. Thus, PLINI-rules can be used to determine when two event descriptions refer to

172

Event name Property Value
Event1 date 02/28/2005

location Hillah
number of victims 125
weapon car bomb

Event2 location Hilla , south of Baghdad
number of victims at Least 114
victim people
weapon massive car bomb

Event3 killer twin suicide attack
location town of Hilla
number of victims at least 90
victim Shia pilgrims

Event4 date 02/28/2005
weapon suicide car bomb
location Hilla
number of victims 125

Event5 killer suicide car bomber
location Hillah
number of victims at least 100

Event6 location Hillah
number of victims 125
victim Iraqis
weapon suicide bomb

Event7 weapon suicide bombs
location Hilla south of Baghdad
number of victims at least 27

Event8 date 2005/02/28
location Hilla
number of victims between 136 and 135
victim people queuing to obtain medical identification cards
weapon suicide car bomb

Event9 date 2005/03/28
location Between Hillah and Karbala
number of victims between 6 and 7
victim Shiite pilgrims
weapon Suicide car bomb

Table 5.6: Example of Event Database extracted from news sources

the same event, and when two event descriptions refer to different events. PLINI-rules are

variants of annotated logic programs [KS92] augmented with methods to handle similar-

ity between events, as well as similarities between properties of events. Table 5.6 shows

a small event database that was automatically extracted from news data by the T-REX

system [AS07]. We see here that an event can be represented as a set of (property,value)

pairs. Throughout this chapter, we assume the existence of some set E of event names.

173

Definition 45. An event pair over sort s is a pair (p, v) where p is a property of sort s and

v ∈ dom(s). An event is a pair (e, EP) where e ∈ E is an event name and EP is a finite

set of event pairs such that each event pair ep ∈ EP is over some sort s ∈ S.

We assume that a set A of properties is given and use the notation eventname.property

to refer to the property of an event. We start by defining event-terms.

Definition 46 (Event-Term). Suppose E is a finite set of event names and V is a possibly

infinite set of variable symbols. An event-term is any member of E ∪ V .

Example 52. Consider the event eS3 presented in Section 5.2. Both eS3 and v, where v is

a variable symbol, are event-terms.

We now define the concept of an equivalence atom. Intuitively, an equivalence atom

says that two events (or properties of events) are equivalent.

Definition 47 (Equivalence Atom). An equivalence atom is an expression of the form

• ei ≡ ej , where ei and ej are event-terms, or

• ei.ak ≡ ej.al, where ei, ej are event-terms, ak, al ∈ A, and ak, al are both of sort

s ∈ S, or

• ei.ak ≡ b, where ei is an event-term, ak ∈ A is an attribute whose associated sort

is s ∈ S and b a ground term of sort s.

Example 53. Let us return to the case of the events eS1, eS2, eS3 from Table 5.1. Some

example equivalence atoms include:

eS1 ≡ eS2.

eS1.place ≡ eS3.place

eS3.place ≡ Ahmedabad.

174

Note that two events need not be exactly identical in order for them to be considered

equivalent. For instance, consider the events eS1, eS2, eS3 given in Section 5.2. It is clear

that we want these three events to be considered equivalent, even though their associated

event pairs are somewhat different. In order to achieve this, we first need to state what

it means for terms over various sorts to be equivalent. This is done via the notion of a

PLINI-atom.

Definition 48 (PLINI-atom). If A is an equivalence atom and µ ∈ [0, 1], then A : µ is a

PLINI-atom.

The intuitive meaning of a PLINI-atom can be best illustrated via an example.

Example 54. The PLINI-atom (e1.weapon ≡ e2.weapon) : 0.683 says that the weapons

associated with events e1 and e2 are similar with a degree of at least 0.683. Likewise, the

PLINI-atom (e1.date ≡ e2.date) : 0.575 says that the dates associated with events e1 and

e2 are similar with a degree of at least 0.575.

When providing a semantics for PLINI, we will use the notion of similarity function

for sorts as defined in Section 5.4. There we gave specific examples of similarity functions

for the numeric, spatial, and temporal domains. Our theory will be defined in terms of any

arbitrary but fixed set of such similarity functions. The heart of our method for identifying

inconsistency in news reports is the notion of PLINI-rules which intuitively specify when

certain equivalence atoms are true.

Definition 49 (PLINI-rule). Suppose A is an equivalence atom, A1 : µ1, . . . , An : µn are

PLINI-atoms, and p ∈ [0, 1]. Then

A
p←− A1 : µ1 ∧ . . . ∧ An : µn

175

is a PLINI-rule. If n = 0 then the rule is called a PLINI-fact. A is called the head of the

rule, while A1 : µ1 ∧ . . . ∧ An : µn is called the body. A PLINI-rule is ground iff it

contains no variables.

Definition 50 (PLINI-program). A PLINI-program is a finite set of PLINI-rules where no

rule may appear more than once with different probabilities.

Note that a PLINI-program is somewhat different in syntax than a probabilistic logic

program [NS92] as no probability intervals are involved. However, it is a variant of a gen-

eralized annotated program due to [KS92]. In classical logic programming [Llo87], there

is a general assumption that logic programs are written by human (logic) programmers.

However, in the case of PLINI-programs, they can also be inferred automatically from

training data. For instance, we learned rules (semi-automatically) to recognize when cer-

tain violent events were equivalent to other violent events in the event database generated

by the information extraction program T-REX [AS07] mentioned earlier. To do this, we

first collected a set of 110 events (“annotation corpus”) extracted by T-REX from news

events and then manually classified which of the resulting pairs of events from the an-

notation corpus were equivalent. We then used two classical machine learning programs

called JRIP and J48 from the well known WEKA library13 to learn PLINI-rules automat-

ically from the data. Figure 5.5 shows some of the rules we learned automatically using

JRIP.

We briefly explain the first two rules shown in Figure 5.5 that JRIP extracted auto-

matically from the T-REX annotated corpus. The first rule says that when the similarity

between the date field of events e1, e2 is at least 95.5997%, and when the similarity be-

tween the number of victims field of e1, e2 is 100%, and the similarity between their

location fields is also 100%, then the probability that e1 and e2 are equivalent is 100%.
13http://www.cs.waikato.ac.nz/ml/weka/

176

e1 ≡ e2
1.0←− e1.date ≡ e2.date : 0.955997 ∧

e1.number of victims ≡ e2.number of victims : 1 ∧
e1.location ≡ e2.location : 1.

e1 ≡ e2
0.75←− e1.date ≡ e2.date : 1 ∧ e1.killer ≡ e2.killer : 0.574707.

e1 ≡ e2
0.5833←− e1.date ≡ e2.date : 1 ∧

e1.weapon ≡ e2.weapon : 0.634663 ∧
e1.location ≡ e2.location : 1.

Figure 5.5: Some automatically learned PLINI-rules from T-REX data using JRIP

The second rule says that when the dates of events e1, e2 are 100% similar, and the killer

fields are at least 57.4707% similar, then the events are at least 75% similar.

We see from this example that PLINI-programs weave together notions of similarity

from different domains (within the annotations of equivalence atoms in the rule body)

and the notion of probability attached to a rule. We now recall the standard concept of a

substitution.

Definition 51 (Substitution). Suppose R is a PLINI-rule. A substitution σ = [X1/e1, . . . ,

Xn/en] for R is a finite set of pairs of terms where each ei is an event-term and Xi 6= Xj

when i 6= j.

A ground instance of R under σ is the result of simultaneously replacing all vari-

ables Xi in R with the event-term ei where Xi/ei ∈ σ.

5.6 Model Theory and Fixpoint Theory

In this section, we specify a formal model theory for PLINI-programs by leveraging

the semantics of generalized annotated programs [KS92]. For each sort s ∈ S, we assume

the existence of a similarity function sims : dom(s) × dom(s) → [0, 1]. Intuitively,

177

sims(v1, v2) returns 0 if domain values v1, v2 are completely different and returns 1 if

the two values are considered to be the same. We have already provided many possible

definitions for similarity functions in Section 5.4. We first need to define the Herbrand

Base.

Definition 52 (Herbrand Base). BE is the set of all ground equivalence atoms that can be

formed from the event-terms, attributes, and constant symbols associated with E .

Clearly, BE is finite. We now define the concept of an interpretation.

Definition 53 (Interpretation). Any function I : BE → [0, 1] is called an interpretation.

Thus, an interpretation just assigns a number in [0, 1] to each ground equivalence

atom. We now define satisfaction of PLINI-rules by interpretations.

Definition 54 (Satisfaction). Let I be a interpretation, and letA,A1, . . . , An ∈ BE . Then:

• I |= A : µ iff I(A) ≥ µ.

• I |= A1 : µ1 ∧ . . . ∧ An : µn iff I |= Ai : µi for all 1 ≤ i ≤ n.

• I |= A
p←− A1 : µ1 ∧ . . . ∧ An : µn iff either I 6|= A1 : µ1 ∧ . . . ∧ An : µn or

I(A) ≥ p}.

I satisfies a non-ground rule iff it satisfies all ground instances of the rule. I satisfies a

PLINI-program Π iff it satisfies all PLINI-rules in Π.

The first part of the above definition says that for A : µ to be true w.r.t. an inter-

pretation I , we should just check that I(A) is greater than or equal to µ. Satisfaction of

conjunctions is defined in the obvious way. Satisfaction of a ground PLINI-rule is defined

178

in a more complex way. Either the body of the rule should be false with respect to I or I

must assign a value at least p to the head. As usual, A : µ is a logical consequence of Π

iff every interpretation that satisfies Π also satisfies A : µ.

Definition 55. Suppose Π is a PLINI-program and we have a fixed set of similarity func-

tions sims for each sort s. The augmentation of Π with similarity information is the

PLINI-program Πsim = Π ∪ {(x ≡ y)
sims(x,y)←− | x, y are ground terms of sort s in Π}.

Throughout the rest of this chapter, we only consider the augmented program Πsim.

We are interested in characterizing the set of ground equivalence atoms that are logical

consequence of Πsim. Given a PLINI-program Π, we are now ready to associate with Π,

a fixpoint operator TΠ which maps interpretations to interpretations.

Definition 56. TΠ(I)(A) = A : sup{p| A p←− A1 : µ1 ∧ . . . ∧ An : µn is a ground

instance of a rule in Π and for all 1 ≤ i ≤ n, either I(Ai) ≥ µi or Ai has the form

xi ≡ yi and sims(xi, yi) ≥ µi}.

The above definition says that in order to find the truth value assigned to a ground

atom A by the interpretation TΠ(I), we first need to look at all rules in Π that have A as

the head of a ground instance of that rule. To check whether the body of such a rule is

true w.r.t. I , we need to look at each ground equivalence atom Ai : µi where Ai has the

form (xi ≡ yi). This atom is satisfied if either I(xi ≡ yi) is greater than or equal to µi

or if the similarity function for sort s (of the type of xi, yi) assigns a value greater than or

equal to µi to (xi, yi). Note that the TΠ operator operates on the Πsim program without

explicitly adding equivalence atoms of the form (x ≡ y)
sims(x,y)←− to Π, thus ensuring a

potentially large saving.

179

It is easy to see that the set of all interpretations forms a complete lattice under the

following ordering: I1 ≤ I2 iff for all ground equivalence atoms A, I1(A) ≤ I2(A). We

can define the powers of TΠ as follows.

TΠ ↑ 0(A) = A : 0 for all ground equivalence atoms A.

TΠ ↑ (j + 1)(A) = (TΠ(TΠ ↑ j))(A).

TΠ ↑ ω(A) =
⋂
{TΠ ↑ j(A) | j ≥ 0}.

The result below follows directly from similar results for generalized annotated programs

[KS92] and shows that the TΠ operator has some nice properties.

Proposition 26. Suppose Π is a PLINI-program and sims is a family of similarity func-

tions for a given set of sorts. Then:

1. TΠ is monotonic, i.e. I1 ≤ I2 → TΠ(I1) ≤ TΠ(I2).

2. TΠ has a least fixpoint, denoted lfp(TΠ) which coincides with TΠ ↑ ω.

3. I satisfies Πsim iff TΠ(I) = I .

4. A : µ is a logical consequence of Πsim iff lfp(TΠ)(A) ≥ µ.

5.7 Event Clustering Algorithm

Suppose e1, e2 are any two reported events. The least fixpoint of the TΠ opera-

tor gives the probability that the two events are equivalent (i.e., they refer to the same

real-world event). Alternatively, lfp(TΠ)(e1 ≡ e2) can be interpreted as the similarity

between e1 and e2, meaning that if the similarity between two events is high, they are

180

likely to refer to the same real-world event. In other words, the least fixpoint of the TΠ

operator gives us some information on the pairwise similarity between events. However,

we may have a situation where the similarity according to lfp(TΠ) between events e1

and e2 is 0.9, between e2, and e3 is 0.7, but the similarity between e1 and e3 is 0.5. In

general, given a finite set E of events, we would like to look at the results computed by

lfp(TΠ), and cluster the events into buckets of equivalent events. We then need to find a

partition P = {P1, . . . , Pk} of E , such that similar events are assigned to the same par-

tition and dissimilar events are assigned to different partitions. In this section, we define

the PLINI-Cluster algorithm, which can find a sub-optimal solution – w.r.t. the score

function defined below – in polynomial time.

Definition 57 (Score of Event Partition). Let Π be a PLINI-program and τ ∈ [0, 1] a

threshold. Let E be a set of events and P = {P1, . . . , Pk} a partition of E , i.e.
⋃k
i=1 Pi =

E , and (∀i 6= j) Pi ∩ Pj = ∅. We define the score of partition P as

S(P) = Si(P) + Se(P)

where Si(P) is the internal score of partition P given by

Si(P) =
∑
Pj∈P

∑
er,es∈Pj ,er 6=es

(lfp(TΠ)(er ≡ es)− τ)

and Se(P) is the external score of partition P given by

Se(P) =
∑

er,es∈E,er∈Pu,es∈Pv ,u6=v

(τ − lfp(TΠ)(er ≡ es))

Intuitively, Si(P) measures the similarity between objects within a partition com-

ponent. Two events e1, e2 in the same cluster contribute positively to the internal score if

181

their similarity is above the threshold τ . Instead, if their similarity is below the threshold

the partition is penalized. Analogously, Se(P) measures the similarity across multiple

partition components. The external score of a partition is higher when events in different

clusters have lower similarity. Two events e1, e2 in different clusters contribute positively

to the external score if their similarity is below the threshold τ .

Finding the partitionP = {P1, . . . , Pk}which maximizes the score S defined above

gives rise to a combinatorial optimization problem. Note that k is a problem parameter

and not known a priori, in contrast to common clustering problems in machine learning

and other areas. Ozcan et al. [OS04] were the first to determine how to partition a set of

entities under this intuition – they did so in the context of partitioning a set of activities

an agent is supposed to perform so that the activities in each component of the partition

could be executed by leveraging commonalities of tasks amongst those activities. They

proved that the partitioning problem was NP-hard and provided efficient heuristics to

solve the problem. Later, Bansal et al. [BBC04] showed that finding the optimal partition

with respect to the score S is NP-complete. Demaine and Immorlica [DI03] presented an

efficiently computable O(log n) approximation based on integer program relaxation and

proved that the bound is optimal for such relaxations. We now present a simple, greedy,

hill-climbing algorithm for this task (Algorithm 5.6). The algorithm starts by assigning

each event to a different cluster. Then, at each iteration, it merges the two clusters that

provide the highest increase of the score. It stops when no further increase of the score

can be achieved by merging two clusters.

Example 55. Suppose we have 4 events e1, e2, e3, e4, and assume τ = 0.5. Table 5.7

shows the degree of similarity for each pair of events according to some fixed PLINI-

program Π, i.e. the values of lfp(TΠ)(ei ≡ ej). The algorithm starts by initializing

P1 = {e1}, P2 = {e2}, P3 = {e3}, P4 = {e4}. In the first iteration, P1 and P3 are

182

Algorithm PLINI-Cluster
Input: PLINI-program Π; Set of Events E ; Threshold τ

1 P ← ∅
2 For all ei ∈ E ,
3 P ← P ∪ {{ei}}
4 Repeat
5 For all Pi, Pj ∈ P s.t. i 6= j,

/*Compute the change in the score of the partition, if we merge clusters Pi, Pj*/
6 si,j ← S ((P \ {Pi, Pj}) ∪ {Pi ∪ Pj})− S(P) =

= 2 ·
∑
er∈Pi,es∈Pj

(lfp(TΠ)(er ≡ es)− τ) /*Note that si,j = sj,i*/
7 su,v ← maxi,j∈[1,|P|]∧i 6=j{si,j}
8 If (su,v > 0) then
9 P ← (P \ {Pu, Pv}) ∪ {Pu ∪ Pv}
10 Until (su,v ≤ 0)

Figure 5.6: Algorithm PLINI-Cluster(Π, E , τ)

e1 e2 e3 e4

e1 1 0.2 0.9 0.3

e2 1 0 0.8

e3 1 0.6

e4 1

Table 5.7: Degrees of similarity as given by lfp(TΠ)(ei ≡ ej)

merged, because this leads to the largest increase in S(P), s1,3 = 0.8. In the second

iteration, P2 and P4 are merged for the same reason, with s2,4 = 0.6. In the third itera-

tion, the algorithm terminates because no score increase can be achieved, as merging the

remaining two clusters would decrease the score by 1.8. Hence, the resulting partition is

{{e1, e3}, {e2, e4}}.

The following result shows that the above algorithm finds the locally optimal parti-

tion w.r.t the cost function and that its worst case runtime complexity is O(n3).

Proposition 27. Suppose Π is a PLINI-program, E a set of events, and τ a threshold.

Then PLINI-Cluster(Π, E , τ) finds a locally optimal partition of E w.r.t. to the score

function S, and its worst case complexity is O(n3) where n is the total number of events.

183

Proof. Let n denote the total number of events. We assume that we have an oracle to look

up or compute lfp(TΠ) for any pair of events in constant time. During each iteration of

the algorithm either two clusters are merged or the algorithm terminates. The algorithm

starts with a partition of size n and since a merger reduces the partition size by one, there

can be at most n iterations. Now we turn to the complexity of each iteration, namely the

cost of computing the si,j’s. For any given iteration, we have at most O(n) clusters of

constant size and a constant number of clusters of size O(n), since the total number of

elements (i.e. events) is n. If |Pi| ∈ O(1) and |Pj| ∈ O(1), then the cost of computing

si,j is O(1) as well. Similarly, if |Pi| ∈ O(n) and |Pj| ∈ O(1), this cost is O(n) and if

|Pi| ∈ O(n) and |Pj| ∈ O(n) the cost is O(n2). Since we compute si.j for all pairs of

clusters, the overall complexity is

O(n)×O(n)×O(1) +O(n)×O(1)×O(n) +O(1)×O(1)×O(n2) = O(n2)

where the first summand is the complexity for pairs of constant size partitions, the second

summand for pairs of linear with constant size partitions, and the last summand for pairs

of linear size partitions. Hence, the complexity of each iteration is O(n2) and therefore

the overall runtime complexity of the event clustering algorithm is in O(n3).

Note that due to the sparsity of event similarities in real world datasets, we can

effectively prune a large number of partition comparisons. We can prune the search

space for the optimal merger even further, by considering highly associated partitions

first. These optimizations do not impact the worst case runtime complexity, but render

our algorithm very efficient in practice.

184

5.8 Implementation and Experiments

Our experimental prototype PLINI system was implemented in approximately 5700

lines of Java code. In order to test the accuracy of PLINI, we developed a training data set

and a separate evaluation data set. We randomly selected a set of 110 event descriptions

from the millions automatically extracted from news sources by T-REX [AS07]. We then

generated all the 5,995 possible pairs of events from this set and asked human reviewers

to judge the equivalence of each such pair. The ground truth provided by the reviewers

was used to learn PLINI-programs for different combinations of learning algorithms and

similarity functions. Specifically, we considered 588 different combinations of similarity

functions and learned the corresponding 588 PLINI-programs using both JRIP and J48.

The evaluation data set was similarly created by selecting 240 event descriptions from

those extracted by T-REX.

All experiments were run on a machine with multiple, multi-core Intel Xeon E5345

processors at 2.33GHz, 8GB of memory, running the Scientific Linux distribution of the

GNU/Linux operating system. However, the current implementation has not been paral-

lelized and uses only one processor and one core at a time.

PLINI-programs corresponding to each combination of algorithms and similarity

functions were run on the entire set of 28,680 possible pairs of events in the test set.

However, evaluation was conducted on subsets of pairs of a manageable size for human

reviewers. Specifically, we selected 3 human evaluators and assigned each of them two

subsets of pairs to evaluate. The first subset was common to all 3 reviewers and included

50 pairs that at least one program judged equivalent with confidence greater than 0.6 (i.e.

TΠ returned over 0.6 for these pairs) and 100 pairs that no program judged equivalent

with probability greater than 0.6. The second subset was different for each reviewer, and

185

included 150 pairs, selected in the same way as the first set. Thus, altogether we evaluated

a total of 600 distinct pairs.

We then computed precision and recall as defined below. Suppose Ep is the set of

event pairs being evaluated. We use e1 ≡h e2, to denote that events e1 and e2 were judged

to be equivalent by a human reviewer. We use P (e1 ≡ e2) to denote the probability

assigned by the algorithm to the equivalence atom e1 ≡ e2. Given a threshold value

τ ∈ [0, 1], we define the following sets.

• T Pτ1 = {(e1, e2) ∈ Ep|P (e1 ≡ e2) ≥ τ ∧ e1 ≡h e2} is the set of pairs flagged as

equivalent (probability greater than the threshold τ) by the algorithm and actually

judged equivalent by human reviewers;

• T Pτ0 = {(e1, e2) ∈ Ep|P (e1 ≡ e2) < τ ∧e1 6≡h e2} is the set of pairs flagged as not

equivalent by the algorithm and actually judged not equivalent by human reviewers;

• Pτ1 = {(e1, e2) ∈ Ep|P (e1 ≡ e2) ≥ τ} is the set of pairs flagged as equivalent by

the algorithm;

• Pτ0 = {(e1, e2) ∈ Ep|P (e1 ≡ e2) < τ} is the set of pairs flagged as not equivalent

by the algorithm;

Given a threshold value τ ∈ [0, 1], we define precision, recall, and F-measure as follows.

P τ
1 =
|T Pτ1|
|Pτ1 |

P τ
0 =
|T Pτ0|
|Pτ0 |

P τ =
|T Pτ1|+ |T Pτ0|

|Ep|

Rτ
1 =

|T Pτ1|
|{(e1, e2) ∈ Ep|e1 ≡h e2}|

14 F τ =
2 · P τ

1 ·Rτ
1

P τ
1 +Rτ

1

14Given the nature of the problem, most pairs of event descriptions are not equivalent. Therefore, the
best indicators of our system performance are recall/precision w.r.t. equivalent pairs.

186

τ P τ
1 P τ

0 P τ Rτ
1 F τ

0.50 83.5% 88.6% 88.2% 36.9% 0.512
0.60 84.4% 88.5% 88.2% 36.5% 0.510
0.70 84.5% 88.5% 88.2% 36.4% 0.509
0.80 89.7% 87.9% 88.1% 32.5% 0.477
0.90 92.3% 87.3% 87.6% 28.2% 0.432
0.95 91.8% 86.5% 86.7% 22.7% 0.364

Table 5.8: Performance of J48 for different values of τ

τ P τ
1 P τ

0 P τ Rτ
1 F τ

0.50 78.6% 94.8% 92.3% 74.0% 0.762
0.60 82.9% 94.2% 92.6% 70.6% 0.763
0.70 86.8% 92.0% 91.4% 57.9% 0.695
0.80 91.6% 86.6% 86.8% 23.5% 0.374
0.90 90.7% 86.0% 86.1% 19.3% 0.318
0.95 96.3% 85.2% 85.4% 13.7% 0.240

Table 5.9: Performance of JRIP for different values of τ

Note that all the quality measures defined above are parameterized by the threshold τ .

Accuracy results. Tables 5.8 and 5.9 report the overall performance of the PLINI-

programs derived using J48 and JRIP, respectively for different values of the threshold

τ . Performance measures are averaged over all the 588 combinations of similarity met-

rics and over all the reviewers. Figure 5.7(a) shows precision/recall curves for both algo-

rithms, while Figure 5.7(b) plots the F-measure vs. different values of τ .

As expected, when τ increases P τ
1 increases and Rτ

1 decreases. However, Rτ
1 de-

creases more rapidly than the increase in P τ
1 , causing F τ to degrade. In general, rules

extracted with JRIP outperform those extracted using J48, but it is also clear that the

performance of JRIP in terms of F-measure degrades more rapidly than J48 due to a dras-

tic drop in recall for higher thresholds. In fact, for thresholds above 0.75, J48-derived

PLINI-programs surpass JRIP-derived PLINI-programs in terms of F-measure. Also note

187

����

����

����

����

����

����

����

�
	

�
�

��
�

����

����

��� ��� ��� ��� ��� ���

�
����

��� ���� ����

���

���

���

���

���

���

��	

��

���

�

�
�
�
�
�
�
�

���

���

���

��� ��� ��� ��� ��	 ��
 �

���������

��	 ���� ����

(a) (b)

Figure 5.7: (a) Recall/Precision and (b) F-measure for J48 and JRIP

that when τ increases P τ
0 decreases. This is because higher thresholds cause a larger num-

ber of equivalent pairs to be classified as non equivalent, therefore the fraction of pairs

flagged as not equivalent which are actually not equivalent decreases. However, preci-

sion is very high. When J48 and JRIP are used, the optimal value of the F-measure is

achieved for τ = 0.6, which corresponds to 84% precision and 37% recall for J48, and

83% precision and 71% recall for JRIP.

JMAX (which we defined) assigns to each equivalence atom the maximum of the

probabilities assigned by JRIP-derived rules and J48-derived PLINI-rules. Figure 5.7(a)

shows that JMAX produces significantly higher recall at the expense of a slight decrease

in precision. The overall gain in performance is more evident in Figure 5.7(b), which

shows that the F-measure for JMAX is higher than that for both J48 or JRIP for virtually

all values of the threshold τ . The optimal value of F is achieved for τ = 0.6, which

corresponds to 80% precision and 75% recall.

Table 5.10 reports the average performance of PLINI-programs derived using the

3 algorithms – J48, JRIP, JMAX when individually compared with the ground truth pro-

vided by each of the 3 reviewers enrolled for the evaluation. There is no significant

188

Algorithm Reviewer P τ
1 P τ

0 P τ Rτ
1 F τ

1 87.6% 87.9% 87.9% 33.6% 0.486
J48 2 74.4% 89.9% 88.8% 36.1% 0.486

3 90.7% 87.7% 87.9% 39.3% 0.548

1 84.6% 93.9% 92.6% 68.8% 0.759
JRIP 2 80.2% 95.9% 93.7% 76.1% 0.781

3 83.9% 92.9% 91.6% 67.8% 0.750

1 82.5% 94.8% 92.9% 73.8% 0.779
JMAX 2 74.3% 96.5% 93.0% 80.2% 0.771

3 82.9% 94.6% 92.6% 75.8% 0.792

Table 5.10: Average performance of JRIP for τ = 0.6 when compared with different
revilers

difference between the reviewers and, in fact, they unanimously agreed in 138 out of the

150 common cases (92%).

We found that in general using both J48-based PLINI-rules and JRIP-based PLINI-

rules (encompassed in our JMAX strategy) offers the best performance, while using only

J48-derived PLINI-rules is the worst.

5.9 Concluding Remarks

The number of “formal” news sources on the Internet is mushrooming rapidly.

Google News alone covers thousands of news sources from around the world. If one adds

consumer generated content and informal news channels run by individual amateur news-

men and women who publish blogs about local or global items of interest, the number of

news sources reaches staggering numbers. As shown in the Introduction, inconsistencies

can occur for many reasons.

The goal of this work is not to resolve these inconsistencies, but to identify when

event data reported in news sources is inconsistent. When information extraction pro-

189

grams are used to automatically mine event data from news information, the resulting

properties of the events extracted are often linguistically qualified. In this chapter, we

have studied three kinds of linguistic modifiers typically used when such programs are

used – linguistic modifiers applied to numbers, spatial information, and temporal infor-

mation. In each case, we have given a formal semantics to a number of linguistically

modified terms.

In order to determine whether two events described in one or more news sources are

the same, we need to be able to compare the attributes of these two events. This is done

via similarity measures. Though similarity measures for numbers are readily available,

no formal similarity mechanisms exist (to the best of our knowledge) for linguistically-

modified numbers. The same situation occurs in the case of linguistically-modified tem-

poral information and linguistically modified geospatial information. We provide formal

definitions of similarity for many commonly used linguistically modified numeric, tem-

poral, and spatial information.

We subsequently introduce PLINI-programs as a variant of the well known general-

ized annotated program (GAP) [KS92] framework. PLINI-programs can be learned auto-

matically from a relatively small annotated corpus (as we showed) using standard machine

learning algorithms like J48 and JRIP from the WEKA library. Using PLINI-programs,

we showed that the least fixpoint of an operator associated with PLINI-programs tells us

the degree of similarity between two events. Once such a least fixpoint has been com-

puted, we present the PLINI-Cluster algorithm to cluster together sets of events that are

similar, and sets of events that are dissimilar.

We have experimentally evaluated our PLINI-framework using many different sim-

ilarity functions (for different sorts), many different threshold values, and three alternative

ways of automatically deriving PLINI-programs from a small training corpus. Our experi-

190

ments show that the PLINI-framework produced high precision and recall when compared

with human users evaluating whether two reports talked about the same event or not.

There is much work to be done in the future. PLINI-programs do not include nega-

tion. A sort of stable models semantics [GL98] can be defined for PLINI-programs that

include negation. However, the challenge will be to derive such programs automatically

from a training corpus (standard machine learning algorithms do not do this) and to apply

them efficiently as we can do with PLINI.

191

Chapter 6

Partial Information Policies

The work presented in this chapter is taken from [MMGS11].

6.1 Introduction and Motivating Example

Partial information arises when information is unavailable to users of a database

when they enter new data. All commercial real-world relational database systems im-

plement some fixed way of managing incomplete information; but neither the RDBMS

nor the user has any say in how the partial information is interpreted. But does the

user of a stock database really expect an RDBMS designer to understand his risks and

his mission in managing the incomplete information? Likewise, does an epidemiolo-

gist collecting data about some disease have confidence that an RDBMS designer under-

stands how his data was collected, why some data is missing, and what the implications

of that missing data are for his disease models and applications? The answer is usu-

ally no. While database researchers have understood the diversity of types of missing

data [AM86, Bis79, CGS97b, Cod79, Gra91, IL84b, LL98, Zan84] (e.g. a value exists

but is unknown — this may happen when we known someone has a phone but do not

know the number; a value does not exist in a given case because the field in question

192

is inapplicable - this may happen when someone does not have a spouse, leading to an

inapplicable null in a relation’s spouse field; or we have no-information about whether a

value exists or not - as in the case when we do not know if someone has a cell phone), the

SQL standard only supports one type of unmarked null value, so RDBMSs force users to

handle all partial information in the same way, even when there are differences.

We have worked with two data sets containing extensive partial information. A data

set about education from the World Bank and UNESCO contains data for each of 221

countries with over 4000 attributes per country. As the data was collected manually, there

are many incomplete entries. The incompleteness is due to many factors (e.g., conflict in

the country which made collecting difficult during certain time frame).

Example 56. The relation below shows a very small number of attributes associated with

Rwanda for which conflict in the 90s led to a lot of incomplete information. The relation

only shows a few of the 4000+ attributes (GER and UER stand for gross and under-age

enrollment ratio, respectively). Even in this relatively small relation, we see there are a

lot of unknown values (here the U i’s denote unknown values).

193

% of female Net ODA from

Country Year unemployment GER UER non-DAC donors

(current US$)

Rwanda 1995 U1 U11 U15 -260000

Rwanda 1996 0.0 U12 U16 1330000

Rwanda 1997 U2 U13 U17 530000

Rwanda 1998 U3 U14 U18 130000

Rwanda 1999 U4 99.37 U19 90000

Rwanda 2000 9.4 103.55 U20 170000

Rwanda 2001 U5 104.06 4.59 130000

Rwanda 2002 U6 107.77 4.76 140000

Rwanda 2003 U7 116.5 4.62 110000

Rwanda 2004 U8 128.05 4.42 90000

Rwanda 2005 U9 139.21 4.81 120000

Rwanda 2006 U10 149.88 U21 450000

Users may want to fill in the missing values in many possible ways. For instance, User A

may want to fill the under-age enrollment ratio (UER) column via linear regression.

User B may fill in missing values by choosing the interval [4.81, 16.77] that says the

missing value is unknown but lies in this interval. User C may require that the only pos-

sible values are the under-age enrollment ratios appearing in the tuples of the relation.

User D may want to learn this value by studying its relationship with the ODA from non-

DAC donors and extrapolating - this would occur when the user believes the under-age

enrollment ratio is correlated with the ODA column and, in this case, he learns that UER

is a function of the latter and uses this for extrapolation. User E may want to overestimate

a missing UER by replacing it with the maximum UER for the same year from the other

countries. User F may want to replace a missing under-age enrollment ratio by looking at

the gross enrollment ratios of the other countries for the same year and taking the under-

age enrollment ratio corresponding to average gross enrollment ratio. Users may wish to

194

specify many other policies based on their application, their mission, their attitude to risk

(of being wrong), the expectations of their bosses and customers, and other factors.

There are many queries of interest that an education analyst may want to pose

over the data above. He may be interested in the years during which the % of female

unemployment was above a certain threshold and want to know what were the gross and

under-age enrollment ratios in those years. He may want to know the countries with

the highest average UER in the 90’s. It is easy to see that such queries would yield

poor results when evaluated on the original database whereas higher quality answers are

obtained if the missing values are populated according to the knowledge the user has of

the data.

Useful computing systems must support users’ desires. Though the database theory

literature counts several works on null values (e.g., [AKG91, CGS97b, Gra91, IL84b,

Zan84]), all of them provide a fixed “a priori” semantics for nulls, allowing the user none

of the flexibility required by users A, B, C, D, E, and F above. Other works in the fields

of data mining, data warehousing, and data management, such as [Qui93, MST94, Pyl99,

BFOS84, Li09], have proposed fixed approaches for replacing nulls that work in specific

domains and applications and do not allow modeling different kinds of partial information

and different ways of resolving incompleteness. In contrast, we want users to be able to

specify policies to manage their partial information and then have the RDBMS directly

answer queries in accordance with their PIP.

The principal novelty in this chapter is that partial information policies (PIPs)

allow end-users the flexibility to specify how they want to handle partial information,

something the above frameworks do not do.

The main contributions of this chapter are the following.

195

1. We propose the general notion of partial information policy for resolving various

kinds of incompleteness and give several useful and intuitive instances of PIPs.

2. We propose index structures to support the efficient application of PIPs and show

how to maintain them incrementally as the database is updated.

3. We study the interaction between relational algebra operators and PIPs. Specifi-

cally, we identify conditions under which applying PIPs before or after a relational

algebra operator yield the same result – this can be exploited for optimization pur-

poses.

4. We experimentally assess the effectiveness of the proposed index structures with a

real-world airline data set. Specifically, we compare an algorithm exploiting our

index structures with a naive one not relying on them and show that the former

greatly outperforms the latter and is able to manage very large databases. More-

over, we experimentally evaluate the effect of the index structures when PIPs are

combined with relational algebra operators and study whether applying a policy be-

fore or after a relational algebra operator, under the conditions which guarantee the

same result, may lead to better performance. Finally, we carry out an experimental

assessment of the quality of query answers with and without PIPs.

In classical RDBMS architectures, users specify an SQL query which is typically

converted into a relational algebra query. A cost model and a set of query rewrite rules

allow an RDBMS query optimizer to rewrite the query into a minimal cost query plan

which is then executed. Standard SELECT A1,...,Ak FROM R1,...,Rm WHERE

cond1,...,condn queries can be expanded easily to specify PIPs as well. A possible

syntax could be

196

SELECT A1,...,Ak FROM R1,...,Rm WHERE cond1,...,condn

USING POLICY ρ [LAST|FIRST]

where ρ is one of a library of PIPs in the system. The keyword at the end of the

clause will determine the semantics of the policy application. Choosing FIRST yields a

policy first semantics which would first apply ρ to all relations in the FROM clause and

then execute the SELECT...FROM...WHERE... part of the query on the modified

relation instances. Choosing LAST yields a policy last semantics which would first exe-

cute the SELECT...FROM...WHERE... query and then apply the PIP ρ to the result.

We consider both these options in this work.

The rest of the chapter is organized as follows. In Section 6.2, we define the syntax

and semantics of databases containing the three types of null values mentioned before.

Then, in Section 6.3, we introduce the notion of partial information policy and show dif-

ferent families of PIPs. In Section 6.4, we propose index structures to efficiently apply

PIPs. In Section 6.5, we study the interaction between PIPs and relational algebra opera-

tors. Section 6.6 reports experimental results.

6.2 Preliminaries

Syntax. We assume the existence of a setR of relation symbols and a set Att of attribute

symbols. Each relation symbol r has an associated relation schema r(A1, . . . , An), where

the Ai’s are attribute symbols. Each attribute A ∈ Att has a domain dom(A) containing

a distinguished value ⊥, called inapplicable null1 – in addition, there are two infinite

disjoint sets (also disjoint from dom(A)) U(A) and N (A) of variables associated with

A. Intuitively, U(A) is a set of variables denoting unknown nulls, while N (A) is a set

1Note that we treat an inapplicable null as a value in dom(A) since it does not represent uncertain
information.

197

of variables that denote no-information nulls. We require that U(A) ∩ U(B) = ∅ if

dom(A) 6= dom(B) and U(A) = U(B) if dom(A) = dom(B), for any A,B ∈ Att. The

same assumptions are made for the N (Ai)’s. We define Dom =
⋃
A∈Att dom(A), U =⋃

A∈Att U(A), N =
⋃
A∈AttN (A). For each A ∈ Att we define dom(A) = dom(A) −

{⊥}.

Given a relation schema S = r(A1, . . . , An), a tuple over S is an element of

(dom(A1)∪ U(A1)∪N (A1))×· · ·× (dom(An)∪ U(An)∪N (An)); a relation over S is

a finite multiset of tuples over S. A complete tuple belongs to dom(A1)×· · ·× dom(An)

and a relation R is complete iff every tuple in R is complete. The restriction of a tuple t

to a set X of attributes (or a single attribute) is denoted by t[X]. The set of attributes of a

relation schema S is denoted by Att(S).

A database schema DS is a set of relation schemas {S1, . . . , Sm}; a database in-

stance (or simply database) I over DS is a set of relations {R1, . . . , Rm}, where each

Ri is a relation over Si. The set of all possible databases over a database schema DS is

denoted by db(DS). Multiple occurrences of the same null occur in a database.

We consider the relational algebra operators π (projection), σ (selection), × (carte-

sian product), ./ (join), ∪ (union), ∩ (intersection), and − (difference) (note that since

relations are multisets, the multiset semantics is adopted for the operators, see [UW02],

Ch. 5.1).

Semantics. We now provide semantics for the types of databases described thus far.

A valuation is a mapping v : U ∪ N → Dom such that U i ∈ U(A) implies

v(U i) ∈ dom(A) and N j ∈ N (A) implies v(N j) ∈ dom(A). A valuation v can be

applied to a tuple t, relation R, and database I in the obvious way – the result is denoted

by v(t), v(R), and v(I), respectively.

198

Thus, for each attributeA, the application of a valuation replaces each no-information

null with a value in dom(A) (⊥ allowed) and each unknown null with a value in dom(A)

(⊥ not allowed) with multiple occurrences of the same null replaced by the same value.

The result of applying a valuation is a complete database.

Definition 58. The set of completions of a database I is

comp(I) = { v(I) | v is a valuation }.

6.3 Partial Information Policies

In this section we introduce partial information policies which allow users to make

assumptions about missing data in a database, taking into account their own knowledge

of how the data was collected, their attitude to risk, and their mission needs.

Definition 59. Given a database schema DS, a partial information policy (PIP) is a

mapping ρ : db(DS) → 2db(DS) s.t. ρ(I) is a non-empty subset of comp(I) for every

I ∈ db(DS).

Thus, a PIP maps a database to a subset of its completions that we call preferred

completions.

Example 57. The completions of the relation in Example 56 are the complete DBs ob-

tained by replacing every unknown value with an actual value. Each user has expressed

preferences on which completions are of interest to him. The completions chosen as pre-

ferred by user A are those where each unknown under-age enrollment ratio is replaced

with a value determined by linear regression; for user B the preferred completions are

199

those where unknown under-age enrollment ratios are replaced with values in the range

[4.81, 16.77]; and so forth for the other users.

Note that the preferred completions chosen by users A, D, E, F (but not B and

C) can be represented with the data model of Section 6.2, that is, ∀I ∈ db(DS)∃I ′ ∈

db(DS)(comp(I ′) = ρ(I)). This is so because the policies expressed by users A, D,

E, F determine a single actual value for each null value, whereas the policies expressed

by users B and C give a set of possible actual values for each null value. The impor-

tant advantage of this property is that the result of applying a policy can be represented

as a database in the same data model of the original database (i.e., the data model of

Section 6.2), whereas policies that do not satisfy the property need more expressive and

complex data models (e.g., c-tables [Gra91, IL84b]). We now present some families of

PIPs which enjoy the aforementioned property (the next section defines index structures

which allow us to efficiently apply policies with large datasets). In addition, these policies

can be used as building blocks to define much more complex policies.

Henceforth, we assume that I is a database and R ∈ I is a relation over schema

S; A,B ∈ Att(S) and X, Y, Z ⊆ Att(S), with A, B and attributes in Y having nu-

meric domains; µ, ϑ and ν are aggregate operators in {MIN , MAX , AVG , MEDIAN ,

MODE}.

Given a tuple t ∈ R, we define (i) the relation V (t,X, Z) = {t′ | t′ ∈ R ∧ t′[X] =

t[X] ∧ ∀Ai ∈ Z (t′[Ai] ∈ dom(Ai))}, that is, the multiset of tuples in R having the

same X-value as t and a Z-value consisting of values in Dom, and (ii) the relation

V ∗(t,X, Z) = {t′ | t′ ∈ R ∧ t′[X] = t[X] ∧ ∀Ai ∈ Z (t′[Ai] ∈ dom(Ai))}, that is,

the multiset of tuples in R having the same X-value as t and a Z-value consisting of

values in Dom− {⊥}.

200

Family of Aggregate Policies. ρagg(µ, ν, A,X) is defined as follows. If t ∈ R and

t[A] ∈ U(A), then V = V ∗(t,X, {A}), else if t[A] ∈ N (A), then V = V (t,X, {A}). If

µ{t′[A] | t′ ∈ V } exists, then we say that it is a candidate value for t[A]. Let I ′ be the

database obtained from I by replacing every occurrence of a null η ∈ N ∪U appearing in

πA(R) with ν{v1, . . . , vn} (if the latter exists), where the vi’s are the candidate values for

η. The preferred completions of this policy are the completions of I ′. Note that for each

selection of µ, ν, A,X , this single definition defines a different PIP - all belonging to the

family of aggregate policies.

Example 58. For the purpose of illustrating the roles of the different parameters of PIPs,

consider the simple relation below.

Country Year GER UER

Mali 1996 94.67 3.84

Mali 1997 94.83 U1

Mali 1998 95.72 4.36

Rwanda 1996 98.84 4.67

Rwanda 1997 103.76 5.38

Rwanda 1998 105.24 U1

Senegal 1997 93.14 4.52

Senegal 1998 95.72 4.87

Sudan 1997 102.83 5.03

Sudan 1998 103.76 5.12

Suppose we want to apply the policy ρagg(AVG , MAX , UER, {Country}). This

policy looks at missing values under attribute UER (third parameter of the policy). When

the first occurrence of U1 is considered, a candidate value is computed as follows. Since

the last parameter of the policy is Country, only tuples for Mali are considered and their

average (first parameter) UER is a candidate value, i.e., 4.1. Likewise, when the second

occurrence of U1 is considered, the average UER for Rwanda, i.e. 5.025, is another

candidate value. Eventually, the two occurrences of U1 are replaced by 5.025, i.e. the

201

maximum candidate value (as specified by the second parameter of the policy). If the

relation above belongs to a database I , then every occurrence of U1 elsewhere in I is

replaced by 5.025.

Family of Regression Oriented Policies. ρreg(ν,A,X, Y) is defined as follows. If t ∈ R

and t[A] is a null η ∈ N ∪ U , then D = {〈t′[Y], t′[A]〉 | t′ ∈ V ∗(t,X, Y ∪ {A})}.

Let f be a model built from D via linear regression2, if D 6= ∅, where values on Y are

the independent variables and values on A are the dependent variables. If t[Y] consists

of values in Dom − {⊥} only, then f(t[Y]) is a candidate value for η. Suppose I ′ is

the database obtained from I by replacing every occurrence of a null η ∈ N ∪ U in

πA(R) with ν{v1, . . . , vn} (if the latter exists), where the vi’s are the candidate values

for η. The preferred completions returned by this policy are the completions of I ′. Note

that this definition defines a very large family of policies - one for each possible way of

instantiating ν,A,X, Y .

Example 59. Consider the relation of Example 58 and suppose we want to apply the

policy ρreg(AVG , UER, {Country}, {Y ear}). This policy looks at missing values under

attribute UER (second parameter of the policy). When the first occurrence of U1 is

considered, a candidate value is computed as follows. As Country is specified as third

parameter of the policy, only tuples for Mali are considered. A linear model is built

from D = {〈1996, 3.84〉, 〈1998, 4.36〉}. The independent variable of D is Y ear (last

parameter of the policy). The UER corresponding to 1997 given by the linear model is 4.1,

which is a candidate value. Likewise, when the second occurrence of U1 is considered, a

linear model is built from D = {〈1996, 4.67〉, 〈1997, 5.38〉} and the candidate value 6.09

2For the sake of simplicity we restrict ourselves to linear regression, but other policies using different
regression methods may be defined analogously.

202

is determined. The two occurrences of U1 are replaced by the average (first parameter of

the policy) of the two candidate values, i.e. 5.095.

Family of Policies Based on Another Attribute. The policy ρatt(µ, ϑ, ν, A,B,X) is

defined as follows. If t ∈ R and t[A] ∈ U(A), then V = V ∗(t,X, {A}), else if

t[A] ∈ N (A), then V = V (t,X, {A}). If β = µ{t′[B] | t′ ∈ V } exists, then let

β∗ = min{|t′[B]− β| : t′ ∈ V }3 and V ′ = {t′ | t′ ∈ V ∧ |t′[B]− β| = β∗}; we say that

ϑ{t′[A] | t′ ∈ V ′} is a candidate value for t[A]. Suppose I ′ is the database obtained from I

by replacing every occurrence of a null η ∈ N∪U appearing in πA(R) with ν{v1, . . . , vn}

(if the latter exists), where the vi’s are the candidate values for η. The preferred comple-

tions returned by this policy are the completions of I ′. This definition also defines a very

large family of policies - one for each possible way of instantiating µ, ϑ, ν, A,B,X .

Example 60. Consider again the relation of Example 58 and suppose we want to apply

the policy ρatt(MIN ,AVG ,MAX , UER,GER, {Y ear}). This policy looks at missing

values under attribute UER (fourth parameter of the policy). A candidate value for the

first occurrence of U1 is determined as follows. Tuples referring to 1997 are considered

because the last parameter of the policy is Y ear. Then, the min GER for such tuples is

found (this is specified by the first and fifth parameters), i.e. 93.14, and the corresponding

UER is a candidate value, viz. 4.52. Consider now the second occurrence of U1. Tuples

referring to 1998 are considered and the minimum GER is found among those tuples, i.e.

95.72. However, there are two tuples having such a value, so there are two corresponding

UERs, i.e. 4.36 and 4.87. The second parameter of the policy states that their average

is a candidate, i.e. 4.615. Every occurrence of U1 is replaced by the maximum candidate

value, i.e. 4.615, as specified by the third parameter of the policy.

3When at least one of x and y is a null, if x 6= y, then |x− y| =∞, else |x− y| = 0.

203

When applying a policy to a database, one relation is used to determine how to

replace nulls – once replacements have been determined, they are applied to the whole

database – thus, different occurrences of the same null are replaced with the same value.

Given a database I over schema DS, a relation schema S ∈ DS, and a policy ρ, we

use ρS(I) to specify that ρ is applied to I and the relation in I over schema S is used

to determine the replacements. Once again, note that the preferred completions ρS(I)

obtained by applying the above policies can be represented by a database, i.e., there exists

a database I ′ s.t. comp(I ′) = ρS(I); with a slight abuse of notation we use ρS(I) to denote

I ′.4

Example 61. The policies expressed by Users A, D, E, F in Example 56 can be respec-

tively formulated in the following way:

1. a regression policy ρreg(ν, UER, {Country}, {Y ear}),

2. a regression policy ρreg(ν, UER, {Country}, {NetODA}),

3. an aggregate policy ρagg(MAX , ν, UER, {Y ear}), and

4. a policy based on another attribute ρatt(AVG , ϑ, ν, UER,GER, {Y ear}).

In the PIPs above, ν determines how multiple candidate values are aggregated and ϑ is

used as shown in Example 60. Different users may want to apply different PIPs depending

on what they believe is more suitable for their purposes – depending on the chosen PIP

and the input database, they may get different results.

The above policies are not exhaustive: they are basic policies that can be combined

to obtain more complex ones, e.g., different aggregate policies (on different attributes) can
4I ′ itself need not be complete as nulls may remain in the database in attributes not affected by ρ.

204

be defined over the same relation schema or an aggregate policy can be combined with

a regression oriented policy, and so forth. Furthermore, PIPs can be combined with rela-

tional algebra operators allowing users to express even more complex ways of managing

their incomplete data – we will deal with relational algebra and PIPs in Section 6.5.

6.4 Efficiently Applying PIPs

In this section, we present index structures to efficiently apply policies and show

how they can be incrementally maintained when the database is updated (Section 6.6

presents experimental results showing the index’s effectiveness).

Given a PIP ρ of the form ρagg(µ, ν, A,X), ρreg(ν,A,X, Y), ρatt(µ, ϑ, ν, A,B,X),

we call A the incomplete attribute of ρ, denoted as inc(ρ), whereas X is the set of selec-

tion attributes of ρ, denoted as sel(ρ). Throughout the chapter we will use vector notation

to refer to pointers; thus, given a tuple t,
−→
t denotes a pointer to t; likewise, given a set c

of tuples, −→c denotes the set of pointers to tuples in c. We start by introducing the notion

of cluster in the following definition.

Definition 60. Given a relation R over schema S, and a set of attributes Z ⊆ Att(S),

a cluster of R w.r.t. Z is a maximal subrelation c of R s.t. ∀ t, t′ ∈ c, t[Z] = t′[Z]. We

write cluster(R,Z) to denote the set of clusters of R w.r.t Z; it is the quotient multiset

obtained from the identity on Z between tuples in R.

Example 62. Consider the relation salary below (throughout this section we use this

simple relation as it allows us to clearly illustrate the use of indexes and has all types of

incompleteness).

205

Name Y ear Salary

t1 John 2008 ⊥

t2 John 2009 60K

t3 John 2010 U1

t4 Alice 2009 70K

t5 Alice 2010 U2

t6 Bob 2009 60K

t7 Bob 2010 70K

t8 Carl 2010 N1

There are four clusters w.r.t. {Name}, namely c1 = {t1, t2, t3}, c2 = {t4, t5},

c3 = {t6, t7} and c4 = {t8}.

The next example shows the idea behind our index structures.

Example 63. Suppose we want to apply the policy ρagg(AVG , ν, Salary, {Name}), where

ν is any aggregate operator, to the relation salary of Example 62. To determine how to

replace missing salaries, we need to retrieve every cluster in cluster(salary, {Name})

which (i) contains at least one tuple having a missing salary, i.e., a salary in U ∪ N

(otherwise there is no need apply the policy to that cluster), and (ii) contains at least one

tuple having a non-missing salary (otherwise there is no data from which to infer missing

salaries). Clusters satisfying these conditions yield possible candidates – other clusters

do not play a role and so can be ignored. In Example 62, we need to retrieve only clusters

c1 and c2.

To leverage this idea, we associate a counter with each cluster to keep track of the

number of tuples in the cluster containing standard constants, unknown, no-information,

206

and inapplicable nulls on a specific attribute – the role of such counters will be made clear

shortly. LetR be a relation over schema S, Z ⊆ Att(S), andB ∈ Att(S). Given a cluster

c ∈ cluster(R,Z), we define

• Cv(c, B) = |{t | t ∈ c ∧ t[B] ∈ dom(B)}|,

• C⊥(c, B) = |{t | t ∈ c ∧ t[B] = ⊥}|.

• CU(c, B) = |{t | t ∈ c ∧ t[B] ∈ U(B)}|,

• CN (c, B) = |{t | t ∈ c ∧ t[B] ∈ N (B)}|,

We now introduce the first data structure that will be used for the efficient applica-

tion of PIPs.

Definition 61. LetR and ρ be a relation and a PIP, respectively. Moreover, letX = sel(ρ)

and A = inc(ρ). A cluster table for R and ρ is defined as follows:

ct(R, ρ) =

{〈t[X],−→c , Cv(c, A), C⊥(c, A), CU(c, A), CN (c, A)〉

s.t. c ∈ cluster(R,X) ∧ t ∈ c}

Example 64. The cluster table T for the relation salary of Example 62 and the policy

ρagg(AVG , ν, Salary, {Name}), where ν is an arbitrary aggregate is:

t[{Name}] −→c Cv C⊥ CU CN

s1 John {−→t1 ,
−→
t2 ,
−→
t3} 1 1 1 0

s2 Alice {−→t4 ,
−→
t5} 1 0 1 0

s3 Bob {−→t6 ,
−→
t7} 2 0 0 0

s4 Carl {−→t8} 0 0 0 1

207

where Cv stands for Cv(c, Salary), C⊥ stands for C⊥(c, Salary), and so forth.

The counters associated with each cluster in a cluster table determine whether a pol-

icy needs the cluster to determine candidate values. For instance, the PIP in Example 64

has to look at those clusters having CU(c, Salary) + CN (c, Salary) > 0 (i.e., having

some missing salaries) and Cv(c, Salary) > 0 (i.e., having some salaries to be exploited

for inferring the missing ones). Different conditions determine whether a given PIP needs

to consider a given cluster.

Definition 62. SupposeR is a relation, ρ is a PIP, and c is a cluster in cluster(R, sel(ρ)).

1) If ρ is an aggregate policy ρagg(µ, ν, A,X) (ν being any aggregate operator), then

• if µ ∈ {MAX ,MIN ,AVG ,MEDIAN } andCU(c, A)+CN (c, A) > 0∧Cv(c, A) >

0, then we say that c is relevant w.r.t. ρ;

• if µ = MODE and
(
(Cv(c, A) > 0∧CU(c, A) > 0)∨ (CN (c, A) > 0∧Cv(c, A) +

C⊥(c, A) > 0)
)
, then we say that c is relevant w.r.t. ρ.

2) If ρ is a regression oriented policy ρreg(ν,A,X, Y) (ν being any aggregate operator)

and CU(c, A) + CN (c, A) > 0 ∧ Cv(c, A) > 0, then we say that c is relevant w.r.t. ρ.

3) If ρ is a policy based on another attribute ρatt(µ, ϑ, ν, A,B,X) (µ, ϑ and ν are any

aggregate operators) and
(
(Cv(c, A) > 0∧CU(c, A) > 0)∨ (CN (c, A) > 0∧Cv(c, A) +

C⊥(c, A) > 0)
)
, then c is relevant w.r.t. ρ.

The counters associated with each cluster in a cluster table allow us to determine

whether a cluster is relevant or not without scanning the entire cluster. Furthermore, as

we will discuss later, when the database is modified (i.e., tuple insertions, deletions, or

updates occur) such counters allow us to determine whether the “relevance” of a cluster

changes or not without scanning it.

208

For a cluster table T we maintain an additional data structure that allows us to

retrieve the tuples of T which refer to relevant clusters.

Definition 63. Let T = ct(R, ρ) be the cluster table for a relation R and a PIP ρ. Then,

Relevant(T , ρ) =

{〈t[X],−→s 〉 | s = 〈t[X],−→c , Cv, C⊥, CU , CN 〉 ∈ T

∧ c is relevant w.r.t. ρ}

Example 65. Consider the cluster table T and the PIP of Example 64; Relevant(T , ρ)

is as follows:

t[{Name}] −→s

John −→s1

Alice −→s2

The following proposition states the complexity of building a cluster table T =

ct(R, ρ) and Relevant(T , ρ) for a relation R and a PIP ρ.

Proposition 28. Let R and ρ be a relation and a PIP, respectively. Independent of ρ

the worst-case time complexity of building T = ct(R, ρ) and Relevant(T , ρ) is O(|R| ·

log|R|).

A cluster table T = ct(R, ρ) and Relevant(T , ρ) are maintained for each policy

ρ. Note that policies having the same sel(ρ) and inc(ρ) can share the same cluster table

T ; moreover, if the the criterion that determines whether a cluster is relevant or not is the

same (see Definition 62), they can also share the same Relevant(T , ρ).

Recall that when a policy determines a value c which has to replace a null η, then

every occurrence of η in the database has to be replaced with c. Thus, whenever a value

209

has been determined for a null, we need to retrieve all those tuples containing that null.

To this end, we maintain the data structure defined in the definition below. Given a null

η ∈ N ∪ U and a database I , Iη denotes the set of tuples in I containing η.

Definition 64. Given a database I , we define

Null(I) = {〈η,
−→
Iη 〉 | η ∈ N ∪ U ∧

−→
Iη 6= ∅}

Clearly, Null(I) is shared by all the policies.

Proposition 29. Given a database I , the worst-case time complexity of building Null(I)

is O(|I| · (log Nnull + log|Iηmax|)), where |I| is the number of tuples in I , Nnull is the

number of distinct nulls in N ∪ U appearing in I , and Iηmax is the Iη with maximum

cardinality.

In the rest of this section we show how to update a cluster table T , Relevant(T , ρ)

and Null(I) when tuples are inserted, deleted, or updated. We also show how to apply a

PIP exploiting the data structures presented thus far and introduce further optimizations

that can be applied for specific policies.

6.4.1 Tuple insertions

Figure 6.1 reports an algorithm to update a cluster table T , Relevant(T , ρ) and

Null(I) after a tuple t is inserted. The algorithm first updates Null(I) (lines 1–3). After

that, if there already exists a cluster c for t, then
−→
t is added to −→c (line 5), the counters

associated with c are properly updated (line 6), and if c becomes a relevant cluster, then a

tuple for c is added to Relevant(T , ρ) (line 7). Note that in order to determine whether

a cluster is relevant or not, it suffices to check its associated counters instead of scanning

210

the entire cluster. If there does not exist a cluster for t, then a new tuple for it is added to

T (lines 8–11) – in this case the cluster is certainly non-relevant.

Algorithm CT-insert
Input: A relation R ∈ I, a PIP ρ, cluster table T = ct(R, ρ),

Relevant(T , ρ), Null(I), and a new tuple t
(X = sel(ρ) and A = inc(ρ))

1 For each η ∈ N ∪ U appearing in t
2 If ∃〈η,

−→
Iη〉 ∈ Null(I) then Add −→t to

−→
Iη

3 else Add 〈η, {−→t }〉 to Null(I)
4 If ∃s = 〈t[X],−→c , Cv, C⊥, CU , CN 〉 ∈ T then
5 Add −→t to −→c
6 Update one of Cv, C⊥, CU , CN according to t[A]
7 If c has become relevant then Add 〈t[X],−→s 〉 to Relevant(T , ρ)

8 else If t[A] ∈ dom(A) then Add 〈t[X], {−→t }, 1, 0, 0, 0〉 to T
9 else If t[A] = ⊥ then Add 〈t[X], {−→t }, 0, 1, 0, 0〉 to T

10 else If t[A] ∈ U(A) then Add 〈t[X], {−→t }, 0, 0, 1, 0〉 to T
11 else Add 〈t[X], {−→t }, 0, 0, 0, 1〉 to T

Figure 6.1: Updating index structures after a tuple insertion.

Example 66. Suppose we add tuple t = 〈Bob, 2011, U4〉 to the relation salary of Exam-

ple 62. First, a new tuple 〈U4, {
−→
t }〉 is added to Null({salary}). As there is already

a cluster for Bob, s3 is retrieved from T (see the cluster table T in Example 64),
−→
t is

added to the set of pointers of the cluster and CU is incremented by one, i.e., s3 becomes

〈Bob, {−→t6 ,
−→
t7 ,
−→
t }, 2, 0, 1, 0〉. As the cluster is relevant w.r.t. the policy of Example 64,

〈Bob,−→s3〉 is added to Relevant(T , ρ).

The following two propositions state the correctness and the complexity of Algo-

rithm CT-insert. With a slight abuse of notation, we use I ∪ {t} to denote the database

obtained by adding t to R, R being a relation of I .

Proposition 30. Let R be a relation of a database I , ρ a PIP, and t a tuple. Algorithm

CT-insert computes T ′ = ct(R ∪ {t}, ρ), Relevant(T ′, ρ) and Null(I ∪ {t}).

211

Proposition 31. The worst-case time complexity of Algorithm CT-insert is

O(log|Null(I)|+ log|Iηmax|+ log|T |+ log|cmax|), where cmax is the cluster with max-

imum cardinality and Iηmax is the set of tuple pointers in Null(I) with maximum cardi-

nality.

6.4.2 Tuple deletions

Figure 6.2 presents an algorithm to update a cluster table T , Relevant(T , ρ) and

Null(I) when deleting a tuple t.

Algorithm CT-delete
Input: A relation R ∈ I, a PIP ρ, cluster table T = ct(R, ρ),

Relevant(T , ρ), Null(I), and a tuple t
(X = sel(ρ) and A = inc(ρ))

1 For each η ∈ N ∪ U appearing in t
2 Get 〈η,

−→
Iη〉 from Null(I)

3 Delete −→t from
−→
Iη

4 If
−→
Iη = ∅ then Delete 〈η,

−→
Iη〉 from Null(I)

5 Get s = 〈t[X],−→c , Cv, C⊥, CU , CN 〉 from T

6 Delete −→t from −→c
7 Update one of Cv, C⊥, CU , CN according to t[A]
8 If c has become non-relevant then
9 Delete 〈t[X],−→s 〉 from Relevant(T , ρ)
10 If −→c = ∅ then Delete s from T

Figure 6.2: Updating index structures after a tuple deletion.

Example 67. Suppose we delete t4 from the relation salary of Example 62. Then, no

changes are made to Null({salary}). s2 is retrieved from T (see the cluster table T in

Example 64),
−→
t4 is deleted from the set of pointers of the cluster and Cv is decremented by

one, that is, s2 becomes 〈Alice, {−→t5 }, 0, 0, 1, 0〉. As the cluster is not relevant anymore,

〈Alice,−→s2〉 is deleted from Relevant(T , ρ).

212

The propositions below state the correctness and the complexity of Algorithm CT-

delete. With a slight abuse of notation, we use I − {t} to denote the database obtained

by deleting t from R, R being a relation of I .

Proposition 32. LetR be a relation of a database I , ρ a PIP, and t a tuple inR. Algorithm

CT-delete computes T ′ = ct(R− {t}, ρ), Relevant(T ′, ρ), and Null(I − {t}).

Proposition 33. The worst-case time complexity of Algorithm CT-delete is the same as

for Algorithm CT-insert.

6.4.3 Tuple updates

An algorithm for updating a cluster table T , Relevant(T , ρ) and Null(I) after a

tuple t is updated to t′ can be simply defined by first calling CT-delete with t as parameter

and then calling CT-insert with t′ as parameter. We call this algorithm CT-update. The

following two propositions state the correctness and the complexity of Algorithm CT-

update. With a slight abuse of notation, we use I − {t} ∪ {t′} to denote the database

obtained by updating t∈R into t′, R being a relation of I .

Proposition 34. Let R be a relation of a database I , ρ a PIP, t a tuple in R, and t′ a

tuple. Algorithm CT-update computes T ′ = ct(R − {t} ∪ {t′}, ρ), Relevant(T ′, ρ) and

Null(I − {t} ∪ {t′}).

Proposition 35. The worst-case time complexity of Algorithm CT-update is the same as

for Algorithm CT-insert.

213

Algorithm CT-update can be optimized when t and t′ belong to same cluster; we

omit the optimized algorithm and illustrate the basic intuition below. Consider the re-

lation salary of Example 62 and suppose we modify t4 = 〈Alice, 2009, 70K〉 to t′4 =

〈Alice, 2009, 80K〉. If we first execute Algorithm CT-delete with t4, then its cluster

becomes irrelevant and the corresponding tuple is deleted from Relevant(T , ρ). When

we execute CT-insert with t′4, Alice’s cluster becomes relevant again and a tuple for it

is inserted into Relevant(T , ρ). As another example, consider t8 = 〈Carl, 2010, N1〉

and suppose Carl’s salary is modified. By executing CT-delete and CT-insert, s4 is first

deleted from T (see the cluster table in Example 64) and then it is added again.

Deleting from and inserting into Relevant(T , ρ) or T can be avoided if we first

check whether t and t′ belong to the same cluster and if so, then we do not call CT-delete

and CT-insert, but directly update Relevant(T , ρ) and T according to t[A] and t[A′] (in

addition, Null(I) is updated according to the null values in t and t′).

6.4.4 Applying PIPs

Figure 6.3 shows the CT-ApplyPIP algorithm to apply a PIP on top of our data

structures. CT-ApplyPIP first retrieves the relevant clusters so that only a subrelation R′

of R has to be considered in order to determine how to replace null values (lines 1–4).

The policy ρ then tries to determine a value for each null appearing in R′ on attribute

A (lines 5–6) – this depends on the adopted policy and is accomplished as described in

Section 6.3. If a value v for a null η has been determined, then every occurrence of η in

the database is replaced with v (lines 7–10). It is worth noting that when a null is replaced

with a value, then CT-update is executed.

214

Algorithm CT-ApplyPIP
Input: A relation R ∈ I, a PIP ρ, T = ct(R, ρ),

Relevant(T , ρ) and Null(I)
(X = sel(ρ) and A = inc(ρ))

1 R′ = ∅
2 For each 〈t[X],−→s 〉 ∈ Relevant(T , ρ)
3 Get s = 〈t[X],−→c , Cv, C⊥, CU , CN 〉 from T
4 R′ = R′ ∪ c
5 For each η ∈ N ∪ U appearing in R′ on A
6 Determine a value v for η according to ρ
7 If v exists then
8 Get 〈η,

−→
Iη〉 from Null(I)

9 For each −→t ∈
−→
Iη

10 Replace every occurrence of η in t with v

Figure 6.3: Applying a PIP

The following two propositions state the correctness and the complexity of Algo-

rithm CT-ApplyPIP.

Proposition 36. Let I be a database, R ∈ I a relation over schema S, and ρ a PIP.

Algorithm CT-ApplyPIP correctly computes I ′ = ρS(I), T ′ = ct(R′, ρ),Relevant(T ′, ρ)

and Null(I ′), where R′ ∈ I ′ is the relation over schema S.

Proposition 37. The worst-case time complexity of Algorithm CT-ApplyPIP is O(|R′| ·

(costρ(R
′) + log|Null(I)|+ |Iηmax| · costCT-update)), where R′ is the union of the relevant

clusters of R (w.r.t. ρ), costρ is the cost of determining a value for a null according to

policy ρ, Iηmax is the set of tuple pointers in Null(I) with maximum cardinality, and

costCT-update is the cost of updating a tuple (see Proposition 35).

Basically, applying a policy consists of determining how to replace every null ap-

pearing for the incomplete attribute and then replacing every occurrence of it in the

database (note that the former step needs the clusters to be identified). When applying

a policy, the data structures introduced in this section have the following benefits. 1) The

relation from which candidate values are determined does not have to be scanned to iden-

215

tify its clusters, as they can be efficiently retrieved from the cluster table. 2) By looking

at Relevant(T , ρ), only those clusters from which candidate values can be determined

(i.e., the relevant clusters) are considered when applying a policy, thus avoiding looking

at those tuples in the relation that can be disregarded. 3) Tuples containing nulls that have

to be replaced can be retrieved from Null(I) without scanning the whole database. 4)

When the database is modified because of tuple insertions, deletions or updates, our data

structures can be efficiently updated.

Experiments (cf. Section 6.6) show that these indexes yield significant performance

gains on large datasets.

6.4.5 Optimizations

The data structures and the algorithms presented above can be optimized as illus-

trated in the following example.

Example 68. Consider the relation salary from Example 62. Let ν is any aggregate oper-

ator, then assuming a policy ρagg(AVG , ν, Salary,{Name}), the corresponding cluster

table T and Relevant(T , ρ) are reported in Examples 64 and 65, respectively. For each

tuple 〈t[X],−→c , Cv, C⊥, CU , CN 〉 in T we might keep the average of the salaries (in gen-

eral, the average of A-values, A being the incomplete attribute of the PIP) of the tuples

in c. Thus, when the policy is applied, the average salary of each cluster can be obtained

without scanning the entire cluster.

The average salary can be inexpensively computed when the cluster table is first

built. In addition, this value can be easily updated when the relation salary is updated.

For instance, when a new tuple t is inserted, if t[Salary] 6∈ dom(Salary), then nothing

has to be done. If t[Salary] ∈ dom(Salary) , then the new average salary is computed as

216

avgnew = avgold·Cv+t[Salary]
Cv+1

, where avgold is the old average salary and Cv is the number

of salaries in t’s cluster (before inserting t). Likewise, the average salary can be updated

when tuples are deleted or updated.

The optimization in the example above can be applied to other policies as well, the

basic idea is to associate each tuple in a cluster table with a pre-computed value (or a set

of pre-computed values) which turns out to be useful when determining candidate values

– such a value is then incrementally updated when the database is modified.

6.5 Relational Algebra and PIPs

In this section, we study when applying a policy before a relational algebra operator

gives the same result as applying it after. This can be exploited for query optimization

purposes. Note that PIPs cannot be expressed using the relational algebra because PIPs

modify the database by replacing null values; while the relational algebra operators can-

not modify the database. Throughout this section, a policy is either an aggregate policy,

or a regression policy, or a policy based on another attribute. We adopt the SQL seman-

tics [SQL03] for the evaluation of relational algebra operators.

We now define the database obtained after applying a relational algebra operator.

The database obtained by applying projection to a relation R is defined as the database

obtained by replacing R with its projection. More formally, consider a database I over

schema DS, and a relation R ∈ I over schema S ∈ DS. In addition, let Z ⊆ Att(S). We

define πSZ(I) = (I ∪ {πZ(R)}) − {R}. Thus, the notation πSZ(I) means that the relation

R in I over schema S is replaced by πZ(R). Likewise, the database obtained as the result

of performing the cartesian product of two relations R1 and R2 is defined as the database

217

obtained by replacingR1 andR2 withR1×R2. Stated more formally, consider a database

I over schema DS, and two relations R1, R2 ∈ I over schemas S1, S2 ∈ DS. We define

×S1,S2(I) = (I ∪ {R1 × R2}) − {R1, R2}. The result databases for the other relational

algebra operators are defined similarly and analogous notations will be used for them.

6.5.1 Projection and PIPs

We consider both the case where projection returns a set and the case where a

multiset is returned. For notational convenience, we use πmZ to denote the projection

operator which returns a multiset, whereas πZ denotes the projection operator that returns

a set. In order for a PIP to make sense after projection, we assume that the attributes

on which the projection is performed include the attributes appearing in the policy. The

following proposition considers the projection operator that returns a set and provides

sufficient conditions under which applying a policy before or after projection gives the

same result.

Proposition 38. Suppose I is a database over schema DS, R ∈ I is a relation over

schema S ∈ DS, Z ⊆ Att(S), and ρ is a policy. Moreover, let S ′ denote the schema of

πZ(R).

1. If ρ is an aggregate policy ρagg(µ, ν, A,X), then

(a) if µ ∈ {MAX ,MIN }, then ρS′(πSZ(I)) = πSZ(ρS(I));

(b) if µ ∈ {AVG ,MEDIAN ,MODE}, then ρS′(πSZ(I)) = πSZ(ρS(I)) if πZ(C) =

πmZ (C), where C =
⋃
c∈cluster(R,X)∧c is relevant w.r.t. ρ c.

2. If ρ is a policy based on another attribute ρatt(µ, ϑ, ν, A,B,X), then

218

(a) if µ, ϑ ∈ {MAX ,MIN }, then ρS′(πSZ(I))=πSZ(ρS(I));

(b) otherwise ρS′(πSZ(I)) = πSZ(ρS(I)) if πZ(C) = πmZ (C),

where C =
⋃
c∈cluster(R,X)∧c is relevant w.r.t. ρ c.

3. If ρ is a regression oriented policy, then ρS′(πSZ(I)) = πSZ(ρS(I)).

Thus, applying a PIP before or after projection does not always give the same result

when we consider aggregate policies or policies based on another attribute using one of

the operators AVG , MEDIAN , MODE . Here the point is that projection loses duplicates;

while this makes no difference when MAX or MIN are used, such a loss may change the

result of the other aggregate operators. When a regression policy is applied, the loss

of duplicates does not change the set of data used to build the regression model. The

following example shows that the sufficient conditions stated above are not necessary

conditions.

Example 69. Consider the database I consisting of the relationR below and let S denote

the schema of R.

A B C D

U1 b 1 d1

2 b 2 d2

2 b 2 d3

Let ρ be an aggregate policy ρagg(µ, ν, A, {B}) or a policy based on another at-

tribute ρatt(µ, ϑ, ν, A,C, {B}), with µ ∈ {AVG ,MEDIAN ,MODE} and ϑ, ν arbitrary

aggregate operators. Moreover, let S ′ denote the schema of πABC(R). We have that

ρS
′
(πSABC(I)) = πSABC(ρS(I)) even though πABC(C) 6= πmABC(C) – here C is defined as

in Proposition 38.

219

If the projection operator which returns a multiset instead of a set is used, then the

two orders in which a policy can be applied always give the same result.

Proposition 39. Suppose I is a database over schema DS, R ∈ I is a relation over

schema S ∈ DS, Z ⊆ Att(S), and ρ is a policy. Moreover, let S ′ denote the schema of

πmZ (R). If projection returns a multiset, then ρS′(πSZ(I)) = πSZ(ρS(I)).

6.5.2 Selection and PIPs

Applying a PIP before or after selection yields different results in very simple cases

as shown in the example below. The intuitive reason is that the two orders give different

results when the selection applied first does not keep tuples which affect the application

of the policy.

Example 70. Consider the database I consisting of the relationR below and let S denote

the schema of R.

A B C

U1 b 1

2 b 2

Consider ρS(I), where ρ is one of the following policies:

• ρagg(µ, ν, A, {B}). This policy replaces U1 with 2, for any aggregate operators µ

and ν.

• ρreg(ν,A, {B}, {C}). By applying linear regression, U1 is replaced by 1 for any

aggregate operator ν.

220

• ρatt(µ, ϑ, ν, A,C, {B}). For any aggregate operators µ, ϑ and ν, U1 is replaced

with 2.

For any of the policies above, ρS(σSC=1(I)) 6= σSC=1(ρS(I)). In each case, ρS(I) is ob-

tained by replacing U1 with a value which is determined using the second tuple in R (this

happens because the two tuples in R have the same B-value). Clearly, σSC=1(ρS(I)) re-

turns the first tuple in R where U1 has been replaced with an actual value. On the other

hand, when selection is first applied, the second tuple in R is deleted and then the sub-

sequent application of a policy has no effect because there is no data to infer an actual

value for U1. Thus, ρS(σSC=1(I)) gives exactly the first tuple in R leaving U1 as is. Note

that neither of the two results contains the other.

6.5.3 Cartesian Product and PIPs

In the following proposition we identify different ways in which cartesian product

and PIPs interact one another.

Proposition 40. Suppose I is a database over schema DS, R1, R2 ∈ I are relations

over schemas S1, S2 ∈ DS, and ρ1, ρ2 are policies for the former and latter relations,

respectively. Furthermore, let S ′ denote the schema of R1 × R2, and W1, W2 be the

attributes appearing in ρ1 and ρ2, respectively. Then,

1) ρS′1 (×S1,S2(I)) = ×S1,S2(ρS1
1 (I)).

2) ρS′2 (×S1,S2(I)) = ×S1,S2(ρS2
2 (I)).

3) ρS′2 (ρS
′

1 (×S1,S2(I))) = ×S1,S2(ρS2
2 (ρS1

1 (I))).

4) ρS′1 (ρS
′

2 (×S1,S2(I))) = ×S1,S2(ρS1
1 (ρS2

2 (I))).

5) If πW1(R1) and πW2(R2) do not have nulls in common, then ρS′1 (ρS
′

2 (×S1,S2(I))) =

ρS
′

2 (ρS
′

1 (×S1,S2(I))).

221

The fifth item above provides a sufficient condition to guarantee that the two differ-

ent orders in which ρ1 and ρ2 are applied after performing the cartesian product give the

same result. The following example shows that this is not a necessary condition.

Example 71. Consider the database I consisting of the following two relations R1 and

R2 (whose schemas are denoted by S1 and S2, respectively):

A B C

U1 b 1

2 b 1

D E F

U1 e 1

2 e 1

Let ρ1 be either of this policies, ρagg(µ1, ν1, A, {B}), or ρreg(ν1, A, {B}, {C}), or

ρatt(µ1, ϑ1, ν1, A, C, {B}); and ρ2 be either ρagg(µ2, ν2, D, {E}) or ρreg(ν2, D, {E}, {F})

or ρatt(µ2, ϑ2, ν2, D, F, {D}). Let S ′ denote the schema of R1 × R2. For any choice of

the aggregate operators, even though πW1(R1) and πW2(R2) have nulls in common (here

W1 and W2 are defined as in Proposition 40), the following holds ρS
′

1 (ρS
′

2 (×S1,S2(I))) =

ρS
′

2 (ρS
′

1 (×S1,S2(I))).

6.5.4 Join and PIPs

The join R1 ./ϕ R2 of R1, R2 can be rewritten as the expression σθ(σθ1(R1) ×

σθ2(R2)), for some θ, θ1, θ2. This equivalence can be effectively exploited.

Corollary 6. Suppose I is a database over schema DS, R1, R2 ∈ I are relations over

schemas S1, S2 ∈ DS, and ρ1, ρ2 are policies for the former and latter relation, respec-

tively. Let R1 ./ϕ R2 = σθ(σθ1(R1) × σθ2(R2)) for some θ, θ1, θ2. Furthermore, let S ′

denote the schema of σθ1(R1) × σθ2(R2), and W1, W2 be the attributes appearing in ρ1

and ρ2, respectively. Then,

222

1. σS
′

θ (ρS
′

1 (×S1,S2(σS2
θ2

(σS1
θ1

(I))))) = σS
′

θ (×S1,S2(ρS1
1 (σS2

θ2
(σS1

θ1
(I))))).

2. σS
′

θ (ρS
′

2 (×S1,S2(σS2
θ2

(σS1
θ1

(I))))) = σS
′

θ (×S1,S2(ρS2
2 (σS2

θ2
(σS1

θ1
(I))))).

3. σS
′

θ (ρS
′

2 (ρS
′

1 (×S1,S2(σS2
θ2

(σS1
θ1

(I)))))) = σS
′

θ (×S1,S2(ρS2
2 (ρS1

1 (σS2
θ2

(σS1
θ1

(I)))))).

4. σS
′

θ (ρS
′

1 (ρS
′

2 (×S1,S2(σS2
θ2

(σS1
θ1

(I)))))) = σS
′

θ (×S1,S2(ρS1
1 (ρS2

2 (σS2
θ2

(σS1
θ1

(I)))))).

5. If πW1(R1) and πW2(R2) do not have nulls in common, then

σS
′

θ (ρS
′

1 (ρS
′

2 (×S1,S2(σS2
θ2

(σS1
θ1

(I)))))) = σS
′

θ (ρS
′

2 (ρS
′

1 (×S1,S2(σS2
θ2

(σS1
θ1

(I)))))).

6.5.5 Union and PIPs

We provide a sufficient condition under which the policy first and policy last strate-

gies return the same result.

Proposition 41. Suppose I is a database over schema DS, R1, R2 ∈ I are relations over

schemas S1 = r1(A1, . . . , An), S2 = r2(A1, . . . , An) ∈ DS, and ρ is a PIP. Furthermore,

let S ′ denote the schema of R1 ∪ R2, W the attributes appearing in ρ, and X = sel(ρ).

If πX(R1) ∩ πX(R2) = ∅ and πW (R1), πW (R2) do not have nulls in common, then

ρS
′
(∪S1,S2(I)) = ∪S1,S2(ρS2(ρS1(I))) = ∪S1,S2(ρS1(ρS2(I))).

The next example shows that the condition in the previous proposition is not a

necessary condition.

Example 72. Consider the database I = {R1, R2} where R1 and R2 are shown below.

Let S1 = r1(A,B,C,D) and S2 = r2(A,B,C,D) denote their schemas, respectively.

A B C D

U1 b 1 d1

2 b 1 d2

A B C D

U2 b 1 d3

2 b 1 d4

223

Let ρ be either ρagg(µ, ν, A, {B}), ρreg(ν,A, {B}, {C}), or ρatt(µ, ϑ, ν, A,C, {B}). For

any aggregate operators µ, ϑ and ν, we have that ρS
′
(∪S1,S2(I)) = ∪S1,S2(ρS2(ρS1(I))) =

∪S1,S2(ρS1(ρS2(I))) even though πB(R)∩πB(R′) 6= ∅ (S ′ denotes the schema ofR1∪R2).

6.5.6 Difference and PIPs

As we show in the example below, the different orders in which a policy can be

combined with the difference operator yield different results in very simple cases; the

reason is similar to the one given for selection.

Example 73. Consider the database I consisting of the relations R1 and R2 below, and

let S1 = r1(A,B,C,D) and S2 = r2(A,B,C,D) denote their schemas, respectively.

A B C D

U1 b 1 d1

2 b 1 d2

A B C D

2 b 1 d2

Suppose we compute ρS1(I), where ρ is any of the following policies.

1. ρagg(µ, ν, A, {B}). This policy replaces U1 with 2 for any aggregate operators µ

and ν.

2. ρreg(ν,A, {B}, {C}). By applying linear regression, U1 is replaced by 2 for any

aggregate operator ν.

3. ρatt(µ, ϑ, ν, A,C, {B}). U1 is replaced with 2 for any aggregate operators µ, ϑ, ν.

Thus, for any of the policies above, ρS1(I) replaces U1 with a value determined

using the second tuple inR1 (this is because the two tuples inR1 have the sameB-value).

Clearly,−S1,S2(ρS1(I)) returns only the first tuple in R1 where U1 has been replaced with

224

an actual value. However, if the difference operator is performed before applying ρ, then

the first tuple in R1 is returned and the application of a policy afterwards has no effect

because there are no tuples that can be used to determine al value for U1. Hence, we get

different results depending on whether we apply the policy before or after the difference

operator. Moreover neither result includes the other.

6.5.7 Intersection and PIPs

As in the case of difference, applying a policy before or after intersection leads to

different results in simple cases.

Example 74. Consider a database I consisting of the relations R1 and R2 below and let

S1 = r1(A,B,C,D) and S2 = r2(A,B,C,D) denote their schemas, respectively.

A B C D

U1 b 1 d1

2 b 1 d2

A B C D

U1 b 1 d1

2 b 1 d3

Considering the policies of Example 73, it is easy to check that ∩S1,S2(ρS2(ρS1(I))) re-

turns the tuple (2, b, 1, d1). On the other hand, ρS
′
(∩S1,S2(I)), where S ′ denotes the

schema of R1 ∩ R2, returns the tuple (U1, b, 1, d1) since this is the only tuple which is

in both R1 and R2, and the policy has no effect. Hence, the two results are different; note

also that neither of them is included in the other.

6.6 Experimental Results

We now describe several experiments we carried out to assess the effectiveness and

the scalability of the index structures of Section 6.4. We compare our approach with a

225

Policy Description

ρagg(AVG,MAX ,AirTime, {Origin,Dest,Carrier}) Replace a missing flight air time with the average air time of the flights
operated by the same carrier having the same origin and destination.

ρatt(AVG,MAX ,MIN ,AirTime,ElapsedTime, Replace a missing air flight time with the the air flight time
{Origin,Dest,Carrier}) corresponding to the average elapsed time of the flights operated by

the same carrier having the same origin and destination.

ρreg(MAX , AvgFare, {City}, {Y ear,Quarter}) Determine a missing average fare (for a certain city in a certain quarter)
by linear regression using the historical data for the same city.

Figure 6.4: Some of the PIPs used in the experiments

30,000

40,000

50,000

60,000

70,000

R
u
n
n
in
g
 T
im
e
 (
s
e
c
)

Policy application

Index 1%

Naive 1%

Index 3%

Naive 3%

Index 5%

Naive 5%

0

10,000

20,000

1M 5M 10M 15M

R
u
n
n
in
g
 T
im
e
 (
s
e
c
)

DB Size

Figure 6.5: Policy application running time (different degrees of incompleteness)

naive one, the latter being a slight variant of Algorithm CT-ApplyPIP not relying on the

proposed indexes. In order to make the application of a policy ρ faster with the naive

approach, we defined a B-tree index on sel(ρ) (we performed experiments showing that

this speeds up the naive approach). We also compare the two approaches when they are

combined with relational algebra operators and experimentally study the effects of the

propositions in Section 6.5. Finally, we carried out an experimental evaluation of the

quality of query answers with and without PIPs.

All experiments were carried out on a PostGres (v. 7.4.16) DBMS containing 20

years of U.S. flight data. The database schema has 55 attributes including date, origin,

226

300

400

500

600

700

R
u
n
n
in
g
 T
im
e
 (
s
e
c
)

Policy application index

Index 1%

Index 3%

Index 5%

0

100

200

1M 5M 10M 15M

R
u
n
n
in
g
 T
im
e
 (
s
e
c
)

DB Size

Figure 6.6: Policy application running time (different degrees of incompleteness)

destination, airborne time, elapsed time, carrier, etc. Experiments were run using mul-

tiple multi-core Intel Xeon E5345 processors at 2.33GHz, 8GB of memory, running the

Scientific Linux distribution of the GNU/Linux OS kernel version 2.6.9-55.0.2.ELsmp.

The index structures were implemented using Berkeley DB Java Edition. The algorithms

for managing the index structures and applying policies in both approaches were written

in JAVA. Some of the policies used in the experiments are reported in Figure 6.4. The

results reported in this section apply only to aggregate policies; for the sake of brevity, we

do not present the results for the other kinds of policies as they show the same trend.

6.6.1 Applying PIPs

We first compared the times taken by the two approaches to apply a policy. We

varied the size of the DB up to 15 million tuples and the “amount of incompleteness”

(percentage of rows with a null value) by randomly selecting tuples and inserting nulls

(of different kinds) in them. For example, for an aggregate policy ρagg(µ, ν, A,X) an x%

227

0
200
400
600
800

1,000
1,200
1,400
1,600
1,800

125,000 250,000 500,000 750,000 1,000,000

R
un

ni
ng

 T
im

e
(s

ec
)

DB size

Policy application - multiple PIPs defined

Index 1-10 PIPs
Naive 1-10 PIPs

Figure 6.7: Running times of policy application with multiple policies defined

degree of incompleteness means that x% of the tuples in the database have null values in

A.

Figure 6.5 shows the running times of policy application for different database sizes

and three different amounts of incompleteness (only one policy is defined in this setting).

It is important to note that the execution times for the index approach include both the

time to apply a policy and the time taken to update the indexes. The gap between the two

approaches increases significantly as the DB size increases with the index-based approach

significantly outperforming the naive one – with 5 million tuples the former is 3 orders of

magnitude faster than the latter. As expected, a higher degree of incompleteness leads to

higher running times for both approaches. Figure 6.6 zooms in on the execution times for

the index-based approach and shows that it scales well: able to manage databases up to

15 million tuples.

Figure 6.7 shows how execution times vary when multiple policies are defined (here

the amount of incompleteness is 1%). The execution times of both approaches increase

228

with the number of defined policies because additional data structures have to be updated

when applying a policy. Our approach significantly outperforms the naive method.

These results show that our approach scales well when increasing DB size, amount

of incompleteness and number of policies used – we can manage very large databases in

a reasonable amount of time.

0.01

0.015

0.02

A
v
g
.
R
u
n
n
in
g
 T
im
e
 (
s
e
c
)

Insertions

0

0.005

0.01

0.015

0.02

125,000 250,000 500,000 750,000 1,000,000

A
v
g
.
R
u
n
n
in
g
 T
im
e
 (
s
e
c
)

DB Size

Insertions

Index

Naive

Figure 6.8: Tuple insertion running time

6.6.2 Updating the database

We also measured the time to execute tuple insertions, deletions, and updates; the

results are shown in Figures 6.8–6.10. Each execution time is the average over at least

50 runs covering the different kinds of tuples that might be inserted, deleted or updated.

The index-based approach is faster than the naive approach when tuple deletions are per-

formed, but slower for tuple insertions and updates, though the differences are negligible

and do not significantly increase as the database size increases. This small overhead is

due to the management of the different data structures the index-based approach relies on

229

1

1.5

2

2.5

A
v
g
.
R
u
n
n
in
g
 T
im
e
 (
s
e
c
)

Deletions

Index

Naive

0

0.5

1

1.5

2

2.5

125,000 250,000 500,000 750,000 1,000,000

A
v
g
.
R
u
n
n
in
g
 T
im
e
 (
s
e
c
)

DB Size

Deletions

Index

Naive

Figure 6.9: Tuple deletion running time

and is paid back by the better performances achieved for policy application, as discussed

earlier. We further analyze this tradeoff in the following subsection.

6.6.3 Execution times under different loads

The results reported in the previous two sections show that policy applications are

significantly faster with our index structures, but tuple insertions and updates are slightly

slower (though tuple deletions are faster). Thus, the price we pay to maintain the indexes

is when tuples are inserted and updated. Clearly, this cost gets higher as the number of

modifications performed on the database increases, but it is paid back when policies are

applied. We performed experiments with different loads of database modifications and

policy applications to assess when the cost paid to perform the former is paid back by the

time saved when the latter are executed. Specifically, we varied the number of modifica-

tions from 1000 to 10000 combining them with different numbers of policy applications.

The experimental results are shown in Figure 6.11 (we used a database with 1 million

230

1.5

2

2.5

3

A
v
g
.
R
u
n
n
in
g
 T
im
e
 (
s
e
c
)

Updates

Index

Naive

0

0.5

1

1.5

2

2.5

3

125,000 250,000 500,000 750,000 1,000,000

A
v
g
.
R
u
n
n
in
g
 T
im
e
 (
s
e
c
)

DB Size

Updates

Index

Naive

Figure 6.10: Tuple update running time

tuples and a 10% degree of incompleteness). The y-axis reports the difference between

the running times of the naive and the index-based approaches. If only one (resp. two)

policy application is performed, then the index running time gets higher than the naive

one when more than 5000 (resp. around 10000) database modifications are applied. With

more than two policy applications the index approach is always faster than the naive one

up to 10000 modifications and, as shown by the trends of the curves, different thousands

of modifications would be necessary to have the index approach slower than the naive.

6.6.4 Query answer quality

To assess the quality of query answers with and without policies, we performed

an experimental evaluation using the World Bank/UNESCO database mentioned in the

introduction. Specifically, we asked 5 analysts of our department (non computer scientist)

who are working with this database and know it well to express 10 queries of interest over

such data. As an example of query, they asked for the years during which the % of female

231

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

∆
T

 (
s
e
c
)

PIPs and DB modifications

1 PIP

2 PIPs

3 PIPs

4 PIPs

5 PIPs

-4,000

-2,000

0

2,000

1000 5000 10000

Number of DB modifications

5 PIPs

10 PIPs

Figure 6.11: Execution times with different loads

unemployment was above a certain threshold and wanted to know what were the gross

and under-age enrollment ratios in those years (to try to see if the gross and under-age

enrollment ratios are somehow related to and affect the % of female unemployment).

Furthermore, we asked the analysts to express different policies that would have been

reasonable over such data and that captured some of their knowledge of the domain. Then,

we asked them to rate the quality of query answers when policies are used and when the

queries are evaluated on the original database without applying any policy. Specifically,

users gave scores as integer numbers between 0 and 10, depending on their subjective

evaluation of the quality of the results. The average score for each query is reported

in Figure 6.12 and shows that end-users experience a substantial benefit when they can

express how missing values should be replaced according to their needs and knowledge

of the data. The higher quality of query answers when PIPs are used is generally due to

232

2

3

4

5

6

7

8

9

10

S
c
o
re

Query answer quality

0

1

2

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Query

Score using PIPs Score without using PIPs

Figure 6.12: Query answer quality

the fact that more informative query answers are obtained after applying policies, that is,

“more complete” tuples where null values have been filled according to the assumptions

made by the user (and expressed in the policy) are returned to the user.

6.6.5 Relational Algebra operators and PIPs

We now compare the two approaches when they are combined with relational alge-

bra operators. It is worth noting that applying a policy to the result of a relational algebra

operator requires building index structures for the result database. We also wanted to

experimentally see if there are substantial differences in execution times when a policy

is applied before or after a relational algebra operator, under conditions which guarantee

the same result (see Section 6.5), since this might be exploited for query optimization

purposes.

233

600

800

1000

1200

1400

1600

1800

2000

R
u
n
n
in
g
 T
im
e
 (
s
e
c
)

Projection

Index - Policy first

Index - Policy last

Naive - Policy first

Naive - Policy last

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 1,000,000 2,000,000 3,000,000 4,000,000 5,000,000

R
u
n
n
in
g
 T
im
e
 (
s
e
c
)

DB size

Projection

Index - Policy first

Index - Policy last

Naive - Policy first

Naive - Policy last

Figure 6.13: Running times of projection

We report on experiments for projection, join, and union as these are the three basic

operators for which equivalence theorems exist. All experiments in this section were

carried out on databases with 1% degree of incompleteness5.

Projection. Figure 6.13 shows that applying the policy before or after projection

makes little difference in running times when the indexes are adopted, whereas applying

a policy after projection is more efficient when the naive approach is used. The index

approach is slightly faster than the naive approach applied after projection, whereas it is

much faster than the naive approach applied before projection.

Join. Figure 6.14 shows that applying a PIP after a join is more expensive than the

other way around because the policy is applied to a much bigger relation. This difference

is more evident for the naive approach. The fastest solution is applying a policy before

join using the index structures.

5We performed the same experiments with 3% and 5% degrees of incompleteness and got the same
trends as the ones reported here with just higher execution times due to the higher amount of incomplete-
ness.

234

1500

2000

2500

3000

3500

4000

4500

R
u
n
n
in
g
 T
im
e
 (
s
e
c
)

Join

Index - Policy first

Index - Policy last

Naive - Policy first

Naive - Policy last

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 200,000 400,000 600,000 800,000 1,000,000

R
u
n
n
in
g
 T
im
e
 (
s
e
c
)

DB Size

Join

Index - Policy first

Index - Policy last

Naive - Policy first

Naive - Policy last

Figure 6.14: Running times of join

Union. Figure 6.15 shows that the index-based approach is faster than the naive

approach regardless of the order in which policy and union are applied. Applying a pol-

icy before union gives better performance for the naive approach, whereas there is no

significant difference for the index based approach.

To sum up, the index-based approach is faster than the naive one for all the relational

algebra operators considered above. The gap between the two approaches gets bigger as

the database size increases and thus, as the trends of the execution time curves show, it is

expected to get even bigger with larger datasets.

6.7 Concluding Remarks

In all the works dealing with the management of incomplete databases, the DBMS

dictates how incomplete information should be handled. End-users have no say in the

matter. However, the stock analyst knows stocks, the market, and his own management’s

or client’s attitude toward risk better than a DB developer who has never seen the stock

235

3000

4000

5000

6000

7000

8000

9000

10000

R
u
n
n
in
g
 T
im
e
 (
s
e
c
)

Union

Index - Policy first

Index - Policy last

Naive - Policy first

Naive - Policy last

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 250,000 500,000 750,000 1,000,000

R
u
n
n
in
g
 T
im
e
 (
s
e
c
)

DB Size

Union

Index - Policy first

Index - Policy last

Naive - Policy first

Naive - Policy last

Figure 6.15: Running times of union

DB. He should make decisions on what to do with partial information, not the person who

built the DBMS without knowing what applications would be deployed on it.

In this chapter, we propose the concept of a partial information policy (PIP). Using

PIPs, end-users can specify the policy they want to use to handle partial information. We

have presented examples of three families of PIPs that end-users can apply. We have also

presented index structures for efficiently applying PIPs and conducted an experimental

study showing that the adoption of such index structures allows us to efficiently manage

very large datasets. Moreover, we have shown that PIPs can be combined with relational

algebra operators, giving even more capabilities to users on how to manage their incom-

plete data.

236

Chapter 7

Query Answering under Uncertain Schema

Mappings

The work described in this chapter appears in [GMSS09].

7.1 Introduction and Motivating Example

This chapter focuses on the problem of aggregate query processing across multiple

databases in the presence of probabilistic schema mappings. The system may contain a

number of data sources and a mediated schema, as in [DHY07]. Alternatively, a peer

database system, with multiple data sources (e.g., DB-life like information) and no medi-

ated schema, as in [AKK+03, HIM+04] may also be in place.

There are many cases where a precise schema mapping may not be available. For

instance, a comparison search “bot” that tracks comparative prices from different web

sites has - in real time - to determine which fields at a particular location correspond

to which fields in a database at another URL. Likewise, as in the case of [DHY07], in

many cases, users querying two databases belonging to different organizations may not

know what is the right schema mapping. We model this uncertainty about which schema

237

ID price agentPhone postedDate reducedDate

1 100k 215 1/5/2008 1/30/2008

2 150k 342 1/30/2008 2/15/2008

3 200k 215 1/1/2008 1/10/2008

4 100k 337 1/2/2008 2/1/2008

Table 7.1: An instance DS1

mapping is correct by using probability theory. This robust model allows us to provide,

in the case of aggregate queries, not only a ranking of the results, but also the expected

value of the aggregate query outcome and the distribution of possible aggregate values.

We focus on five types of aggregate queries: COUNT, MIN, MAX, SUM, and AVG.

Given a mediated schema, a query Q, and a data source S, Q is reformulated according

to the (probabilistic) schema mapping between S’s schema and the mediated schema, and

posed to S, retrieving the answers according to the appropriate semantics (to be discussed

shortly).

We focus on efficient processing of aggregate queries. An orthogonal challenge in

this setting involves record linkage and cleansing that relates to duplicates. We assume

the presence of effective tools for solving this problem [GIKS03, IKBS08] and focus on

correct and efficient processing of the data. Also, we focus on the analysis of aggregate

queries over a single table, to avoid mixing issues with joins over uncertain schema map-

pings. Our analysis tests the effect of executing an aggregate query over a single table or

a table that is the result of any SPJ query over the non probabilistic part of the schema.

We define schema mappings between a source schema S and a target T in terms of

attribute correspondences of the form cij = (si, tj), where si in S is the source attribute

and ti in T is the target attribute. For illustration purposes, we shall use the following

two examples throughout the chapter:

238

Example 75. Consider a real-estate data source S1, which describes properties for sale,

their list price, an agent’s contact phone, and the posting date. If the price of a property

was reduced, then the date on which the most recent reduction occurred is also posted.

The mediated schema T1 describes property list price, contact phone number, date of

posting, and comments:

S1 = (ID, price, agentPhone, postedDate, reducedDate)

T1 = (propertyID, listPrice, phone, date, comments)

For the sake of simplicity, we assume that the mapping of ID to propertyID, price to

listedPrice, and agentPhone to phone is known. In addition, there is no mapping to

comments. Due to lack of background information, it is not clear whether date should

be mapped to postedDate (denoted as mapping m11) or reducedDate (denoted map-

ping m12). Because of the uncertainty regarding which mapping is correct, we consider

both mappings when answering queries. We can assign a probability to each such map-

ping (e.g., m11 has probability 0.6 and m12 has probability 0.4). Such a probability may

be computed automatically by algorithms to identify the correct mapping [CSD+08]. Ta-

ble 7.1 shows an instance of a table DS1 of data source S1.

Suppose that on February 20, 2008 the system receives a query Q1, composed on schema

T1, asking for the number of “old” properties, those listed for more than a month:

Q1: SELECT COUNT(*) FROM T1

WHERE date < ’2008-1-20’

Using mapping m11, we can reformulate Q1 into the following query:

Q11: SELECT COUNT(*) FROM S1

WHERE postedDate < ’2008-1-20’

239

transactionID auctionID time bid currentPrice

3401 34 0.43 195 195

3402 34 2.75 200 197.5

3403 34 2.8 331.94 202.5

3404 34 2.85 349.99 336.94

3801 38 1.16 330.01 300

3802 38 2.67 429.95 335.01

3803 38 2.68 439.95 336.30

3804 38 2.82 340.5 438.05

Table 7.2: An instance DS2

Example 76. As another example, consider eBay auctions. These auctions have a strict

end date for each auction and use a second-price model. That is, the winner is the one

who places the highest bid, but the winning price is (a delta higher than) the second-

highest bid. Now consider two (simplified) database schemas, S2 and T2, that keep track

of auction prices:

S2 = (transactionID, auction, time, bid, currentPrice)

T2 = (transaction, auctionId, timeUpdate, price)

For simplicity, we again assume that the mappings of transactionID to transaction, auc-

tion to auctionID and the mapping of time to timeUpdate are known. The attribute price

in T2 can be mapped to either the bid attribute (denoted as mapping m21) or the current-

Price attribute (denoted as mapping m22) in S2. Here, the source of uncertainty may be

attributed to the sometimes confusing semantics of the bid and the current price in eBay

auctions. Assume that m21 is assigned probability 0.3 and m22 is assigned probability

0.7. Table 7.2 contains data for two auctions (numbers 34 and 38) with four bids each.

The time is measured from the beginning of the auction and therefore 0.43 means that

about 10 hours (less than half a day) have passed from the opening of the auction. Sup-

240

pose that the system receives a query Q2 w.r.t. schema T2, asking for the average closing

price of all auctions:

Q2: SELECT AVG(R1.price) FROM

(SELECT MAX(DISTINCT R2.price)

FROM T2 AS R2

GROUP BY R2.auctionID) AS R1

The subquery, within the FROM clause, identifies the maximum price for each auction.

Using mapping m21, we can reformulate Q2 to be:

Q21: SELECT AVG(R1.currentPrice) FROM

(SELECT MAX(DISTINCT R2.currentPrice)

FROM T2 AS R2

GROUP BY R2.auction) AS R1

As mentioned in Section 2.4, two different semantics have been proposed for deal-

ing with query answering using probabilistic schema matchings [DHY07, DSDH08]: a

“by-table” semantics and a “by-tuple” semantics. We analyze aggregates COUNT, MIN,

MAX, SUM, and AVG and define three semantics for such aggregate functions that we com-

bine with by-table and by-tuple semantics. In the first one, an aggregate query returns a

set of possible values for the answer, together with a probability distribution over that set.

We call this the “distribution” semantics. A second method returns just a range specifying

the lowest and highest possible values for the aggregate query. We call this the “range”

semantics. The third semantics returns an expected value. In this work, we first propose

these three semantics for aggregate computations and then show that they combine with

the by-table and by-tuple semantics of [DHY07] in six possible ways, yielding six pos-

sible semantics for aggregates in probabilistic schema mapping. We develop algorithms

241

to compute under each of the six semantics and show that the algorithms are correct. We

develop a characterization of the computational complexity of the problem of computing

these six semantics. For all the above aggregate operators, we show that semantics based

on the by-table semantics are PTIME computable. For the COUNT operator, we show

that query results for all six semantics can be computed in PTIME. Computing the SUM

operator is in PTIME for all but the by-tuple/distribution semantics. Finally, we show that

for MIN, MAX, and AVG, the only by-tuple semantics that can be efficiently computed is

the range semantics.

We have developed a prototype implementation of our algorithms and tested out

their efficiency on large data sets, showing that our algorithms work very efficiently in

practice. Our experiments show the computational feasibility of the different semantics

for each of the aggregate operators mentioned above. We show that, for each aggregate

operator considered in this work under the by-tuple semantics, the algorithms for com-

puting the range semantics are very efficient and scalable; this is also the case for COUNT

under the other two semantics. Furthermore, the expected value semantics for SUM is also

very efficient since we can take advantage of the fact that it is guaranteed to be equivalent

to the by-table semantics, as we show in this work. In summary, for each aggregate oper-

ator, there is at least one semantics where our experiments show that it can be computed

very efficiently.

To summarize, our contributions are as follows:

1. We show six possible semantics for aggregate queries with uncertain schema map-

pings.

2. We show several cases under the by-tuple semantics where efficient algorithms exist

for aggregate computation.

242

3. We prove that for the SUM aggregate operator, by-tuple/expected value and by-

table/expected value semantics yield the same answer.

4. Using a thorough empirical setup, we show that the polynomial time algorithms are

scalable up to several million tuples (with some even beyond 30 million tuples) and

with a large number of mappings.

The rest of the chapter is organized as follows. Section 7.2 provides background

on aggregate query answering under uncertain schema mapping. The six semantics for

aggregate query processing in the presence of uncertain schema mappings is described in

detail in Section 7.3. Section 7.4 provides a set of algorithms for efficient computation of

the various aggregates. Our empirical analysis is provided in Section 7.5. We conclude

directions for future work presented in Section 7.6 and final remarks in Section 7.7.

7.2 Preliminaries

We base our model of probabilistic schema mappings on the one presented in

[DHY07], extending it to answer aggregate queries. In what follows, given relational

schemas S and T , S a relation in S, and T a relation in T , an attribute correspondence is

a one-to-one mapping from the attribute names in S to the attribute names in T . Also, a

one-to-one relation mapping is a mapping where each source and target attribute occurs

in at most one correspondence.

Definition 65 (Schema Mapping). Let S and T be relational schemas. A relation mapping

M is a triple (S, T,m), where S is a relation in S, T is a relation in T , and m is a set of

attribute correspondences between S and T .

A schema mappingM is a set of one-to-one relation mappings between relations in S and

in T , where every relation in either S or T appears at most once.

243

The following definition, also from [DHY07], extends the concept of schema map-

ping with probabilities:

Definition 66 (Probabilistic Mapping). Let S and T be relational schemas. A probabilis-

tic mapping (p-mapping) pM is a triple (S, T,m), where S ∈ S, T ∈ T , and m is a set

{(m1, P r(m1)), ..., (ml, P r(ml))}, such that

• for i ∈ [1, l], mi is a one-to-one relation mapping between S and T , and for every

i, j ∈ [1, l], i 6= j ⇒ mi 6= mj .

• Pr(mi) ∈ [0, 1] and
∑l

i=1 Pr(mi) = 1.

A schema p-mapping pM is a set of p-mappings between relations in S and in T , where

every relation in either S or T appears in at most one p-mapping.

7.3 Semantics

We now present the semantics of aggregate queries in the presence of probabilis-

tic schema mappings. We start with a formal presentation of the by-table and by-tuple

semantics, as introduced in [DHY07] (Section 7.3.1). Then, we move on to introduce

three aggregate semantics and their combination with the by-table and by-tuple semantics

(Section 7.3.1).

7.3.1 Semantics of Probabilistic Mappings

The intuitive interpretation of a probabilistic schema mapping is that there is uncer-

tainty about which of the mappings is the right one. Such uncertainty may be rooted in the

fact that “the syntactic representation of schemas and data do not completely convey the

semantics of different databases,” [MHH00] i.e., the description of a concept in a schema

244

can be semantically misleading. As proposed in [DHY07], there are two ways in which

this uncertainty can be interpreted: either a single mapping should be applied to the entire

set of tuples in the source relation, or a choice of a mapping should be made for each of

these tuples. The former is referred to as the by-table semantics, and the latter as the by-

tuple semantics. The by-tuple semantics represents a situation in which data is gathered

from multiple sources, each with a potentially different interpretation of a schema.

As discussed in [DHY07], the high complexity of query answering under the by-

tuple semantics is due to the fact that all possible sequences of mappings (of length equal

to the number of tuples in the table) must be considered in the general case. The following

examples illustrate the difference between the two semantics when considering aggregate

functions.

Example 77. Consider the scenario presented in Example 75. Assume the content of

table DS1 is as shown in Table 7.1. Using the two possible mappings, we can reformulate

Q1 into the following two queries, one for each possible way of mapping attribute date:

Q11: SELECT COUNT(*) FROM S1

WHERE postedDate< ’2008-1-20’Q12: SELECT COUNT(*)

FROM S1

WHERE reducedDate < ’2008-1-20’

We can adapt the procedure described for the by-table semantics in [DHY07] to answer

uncertain aggregate queries, by computing each of the two previous reformulated queries

as if they were the correct mappings and the probability of the corresponding mapping is

assigned to each answer. In this case, the system provides answer 3 with probability 0.6

(from query Q11) and answer 2 with probability 0.4 (from query Q12). Under the by-

tuple semantics it is necessary to consider all possible sequences, i.e., ways of assigning

245

a mapping to a tuple. For instance, the sequence s = 〈m11,m12,m12,m11〉 represents the

fact that tuple 1 and 4 should be interpreted under mapping m11, in which case attribute

date is mapped to postedDate, and tuples 2 and 3 should be interpreted using mapping

m12 which maps date to reducedDate. Each sequence has an associated probability

equal to the product of the probability of each mapping in the sequence, since mappings

are independently assigned to tuples. For instance, the probability of sequence s is

Pr(s) = 0.6 ∗ 0.4 ∗ 0.4 ∗ 0.6 = 0.0576

An answer in this case, as discussed in [DHY07] for general SPJ queries, can be obtained

by computing the aggregate operator for each possible sequence. The final answer is a

table that contains all the different values obtained from the answers yielded by each

individual computation, each with an associated probability. The probability for each

value is the sum of the probabilities of all sequences that yield that value. In this example,

the final answer is 1 with probability 0.16, 2 with probability 0.48, and 3 with probability

0.36.

Example 78. Let us now consider Table 7.2 and query Q2, presented in Example 76.

Using the two possible mappings, we can reformulate Q2 into the following two queries:

Q21: SELECT AVG(R1.currentPrice) FROM

(SELECT MAX(DISTINCT R2.currentPrice)

FROM T2 AS R2

GROUP BY R2.auction) AS R1

Q22: SELECT AVG(R1.bid) FROM

(SELECT MAX(DISTINCT R2.bid)

246

FROM T2 AS R2

GROUP BY R2.auction) AS R1

Using the by-table semantics, the system provides the answer 345.245 with probability

0.3 and 385.945 with probability 0.7. Under the by-tuple semantics, in order to compute

an answer to Q2, given that there are 8 tuples in the database instance and 2 possible

mappings, we have to look at 28 = 256 sequences. We need to compute the answer for

each sequence and then combine the results.

Semantics for Aggregate Queries Under Uncertain Schema Mappings

Aggregate queries provide users with answers that are not simple cut & paste data

from the database. Rather, data is processed and user expectations are also different. In

many cases, users expect a simple, single answer to an aggregate query (e.g., counting

the number of newly posted houses). Therefore, when extended to probabilistic schema

mappings, such expectations should be taken into account.

In this work, we consider three common extensions to semantics with aggregates

and probabilistic information. The range semantics gives an interval within which the

aggregate is guaranteed to lie. The distribution semantics specifies all possible values that

the aggregate can take, and for each such value, it gives the probability that it is the correct

one. Of course, we can easily derive the answer to an aggregate query under the range

semantics from the answer to the same query under the distribution semantics. Finally, for

those who like the answer to be a single number, we develop an expected value semantics

which returns the expected value of the aggregate. Note that the answer to a query under

the expected value semantics can also be computed from the answer to the query under

the distribution semantics. In a sense, the answer according to the distribution semantics

is rich, containing details that are eliminated in the other two semantics. However, as

247

we will see below, the other two semantics may be more efficiently computable without

obtaining the distribution at all.

Let m = {(m1, P r(m1)), ..., (ml, P r(mm))} be a set of all possible mappings from

schema S to schema T , each with an associated probability Pr(mi), where
∑

i Pr(mi) =

1. Let V = {v1, ..., vn} be the set of results of evaluating the aggregate function for

each possible mapping or a sequence of mappings. The three possible semantics for

query answering with aggregate functions and multiple possible schema mappings can be

formalized as follows:

1. Range Semantics: The result of the aggregate function under the range semantics

is the interval [min(V),max(V)].

2. Probability Distribution Semantics: Under the probability distribution semantics,

the result of the aggregate function is a random variable X . For every distinct value

rj ∈ V , we have that

Pr(X = rj) =
∑

vi∈V,vi=rj

Pr(mi) (7.1)

3. Expected Value Semantics: Let V = {v1, ..., vn} be the set of results of evaluat-

ing the aggregate function for each possible mapping. The result of the aggregate

function under the expected value semantics is

n∑
i=1

Pr(mi) ∗ vi (7.2)

The fact that answers to queries under the range and expected value semantics can

be immediately derived from the answer under the distribution semantics tells us

248

Algorithm ByTableAggregateQuery
Input: Table S, T ; MapList M ; Attribute A; Condition C;

AggregateFunction Agg ; Semantics S;

1 Let |M | = l be the number of mappings for attribute A;
2 Let A1, ..., Al be all the attributes to which A maps;
3 For i = 0 to l,
4 Let ri be the answer for the query:

SELECT Agg(Ai) FROM T WHERE C GROUP BY B;
5 return CombineResults(r1, ..., rl, S);

Figure 7.1: Generic by-table algorithm adapted from Halevy’s work for Aggregate
Queries

that if the distribution semantics is PTIME computable, then the range and expected

value semantics should also be PTIME computable.

Possible Combinations of Semantics. When combining the by-table and by-tuple se-

mantics with the three aggregate semantics suggested in Section 7.3.1, a space of six

possible semantics for aggregate queries over probabilistic schema mappings is created.

This space is illustrated in Table 7.3, where for each semantics we give the query answer

to query Q1.

COUNT Range Distribution Exp. Value

By-Table [2, 3] 3 (prob 0.6), 2 (prob 0.4) 2.6

By-Tuple [1, 3] see Example 77 2.2

Table 7.3: The Six Semantics of Aggregate Queries over Probabilistic Schema Mapping

7.4 Algorithms for Aggregate Query Answering

7.4.1 By-Table Semantics

Figure 7.1 provides a “generic” algorithm to answer aggregate queries under the by-

table semantics, extending a similar algorithm in [DHY07]. The algorithm reformulates

249

Algorithm ByTupleRangeCOUNT
Input: Table S, T ; MapList M ; Attribute A; Condition C;

AggregateFunction Agg ; Semantics S;

1 Let up an low be equal to 0;
2 For each ti ∈ S,
3 if for all mappings mj ∈M such that ti satisfies C then
4 low = low + 1; up = up+ 1;
5 else if there exists a mapping mj ∈M for which ti satisfies C then
6 up = up+ 1;
7 return [low, up];

Figure 7.2: Algorithm to answer SELECT COUNT(A) FROM T WHERE C under Range
Semantics

the input query into l new queries, one for each possible schema mapping and obtains

an answer ri to the query w.r.t. that mapping. Finally, it outputs the result using function

CombineResults. CombineResults returns [min(r1, . . . , rm),max(r1, . . . , rm)]

when the semantics chosen is the range semantics. When the semantics chosen is the

expected value semantics, it returns Σm
i=1Pr(mi)∗ri where Pr(mi) is the probability that

the mapping that maps A to Ai is correct. When the semantics chosen is the distribution

semantics, it returns the set of all pairs {(ri, p) | p = Σrj=riPr(mi)}.

7.4.2 By-Tuple Semantics

The by-tuple semantics associates a mapping with each tuple in a relational table.

Hence, if we have n tuples and m different mappings, there are mn different sequences

that assign mappings to tuples. The problem of answering select, project, join queries

under the by-tuple semantics is in general #P-complete in data complexity [DHY07]. The

reason for the high complexity stems from the need to assign probabilities to each tuple.

Computing all by-tuple answers without returning the probabilities is in PTIME. When it

comes to aggregate queries, however, merely computing all possible tuples is not enough.

One also needs to know, for each possible mapping sequence, whether a tuple belongs to

250

it or not. Therefore, in the worst case, going through all possible mapping sequences is

unavoidable. To see why, consider the following query against Table 7.2:

SELECT SUM(price) FROM T2

With 2 possible mappings and 8 tuples, there are 28 = 256 possible sequences.

In this case, there are 128 different possible values — in fact, there would have been

256 different possible values if the bid and currentPrice of the first tuple did not have

the same value (195). Therefore, merely enumerating all possible answers may yield an

exponential number of answers.

The generic (naı̈ve) algorithm discussed earlier can be greatly improved when we

consider specific aggregate functions. In this section, we show how to achieve this for the

COUNT, SUM, AVG, MAX, and MIN aggregate functions under the three alternative seman-

tics presented in Section 7.3. We show that in certain aggregate/semantics combinations,

it is possible to compute an answer in PTIME, whereas for others PTIME algorithms

could not be found.

Aggregate function COUNT. We present algorithms to compute the COUNT aggregate

under by-tuple/range and by-tuple/distribution semantics. The answer for the expected

value semantics can be computed directly from the result provided by the algorithm for

distribution semantics.

We will use our running examples presented in Section 7.2. Consider the setting

from Example 75, the data in Table 7.1, and query Q1:

SELECT COUNT(*) FROM T1

WHERE date < ’1-20-2008’

COUNT Under the Range Semantics. Under the range semantics, the answer to query Q1

should provide the minimum and the maximum value for the aggregate, considering any

251

Algorithm ByTuplePDCOUNT
Input: Table S, T ; MapList M ; Attribute A; Condition C;

1 Let pd be a new probability distribution;
2 In pd set Pr(0) = 1.0;
3 For each ti ∈ S,
4 Let occProb be the sum of the probabilities of mappings in M

under which ti satisfies C;
5 Let notOccProb be the sum of the probabilities of mappings in M

under which ti does not satisfy C;
6 In pd set Pr(0) = Pr(0) ∗ notOccProb;
7 For j = 1 to i− 1,
8 In pd set Pr(j) = (Pr(j) ∗ notOccProb) + (Pr(j − 1) ∗ occProb);
9 In pd set Pr(i) = Pr(i− 1) ∗ occProb;

10 return pd;

Figure 7.3: Algorithm to answer SELECT COUNT(A) FROM T WHERE C under Distri-
bution Semantics

tupleID low up comment

0 0 initialization

1 0 1 cond. satisfied under m11

2 1 2 cond. satisfied under both mappings

3 1 2 cond. satisfied under no mapping

4 1 3 cond. satisfied under m11

Table 7.4: Trace of ByTupleRANGE for query Q1

of the mappings. The algorithm is shown in Figure 7.2. The idea behind the algorithm is

simple: each tuple, depending on the mapping that is used for it, may or may not satisfy

the selection condition for the COUNT. Clearly, if a tuple satisfies the select condition

under all mappings, then both the minimum and maximum possible values for COUNT

should be increased. If the tuple does not satisfy the select condition under all mappings,

then it is never included in the aggregate result. Finally, if there is at least one mapping

under which the tuple does not satisfy the select condition, then the minimum value does

not change, but the maximum does.

To see how this algorithm works, we include in Table 7.4 the trace of how the

bounds are updated with each tuple in Table 7.1 to answer query Q1. For instance, we

252

can see that for tuple 1 only the upper bound is incremented because this tuple satisfies the

select condition only for mapping m11. The last row of the table shows the final answer,

[1, 3].

Note that this algorithm looks at each tuple only once, and in each step it looks at

most at all mappings once. Thus, if n is the number of tuples in S and m is the number of

possible mappings, the number of computations needed for this algorithm is in O(n ∗m).

Theorem 21. Algorithm ByTupleRangeCOUNT correctly computes the result of exe-

cuting a COUNT query under the by-tuple range semantics.

Proof. Suppose, towards a contradiction, that the algorithm returns the range [`, u] and

that there exists a possible answer k such that either k < ` or u < k. If k is in fact a

possible value for the COUNT query, then this means that there are k tuples in T such

that for each of these tuples there exists at least one mapping sequence for which the

selection condition is valid. However, the algorithm increases the current value of the

upper bound every time it finds a tuple for which the selection is valid under at least one

mapping, meaning that these k tuples will be considered and thus k ≤ u. For the lower

bound, the fact that the algorithm returned ` means that it found ` tuples in T such that

for each of them the selection condition was true under any mapping, which contradicts

the hypothesis that k < `.

COUNT Under the Distribution Semantics. A naı̈ve way of computing an answer for a

query such as Q1 under the distribution semantics is to consider all possible sequences

of mappings and to compute the query for each sequence, as shown in the second part of

Example 77. However, we present a more efficient algorithm that only takes polynomial

time in the number of mappings and the number of tuples in the table. The pseudo-code

of this algorithm is outlined in Figure 7.3.

253

tupleID 0 1 2 3 4

1 0.4 0.6

2 0.4 0.6 0

3 0 0.4 0.6 0

4 0 0.16 0.48 0.36 0

Table 7.5: Trace of ByTuplePDCOUNT for query Q1

Under a given mapping, a tuple can either add 0 to the COUNT result or 1. Hence,

the probability of a tuple adding 1 to the result is that of the mapping itself, and the

probability of adding nothing is the complementary probability. This reasoning can be

easily extended to multiple mappings by taking the sum of the probabilities for which the

tuple adds 1 to the calculation. If we look at each tuple in turn, the value of the aggregate

at a certain time depends on how many tuples were taken into account. However, at each

step, the count can at most be incremented by one, depending on whether the tuple at

hand satisfies the selection condition. This means that if we are looking at tuple i, and the

count so far is ci−1, then after looking at tuple i the count will either be ci−1 or ci−1 + 1.

Since this can be the case at each update, we must store all possible values for the result

at each step. For instance, after looking at just one tuple, only two values are possible

(0 and 1), and when we look at another tuple, the value 2 now becomes possible. The

probabilities associated with each of these results can be easily updated at each step by

looking at two values as shown in the algorithm.

Table 7.5 shows the trace of how the probability distribution is updated with each

tuple in Table 7.1 to answer query Q1. For instance, consider the second row in the

table, where tuple 2 is processed. This tuple has probability 0 of being part of the result

because under both mappings it does not satisfy the select condition. The probability of

the result being 0 is now 0.4; this is because the count can only be 0 if it was 0 before

254

and tuple 2 is not part of the count (0.4 ∗ 1.0 = 0.4); the probability of the result being 1

is updated in the following way: the value can only be 1 if either it was 0 before and

tuple 2 satisfies the condition, or it was already 1 and tuple 2 does not satisfy the condition

(0.4 ∗ 0 + 0.6 ∗ 1.0 = 0.6). Finally, 2 is a new possible value with probability 0 for now.

Note that each row is a probability distribution among the values considered thus far. The

final probability distribution is the same as shown in Example 77.

Theorem 22. Algorithm ByTuplePDCOUNT correctly computes the result of executing

a COUNT query under the by-tuple/distribution semantics.

Proof. We will prove this statement by induction on the number of tuples in T . For

|T | = 0, the probability distribution given by the algorithm is trivially correct since the

answer can only be 0.

Suppose now that the statement holds for all tables T such that |T | = k, k ∈ N, k >

1. We must now prove that the statement holds for |T | = k + 1. Let T ′ be equal to T

without its last tuple; since |T ′| = k, the algorithm correctly computes a probability

distribution pd for the answer to the query.

Now, let occProb and notOccProb be the values calculated by the algorithm

during its last iteration of the for loop in line 3, i.e. for the last tuple in T . Since pd is

correct, for any 0 ≤ i ≤ k the value pd(i) is equal to the sum of the probabilities of all

mapping sequences under which the result is i, i.e. pd(i) = Pr(si1) + ...+Pr(siy), where

si1, ..., s
i
y are all the sequences that yield answer i. Now, after updating pd in line 8 of the

algorithm, we get pd(i) = (Pr(si1) + ... + Pr(siy)) ∗ notOccProb + (Pr(si−1
1) + ... +

Pr(si−1
y)) ∗ occProb. If we distribute the multiplication signs with respect to the sums,

we get Pr(si1) ∗ notOccProb + ...+ Pr(siy) ∗ notOccProb + Pr(si−1
1) ∗ occProb + ...+

Pr(si−1
y) ∗ occProb. Since notOccProb is the sum of the probabilities of the mappings

under which the last tuple is not part of the count, each term Pr(sij) ∗ notOccProb repre-

255

sents the sum of the probabilities of the sequences starting with sij under which the answer

is i, and analogously for the terms multiplied by occProb. Since these are all the possi-

ble sequences that can yield a value of i, we conclude that the probability is computed

correctly.

Since the argument above was built on an arbitrarily chosen value 0 ≤ i ≤ k,

we conclude that the probability distribution is correct for all such values. Finally, for

pd(k+1) the reasoning is analogous, except that the summation multiplied by notOccProb

is zero because it can never yield a value of k + 1.

In Section 7.3.1, the probability distribution for this example was computed by

looking at the answer of each possible sequence of mappings assigned to individual tuples.

If we have m mappings and n tuples, then the number of sequences is mn. The algorithm

presented here is polynomial in the number of mappings and tuples, and the number of

computations is in O(m ∗ n2).

Aggregate functions SUM and AVG

We now present efficient (PTIME) algorithms to compute the SUM aggregate un-

der the by-tuple/range and by-tuple/expected value semantics. Computing this aggregate

function under the distribution semantics does not scale, simply because the number of

newly generated values may be exponential in the size of the original table, as was demon-

strated at the beginning of Section 7.4.2.

SUM Under the Range Semantics. For the range semantics, we must compute the tight-

est interval in which the aggregate lies. The algorithm is presented in Figure 7.4 and

illustrated next.

Consider Example 76, but now suppose we are interested in a simple computation

of the sum of the prices for transactions whose auctionID is 34; we then use the following

query:

256

Algorithm ByTupleRangeSUM
Input: Table S, T ; MapList M ; Attribute A; Condition C;

1 Let low = 0, up = 0;
2 For each ti ∈ S,
3 Let vmini be the minimum value obtained by applying a mapping in M

that satisfies condition C;
4 Similarly, let vmaxi be the maximum value that satisfies condition C;
5 low = low + vmini ;
6 up = up + vmaxi ;
7 return [low,up];

Figure 7.4: Algorithm to answer SELECT SUM(A) FROM T WHERE C under Range
Semantics

tupleID vmini vmaxi low up

0 0

1 195 195 195 195

2 197.5 200 392.5 395

3 336.3 439.95 728.8 834.95

4 340.5 438.05 1069.3 1273

Table 7.6: Trace of ByTupleRANGE for query Q2’

Q2’: SELECT SUM(price) FROM T2

WHERE auctionID = ’34’

Table 7.6 shows the trace of the algorithm in Figure 7.4 to answer query Q2’. If

we look, for instance, at the second row in the table, processing tuple 2 from Table 7.2,

vmin2 = 197.5 and vmax2 = 200, thus low = 392.5 and up = 395. The answer to Q2’ is

thus [1069.3, 1273]. This algorithm is polynomial in the number of mappings and tuples,

and the number of computations is in O(m ∗ n), where m is the number of mappings and

n is the number of tuples.

Theorem 23. Algorithm ByTupleRangeSUM correctly computes the result of executing

a SUM query under the by-tuple/range semantics.

257

Proof. Suppose, towards a contradiction, that the algorithm returns the range [`, u] and

that there exists a possible answer k such that either k < ` or u < k. Since `, u, and k

are all sums of values from tuples in T , if k is in fact a possible value for the SUM query,

this means that there is at least one tuple in T such that, for some mapping, the value of A

is less (respectively, greater) than vmini (respectively, vmaxi). This is a contradiction since

the algorithm chooses this value to be the minimum (respectively, maximum) under all

possible mappings.

AVG under the Range Semantics. For the AVG aggregate operator, the algorithm we de-

veloped is very similar to the one in Figure 7.4, keeping a counter of the number of

participating tuples for both the lower bound and the upper bound. The counter for the

upper bound is incremented by one at each step only if there exists a maximum value for

the tuple that satisfies the condition when some mapping is applied. The counter for the

lower bound is incremented only if there is a minimum value for the tuple that satisfies

the condition under some mapping. The answer is given by dividing each bound for SUM

by the corresponding counter.

Theorem 24. Algorithm ByTupleRangeAVG correctly computes the result of executing

an AVG query under the by-tuple/range semantics.

Proof. Since the ByTupleRangeAVG algorithm is a trivial variation of the ByTupleRange-

SUM algorithm to count the number of tuples satisfying the condition, this result is a

direct consequence of Theorem 23.

SUMUnder the Expected Value Semantics. We now address an efficient way of computing

by-tuple/expected value semantics. We do so not by giving an algorithm, but rather by

showing that an answer to a SUM query using the by-tuple/expected value semantics is

258

Sequence SUM p SUM×p

(m21,m21,m21,m21) 1076.93 0.0081 8.723133

(m21,m21,m21,m22) 1063.88 0.0189 20.107332

(m21,m21,m22,m21) 947.49 0.0189 17.907561

(m21,m21,m22,m22) 934.44 0.0441 41.208804

(m21,m22,m21,m21) 1074.43 0.0189 20.306727

(m21,m22,m21,m22) 1061.38 0.0441 46.806858

(m21,m22,m22,m21) 944.99 0.0441 41.674059

(m21,m22,m22,m22) 931.94 0.1029 95.896626

(m22,m21,m21,m21) 1076.93 0.0189 20.353977

(m22,m21,m21,m22) 1063.88 0.0441 46.917108

(m22,m21,m22,m21) 947.49 0.0441 41.784309

(m22,m21,m22,m22) 934.44 0.1029 96.153876

(m22,m22,m21,m21) 1074.43 0.0441 47.382363

(m22,m22,m21,m22) 1061.38 0.1029 109.216002

(m22,m22,m22,m21) 944.99 0.1029 97.239471

(m22,m22,m22,m22) 931.94 0.2401 223.758794

Expected value 975.437

Table 7.7: Computing Q2′ under the by-tuple/expected value semantics

equivalent to its by-table counterpart. Before introducing this equivalence formally, we

start with an illustrating example:

Example 79. Consider query Q2’. Using the by-table/expected value semantics, we

consider two possible cases. Using m21 we map price to bid, with a query outcome of

195 + 200 + 331.94 + 349.99 = 1076.93 and a probability of 0.3. Using m22 we map

price to currentPrice, with a query outcome of 195 + 197.5 + 202.5 + 336.94 = 931.94

and a probability of 0.7. Therefore, the answer to Q2’, under the by-table/expected value

semantics would be 1076.93 ∗ 0.3 + 931.94 ∗ 0.7 = 975.437.

259

Table 7.7 presents the 16 different sequences and for each sequence it computes the

query output, its probability, and the product of the two (which is a term in the summation

defining expected value). The outcome of Q2’ using the by-tuple/expected value semantics

is identical to that of the by-table/expected value semantics. To see why, let us trace a

single value, 434.99. This value appears in the fourth tuple and is used in the computation

whenever a sequence contains mapping m21 for the fourth tuple, which is every other row

in Table 7.7. Summing up the probabilities of all such worlds yields a probability of 0.3,

which is exactly the probability of using m21 in the by-table semantics. The reason for

this phenomenon is because the association of a mapping to one tuple is independent of

the association with another tuple.

Example 79 explains the intuition underlying Theorem 25 below. It is worth noting

that this solution does not extend to the AVG aggregate because it is a non-monotonic

aggregate.

Theorem 25. Let pM = (S, T,m) be a schema p-mapping and let Q be a SUM query

over attribute A ∈ S. The expected value of Qtuple (DT), a by-tuple answer to Q with

respect to pM , is identical to Qtable (DT), a by-table answer to Q with respect to pM .

In order to prove this theorem, We will first prove a series of properties that are

necessary to do so. The following notation will be used.

Notation. Let Pr(m) be the probability associated with mapping m. We order the |m|

mappings and name them m(1),m(2), ...,m(|m|). We denote by A′i(k) the value of the map-

ping of A of the i-th tuple using m(k). seqi(k)

(
¯pM
)

is the set of all sequences in which

the i-th tuple uses the m(k) mapping.

Lemma 1.
∑|m|

k=1 Pr(m(k)) = 1

Lemma 2.
∑

seq∈seq(¯pM) Pr (seq) = 1

260

Proof. By induction on the number of mappings on m.

Base: |m| = 1. There is only one sequences,
∣∣seq (¯pM

)∣∣ = 1 and Pr(m(j)) = 1 from

Lemma 1.
∑

seq∈seq(¯pM) Pr (seq) =
|DT |∏
j=1

Pr(m(j)) =
|DT |∏
j=1

1 = 1

Step: Suppose that the induction assumption holds for |m| < q. For |m| = q we partition

the summation into |m| summations, each with all the sequences that share a common

mapping for the first tuple:

∑
seq∈seq(¯pM)

Pr (seq)

= Pr(m(1)) ·
∑

seq∈seq1(1)(¯pM)

|DT |∏
j=2

Pr(mj)

+ Pr(m(2)) ·
∑

seq∈seq1(2)(¯pM)

|DT |∏
j=2

Pr(mj)

+ ...

+ Pr(m(|m|)) ·
∑

seq∈seq1(|m|)(¯pM)

|DT |∏
j=2

Pr(mj)

= Pr(m(1)) + Pr(m(2)) + ...+ Pr(m(|m|)) = 1

based on the induction assumption and Lemma 1.

Lemma 3.
∑

seq∈seqi(k)(¯pM)

i−1∏
j=1

Pr(mj)

|DT |∏
j=i+1

Pr(mj) = 1

Proof. By induction on the number of tuples in T .

261

Base: |Dt| = 2. In this case, the number of sequences in which one tuple keeps the

same mapping is |m|. Therefore,

∑
seq∈seqi(k)(¯pM)

i−1∏
j=1

Pr(mj)

|DT |∏
j=i+1

Pr(mj)

= Pr(m(1)) + Pr(m(2)) + ...+ Pr(m(|m|)) = 1

from Lemma 1.

Step: Suppose that the induction assumption holds for |Dt| < q. For |Dt| = q we

choose a tuple different from the i-th tuple. Without loss of generality assume that we

choose the first tuple. We partition the summation into |m| summations, each with all the

sequences that share a common mapping for the first tuple:

∑
seq∈seqi(k)(¯pM)

i−1∏
j=1

Pr(mj)

|DT |∏
j=i+1

Pr(mj)

= Pr(m(1)) ·
∑

seq∈seqi(k)∧1(1)(¯pM)

i−1∏
j=2

Pr(mj)

|DT |∏
j=i+1

Pr(mj)

+ Pr(m(2)) ·
∑

seq∈seqi(k)∧1(2)(¯pM)

i−1∏
j=2

Pr(mj)

|DT |∏
j=i+1

Pr(mj)

+ ...

+ Pr(m(|m|)) ·
∑

seq∈seqi(k)∧1(|m|)(¯pM)

i−1∏
j=2

Pr(mj)

|DT |∏
j=i+1

Pr(mj)

= Pr(m(1)) + Pr(m(2)) + ...+ Pr(m(|m|)) = 1

based on the induction assumption and Lemma 1.

262

Theorem 26. Let ¯pM = (S, T,m) be a schema p-mapping and let Q be a sum query

over attribute A ∈ S. The expected value of Qtuple (DS ∪DT), a by-tuple answer to Q

with respect to ¯pM , is identical to Qtable (DS ∪DT), a by-table answer to Q with respect

to ¯pM .

Proof. Let ¯pM = (S, T,m) be a p-mapping. Let Q be a sum query over attribute A ∈ S

and let DS be an instance of S. First, let DT be a by-table consistent instance of T .

Therefore, there exists a mapping m ∈m such that DS and DT satisfy m.

Given a mapping m, for which A ∈ S is mapped to A′ ∈ T , the outcome of Q is:

|DS |∑
i=1

Ai +

|DT |∑
i=1

A′i (7.3)

The expected value of a by-tuple answer to Q with respect to ¯pM is:

|m|∑
j=1

(Pr(m(j)) · (
|DS |∑
i=1

Ai +

|DT |∑
i=1

A′i(j)))

=

|m|∑
j=1

(Pr(m(j)) ·
|DS |∑
i=1

Ai) +

|m|∑
j=1

(Pr(m(j)) ·
|DT |∑
i=1

A′i(j))

=

|DS |∑
i=1

Ai ·
|m|∑
j=1

Pr(m(j)) +

|m|∑
j=1

(Pr(m(j)) ·
|DT |∑
i=1

A′i(j))

=

|DS |∑
i=1

Ai +

|m|∑
j=1

(Pr(m(j)) ·
|DT |∑
i=1

A′i(j)) (7.4)

The justification for the move from the third to the fourth line is from Lemma 1.

Let’s consider now a mapping sequence seq =
〈
m1,m2, . . . ,m|DT |

〉
. mi can be one

of |m| values. We can say, for example that mi = m(j) which means that the mapping of

the i-th tuple is using m(j) interpretation.

263

The associated probability sequence
〈
Pr1,Pr2, . . . ,Pr|DT |

〉
assigns probability Pri ∈

{Pr(m1),Pr(m2), . . . ,Pr(m|m|)} to each tuple in DT . Due to the independent assign-

ment of interpretations to tuples, Pr (seq) =
|DT |∏
i=1

Pr(mi). seq
(

¯pM
)

is the set of all

m|DT | sequences that can be generated from ¯pM . Given a sequence seqj ∈ seq
(

¯pM
)
,

we denote by mij the i-th element of the j-th sequence.

The expected value of a by-tuple answer to Q with respect to ¯pM is:

∑
seq∈seq(¯pM)

(Pr (seq) ·
|DS |∑
i=1

Ai) +
∑

seq∈seq(¯pM)

Pr (seq) ·
|DT |∑
i=1

A′i

=

|DS |∑
i=1

Ai ·
∑

seq∈seq(¯pM)

Pr (seq) +

|seq(¯pM)|∑
k=1

|DT |∏
i=1

Pr(mij) ·
|DT |∑
i=1

A′i

=

|DS |∑
i=1

Ai +

|seq(¯pM)|∑
k=1

|DT |∏
i=1

Pr(mij) ·
|DT |∑
i=1

A′i (7.5)

For a given i and j, let’s have a look now at all the sequences in which A′i(j) appear.

From the construction of the sequence set, there are exactly 1
|m| such sequences and they

all share in common that mik = m(j), since A′i(j) uses mapping m(j). This part of the

summation can be written to be

Pr(m(j)) · A′i(j) ·
∑

seq∈seqi(j)(¯pM)

i−1∏
k=1

Pr(mik)

|DT |∏
k=i+1

Pr(mik)

= Pr(m(j)) · A′i(j)

264

We repeat this computation for all A′i(j) and Eq 7.5 can now be rewritten to be

|DT |∑
i=1

|m|∑
j=1

A′i(j) · Pr(m(j))

=

|m|∑
j=1

(Pr(m(j)) ·
|DT |∑
i=1

A′i(j))

Adding the sum of the A attribute in the S table one has that the expected value of a

by-tuple answer to Q with respect to ¯pM is:

=

|DS |∑
i=1

Ai +

|m|∑
j=1

(Pr(m(j)) ·
|DT |∑
i=1

A′i(j))

Corollary 7. The expected value of a by-tuple answer to a query Q with respect to a

schema p-mapping pM is PTIME with respect to data complexity and mapping complex-

ity.

Aggregate functions MAX and MIN

We now present an efficient algorithm to compute the MAX aggregate under the

range semantics for the by-tuple semantics. The techniques presented here for MAX can

be easily adapted for answering queries involving the MIN aggregate.

MAX under the Range semantics. To compute MAX under the range semantics, we have to

find the minimum and the maximum value of the aggregate under any possible mapping

sequence, i.e., the tightest interval that includes all the possible maximum values that can

arise. The procedure to find this interval without the need to look at all possible sequences

is outlined in Figure 7.5.

265

Algorithm ByTupleRangeMAX
Input: Table S, T ; MapList M ; Attribute A; Condition C;

1 For each ti ∈ S,
2 let vmini be the minimum value obtained by applying a mapping in M

that satisfies condition C;
Similarly, let vmaxi be the maximum value.

3 return [maxi{vmini },maxi{vmaxi }];

Figure 7.5: Algorithm to answer SELECT MAX(A) FROM T under Range Semantics

To see how this algorithm works, consider Example 76. We answer the subquery

within the FROM clause of query Q2:

SELECT MAX(DISTINCT T2.price) FROM T2 ASR2 GROUP BYR2.auctionID

This subquery contains a GROUP BY auctionID, which means we will have one

answer for each distinct auctionID. In this case, looking at Table 7.2 we see that the

answer will consist of two different ranges, one for auctionID = 34 and another for

auctionID = 38. We show how to compute the answer for auctionID = 38; The process

to obtain the answer for auctionID = 34 is analogous. For tuple 5, with transactionID

= 3801, the minimum value obtained by applying a mapping is vmin5 = 300, while the

maximum is vmax5 = 330.01. For tuple 6, vmin6 = 335.01 and vmax6 = 429.95; for tuple 7,

vmin7 = 336.3 and vmax7 = 439.95. Finally, for tuple 8, vmin8 = 340.05 and vmax8 = 438.05.

Now, the range for the aggregator is given by [maxi{vmini },maxi{vmaxi }]. Where each

bound is computed as:

max
i
{vmini } = max{300, 335.01, 336.3, 340.05}

max
i
{vmaxi } = max{330.01, 429.95, 439.95, 438.05}

and thus, the final answer is [340.05, 439.95]. In general, it is always the case that the

range yielded by the by-table semantics is a subset of the range yielded by the by-tuple

266

semantics. This is because by-tuple has the possibility of choosing a different mapping

for each tuple, which means that the algorithm has the freedom to choose sequences that

are not allowed using the by-table semantics. This is true for all aggregate functions con-

sidered in this work. This algorithm also requires a polynomial number of computations

in O(m ∗ n), where m is the number of mappings and n is the number of tuples.

Theorem 27. Algorithm ByTupleRangeMAX correctly computes the result of executing

an MAX query under the by-tuple/range semantics.

Proof. Suppose, towards a contradiction, that the algorithm returns the range [`, u] and

that there exists a possible answer k such that either k < ` or u < k. If k is in fact a

possible value for the MAX query, this means that there is at least one tuple in T such that,

for some mapping, the value of A is less (respectively, greater) than vmini (respectively,

vmaxi), which is a contradiction since the algorithm chooses this value to be the minimum

(respectively, maximum) under all possible mappings.

7.4.3 Summary of Complexity Results

The tables in Figure 7.6 are a summary of our results for the six different kinds

of semantics. The algorithms presented in this section correspond to those that require

polynomial time to compute the answer.

7.5 Experimental Results

In order to evaluate the difference in the running times of our algorithms (both

PTIME and non-PTIME), and how these are affected by changes in both the number of

tuples in the database and the number of probabilistic mappings present, we carried out

a series of empirical tests whose results we report in this section. The algorithms we

267

COUNT Range Distribution Expected Value

By-Table PTIME PTIME PTIME

By-Tuple PTIME PTIME PTIME

SUM Range Distribution Expected Value

By-Table PTIME PTIME PTIME

By-Tuple PTIME ? PTIME

MAX,MIN,AVG Range Probability Distribution Expected Value

By-Table PTIME PTIME PTIME

By-Tuple PTIME ? ?

Figure 7.6: Summary of complexity for the different aggregates

Figure 7.7: Running times for variation of #tuples using the eBay data; #attributes = 7,
#mappings = 2, results are averages over 5 runs on the eBay auction data. Solid line: By-
TuplePDMAX. Dotted line: ByTupleExpValAVG, ByTuplePDAVG, ByTuplePDSUM,
and ByTupleExpValMAX. Dashed line (touching the x axis): ByTupleRangeMAX,
ByTupleRangeCOUNT, ByTuplePDCOUNT, ByTupleExpValCOUNT, ByTupleRange-
SUM, ByTupleExpValSUM, and ByTupleRangeAVG.)

268

Figure 7.8: Running times for variation of #mappings; #attributes = 20, #tuples = 6,
results are averages over 5 runs on synthetic data. Solid line: ByTupleExpValAVG, By-
TuplePDAVG, ByTuplePDSUM, ByTupleExpValMAX, and ByTuplePDMAX. Dashed
line (touching the x axis): ByTupleRangeMAX, ByTupleRangeCOUNT, ByTuplePD-
COUNT, ByTupleExpValCOUNT, ByTupleRangeSUM, ByTupleExpValSUM, and By-
TupleRangeAVG.

gave for problems that were not shown to be PTIME are — as expected — inefficient.

However, the algorithms we gave for problems we showed to be in PTIME are quite

efficient when we vary both the number of tuples and the numbers of mappings — but

clearly there are limits that vary from one algorithm to another. We will discuss these

limits below.

The programs to carry out these tests consist of about 3,300 lines of Java code. All

computations were carried out on a quad-processor computer with Intel Xeon 5140 dual

core CPUs at 2.33GHz each, 4GB of RAM, under the CentOS GNU/Linux OS (distribu-

tion 2.6.9-55.ELsmp). The database engine we used was PostgreSQL version 7.4.16.

Experimental Setup. We carried out two sets of experiments. The first set used real-

world data of 1,129 eBay 3-day auctions with a total of 155,688 bids for Intel, IBM,

and Dell laptop computers. The data was obtained from an RSS feed for a search query

on eBay.1 The database schema is the one presented in Example 76. The sole point of

1http://search.ebay.com/ws/search/

269

uncertainty lies in the two price attributes where a reference to Price could mean either

the bid price or the current price. We therefore defined two mappings: bid mapped to

Price with probability 0.3 and currentPrice mapped to Price with probability 0.7. We

have applied the inner query of query Q2 and also a set of queries that cover four different

operators discussed in this work (all except MIN).

The second set of experiments was done on synthetic, randomly generated data in

order to be able to evaluate configurations not possible with the eBay data (in particular,

larger numbers of attributes, tuples, and mappings). The tables consist of attributes of type

real, plus one column of type int used as id (not included in the number of attributes

reported in the results). Mappings were also randomly generated by selecting an attribute

at random and then a set of attributes that are mapped to it, also with a randomly chosen

probability distribution. Each experiment was repeated several times.

Results. We now present and analyze the experiment results for small, medium, and large

instances.

Small instances. We ran a set of experiments on small relations to compare the perfor-

mance of all possible semantics, including those for which there are no PTIME algo-

rithms. Figures 7.7 and 7.8 show the running times of all algorithms on small instances

(#mappings fixed at 2 in the former, #tuples fixed at 6 in the latter). The former corre-

sponds to runs using the eBay auction data (results shown on a scatterplot, since each

point corresponds to adding all tuples from an auction), while the latter reports results

from runs on synthetic data.

As we can see, running times climb exponentially for algorithms we did not show to

be in PTIME; the sharp increase in Figure 7.7 continues when more auctions are included,

with a completion time of more than 10 days for 4 auctions (36 tuples). On the other

hand, the running times of the other algorithms are negligible. When we varied #tuples,

270

Figure 7.9: Running times for variation of #tuples; #attributes = 50, #mappings = 20,
results are averages over 5 runs on synthetic data. Solid line: ByTupleRangeAVG, ByTu-
pleRangeSUM, ByTupleRangeCOUNT, and ByTupleRangeMAX. Dashed line: ByTu-
pleExpValSUM. Dotted line: ByTuplePDCOUNT and ByTupleExpValCOUNT.

the by-table algorithms running times lay between 0.07 and 0.13 seconds. When we

varied #mappings, the by-table algorithms took between 0.03 and 0.26 seconds. We also

ran experiments varying #tuples using synthetic data which yielded the same trends in

running times as those in Figure 7.7.

Medium-size instances. Figure 7.9 shows the running times of all our PTIME algorithms

when the number of tuples is increased into the tens and hundreds of thousands (#map-

pings fixed at 20). As we can see, the ByTuplePDCOUNT and ByTupleExpValCOUNT

algorithms’ performance is well differentiated from the rest, as they become intractable

at about 50,000 tuples. This is due to the fact that these algorithms must update the prob-

ability distribution for the possible values in each iteration, leading to a running time in

O(m ∗ n2) as shown in Section 7.4.2. In this case, the by-table algorithms’ running times

varied between 0.96 seconds and 5.49 seconds.

Figure 7.10 shows how the running times increase with the number of mappings

(#tuples fixed at 50,000, #attributes = 500). Note that ByTupleExpValSUM is more

affected by the increase in number of mappings than the other four algorithms, with its

running time climbing to almost 90 seconds for 250 mappings. This is because it is a

271

Figure 7.10: Running times for variation of #mappings; #attributes = 500, #tuples =
50,000, results are averages over 2 runs on synthetic data. Solid line: ByTupleExpVal-
SUM. Dashed line: ByTupleRangeMAX, ByTupleRangeCOUNT, ByTupleRangeSUM,
and ByTupleRangeAVG.

by-table algorithm, and it must issue as many queries as mappings and then combine the

answers. The other four, on the other hand, only slightly increase their running times

at these numbers of mappings. The by-table algorithms’ running times in this case lie

between 16.49 and 86.49 seconds.

Large instances. Figure 7.11 shows how our most scalable by-tuple algorithms per-

form when the number of tuples is increased into the millions, showing that algorithms

ByTupleRangeMAX/COUNT/AVG/SUM take about 1,300 seconds (about 21 minutes)

to answer queries with 5 million tuples and 20 mappings. This figure also shows the run-

ning time of ByTupleExpValSUM, which is much lower than the others because it is

actually equivalent to the by-table algorithm, as seen in Section 7.4.2. The corresponding

running times for the by-table algorithms varied between 15.73 and 125.63 seconds. We

also ran experiments for 15 to 30 million tuples, the results of which are shown in Fig-

ure 7.12. For these runs, the by-table algorithms took between 65.17 seconds and 124.76

seconds.

272

Figure 7.11: Running times for variation of #tuples; #attributes = 50, #mappings = 20,
results are averages over 2 runs on synthetic data. Solid line: ByTupleRangeMAX and
ByTupleRangeAVG. Dashed line: ByTupleRangeSUM and ByTupleRangeCOUNT. Dot-
ted line: ByTupleExpValSUM.

Figure 7.12: Running times for variation of #tuples; #attributes = 20, #mappings = 5,
results are averages over 2 runs on synthetic data. Solid line: ByTupleRangeCOUNT.
Dotted line: ByTupleRangeSUM and ByTupleRangeAVG. Dashed line: ByTupleRange-
MAX. Dashed and Dotted line: ByTupleExpValSUM.

273

It should be noted that the greater scalability of the by-table algorithms with respect

to the efficient by-tuple algorithms presented here is in large part due to the fact that

the former are taking advantage of the optimizations implemented by the DBMS when

answering queries.

7.6 Schema Mappings, Integrity Constraints, and Partial

Information

In this chapter we have defined and analyzed different semantics for aggregate

query answering in the setting of data integration using probabilistic schema mappings.

An important assumption we have made across this chapter is that the data is both com-

plete and consistent, problems in data integration only arise from the uncertainty at schema

level. In real world data sets this is often not the case, and it is therefore a good idea to

investigate the problem of query answering under probabilistic schema mappings in the

presence of inconsistent and partial information. Other works in the literature have studied

the relationship between schema mappings and integrity constraints. The iMAP [DLD+04]

system, for instance, exploits integrity constraints in order to define meaningful mappings

among disparate schemas and to prune the search space of the mapping generation pro-

cess. Some constraint may state, for instance, that two attributes are unrelated and there-

fore they should not appear together in a mapping. Other constraints such as functional

dependencies or denial constraints can be used as well; however, depending on the com-

plexity of the constraint it might be too expensive to check it in the data in order to avoid

considering possibilities that violate them. It is important to note that the use of integrity

constraints in generating mappings does not guarantee that the actual integrated data is

274

going to remain consistent, since posterior updates or insertions to any of the sources

tables may introduce inconsistency with respect to the set of integrity constraints.

Consider the source and target schemas for the running example in this chapter:

S1 = (ID, price, agentPhone, postedDate, reducedDate)

T1 = (propertyID, listPrice, phone, date, comments)

The following table represents the instance relation DS1.

ID price agentPhone postedDate reducedDate

1 100k 215 1/5/2008 2/5/2008

2 150k 342 1/30/2008 2/15/2008

3 200k 215 1/1/2008 1/10/2008

4 100k 337 1/2/2008 2/1/2008

Now suppose that in addition to DS1 we also have an instance relation for T1, i.e.,

there exist data that corresponds to the target schema. Let DT1 consist of the following

tuples.

propertyID listPrice phone date comments

1 100k 215 1/5/2008 c1

2 150k 342 1/30/2008 c2

As before, possible mappings between S1 and T1 are: m11 where date maps to

postedDate and m12 where date maps to reducedDate. In addition, suppose that we

have the integrity constraint fd : propertyID → listPrice over T1.

A tool such as iMAP could rule out any of the two mappings if when applied to DS1

and DT1 the result violates fd. However, in these instance relations no conflict can appear

w.r.t. fd and therefore both m11 and m12 are considered possible mappings.

275

Now, suppose that S1 is updated with some new information in the following way:

propertyID listPrice phone date comments

1 120k 215 1/5/2008 c1

2 150k 342 1/30/2008 c2

If we were to issue the query “Select propertyID, listPrice from T where

listPrice < 200K and 1/1/2008 < date < 1/30/2008”, depending on which semantics

(by-table or by-tuple), the result might violate fd.

The point of this example was to show that inconsistency can appear in answers to

queries as well as in the result of using schema mapping methods, even when each source

is consistent in isolation.

Alternatively, works such those from [GN06, FKMP05, FKP05] have analyzed data

exchange when tuple generating (TGDs) and equality generating dependencies (EDGs)

are considered. Note that because of the presence of TGDs, null values may appear and

therefore it is necessary to deal with them. The idea in those approaches is to focus on

a class of solutions, called universal solutions, possessing desirable properties that jus-

tify selecting them as the semantics of the data exchange problem. Universal solutions

have the property that homomorphisms can be defined between them and every possible

solution, and any pair of universal solutions is homomorphically equivalent. Universal

solutions are the most general among all solutions and they represent the entire space of

solutions, all universal solutions share a unique (up to isomorphism) common part, called

their core. The core of a structure is the smallest substructure that is also a homomor-

phic image of the structure. Computing the core is a hard problem, but when restricted

only to EDGs [FKMP05], or a combination of EGDs and weakly acyclic TGDs (or other

cases where the chase procedure is known to terminate) [GN06], it can be computed in

276

polynomial time in the data complexity. The problem of query answering in this setting

was studied in [FKP05]. In that work, universal solutions are used to compute the certain

answers of queries q that are unions of conjunctive queries over the target schema. The

set certain(q, I) of certain answers of a query q over the target schema, with respect to

a source instance I , consists of all tuples that are in the intersection of all q(J)’s, as J

varies over all solutions for I (q(J) denotes the result of evaluating query q on J). Given

I and J , certain(q, I) is the set of all “null-free” tuples in q(J). The set certain(q, I) is

computable in time polynomial in the cardinality of I if q is a union of conjunctive queries

over the target schema: first compute a universal J solution in polynomial time and then

evaluate q(J) and remove tuples with nulls. However, if q is a union of conjunctive queries

with at most two inequalities per conjunct, then the problem is coNP-complete. Alterna-

tively, [FKP05] defined universal certain answers; ucertain(q, I) consists of all tuples

that are in the intersection of all q(J)’s, as J varies over all universal solutions for I . The

set ucertain(q, I) can be computed in polynomial time for existential queries whenever

the core of I can be computed in polynomial time. This approach was developed for and

implemented in the CLIO system [FHH+09].

The approach described above provides a fixed semantics for inconsistent and in-

completeness resolution. As clearly stated in the definition of certain answers, the set of

tuples in the answer is the set of all tuples that are free of null values across all possible

(valid) ways of completing the database instance. Furthermore, if instance I is incon-

sistent, the chase procedure used to compute the universal solutions for I fails and no

universal solution is computed; therefore, the empty set is returned as the answer to the

query. Finally, probabilistic schema mappings are not explored in any of these works.

Schema mappings are represented as high level constraints using source-to-target tuple

generating dependencies (see Chapter 2.4). Alternatively, we propose a personalizable

277

approach by incorporating IMPs, described in Chapter 3, and PIPs, described in Chap-

ter 6, in order to handle inconsistency and partial information, respectively. We consider

two different options to solve this problem. The simplest one is to perform a post-query

process. IMPs and PIPs can both be specified to be applied after the query is answered.

In the presence of uncertain schema mappings, each tuple in the answer will have asso-

ciated a probability; in these cases, IMPs and PIPs can be built to make use of these

probabilities in order to manage the inconsistency or incompleteness following a certain

strategy. Alternatively, a second approach would be to embed IMPs and/or PIPs in the

query algorithms for both by-table and by-tuple semantics. For the latter we need to in-

vestigate the role that the policies play in obtaining the possible answers. We leave this

task as future work.

7.7 Concluding Remarks

Probabilistic schema matching is emerging as a paradigm for integrating informa-

tion from multiple databases. In past work, [DHY07] has proposed two semantics called

the by-table and by-tuple semantics for selection, projection and join query processing

under probabilistic schema mapping.

In this chapter, we studied the problem of answering aggregate queries in such an

environment. We present three semantics for aggregates — a range semantics in which a

range of possible values for an aggregate query is returned, a probability distribution se-

mantics in which all possible answer values are returned together with their probabilities,

and an expected value semantics. These three semantics combine together with the se-

mantics of [DHY07] to provide six possible semantics for aggregates. Given this setting,

we provide algorithms to answer COUNT, SUM, AVG, MIN, and MAX aggregate queries.

278

We develop algorithms for each of these five aggregate operators under each of the six se-

mantics. The good news is that for every aggregate operator, at least one (and sometimes

more) semantics are PTIME computable.

We also report on a prototype implementation and experiments with two data sets

— a real world eBay data set, and a synthetic data set. We experimentally show that each

aggregate operator listed above can be computed efficiently in at least one of these six

semantics, even when the data set is large and there are many different possible schema

mappings.

279

Chapter 8

Conclusions

In this thesis, we have proposed several frameworks for dealing with problems that

arise from data or knowledge integration. The approach of our proposals is different from

previous attempts, both in artificial intelligence and databases, since it focuses on the

prior knowledge and expectations of the data and the application that the actual user can

bring into the data management processes, giving him the power to do it in the way that

best suits his needs.

After introducing real world scenarios in which data integration issues arise in

Chapter 1, and reviewing the literature that is most closely related to this work in Chap-

ter 2, in Chapter 3 we proposed a policy based framework for personalizable management

of inconsistent information that allows users to bring their application expertise to bear.

We define formally the notion of inconsistency management policies, or IMPs, with re-

spect to functional dependencies as functions satisfying a minimal set of axioms. We

proposed several families of IMPs that satisfy these axioms, and study relations between

them in the simplified case where only one functional dependency is present. We show

that when multiple functional dependencies are considered, multiple alternative seman-

tics can result. We introduced new versions of the relational algebra that are augmented

280

by inconsistency management policies that are applied either before the operator or after.

We develop theoretical results on the resulting extended relational operators that could,

in principle, be used in the future as the basis of query optimization techniques. Finally,

we presented an index structure for implementing an IMP-based framework showing that

it is versatile, can be implemented based on the needs and resources of the user and, ac-

cording to our theoretical results, the associated algorithms incur reasonable costs. As a

consequence, IMPs are a powerful tool for end users to express what they wish to do with

their data, rather than have a system manager or a DB engine that does not understand

their domain problem dictate how they should handle inconsistencies in their data.

In Chapter 4 we developed a general and unified framework for reasoning about

inconsistency in a wide variety of monotonic logics. The basic idea behind this frame-

work is to construct what we call options, and then using a preference relation defined

by the user to compute the set of preferred options, which are intended to support the

conclusions to be drawn from the inconsistent knowledge base. We provide a formal def-

inition of the framework as well as algorithms to compute preferred options. We have

also shown through examples how this abstract framework can be used in different logics,

provided new results on the complexity of reasoning about inconsistency in such log-

ics, and proposed general algorithms for computing preferred options. Furthermore, we

showed that our general framework allows to represent approaches to inconsistency that

are well-known in the artificial intelligence literature.

Focusing on more specific domains, in Chapter 5 we develop a formalism for iden-

tifying inconsistencies in news reports. Besides the complication of having to deal with

a very large number of records, collecting and analyzing records such as news reports

encounters an extra level of complexity: the presence of linguistically modified terms that

can be interpreted in different ways and make the notion of inconsistency less clear. We

281

propose a probabilistic logic programming language called PLINI within which users can

write rules specifying what they mean by inconsistency.

In Chapter 6, we proposed the concept of a partial information policy (PIP). Using

PIPs, end-users can specify the policy they want to use to handle partial information. We

presented examples of three families of PIPs that end-users can apply. Many more are

possible as simple combinations of these basic PIPs – in addition, the definition of PIPs

allows many more policies to be captured. We have also presented index structures for

efficiently applying PIPs, and conducted an experimental study showing that the adop-

tion of such index structures allows us to efficiently manage large data sets. Moreover,

we have shown that PIPs can be combined with relational algebra operators, giving even

more capabilities to users on how to manage their incomplete data. In previous works

dealing with the management of incomplete databases, the DBMS dictates how incom-

plete information should be handled.

Finally, in Chapter 7 we analyzed the problem of how to answer aggregate queries

in the presence of uncertain schema mappings. Two semantics had been proposed in

the literature for answering SPJ queries in the presence of probabilistic schema map-

pings [DHY07]. In this chapter we proposed three semantics for aggregate query an-

swering: a range semantics in which a range of possible values for an aggregate query

is returned, a probability distribution semantics in which all possible answer values are

returned together with their probabilities, and an expected value semantics. These three

semantics combine together with the semantics of [DHY07] to provide six possible se-

mantics for aggregates. Given this setting, we provide algorithms to answer COUNT,

SUM, AVG, MIN, and MAX aggregate queries. We develop algorithms for each of these

five aggregate operators under each of the six semantics. The good news is that for every

aggregate operator, at least one (and sometimes more) semantics are PTIME computable.

282

Recently, researchers have begun to understand that uncertainty, in particular in-

consistency and partial information, does not always need to be eliminated; it is possible

and, more often than not, necessary to reason with an inconsistent and/or partial knowl-

edge base. We need to use inconsistent and partial information; sometimes this kind of

information can help to better understand the data and to improve the quality of decision

making processes. Currently, there is a large gap between methodologies in artificial in-

telligence and databases, both for knowledge management and what is available to real

users. There is a need for context-sensitive data management approaches that create syn-

ergy with the user in order to be useful. In this thesis we aimed towards bridging this gap

by proposing several frameworks that provide personalizable approaches to the problems

that arise from data integration and management.

283

Bibliography

[ABC99] M. Arenas, L. E. Bertossi, and J. Chomicki. Consistent query answers
in inconsistent databases. In ACM Symposium on Principles of Database
Systems (PODS), pages 68–79, 1999.

[ABC03a] M. Arenas, L. E. Bertossi, and J. Chomicki. Answer sets for consistent
query answering in inconsistent databases. TPLP, 3(4-5):393–424, 2003.

[ABC+03b] M. Arenas, L. E. Bertossi, J. Chomicki, X. He, V. Raghavan, and J. Spin-
rad. Scalar aggregation in inconsistent databases. Theoretical Computer
Science, 3(296):405–434, 2003.

[AC02] L. Amgoud and C. Cayrol. A reasoning model based on the production of
acceptable arguments. AMAI, 34(1):197–215, 2002.

[AFM06] Periklis Andritsos, Ariel Fuxman, and Renee J. Miller. Clean answers over
dirty databases: A probabilistic approach. In International Conference on
Data Engineering (ICDE), page 30, Washington, DC, USA, 2006. IEEE
Computer Society.

[AG85] Serge Abiteboul and Gösta Grahne. Update semantics for incomplete
databases. In International Conference on Very Large Data Bases (VLDB),
pages 1–12. VLDB Endowment, 1985.

[AGM85] Carlos E. Alchourron, Peter Gardenfors, and David Makinson. On the
logic of theory change: Partial meet contraction and revision functions.
The Journal of Symbolic Logic, 50(2):510–530, 1985.

284

[AKG91] Serge Abiteboul, Paris C. Kanellakis, and Gösta Grahne. On the repre-
sentation and querying of sets of possible worlds. Theoretical Computer
Science, 78(1):158–187, 1991.

[AKK+03] M. Arenas, V. Kantere, A. Kementsietsidis, I. Kiringa, R. Miller, and
J. Mylopoulos. The hyperion project: From data integration to data co-
ordination. SIGMOD Record, 32(3), 2003.

[AM86] Paolo Atzeni and Nicola M. Morfuni. Functional dependencies and con-
straints on null values in database relations. Information and Control,
70(1):1–31, 1986.

[AMB+11] Massimiliano Albanese, Maria Vanina Martinez, Matthias Broecheler,
John Grant, and V.S. Subrahmanian. Plini: a probabilistic logic pro-
gram framework for inconsistent news information. Logic Programming,
Knowledge Representation, and Nonmonotonic Reasoning, LNCS, 6565,
2011.

[AP07] L. Amgoud and H. Prade. Formalizing practical reasoning under uncer-
tainty: An argumentation-based approach. In IAT, pages 189–195, 2007.

[Art08] A. Artale. Formal methods: Linear temporal logic, 2008.

[AS07] Massimiliano Albanese and V. S. Subrahmanian. T-REX: A domain-
independent system for automated cultural information extraction. In In-
ternational Conference on Computational Cultural Dynamics (ICCCD),
pages 2–8. AAAI Press, August 2007.

[BB03] P. Barceló and L. E. Bertossi. Logic programs for querying inconsistent
databases. In PADL, pages 208–222, 2003.

[BBC04] N. Bansal, A. Blum, and S. Chawla. Correlation clustering. Machine
Learning, 56(1):89–113, 2004.

[BBFL05] L. E. Bertossi, L. Bravo, E. Franconi, and A. Lopatenko. Complexity and
approximation of fixing numerical attributes in databases under integrity

285

constraints. In DBPL, pages 262–278, 2005.

[BC03] L. E. Bertossi and J. Chomicki. Query answering in inconsistent databases.
In Logics for Emerging Applications of Databases, pages 43–83. Springer,
2003.

[BCD+93] Salem Benferhat, Claudette Cayrol, Didier Dubois, Jérôme Lang, and
Henri Prade. Inconsistency management and prioritized syntax-based en-
tailment. In International Joint Conference on Artificial Intelligence (IJ-
CAI), pages 640–647, 1993.

[BD83] Dina Bitton and David J. DeWitt. Duplicate record elimination in large
data files. ACM Transactions on Database Systems, 8(2):255–265, 1983.

[BDKT97] Andrei Bondarenko, Phan Minh Dung, Robert A. Kowalski, and Francesca
Toni. An abstract, argumentation-theoretic approach to default reasoning.
Artificial Intelligence, 93:63–101, 1997.

[BDP97] S. Benferhat, D. Dubois, and Henri Prade. Some syntactic approaches to
the handling of inconsistent knowledge bases: A comparative study part 1:
The flat case. Studia Logica, 58(1):17–45, 1997.

[BDSH+08] Omar Benjelloun, Anish Das Sarma, Alon Halevy, Martin Theobald, and
Jennifer Widom. Databases with uncertainty and lineage. VLDB Journal,
17(2):243–264, 2008.

[Bel77] N. Belnap. A useful four valued logic. Modern Uses of Many Valued
Logic, pages 8–37, 1977.

[BFFR05] P. Bohannon, W. Fan, M. Flaster, and R. Rastogi. A cost-based model
and effective heuristic for repairing constraints by value modification. In
SIGMOD, pages 143–154, 2005.

[BFOS84] L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and
Regression Trees. Wadsworth and Brooks, Monterey, CA, 1984.

286

[BG04] Indrajit Bhattacharya and Lise Getoor. Iterative record linkage for clean-
ing and integration. In Workshop on Research issues in data mining and
knowledge discovery, pages 11–18, New York, NY, USA, 2004. ACM.

[BG07] I. Bhattacharya and L. Getoor. Collective entity resolution in relational
data. ACM Transactions on Knowledge Discovery from Data (TKDD),
1(1), 2007.

[BGMM+09] Omar Benjelloun, Hector Garcia-Molina, David Menestrina, Qi Su,
Steven Euijong Whang, and Jennifer Widom. Swoosh: a generic approach
to entity resolution. VLDB Journal, 18(1):255–276, 2009.

[BGMP92] D. Barbará, H. Garcia-Molina, and D. Porter. The management of prob-
abilistic data. IEEE Transactions on Knowledge and Data Engineering
(TKDE), 4(5):487–502, 1992.

[BH05] Philippe Besnard and Anthony Hunter. Practical first-order argumentation.
In Conference on Artificial Intelligence (AAAI), pages 590–595, 2005.

[Bis79] Joachim Biskup. A formal approach to null values in database relations.
In Advances in Data Base Theory, pages 299–341, 1979.

[BKM91] C. Baral, S. Kraus, and J. Minker. IEEE Transactions on Knowledge and
Data Engineering (TKDE), 3(2):208–220, 1991.

[BKMS91] C. Baral, S. Kraus, J. Minker, and V. S. Subrahmanian. Combining knowl-
edge bases consisting of first order theories. pages 92–101, 1991.

[BM03] Mikhail Bilenko and Raymond J. Mooney. Adaptive duplicate detection
using learnable string similarity measures. In International conference on
Knowledge discovery and data mining (KDD), pages 39–48, New York,
NY, USA, 2003. ACM.

[BMP+08] A. Bonifati, G. Mecca, A. Pappalardo, S. Raunich, and G. Summa. Schema
mapping verification: The spicy way. In EDBT, 2008.

287

[Bob80] D. G. Bobrow. Special issue on non-monotonic reasoning. Artificial Intel-
ligence, 13 (1-2), 1980.

[Bre89] G. Brewka. Preferred subtheories: An extended logical framework for de-
fault reasoning. In International Joint Conference on Artificial Intelligence
(IJCAI), pages 1043–1048, 1989.

[BS89] H. A. Blair and V. S. Subrahmanian. Paraconsistent logic programming.
Theoretical Computer Science, 68(2):135–154, 1989.

[BS98] P. Besnard and T. Schaub. Signed systems for paraconsistent reasoning.
Journal of Automated Reasoning, 20(1):191–213, 1998.

[BV08] N. Bozovic and V. Vassalos. Two-phase schema matching in real world
relational databases. In International Conference on Data Engineering
(ICDE), pages 290–296, 2008.

[CA03] G. Chen and T. Astebro. How to deal with missing categorical data: Test
of a simple bayesian method. Organ. Res. Methods, 6(3):309–327, 2003.

[CGS97a] K. Selçuk Candan, John Grant, and V. S. Subrahmanian. A unified treat-
ment of null values using constraints. Information Sciences, 98(1-4):99–
156, 1997.

[CGS97b] K. Selçuk Candan, John Grant, and V. S. Subrahmanian. A unified treat-
ment of null values using constraints. Information Sciences, 98(1-4):99–
156, 1997.

[CGZ09] Luciano Caroprese, Sergio Greco, and Ester Zumpano. Active integrity
constraints for database consistency maintenance. IEEE Transactions on
Knowledge Data Engineering (TKDE), 21(7):1042–1058, 2009.

[Cho07] J. Chomicki. Consistent query answering: Five easy pieces. In Interna-
tional Conference on Database Theory (ICDT), pages 1–17, 2007.

288

[CKP03] Reynold Cheng, Dmitri V. Kalashnikov, and Sunil Prabhakar. Evaluating
probabilistic queries over imprecise data. In SIGMOD, pages 551–562,
New York, NY, USA, 2003. ACM.

[Cla77] K. L. Clark. Negation as failure. In Logic and Data Bases, pages 293–322,
1977.

[CLR03] A. Calı̀, D. Lembo, and R. Rosati. On the decidability and complexity
of query answering over inconsistent and incomplete databases. In ACM
Symposium on Principles of Database Systems (PODS), pages 260–271,
2003.

[CLS94] Claudette Cayrol and Marie-Christine Lagasquie-Schiex. On the complex-
ity of non-monotonic entailment in syntax-based approaches. In ECAI
workshop on Algorithms, Complexity and Commonsense Reasoning, 1994.

[CLS95] Claudette Cayrol and Marie-Christine Lagasquie-Schiex. Non-monotonic
syntax-based entailment: A classification of consequence relations. In
Symbolic and Quantitative Approaches to Reasoning and Uncertainty
(ECSQARU), pages 107–114, 1995.

[CM05] J. Chomicki and J. Marcinkowski. Minimal-change integrity maintenance
using tuple deletions. Information and Computation, 197(1-2):90–121,
2005.

[Cod74] E. F. Codd. Understanding relations. SIGMOD Records, 6(3):40–42, 1974.

[Cod79] E. F. Codd. Extending the database relational model to capture more mean-
ing. ACM Trans. Database Syst., 4(4):397–434, 1979.

[CP87] Roger Cavallo and Michael Pittarelli. The theory of probabilistic
databases. In International Conference on Very Large Data Bases (VLDB),
pages 71–81, San Francisco, CA, USA, 1987. Morgan Kaufmann Publish-
ers Inc.

289

[CR02] William W. Cohen and Jacob Richman. Learning to match and cluster large
high-dimensional data sets for data integration. In International conference
on Knowledge discovery and data mining (KDD), pages 475–480, New
York, NY, USA, 2002. ACM.

[CR08] A. G. Cohn and J. Renz. Qualitative spatial representation and reason-
ing. In F. van Hermelen, V. Lifschitz, and B. Porter, editors, Handbook of
Knowledge Representation, pages 551–596. Elsevier, 2008.

[CS86] H. Y. Chiu and J. Sedransk. A bayesian procedure for imputing missing
values in sample surveys. J. Amer. Statist. Assoc., 81(3905):5667–5676,
1986.

[CS00] N. Cristianini and J. Shawe-Taylor. An introduction to support vector ma-
chines. Cambridge university press, 2000.

[CSD+08] X. Chai, M. Sayyadian, A. Doan, A. Rosenthal, and L. Seligman. Ana-
lyzing and revising mediated schemas to improve their matchability. In
International Conference on Very Large Data Bases (VLDB), Auckland,
New Zealand, August 2008.

[dC74] N.C.A. da Costa. On the theory of inconsistent formal systems. Notre
Dame Journal of Formal Logic, 15(4):497–510, 1974.

[DHY07] Xin Luna Dong, Alon Y. Halevy, and Cong Yu. Data integration with un-
certainty. In International Conference on Very Large Data Bases (VLDB),
pages 687–698, 2007.

[DI03] E. D. Demaine and N. Immorlica. Correlation clustering with partial in-
formation. Lecture Notes in Computer Science, pages 1–13, 2003.

[DLD+04] Robin Dhamankar, Yoonkyong Lee, Anhai Doan, Alon Halevy, and Pe-
dro Domingos. imap: discovering complex semantic matches between
database schemas. In SIGMOD, pages 383–394, New York, NY, USA,
2004. ACM.

290

[DNH04] A. Doan, N. F. Noy, and A. Y. Halevy. Introduction to the special issue on
semantic integration. SIGMOD Record, 33(4):11–13, 2004.

[DS07] Nilesh Dalvi and Dan Suciu. Efficient query evaluation on probabilistic
databases. VLDB Journal, 16(4):523–544, 2007.

[DSDH08] A. Das Sarma, X. Dong, and A.Y. Halevy. Bootstrapping pay-as-you-go
data integration systems. pages 861–874, 2008.

[Dun95] P. M. Dung. On the acceptability of arguments and its fundamental role in
nonmonotonic reasoning, logic programming and n-person games. Artifi-
cial Intelligence, Volume 77:pp. 321–357, 1995.

[Eme90] E. A. Emerson. Temporal and modal logic. In Theoretical Computer Sci-
ence, pages 995–1072. 1990.

[ESS05] M. Ehrig, S. Staab, and Y. Sure. Bootstrapping ontology alignment meth-
ods with apfel. In International Semantic Web Conference (ISWC), pages
186–200, 2005.

[FFM05] A. Fuxman, E. Fazli, and R. J. Miller. Conquer: Efficient management of
inconsistent databases. In SIGMOD, pages 155–166, 2005.

[FFP05] S. Flesca, F. Furfaro, and F. Parisi. Consistent query answers on numerical
databases under aggregate constraints. In DBPL, pages 279–294, 2005.

[FFP07] S. Flesca, F. Furfaro, and F. Parisi. Preferred database repairs under aggre-
gate constraints. In SUM, pages 215–229, 2007.

[FH94] Ronald Fagin and Joseph Y. Halpern. Reasoning about knowledge and
probability. Journal of the ACM, 41(2):340–367, 1994.

[FHH+09] Ronald Fagin, Laura M. Haas, Mauricio A. Hernández, Renée J. Miller,
Lucian Popa, and Yannis Velegrakis. Clio: Schema mapping creation and
data exchange. In Conceptual Modeling: Foundations and Applications,
pages 198–236, 2009.

291

[FHM90] R. Fagin, Joseph Y. Halpern, and Nimrod Megiddo. A logic for reasoning
about probabilities. Information and Computation, 87(1-2):78–128, 1990.

[Fit91] M. Fitting. Bilattices and the semantics of logic programming. Journal of
Logic Programming, 11(1-2):91–116, 1991.

[FKMP05] Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa. Data
exchange: semantics and query answering. Theoretical Computer Science,
336(1):89–124, 2005.

[FKP05] Ronald Fagin, Phokion G. Kolaitis, and Lucian Popa. Data exchange: get-
ting to the core. ACM Transactions on Database Systems, 30(1):174–210,
2005.

[FKUV86] Ronald Fagin, Gabriel M. Kuper, Jeffrey D. Ullman, and Moshe Y. Vardi.
Updating logical databases. Advances in Computing Research, 3:1–18,
1986.

[FLMC02] W. Fan, H. Lu, S. E. Madnick, and D. Cheund. Direct: A system for mining
data value conversion rules from disparate data sources. Decision Support
Systems, 34:19–39, 2002.

[FLPL+01] E. Franconi, A. Laureti Palma, N. Leone, S. Perri, and F. Scarcello. Census
data repair: a challenging application of disjunctive logic programming. In
LPAR, pages 561–578, 2001.

[FM05] A. Fuxman and R. J. Miller. First-order query rewriting for inconsistent
databases. In International Conference on Database Theory (ICDT), pages
337–351, 2005.

[FR97] Norbert Fuhr and Thomas Rölleke. A probabilistic relational algebra for
the integration of information retrieval and database systems. ACM Trans-
actions on Information Systems, 15(1):32–66, 1997.

[FUV83] Ronald Fagin, Jeffrey D. Ullman, and Moshe Y. Vardi. On the semantics of
updates in databases. In ACM SIGACT-SIGMOD Symposium on Principles

292

of Database Systems (PODS), pages 352–365. ACM, 1983.

[Gab85] D. Gabbay. Theoretical foundations for non-monotonic reasoning in expert
systems. pages 439–457, 1985.

[Gal06] Avigdor Gal. Managing uncertainty in schema matching with top-k
schema mappings. Journal of Data Semantics, 6:90–114, 2006.

[Gal07] avigdor Gal. Why is schema matching tough and what can we do about it?
SIGMOD Record, 35(4):2–5, 2007.

[Gar78] Peter. Gardenfors. Conditionals and changes of belief. Acta Philosophica
Fennica, 30:381–404, 1978.

[Gar88a] P. Gardenfors. The dynamics of belief systems: Foundations vs. coherence.
International journal of Philosophy, 1988.

[Gar88b] Peter. Gardenfors. Knowledge in flux : modeling the dynamics of epistemic
states. MIT Press, Cambridge, Mass. :, 1988.

[GD05] L. Getoor and C. P. Diehl. Link mining: a survey. ACM SIGKDD Explo-
rations Newsletter, 7(2):3–12, 2005.

[GGZ03] G. Greco, S. Greco, and E. Zumpano. A logical framework for querying
and repairing inconsistent databases. IEEE Transactions on Knowledge
and Data Engineering (TKDE), 15(6):1389–1408, 2003.

[GH92] Dov Gabbay and Anthony Hunter. Making inconsistency respectable 1:
A logical framework for inconsistency in reasoning. In Fundamentals of
Artificial Intelligence, page pages. Springer, 1992.

[GH93] Dov Gabbay and Anthony Hunter. Making inconsistency respectable: Part
2 - meta-level handling of inconsistency. In In Applied General Systems
Research, (ed) G. Klir, Plenum, pages 129–136. Springer-Verlag, 1993.

293

[GH06] J. Grant and A. Hunter. Measuring inconsistency in knowledgebases. Jour-
nal of Intelligent Information Systems, 27(2):159–184, 2006.

[GH08] J. Grant and A. Hunter. Analysing inconsistent first-order knowledge
bases. Artificial Intelligence, 172(8-9):1064–1093, 2008.

[GIKS03] L. Gravano, P.G. Ipeirotis, N. Koudas, and D. Srivastava. Text joins for
data cleansing and integration in an rdbms. In International Conference
on Data Engineering(ICDE), pages 729–731, 2003.

[GJ86] J. Grant and Minker. J. Answering queries in indefinite databases and the
null value problem. Advances in Computing Research - The Theory of
Databases, 3:247–267, 1986.

[GL98] M. Gelfond and V. Lifschitz. The stable model semantics for logic pro-
gramming. In International Conference on Logic Programming, pages
1070–1080, 1998.

[GMSS09] Avigdor Gal Gal, Maria Vanina Martinez, Gerardo I. Simari, and V. S.
Subrahmanian. Aggregate query answering under uncertain schema map-
pings. In International Conference on Data Engineering (ICDE), pages
940–951, 2009.

[GN06] Georg Gottlob and Alan Nash. Data exchange: computing cores in polyno-
mial time. In ACM Symposium on Principles of Database Systems (PODS),
pages 40–49, New York, NY, USA, 2006. ACM.

[GPSS80] D. M. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On the temporal basis of
fairness. In Symposium on Principles of Programming Languages (POPL),
pages 163–173, 1980.

[Gra77] John Grant. Null values in a relational data base. Inf. Process. Lett.,
6(5):156–157, 1977.

[Gra78] J. Grant. Classifications for inconsistent theories. Notre Dame Journal of
Formal Logic, 19(3):435–444, 1978.

294

[Gra79] John Grant. Partial values in a tabular database model. Inf. Process. Lett.,
9(2):97–99, 1979.

[Gra80] John Grant. Incomplete information in a relational database. Fundamenta
Informaticae III, 3:363–378, 1980.

[Gra91] G. Grahne. The Problem of Incomplete Information in Relational
Databases. Springer, 1991.

[GS95] John Grant and V. S. Subrahmanian. Reasoning in inconsistent knowledge
bases. IEEE Transactions on Knowledge and Data Engineering (TKDE),
7(1):177–189, 1995.

[GS04] Alejandro Javier Garcı́a and Guillermo Ricardo Simari. Defeasible logic
programming: An argumentative approach. TPLP, 4(1-2):95–138, 2004.

[Hai84] T. Hailperin. Probability logic. Notre Dame Journal of Formal Logic, 25
(3):198–212, 1984.

[Hal90] Joseph Y. Halpern. An analysis of first-order logics of probability. Artifi-
cial Intelligence, Volume 46(3):pp. 311–350, 1990.

[Han93] Sven Ove Hansson. Reversing the levi identity. Journal of Philosophical
Logic, 22(6), 1993.

[Han94] Sven Ove Hansson. Kernel contraction. Journal of Symbolic Logic,
59(3):845–859, 1994.

[Han97] Sven Ove Hansson. Semi-revision. Journal of Applied Non-Classical
Logic, (7):151–175, 1997.

[Hec98] D. Heckerman. A tutorial on learning with bayesian networks. NATO ASI
SERIES D BEHAVIOURAL AND SOCIAL SCIENCES, 89:301–354, 1998.

[HIM+04] A.Y. Halevy, Z.G. Ives, J. Madhavan, P. Mork, D. Suciu, and I. Tatarinov.
The Piazza peer data management system. IEEE Transactions on Knowl-

295

edge and Data Engineering (TKDE), 16(7):787–798, 2004.

[HK05] A. Hunter and S. Konieczny. Approaches to measuring inconsistent infor-
mation. In Inconsistency Tolerance, pages 191–236, 2005.

[HL10] Sven Hartmann and Sebastian Link. When data dependencies over sql ta-
bles meet the logics of paradox and s-3. In ACM Symposium on Principles
of Database Systems (PODS), pages 317–326, New York, NY, USA, 2010.
ACM.

[HMYW05] H. He, W. Meng, C. T. Yu, and Z. Wu. Wise-integrator: A system for ex-
tracting and integrating complex web search interfaces of the deep web. In
International Conference on Very Large Data Bases (VLDB), pages 1314–
1317, 2005.

[HS95] Mauricio A. Hernández and Salvatore J. Stolfo. The merge/purge problem
for large databases. In SIGMOD, pages 127–138, New York, NY, USA,
1995. ACM.

[IJ81] Tomasz Imielinski and Witold Lipski Jr. On representing incomplete in-
formation in a relational data base. In International Conference on Very
Large Data Bases (VLDB), pages 388–397, 1981.

[IKBS08] A. Inan, M. Kantarcioglu, E. Bertino, and M. Scannapieco. A hybrid ap-
proach to private record linkage. In International Conference on Data
Engineering (ICDE), pages 496–505, 2008.

[IL83] T. Imielinski and W. Lipski. Incomplete information and dependencies in
relational databases. In SIGMOD, pages 178–184, 1983.

[IL84a] Tomasz Imielinski and Witold Lipski. Incomplete information in relational
databases. Journal of ACM, 31(4):761–791, 1984.

[IL84b] Tomasz Imieliński and Witold Lipski, Jr. Incomplete information in rela-
tional databases. Journal of the ACM, 31(4):761–791, 1984.

296

[JD05] Wojciech Jamroga and Jürgen Dix. Model checking strategic abilities of
agents under incomplete information. In ICTCS, pages 295–308, 2005.

[JD06] Wojciech Jamroga and Jürgen Dix. Model checking abilities under incom-
plete information is indeed delta2-complete. In EUMAS, 2006.

[JDR99] P. Jermyn, M. Dixon, and B. J. Read. Preparing clean views of data for data
mining. In ERCIM Workshop on Database Research, pages 1–15, 1999.

[JKV07] T.S. Jayram, S. Kale, and E. Vee. Efficient aggregation algorithms for prob-
abilistic data. In ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 346–355, New Orleans, Louisiana, USA, 2007.

[Jr.79] Witold Lipski Jr. On semantic issues connected with incomplete informa-
tion databases. ACM Transactions on Database Systems, 4(3):262–296,
1979.

[KIL04] Gabriele Kern-Isberner and Thomas Lukasiewicz. Combining probabilis-
tic logic programming with the power of maximum entropy. Artificial
Intelligence, 157(1-2):139–202, 2004.

[KL92] M. Kifer and E. L. Lozinskii. A logic for reasoning with inconsistency.
Journal of Automated Reasoning, 9(2):179–215, 1992.

[KLM90] Sarit Kraus, Daniel Lehmann, and Menachem Magidor. Nonmonotonic
reasoning, preferential models and cumulative logics. Artificial Intelli-
gence, 44(1-2):167–207, 1990.

[KS89] Michael Kifer and V. S. Subrahmanian. On the expressive power of anno-
tated logic programs. In NACLP, pages 1069–1089, 1989.

[KS92] M. Kifer and V.S. Subrahmanian. Theory of generalized annotated
logic programming and its applications. Journal of Logic Programming,
12(3&4):335–367, 1992.

297

[KTG92] Werner Kiessling, Helmut Thöne, and Ulrich Güntzer. Database sup-
port for problematic knowledge. In International Conference on Extend-
ing Database Technology (EDBT), pages 421–436, London, UK, 1992.
Springer-Verlag.

[LC00] W.-S. Li and C. Clifton. SEMINT: A tool for identifying attribute cor-
respondences in heterogeneous databases using neural networks. Data &
Knowledge Engineering, 33(1):49–84, 2000.

[LCcI+04] Chengkai Li, Kevin Chen-chuan, Ihab F. Ilyas, Chang Ihab, F. Ilyas, and
Sumin Song. Ranksql: Query algebra and optimization for relational top-k
queries. In SIGMOD, pages 131–142. ACM Press, 2004.

[Lev84] Hector J. Levesque. A logic of implicit and explicit belief. In National
Conference on Artificial Intelligence (AAAI), pages 198–202, 1984.

[Li09] Xiao Bai Li. A bayesian approach for estimating and replacing missing
categorical data. J. Data and Information Quality, 1(1):1–11, 2009.

[Lie82] Y. Edmund Lien. On the equivalence of database models. J. ACM, 29:333–
362, April 1982.

[Lip79] Witold Lipski. On semantic issues connected with incomplete information
databases. ACM Trans. Database Syst., 4(3):262–296, 1979.

[Lip81] Witold Lipski. On databases with incomplete information. Journal of the
ACM, 28(1):41–70, 1981.

[LL98] Mark Levene and George Loizou. Axiomatisation of functional dependen-
cies in incomplete relations. Theoretical Computer Science, 206(1-2):283–
300, 1998.

[LL99] Mark Levene and George Loizou. Database design for incomplete rela-
tions. ACM Transactions on Database Systems, 24(1):80–125, 1999.

298

[Llo87] J. W. Lloyd. Foundations of Logic Programming, Second Edition.
Springer-Verlag, 1987.

[LLRS97] Laks V. S. Lakshmanan, Nicola Leone, Robert Ross, and V. S. Subrahma-
nian. Probview: a flexible probabilistic database system. ACM Transac-
tions on Database Systems, 22(3):419–469, 1997.

[Loz94] E. L. Lozinskii. Resolving contradictions: A plausible semantics for in-
consistent systems. Jounal of Automated Reasoning, 12(1):1–31, 1994.

[LS94] Laks V. S. Lakshmanan and Fereidoon Sadri. Probabilistic deductive
databases. In International Symposium on Logic programming (ILPS),
pages 254–268, Cambridge, MA, USA, 1994. MIT Press.

[McC87] J. McCarthy. Circumscription—a form of non-monotonic reasoning. pages
145–152, 1987.

[MD80] Drew V. McDermott and Jon Doyle. Non-monotonic logic i. Artificial
Intelligence, 13(1-2):41–72, 1980.

[ME97] Alvaro Monge and Charles Elkan. An efficient domain-independent algo-
rithm for detecting approximately duplicate database records, 1997.

[MHH00] R.J. Miller, L.M. Haas, and M.A. Hernández. Schema mapping as query
discovery. In A. El Abbadi, M.L. Brodie, S. Chakravarthy, U. Dayal,
N. Kamel, G. Schlageter, and K.-Y. Whang, editors, International Confer-
ence on Very Large Data Bases (VLDB), pages 77–88. Morgan Kaufmann,
2000.

[MHH+01] R.J. Miller, M.A. Hernàndez, L.M. Haas, L.-L. Yan, C.T.H. Ho, R. Fagin,
and L. Popa. The Clio project: Managing heterogeneity. SIGMOD Record,
30(1):78–83, 2001.

[MKIS00] E. Mena, V. Kashayap, A. Illarramendi, and A. Sheth. Imprecise answers
in distributed environments: Estimation of information loss for multi-
ontological based query processing. International Journal of Cooperative

299

Information Systems, 9(4):403–425, 2000.

[MM+11] Maria V. Martinez, Cristian Molinaro, , V.S. Subrahmanian, and Leila Am-
goud. A general framework for reasoning about inconsistency. In prepa-
ration, 2011.

[MMGS11] Maria Vanina Martinez, Cristian Molinaro, John Grant, and V.S. Subrah-
manian. Customized policies for handling partial information in relational
databases. Under Review, 2011.

[Moo85] R. C. Moore. Semantical considerations on nonmonotonic logic. Artificial
Intelligence, 25(1):75–94, 1985.

[Moo88] R. C. Moore. Autoepistemic Logic. In P. Smets, E. H. Mamdani,
D. Dubois, and H. Prade, editors, Non-Standard Logics for Automated
Reasoning. Academic Press, 1988.

[MP92] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent
Systems: Specification. Springer-Verlag, New York, 1992.

[MPP+08] Maria V. Martinez, Francesco Parisi, Andrea Pugliese, Gerardo I. Simari,
and V.S. Subrahmanian. Inconsistency management policies. In Interna-
tional Conference on Principles of Knowledge Representation and Rea-
soning (KR), pages 367–376, 2008.

[MPP+10] Maria Vanina Martinez, Francesco Parisi, Andrea Pugliese, Gerardo I.
Simari, and V. S. Subrahmanian. Efficient policy-based inconsistency man-
agement in relational knowledge bases. In SUM, pages 264–277, 2010.

[MPS+07] M. V. Martinez, A. Pugliese, G. I. Simari, V. S. Subrahmanian, and
H. Prade. How dirty is your relational database? an axiomatic approach.
In ECSQARU, pages 103–114, 2007.

[MST94] D. Michie, D. J. Spiegelhalter, and C.C. Taylor. Machine Learning, Neural
and Statistical Classification. Ellis Horwood, 1994.

300

[Mun74] J. Munkres. Topology: A First Course. Prentice Hall, 1974.

[MWJ99] K. Murphy, Y. Weiss, and M. I. Jordan. Loopy belief propagation for
approximate inference: An empirical study. In Uncertainty in Artificial
Intelligence (UAI), page 467475. Citeseer, 1999.

[Nil86a] N. J. Nilsson. Probabilistic logic. Artificial Intelligence, Vol-
ume 28(1):pp. 71–87, 1986.

[Nil86b] Nils Nilsson. Probabilistic logic. Artificial Intelligence, 28:71–87, 1986.

[NJ02] A. Y. Ng and M. I. Jordan. On discriminative vs. generative classifiers:
A comparison of logistic regression and naive bayes. Advances in neural
information processing systems, 2:841–848, 2002.

[NS92] Raymond Ng and V. S. Subrahmanian. Probabilistic logic programming.
Information and Computation, 101(2):150–201, 1992.

[NS94] Raymond Ng and V. S. Subrahmanian. Stable semantics for probabilistic
deductive databases. Information and Computation, 110(1):42–83, 1994.

[OS04] F. Ozcan and V.S. Subrahmanian. Partitioning activities for agents. In In-
ternational Joint Conference on Artificial Intelligence (IJCAI), pages 89–
113, 2004.

[Pap94] Christos M. Papadimitriou. Computational complexity. Addison-Wesley,
1994.

[Pea88] Judea Pearl. Probabilistic reasoning in intelligent systems: networks of
plausible inference. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 1988.

[PL92] G. Pinkas and R. P. Loui. Reasoning from inconsistency: a taxonomy of
principles for resolving conflicts. In International Conference on Princi-
ples of Knowledge Representation and Reasoning (KR), pages 709–719,
1992.

301

[Pnu77] A. Pnueli. The temporal logic of programs. In Symposium on Foundations
of Computer Science (FOCS), pages 46–57, 1977.

[Poo85] D. Poole. On the comparison of theories: preferring the most specific
explanation. In International Joint Conference on Artificial Intelligence
(IJCAI), pages 144–147, 1985.

[Poo88] David Poole. A logical framework for default reasoning. Artificial Intelli-
gence, Volume 36(1):pp. 27–47, 1988.

[Poo93] David Poole. Probabilistic horn abduction and bayesian networks. Artifi-
cial Intelligence, 64(1):81–129, 1993.

[Poo97] David Poole. The independent choice logic for modelling multiple agents
under uncertainty. Artificial Intelligence, 94(1-2):7–56, 1997.

[PS97] Henry Prakken and Giovanni Sartor. Argument-based extended logic pro-
gramming with defeasible priorities, 1997.

[Pyl99] Dorian Pyle. Data Preparation for Data Mining (The Morgan Kaufmann
Series in Data Management Systems). Morgan Kaufmann, 1999.

[Qui93] J. Ross Quinlan. C4.5: Programs for Machine Learning (Morgan Kauf-
mann Series in Machine Learning). Morgan Kaufmann, 1993.

[RCC92] D. A. Randell, Z. Cui, and A. G. Cohn. A spatial logic based on regions
and connection. In International Conference on Principles of Knowledge
Representation and Reasoning (KR), pages 165–176, 1992.

[RDS07] Christopher Ré, Nilesh Dalvi, and Dan Suciu. Efficient top-k query evalu-
ation on probabilistic data. In International Conference on Data Engineer-
ing (ICDE), pages 886–895, 2007.

[Rei78] R. Reiter. On closed world data bases. In Logic and Data Bases, pages
55–76, 1978.

302

[Rei80a] R. Reiter. A logic for default reasoning. Artificial Intelligence, 13(1-2):81–
132, 1980.

[Rei80b] R. Reiter. A logic for default reasoning. Artificial Intelligence, 13(1-2):81–
132, 1980.

[Rei86] Raymond Reiter. A sound and sometimes complete query evaluation al-
gorithm for relational databases with null values. Journal of the ACM,
33:349–370, April 1986.

[Res64] N. Rescher. Hypothetical reasoning, 1964.

[RM70] N. Rescher and R. Manor. On inference from inconsistent premises. The-
ory and decision, Volume 1:pp. 179–219, 1970.

[Roo92] Nico Roos. A logic for reasoning with inconsistent knowledge. Artificial
Intelligence, Volume 57(1):pp. 69–103, 1992.

[RSG05] R.B. Ross, V.S. Subrahmanian, and J. Grant. Aggregate operators in prob-
abilistic databases. Journal of the ACM, 52(1):54–101, 2005.

[SA07] V. S. Subrahmanian and L. Amgoud. A general framework for reasoning
about inconsistency. In International Joint Conference on Artificial Intel-
ligence (IJCAI), pages 599–504, 2007.

[SCM09] Slawomir Staworko, Jan Chomicki, and Jerzy Marcinkowski. Prioritized
repairing and consistent query answering in relational databases. CoRR,
abs/0908.0464, 2009.

[Sho67] J. Shoenfield. Mathematical Logic. Addison-Wesley, 1967.

[SI07] Mohamed A. Soliman and Ihab F. Ilyas. Top-k query processing in uncer-
tain databases. In International Conference on Data Engineering (ICDE),
pages 896–905, 2007.

303

[SL92] Guillermo R. Simari and Ronald P. Loui. A mathematical treatment of
defeasible reasoning and its implementation. Artificial Intelligence, 53(2-
3):125–157, 1992.

[SNB+08] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Gallagher, and T. Eliassi-Rad.
Collective classification in network data. AI Magazine, 29(3):93, 2008.

[SQL03] Information technology: Database languages, sql part 2 (foundation),
2003.

[SS03] E. Schallehn and K. Sattler. Using similarity-based operations for resolv-
ing data-level conflicts. In BNCOD, volume 2712, pages 172–189, 2003.

[Tar56] A. Tarski. On Some Fundamental Concepts of Metamathematics. Oxford
Uni. Press, 1956.

[TK93] K. Thirunarayan and M. Kifer. A theory of nonmonotonic inheritance
based on annotated logic. Artificial Intelligence, 60(1):23–50, 1993.

[Ull88] J. D. Ullman. Principles of Database and Knowledge-Base Systems, Vol-
ume I. Computer Science Press, 1988.

[UW02] Jeffrey D. Ullman and Jennifer Widom. A first course in database systems
(2. ed.). Prentice Hall, 2002.

[Vas79] Yannis Vassiliou. Null values in data base management: A denotational
semantics approach. In SIGMOD, pages 162–169, 1979.

[Vas80] Yannis Vassiliou. Functional dependencies and incomplete information. In
International Conference on Very Large Data Bases (VLDB), pages 260–
269, 1980.

[Wij03] J. Wijsen. Condensed representation of database repairs for consis-
tent query answering. In International Conference on Database Theory
(ICDT), pages 378–393, 2003.

304

[Wij05] J. Wijsen. Database repairing using updates. ACM TODS, 30(3):722–768,
2005.

[YC88] Li Yan Yuan and Ding-An Chiang. A sound and complete query evaluation
algorithm for relational databases with null values. In SIGMOD, pages 74–
81, New York, NY, USA, 1988. ACM.

[Zan84] C. Zaniolo. Database relations with null values. Journal of Computer and
System Sciences (JCSS), 28(1):142–166, 1984.

305

