
Lara Raquel Saraiva Luís

Licenciada em Engenharia Informática

Repairs of Databases with Null Values

Dissertação para obtenção do Grau de Mestre em
Engenharia Informática

Orientador : João Leite, Professor Auxiliar,
Universidade Nova de Lisboa

Co-orientador : Martin Slota, Investigador,
Universidade Nova de Lisboa

Júri:

Presidente: Prof.a Carla Maria Gonçalves Ferreira,
Universidade Nova de Lisboa

Arguente: Prof. Vítor Manuel Beires Pinto Nogueira,
Universidade de Évora

Vogal: Prof. João Alexandre Carvalho Pinheiro Leite,
Universidade Nova de Lisboa

Novembro, 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório da Universidade Nova de Lisboa

https://core.ac.uk/display/157627445?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

iii

Repairs of Databases with Null Values

Copyright c© Lara Raquel Saraiva Luís, Faculdade de Ciências e Tecnologia, Universi-
dade Nova de Lisboa

A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa têm o direito,
perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de ex-
emplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro
meio conhecido ou que venha a ser inventado, e de a divulgar através de repositórios
científicos e de admitir a sua cópia e distribuição com objectivos educacionais ou de in-
vestigação, não comerciais, desde que seja dado crédito ao autor e editor.

iv

vi

Acknowledgements

First of all, I want to express how thankful I am to belong to this institution, Faculdade
de Ciências e Tecnologia da Universidade Nova de Lisboa, that since the first moment,
made me feel at home. It helped me to easily face a new stage of my life, making me
grow professionally and personally, and allowed me to have access to the best education
and best teachers that I could get. Thank you to all the people that participated in this
process during these years.

With respect to this dissertation specifically, I want to express my appreciation to my
advisors, João Leite and Martin Slota, that guide me through this process. To João Leite
for being one of the best teachers that I had and making me gain interest in databases
in the beginning of the course, and to Martin Slota for the patience in the long online
meetings. Thank you for the advices, for the requirements, for the knowledge and for
allowing me to develop a subject that I always wanted to work on.

This work was partially supported by FCT project ASPEN - Answer Set Programming
with BoolEaN Satisfiability (PTDC/EIA-CCO/110921/2009).

I also want to thank to the colleagues for making me feel integrated, part of the family,
for their support, sense of humor, for hearing my complaints. They allowed me to not
walk through this path alone. Thanks for the discussions, for the jokes, for the knowledge
sharing, for being the best fellows I could get. Main thanks to Laura Oliveira, Andy
Gonçalves, Joana Roque, Helder Martins and João Silva. Also, thanks to Bruno Filipe
Faustino for having patience for reading the document, for the support and for the long
conversations.

I cannot forget to mention my since ever best friend for being there everyday and give
me motivation to keep going, to achieve my goals, and that always believed in me, Íris
Grilo.

At last but not least, I want to thank to my parents for being there, for always sup-
porting me and ask me how the things were going. Thanks for the real concern.

vii

viii

Abstract

Databases store information that is intended to model the real world and to help in
modeling, they use constraints that shape the information according to the world view.
However, when a new constraint is defined, the data contained in the database may not
respect it and so the database should be repaired. Those repairs are made by adding,
removing or updating tuples, making as few modifications as possible to satisfy the con-
straints. In order to determine the repairs of a database with respect to new constraints,
there are already some available approaches that provide a solution. But databases also
need to contain information that is absence, which is represented through null values.
Null values are not regular values and they represent information that is missing or
unknown. When using null values, there is no consensus in the literature on how to
interpret them when checking constraint satisfaction. Also, there is not a practical imple-
mentation to do the repairing regarding null values.

In this document, we study the problem of dealing with null values in the repairing
process and propose a (both practical and theoretically sound) solution for this problem
including the definition of semantics for null values to achieve constraint satisfaction, and
how to proceed to make the databases repairs, ending with a practical implementation of
the proposed solution using Answer-set Programming.

Keywords: databases, inconsistency, constraints, repairs, minimal change, null values,
answer-set programming.

ix

x

Resumo

As bases de dados guardam informação que pretende modelar o mundo real e para
ajudar na modelação, estas usam restrições que modelam a informação de acordo com
a visão do mundo. No entanto, quando uma nova restrição é definida, os dados con-
tidos na base de dados podem não respeitar essa restrição e então é necessário fazer a
reparação da base de dados. Essas reparações são conseguidas adicionando, removendo
ou actualizando tuplos, realizando o mínimo de alterações possíveis até que as restrições
sejam cumpridas. Para determinar as reparações de uma base de dados relativamente
a novas restrições, existem já algumas abordagens que fornecem uma solução. No en-
tanto, as bases de dados também precisam de conter informação que está ausente, sendo
representada por valores nulos. Os valores nulos não são valores normais e representam
informação que está em falta ou é desconhecida. Quando se usam valores nulos, não
há um consenso na literatura na forma de interpretar essa informação para a satisfação
das restrições. Além disso, não existem implementações que realizem reparações que
considerem valores nulos.

Neste documento, estudamos o problema de lidar com valores nulos na reparação de
base de dados e propomos uma solução (prática e teórica) para este problema, incluindo
as semânticas possíveis na presença de valores nulos para a satisfação de restrições, e
como proceder para realizar as reparações da base de dados, culminando na implemen-
tação prática da solução proposta fazendo uso de Answer-set Programming.

Palavras-chave: bases de dados, inconsistência, restrições, reparações, minimalidade,
valores nulos, answer-set programming.

xi

xii

Contents

1 Introduction 1

1.1 Integrity constraints . 2

1.2 Null values . 2

1.3 Problem . 3

2 Preliminaries 11

2.1 First-order logic . 11

2.1.1 Syntax . 11

2.1.2 Semantics . 13

2.2 Answer set programming . 15

2.2.1 Syntax . 15

2.2.2 Semantics . 16

2.3 Databases . 17

2.3.1 Database concepts . 18

2.3.2 Integrity constraints . 19

2.3.3 Repairs . 24

3 Related work 27

4 Taking null values into account: approaches and repairs 33

4.1 Approaches with null values . 34

4.2 Integrity constraints and null values . 37

4.2.1 Examples and constraint satisfaction discussion 40

4.2.2 Semantics with null values . 46

4.3 Repairs . 49

4.3.1 Operations: Insertions, deletions and updates 50

4.3.2 Minimality . 52

xiii

xiv CONTENTS

5 Approaching the problem by using logic programming 57
5.1 Determining the repairs . 57
5.2 Determining the minimal repairs . 74

6 The DRSys application 77
6.1 Architecture . 77
6.2 Features . 79

6.2.1 ICs specification screen . 80
6.2.2 Insert options screen . 82
6.2.3 Delete options screen . 84
6.2.4 Other options screen . 85

6.3 Decisions . 87
6.3.1 Tools . 87
6.3.2 Main features . 88

6.4 Optimizations . 92
6.5 Some examples and analysis of the results 93

7 Scalability tests 99
7.1 Tests results and analysis . 102

7.1.1 Number of relevant tables . 102
7.1.2 Number of irrelevant tables . 103
7.1.3 Number of new integrity constraints 105
7.1.4 Number of new irrelevant integrity constraints 107
7.1.5 Tables operations limit . 109
7.1.6 Number of relevant updatable attributes 110
7.1.7 Obtaining repairs only with null values vs without null values . . 111
7.1.8 Number of attributes that compose the tables 113
7.1.9 Number of tuples of the tables . 114

7.2 Overall considerations . 115

8 Conclusion 117

List of Figures

6.1 Architecture - Interaction with external entities 78

6.2 Architecture - Components . 78

6.3 Connection screen . 80

6.4 Constraints screen . 81

6.5 View ASP screen . 81

6.6 Add ASP screen . 82

6.7 Insertion operations screen . 83

6.8 Delete operations screen . 84

6.9 Update operations screen . 85

6.10 Other options screen . 86

6.11 Edit ASP code screen . 86

6.12 Results screen . 87

6.13 Results of foreign key example with simple match 93

6.14 Results of foreign key example with partial match 94

6.15 Results of foreign key example with partial match 95

6.16 Results of foreign key example with full match 95

6.17 Results of functional dependency example with simple match and partial
match . 96

6.18 Results of functional dependency example with full match 96

6.19 Results of check constraint example with simple match and partial match 96

6.20 Results of check constraint example with full match 97

6.21 Results of foreign key example using weight minimality with default values 97

6.22 Results of foreign key example using weight minimality with custom values 98

7.1 TPCW database schema . 100

7.2 Number of relevant tables results . 103

7.3 Number of irrelevant tables results . 104

7.4 Number of relevant ICs results . 106

xv

xvi LIST OF FIGURES

7.5 Number of irrelevant ICs results . 108
7.6 Limited number of operations results . 110
7.7 Number of updatable attributes results . 111
7.8 Influence of using null values or not results 112
7.9 Number of attributes results . 113
7.10 Number of tuples results . 114

List of Tables

1.1 Employees table . 4

1.2 Repair 1 of employees table . 4

1.3 Repair 2 of employees table . 4

1.4 Employees table - CQA . 4

1.5 Employees table - CQA . 5

1.6 Employees table - DR . 5

1.7 Employees table . 5

2.1 Truth table . 14

2.2 Departments table . 18

2.3 Students table . 24

2.4 Repair 1 of Students table . 24

2.5 Repair 2 of Students table . 24

3.1 Approaches without null values summary 32

4.1 Approaches with null values summary . 37

4.2 Students with Courses table . 39

4.3 Semantics introduction example results . 39

4.4 Students table . 41

4.5 Students table (2) . 41

4.6 Students table (3) . 42

4.7 Cities table . 43

4.8 Organizations and locations table . 44

4.9 Employees table . 45

4.10 Products table . 45

4.11 Students with courses table . 54

4.12 Courses table . 54

4.13 Courses table . 54

xvii

xviii LIST OF TABLES

4.14 Repair 1 - Students with courses table . 55
4.15 Repair 1 - Courses table . 55
4.16 Repair 2 - Students with courses table . 55
4.17 Repair 2 - Courses table . 55
4.18 Repair 3 - Students with courses table . 55
4.19 Repair 3 - Courses table . 55

6.1 Cinema table . 82
6.2 Theater table . 82
6.3 Employees table . 89
6.4 Salaries table . 89
6.5 Orders table . 90
6.6 Products table . 90

7.1 Item table instance . 105
7.2 Country table instance . 107
7.3 Order_line table instance . 109

1
Introduction

From the earliest days of computers, storing and manipulating data has been a major
application focus [RG02]. Today, we have a lot of organizations that keep their informa-
tion available due to computers. For example, libraries keep information about available
books; hospitals keep information about patients and appointments; stores keep infor-
mation about products and suppliers. In order to maintain that information and keep it
organized, we use databases. With databases, we group data according to its purpose
and characteristics. For example, it might make sense to group together the products of
a specific store because all of them have a name, a price and a category.

In order to store and retrieve database information we use a Database-Management
System (DBMS). A DBMS provides methods to maintain data safety, namely to give some
guarantees about integrity of stored data so that we can trust in it as much as possible,
provides concurrent access to data, crash recovery from system failures and efficient data
access [RG02]. Before DBMSs, file-processing systems presented many difficulties which
prompted the development of database systems [SKS10].

Underlying the structure of a database are the data models that describe the design
of the database at different levels [SKS10]. In 1971, Edgar Codd showed how a relational
model could be used to define and structure large databases of organizations, being best
fitted to their needs [Eri09]. The relational model uses a collection of tables to represent
information. A table is composed of a set of columns and a set of records. Each record
(an entity) has a fixed number of attributes (the properties of the entity) that are the
columns of the table. For example, if we need to store information related to a collection
of products, then each record represents a different product and each attribute represents
a different characteristic of the product, e.g. the name and the category.

The relational model was an important step towards what we have today. It provided

1

1. INTRODUCTION 1.1. Integrity constraints

a more logical way of storing information by making use of relationships between tables
that, together with its conceptual simplicity, has led to its widespread adoption. Today
the majority of database products are based on this model [SKS10].

However, the relational model just by itself cannot model the relationships between
tables using the real world functioning of an organization. Databases have to guarantee,
as much as possible, data consistency in order to contain reliable information and be
useful to the organization that needs it.

1.1 Integrity constraints

For the purpose of having an accurate representation of the context that is being modeled,
we need to impose some restrictions according to the modeled context on data so that it
does not represent unrealistic situations. For example, returning to the products example,
we would only allow to have products whose price is a value that is greater then zero,
since we cannot have negative prices. Also, if we consider the books of a library, we
want each book to have an author from our own list of authors. To achieve that, we use
integrity constraints (ICs).

Constraints are formulated by the database designer to express the conditions that
data must follow in order to be consistent with the context that is being modeled. Con-
straints are used to validate the changes to ensure that the database remains consistent
with the world view. So, data is meaningful only when it reflects those constraints.

DBMSs are responsible for ensuring that the ICs are not violated. Consequently, to
avoid their violation, currently existing DBMSs reject updates that make the database
inconsistent regarding the ICs, which may not be expected by the user.

Databases may become inconsistent due to some factors like the integration of differ-
ent types of databases or even if the user specifies new ICs. In the last case, data may
not be according with the new IC and so, the user may want to know that. It would be
more interesting to the user to know what she can do to solve the problem. For example,
instead of just rejecting the IC, the user may want to just do some small modifications on
data such as insertions, deletions of updates in order to make it consistent with the ICs
and so keep the data and keep the new IC.

1.2 Null values

There are situations where we need to represent missing or unknown information be-
cause we do not know it. For example, returning to the product example, we may have
all the information about a product but we do not know in which category it fits. At-
tributes that represent unknown information are represented by null values. They should
be considered when we talk about databases since we often want to represent some part
of the information that we do not know.

2

1. INTRODUCTION 1.3. Problem

This type of values differ from the other ones since they do not represent a specific
known information, but the absence of it, and they can have different meanings since we
do not know if the information is really unknown or if the value does not exist. Also, we
cannot treat these values like the other ones: we cannot compare them in the same way,
for example. Regarding the products example, we may consider that two products have
unknown suppliers that may represent the same supplier. Also, we can consider that, as
they are unknown, they represent different suppliers and so when we are comparing two
unknown values, we consider that the result of the comparison is false. This is why they
can be difficult to handle so, we need to assign meaning to them in all situations in order
to deal with their interpretations ambiguity.

1.3 Problem

When we add a new IC how can we make the database consistent when the existing data
does not respects it? Most DBMSs just reject the whole update that turns the database
inconsistent that is, that does not satisfy the constraints. However, we could drop all the
database so that when we add new data it would respect the new IC but this would make
us lose all data every time we want a new IC, which is obviously unsatisfactory. Instead,
we can remove some tuples that are violating the IC or maybe insert other ones instead of
just rejecting the updates or delete all data. It would be better to do as few operations as
possible that would make the database consistent, reducing the impact on the database.
This set of operations provokes changes on data and the set of these changes is called
repair. A repair originates a database instance that is consistent with the ICs and that
instance minimality differs from the original database.

Repairs can be computed in two different circumstances. They can be computed when
a new IC is added, then one of the repairs is chosen and it replaces the database (Database
Repairing here represented as DR). Or, they can be computed when the user makes a
query to the database and so repairs are used to answer the query (Consistent Query
Answer here represented as CQA), and no change occurs in the database.

For the same database, there can be more than one alternative repair as illustrated in
the following example, based on [BB04].

Example 1 (Simple employees example). Consider that we have a table that stores in-
formation about employees and that we want to impose a constraint that states that the
same employee cannot have more than one date of birth. We distinguish the employees
by their name.

So, using First-Order Logic and considering the Employee table, the IC can be ex-
pressed as:

3

1. INTRODUCTION 1.3. Problem

∀Name,DateOfBirth,Salary,Position,DateOfBirth2 ,Salary2 ,Position2

(Employee(Name,DateOfBirth,Salary ,Position)∧

Employee(Name,DateOfBirth2 ,Salary2 ,Position2)→ DateOfBirth = DateOfBirth2)

Which states that from now on each employee can only have a single date of birth.
Suppose that the contents of the table Employee are as follow:

Name DateOfBirth Salary Position

John 24-03-1990 55 .000 manager
Peter 27-05-1985 50 .000 manager
John 24-03-1991 60 .000 manager

Table 1.1: Employees table

As we can see, the IC is not respected since there are two equal values for Name

attribute and the corresponding values for DateOfBirth are different. We could delete
all the data and the database would be consistent with respect to the IC or we can change
it as little as possible in order to satisfy the constraint.

Two alternative (minimal) repairs are:

Name DateOfBirth Salary Position

John 24-03-1990 55 .000 manager
Peter 27-05-1985 50 .000 manager

Table 1.2: Repair 1 of employees table

Name DateOfBirth Salary Position

Peter 27-05-1985 50 .000 manager
John 24-03-1991 60 .000 manager

Table 1.3: Repair 2 of employees table

By choosing one of the repairs, we get a database that satisfy the ICs. However, none
of them is better than the other, the user can just choose the one that she prefers.

Regarding the previous example, with CQA and the query

select * from employee.

we get the following content of table Employee :

Name DateOfBirth Salary Position

Peter 27-05-1985 50 .000 manager

Table 1.4: Employees table - CQA

The resulting table just includes the data that is present in all the repairs that is, that is
always consistent. With DR, the content of the table corresponds to one of the presented
repairs, differing from CQA. However, if the IC was like:

∀Name,DateOfBirth,Salary,Position(Employee(Name,DateOfBirth,Salary ,Position)∧

Salary > 50 .000)

4

1. INTRODUCTION 1.3. Problem

Considering CQA and the query

select * from employee.

we would get:

Name DateOfBirth Salary Position

John 24-03-1990 55 .000 manager
John 24-03-1991 60 .000 manager

Table 1.5: Employees table - CQA

With respect to DR, the only (minimal) repair possible is:

Name DateOfBirth Salary Position

John 24-03-1990 55 .000 manager
John 24-03-1991 60 .000 manager

Table 1.6: Employees table - DR

That is, both have the same results.
In order to solve the problem of adding new ICs that are not respected by the database

content, some work has been developed to determine the repairs with respect to the new
ICs. Most approaches to the problem are only theoretical, offering a formalization using
First-Order Logic (FOL) and some of them also offer a transformation of the formaliza-
tion into a logic program. There is also some practical work done as in [Alv11] where
an application was developed that allows to define ICs and computes repairs using the
Answer-Set Programming (ASP).

However, we cannot forget that there are some special values, the null values. A
null value can have multiple interpretations. However, in commercial DBMSs, all the
interpretations are represented with a single constant and this is also our approach.

Null values can be difficult to handle when it comes to the satisfaction of ICs, since
we cannot manipulate them in the same way as the other attributes, as we can see in the
following example:

Example 2 (Simple employees example with null values). Considering again the table of
Example 1 but now with null values:

Name DateOfBirth Salary Position

null 24-03-1990 55 .000 manager
Peter 27-05-1985 50 .000 manager
null 24-03-1991 60 .000 manager

Table 1.7: Employees table

In this case, determining whether the table satisfies the constraint depends on how
we interpret the null values within it. If we treat a null value the same way as any other

5

1. INTRODUCTION 1.3. Problem

value, we can say that the table is inconsistent since there are two null values from Name

attribute that correspond to different DateOfBirth values. However, they are not regular
values. We could have the indication that the range of available values for the Name

attribute are only the values that are already in that database’s tuples and, in that case, we
surely have an inconsistency, because by having one null value we know that it represents
one of the values that is already there. Without indicating the range the value that is
missing or not known may be one of the values that are already in the table. On the other
hand, since a null value represents unknown information, it may represent two different
names because we do not know which names are and so we could not say that the IC is
being violated, they may just be two different names that are unknown.

That is one of the problems of having null values when repairing a database. It is
important to adapt the strategies of satisfaction of ICs and, consequently, the repairing
process to null values. We illustrate this in the following example extracted from [CB07].

Example 3 (Using null values when inserting tuples). Consider that we have a database
D that contains two tables, P and R . We want to impose a constraint that states that for
every value x of P , there is also the same value for the first attribute of R . So, using First-
Order Logic and considering the databaseD whereD = {P(a,null),P(b, c),R(a, b)}, the
IC can be expressed as:

∀xy(P(x , y)→ ∃zR(x , z))

A possible repair is D1 = {P(a,null),R(a, b)}, obtained by deleting P (b, c). It removes
the tuple that is problematic, solving the inconsistency problem. The other alternative
repair is D2 = {P(a,null),P(b, c),R(a, b),R(b,null)}. D2 is obtained by inserting a new
tupleR(b, null). It inserts another tuple so that the first tuple is not problematic anymore,
matching with the IC. For instance, when inserting new tuples to restore consistency, it is
possible to choose null values to represent the attributes we do not know and that admit
multiple values that could satisfy the given IC. So, we can use a null value instead of
choosing one of multiple attribute values. If we do not choose a null value, we generate
an alternative repair for each value of the domain of the attribute, generating a lot of
alternative repairs. In this case, the null value could be replaced by any value of the
domain like a , b or c .

Due to the difficulties associated with null values, namely, how to represent missing
or unknown information, how to interpret a null value in each example, how to com-
pare them, when to accept a null value as consistent with respect to a specific IC, there
are not many approaches that consider them when repairing databases. Some of them
just consider that these values are present but are ignored and do not specify a particular
treatment to deal with them. Also, the only existing implementation ([Alv11]) only deals
with databases that do not have null values. There are some approaches in the litera-
ture in order to find the most appropriate interpretation when dealing with null values
but there is no consensus, there is no standard. Some semantics are introduced in SQL
standard [Mel03] that specifies how to verify if each row respects an IC for each of the

6

1. INTRODUCTION 1.3. Problem

presented semantics and there are also approaches that try to complement these seman-
tics, resulting in some alternatives. Two of the approaches that suggest some semantics
to deal with null values are [BB04], where it is stated that “since we do not have precise
information about them [null values], we will consider that no inconsistencies arise due
to their presence” and [BB06], but they do not provide an implementation, where “(...)
we propose first a precise semantics for IC satisfaction in a database with null values that
is compatible with the way null values are treated in commercial database management
systems”.

Taking the difficulties of consider null values into consideration, and the fact that
there are no approaches that repair databases with null values, we highlight our motiva-
tions by analyzing the problems associated with considering null values and we suggest
a solution to deal with these values. We define how to represent these values, as we al-
ready mentioned, we mention the semantics that are already available and analyze, com-
plement and extend them, in order to determine which is the best semantics according
to each IC type by experimenting with the available semantics applied to different exam-
ples. These experiments may result in choosing the semantics that apparently fits better
to each IC type or to propose another semantics if the previous does not fit as well as
expected or is not applicable. Also, we determine how to repair an inconsistent database
with null values, introducing the available operations to repair it, the criteria to consider
to choose minimal answers. These considerations are approached in a theoretical and
practical sense, formally defining the choices made and providing an implementation to
allow the user to repair a database according with our solution. To accomplish that, we
use FOL to represent the theory in this document, namely the mentioned concepts and
the soundness and completeness proofs and then we transform those to ASP in order to
represent it in logic programming.

With this, we contribute to the state of the art by providing a more complete analy-
sis of the already existing semantics, by precisely specifying which semantics to use in
each different IC and why each one fits better to each IC, that is, how to deal with these
values in constraint satisfaction, by providing an application that repairs databases with
null values making use of the analyzed approaches and by providing soundness and
completeness proofs.

So, the main contributions of this dissertation include:

1. A study of the state of the art including the approaches that do not include null
values but that present interesting features in the context of the repairing process,
and those approaches that in some way include null values, that is, that do not
ignore them, considering some simple semantics or that consider a particular type
of ICs when dealing with these values;

2. An approach of repairing databases with null values, considering the different in-
terpretations on multiple examples and situations, different semantics, the allowed
operations, the minimal criteria, as opposed to other approaches that treat these

7

1. INTRODUCTION 1.3. Problem

values in very simple way, e.g. the same treatment is given to all circumstances
where a null value is used. We highlight the importance of these considerations;

3. An implementation of the suggested solution using logic programming to generate
the repairs and making it usable by a common user by providing an interface in
Java that allows to specify new ICs and also some other parameters to guide the
user through the process.

One of the main results of this dissertation, as mentioned, is an application that al-
lows to, given a database that contains null values and a set of ICs, obtain a new database
instance that corresponds to the repair of the original one, taking into account the param-
eters chosen namely the options related to insertion, deletion and update of tuples, the
minimality criteria, the limit number of allowed operations. In the application, we ap-
ply the semantics decisions that resulted from the analysis made. For that, we analyze
each IC type and extract the main interpretation of each and then apply a semantics ac-
cording to that. For example, for ICs that compare the tuples of the same table between
them in order to see if they are equal, as we consider unknown information, it is dif-
ficult argue that the null values of the different tuples represent the same values, then
we choose a more flexible semantics. Also, we determine which operations we allow,
namely insertions, deletions or updates, or multiple because we may not want to lose a
lot of information when repairing a database or to increase a lot the size of it. We need
also to specify the criteria to consider when choosing minimal answers in order to cover
the main situations, because we may want to minimize the number of operations, for
example, or give preference to some operations over the others.

To do the implementation we use ASP because it is very efficient for solving search
problems, that in this case is a valuable feature because we need to search for all the
possible combinations of operations to make to the database in order to find the one
that minimal changes the original database and make it consistent with the ICs. Also,
ASP is based on answer set semantics of [GL88] and it is “(...) an attractive paradigm
for knowledge representation and reasoning. On the one hand, its popularity is due to
the availability of efficient off-the-shelf solvers.” [GT09] The solvers, called answer-set
solvers, are engines that are aimed to compute the answer sets of these programs. After
getting the combinations of operations, the solver then prunes the answers that have
tuples that violate at least one IC. Each of these answers sets corresponds to an alternative
repair to the database. Knowing this, as we have to determine all the combinations of
operations and consider that we can deal with big databases, we may have the problem
of getting computations that take a lot of time.

Finally, in order to verify if what we proposed and developed is according to the
results that we expect to get, that is, that the answer-sets that result from the ASP program
(transformed from FOL) allow to retrieve accurate repairs of the database, we present the
soundness and completeness proofs for the theoretical proposal in order to match the
formalization with the resulting ASP code. Also, we perform benchmark tests in order to

8

1. INTRODUCTION 1.3. Problem

analyze the influence of some parameters the performance of the application, that may
depend of the database to be repaired (as the number of tables considered, the number
of tuples, the number of ICs) or the options taken by the user in the application interface
(e.g. the limit of operations).

Lastly, we describe how we structure this document by chapters:

Chapter 2 In this chapter, we define the concepts that should be kept in mind in the
following chapters. We present main concepts with respect to FOL that is used to
present the theoretical part of the dissertation, the concepts that compose an ASP
program and database concepts, namely the basics about database structure and
ICs;

Chapter 3 In this chapter, we present the state of the art, namely the approaches that
have interesting features but that do not consider null values;

Chapter 4 In this chapter we focus on the null values subject, namely, it begins by intro-
ducing the approaches that include null values in the repairing process and then it
follows for the concerns of considering null values, namely, how to deal with null
values when checking consistency and how to treat them in all circumstances;

Chapter 5 In this chapter, we propose a transformation of our theoretical approach to an
ASP representation in order to have a program that retrieves the repairs associated
to the database and the set of ICs;

Chapter 6 In this chapter, we describe the developed application that makes use of the
logic program and that is usable by a common user, and it is where we present the
architecture of the application, the available features and the decisions;

Chapter 7 In this chapter, we present the analysis of parameters in order to understand
if they influence the performance of the application, that is, the benchmark tests.

9

1. INTRODUCTION 1.3. Problem

10

2
Preliminaries

In this chapter we formalize all the concepts that are mentioned through the document,
namely with respect to FOL, then ASP and at last the database concepts.

FOL and ASP sections are divided in syntax and semantics, separating the way we
can express the concepts from their associated meaning.

Databases section is divided into basic concepts, constraints concepts and repair con-
cepts.

2.1 First-order logic

We can separate two main aspects of FOL: syntax and semantics. The syntax specifies the
expressions used in FOL. The semantics assigns meaning to those expressions.

The following definitions are based on [Fit96] and partially also on [BL04].

2.1.1 Syntax

We start by defining the alphabet of a first-order language. It is composed of logical and
non-logical symbols, which are the types of symbols available to express the intended
meaning.

Logical symbols can be divided in:

• Quantifiers: ∀ (the universal quantifier) and ∃ (the existential quantifier);

• Punctuation: ’)’, ’(’ and ’,’;

• Connectives: ∨, ∧, ¬;

• Variables: ν1, ν2,

11

2. PRELIMINARIES 2.1. First-order logic

Non-logical symbols have an associated arity, that is, a natural number indicating
how many “arguments” each one takes. They express relationships among a number of
constants [Eri09] that correspond to the number of “arguments”. These symbols can be
divided in:

• Function symbols: set of symbols written in uncapitalized mixed case, e.g.: best-
Friend;

– Constant symbols: function symbols of arity 0.

• Predicate symbols: set of symbols written in capitalized mixed case, e.g.: Old-
erThan.

– Propositional symbols: predicate symbols of arity 0.

Logical symbols have a fixed meaning and use in the language. That is, FOL is deter-
mined by specifying the non-logical ones, that have an application-dependent meaning
and use.

Definition 1 (First-Order Language). FOL is determined by specifying:

1. A finite or countable set R of predicate symbols, each of which has a non-negative
integer associated with it. If P ∈ R has the integer n associated with it, we say P is
a predicate symbol with arity n;

2. A finite or countable set F of function symbols, each of which has a positive integer
associated with it. If f ∈ F has the integer n associated with it, we say f is a function
symbol with arity n;

3. A finite or countable set C of constant symbols.

Here, the first-order language determined by R, F and C is denoted by L(R,F,C).
Next, we define the grammar of this language. This includes the definition of term,

atomic formulas and formulas.

Definition 2 (Term). The family of terms of L(R,F,C) is the smallest set meeting the
conditions:

1. Any variable is a term of L(R,F,C);

2. Any constant symbol (member of C) is a term of L(R,F,C);

3. If f is a function symbol with arity n (member of F) and t1, . . . , tn are terms of
L(R,F,C), then f(t1, . . . , tn) is a term of L(R,F,C).

A term is ground if it contains no variables.

Definition 3 (Atomic Formula). An atomic formula of L(R,F,C) is any string of the form
R(t1, . . . , tn) where R is a predicate symbol with arity n (member of R) and t1, . . . , tn are
terms of L(R,F,C); also > and ⊥ are taken to be atomic formulas of L(R,F,C).

12

2. PRELIMINARIES 2.1. First-order logic

For the following definitions, we consider that a binary connective is a connective
with arity two which considering the previous presented connectives can be ∨ or ∧.

Definition 4 (Formula). The family of formulas of L(R,F,C) is the smallest set meeting
the following conditions:

1. Any atomic formula of L(R,F,C) is a formula of L(R,F,C);

2. If A is a formula of L(R,F,C), so is ¬A;

3. For a binary connective ◦, if A and B are formulas of L(R,F,C), so is (A ◦B);

4. If A is a formula of L(R,F,C) and ν1 is a variable, then (∀ν1)A and (∃ν1)A are formu-
las of L(R,F,C).

It is useful to introduce some abbreviations and conventions. We can add or omit
parentheses and use square or curly brackets to improve readability. In case of using
predicates or function symbols of arity 0, parentheses can be omitted. Also, we can write
(α ⊃ β) instead of (¬α ∨ β) and we can write (α ≡ β) instead of (α ⊃ β) ∧ (β ⊃ α).

Now we distinguish the variables that are in the scope of some quantifier from those
that are not.

Definition 5 (Free and Bound Variables). The free-variable occurrences in a formula are
defined as follows:

1. The free-variable occurrences in an atomic formula are all the variable occurrences
in that formula;

2. The free-variable occurrences in ¬A are the free variable occurrences in A;

3. The free-variable occurrences in (A ◦ B), with ◦ ∈ {∨,∧}, are the free-variable oc-
currences in A together with the free-variable occurrences in B;

4. The free-variable occurrences in (∀ν1)A and (∃ν1)A are the free-variable occur-
rences in A, except for occurrences of ν1.

A variable occurrence is called bound if it is not free.

Definition 6 (Sentence). A sentence of L(R,F,C) is a formula of L(R,F,C) with no free-
variables occurrences.

2.1.2 Semantics

Here, it is assigned a denotation to all symbols of the language and some concepts as
model, entailment, and so on.

To begin, an interpretation determines how to interpret constant, function and predi-
cate symbols with respect to a domain.

13

2. PRELIMINARIES 2.1. First-order logic

Definition 7 (Model). A model for the first-order language L(R,F,C) is a pair M = 〈D, I〉
where D is a nonempty set, called the domain of M and I is a mapping, called an interpre-
tation that associates:

• To every constant symbol c ∈ C, some member cI ∈ D;

• To every function symbol f ∈ F with n arity, some n-ary function f I: Dn → D;

• To every predicate symbol P ∈ R with arity n, some n-ary relation P I ⊆ Dn.

Since formulas contain variables, we need to assign values to them, using a variable
assignment.

Definition 8 (Variable Assignment). An assignment in a model M = 〈D, I〉 is a mapping
A from the set of variables to the set D. We denote the image of the variable ν under an
assignment A by νA.

Given an interpretation that gives meaning to the constant and function symbols of
the language, and an assignment, which gives values to variables, we have enough infor-
mation to determine values for arbitrary terms.

Definition 9 (Interpretation of Terms). Let M = 〈D, I〉 be a model for the language
L(R,F,C), and let A be an assignment in this model. To each term t of L(R,F,C), we
associate a value tI,A in D as follows:

1. For a constant symbol c, cI,A = cI;

2. For a variable ν, νI,A = νA;

3. For a function symbol f , [f(t1, . . . , tn)]I,A = f I(tI,A
1 , . . . , tI,A

n).

It is also important to specify the concepts of satisfaction of formulas so, before that
we define some auxiliary concepts.

Definition 10 (ν-variant). Let ν be a variable. The assignment B in the model M is an
ν-variant of the assignment A, provided A and B assign the same values to every variable
except possibly ν.

X Y ¬X ¬Y X ∨ Y X ∧ Y
true true false false true true
true false false true true false
false true true false true false
false false true true false false

Table 2.1: Truth table

Definition 11 (Truth Value). Let M = 〈D, I〉 be a model for the language L(R,F,C), and
let A be an assignment in this model. To each formula Φ of L(R,F,C), we associate a
truth value ΦI,A (true or false) as follows:

14

2. PRELIMINARIES 2.2. Answer set programming

1. For the atomic cases,

[P (t1, . . . , tn)]I,A = true⇐⇒ 〈tI,A
1 , . . . , tI,A

n 〉 ∈ P I,

>I,A = true,

⊥I,A = false,

¬true = false,

¬false = true.

2. [¬X]I,A = ¬[XI,A].

3. [X ◦ Y]I,A = XI,A ◦ Y I,A, with ◦ ∈ {∨,∧}.

4. [(∀ν)Φ]I,A = true ⇐⇒ ΦI,B = true for every assignment B in M that is an ν-variant
for A.

5. [(∃ν)Φ]I,A = true ⇐⇒ ΦI,B = true for some assignment B in M that is an ν-variant
for A.

Definition 12 (Entailment). A formula Φ of L(R,F,C) is true in the interpretation M =

〈D, I〉, denoted M |= Φ, if ΦI,A = true for all assignments A.

2.2 Answer set programming

ASP is a form of declarative programming oriented towards difficult, primarily NP-hard,
search problems [Lif08]. It solves problems by “reducing them to finding the answer sets”
[Gel07]. It is based on the stable model/answer set semantics of logic programming pro-
posed in [GL88], which applies ideas of autoepistemic logic, for example, and in a more
general sense, it includes all applications of answer sets to knowledge representation
[Bar01].

In ASP, search problems are reduced to computing stable models, which is a respon-
sibility of answer set solvers. These are programs for generating stable models and they
use search algorithms [Lif08].

In this section, we can separate two main aspects of ASP: syntax and semantics.

2.2.1 Syntax

The basic building blocks of the language of ASP are function-free first-order terms and
atomic formulas (or atoms). We avoid to define atoms because we use the first-order
definition of atom. We start by defining the concepts using [JSVdC12] as reference.

Definition 13 (Literal). A literal is either an atom t or a negated atom not t. A literal is
ground if it does not contain variables.

A logic program (or an ASP program) consists of a set of rules. So, we define what a
rule is.

15

2. PRELIMINARIES 2.2. Answer set programming

Definition 14 (Rule). A rule r is an expression:

a0 ← b1 ∧ . . . ∧ bk ∧ not bk+1 ∧ . . . ∧ not bm k ≥ 0,m ≥ 0,m ≥ k

where a0, b1, . . . , bm are atoms, a0 is the head of the rule (denoted by H(r)) and b1, . . . , bm
the body of the rule (denoted by B(r)).

If H(r) = ⊥ then r is a constraint.
The positive body of r is B(r)+ = {b1, . . . , bk} and B(r)− = {bk+1, . . . , bm} is the

negative body of r.

Definition 15 (Logic Program). A logic program is a countable set of rules. If all rules are
positive rules, then it is a positive logic program.

2.2.2 Semantics

Here we present the meaning of ASP programs defined by using the language previously
defined and using some references. These references include the document of the original
authors of answer set semantics [GL91] where it mentions the syntax, introduces stable
models and also gives some examples. We also make reference to [Bar01] where it is
focused the “language of logic programming with answer set semantics and its applica-
tion to knowledge representation, reasoning and declarative problem solving”, where it
is possible to consult more aspects of this topic. We also make reference to other sources
from where we adopt some concepts as [Alv11, MT99].

First, we define some concepts that help define what interpretation in this context is.

Definition 16 (Herbrand Universe). Let P be a logic program. The set of all ground terms
appearing in P is called the Herbrand universe of P .

Definition 17 (Herbrand Base). Let P be a logic program. The Herbrand base of P is the
set containing all ground atoms that can be constructed from the predicates in P and the
terms in the Herbrand universe.

Definition 18 (Herbrand Interpretation). 1 A Herbrand interpretation of a logic program P

is any subset I of the Herbrand base of P .

We also present the semantics of a logic program P , translating it into a sentence:

Definition 19. Let P be a logic program and r a rule. The translation π, where ω is the
vector of the free variables of r, is defined as:

• π(r) = ∀ω(b1 ∧ · · · ∧ bk ∧ not bk+1 ∧ · · · ∧ not bn ⊃ a0);

• π(P) = {π(r)|r ∈ P}.
1Each Herbrand interpretation corresponds to a first-order model, that is, to a 〈D, I〉 pair. In particular,

given a Herbrand interpretation I , the corresponding first-order model is 〈D, I〉 where D is the Herbrand
universe of P and for every constant symbol c, every function symbol f and every predicate symbol p of
arity n, I(c) = c, I(f) = ∅, I(p) = {〈c1, . . . , cn〉 | p(c1, . . . , cn) ∈ I}.

16

2. PRELIMINARIES 2.3. Databases

Definition 20 (Herbrand Model). A Herbrand model of a logic program P is a Herbrand
interpretaton I of P such that I |= π(P).

A Herbrand model I is minimal if no proper subset of I is a Herbrand model of P . That
is, if there does not exist I ′ such that I ′ is a Herbrand model of P and I ′ ⊂ I .

A Herbrand model I is the least model of P if for all I ′, I ′ is a model of P implies I ⊆ I ′.

Proposition 1. Let P be a logic program. If P is a positive program and it has a model, then P
has the least model.

Definition 21 (Grounding). Let r be a rule of the logic program P . The grounding of r
in P , denoted by ground(r), is the set of all rules obtained from r by all possible substi-
tution of elements of Herbrand universe, for the variables in r. For any logic program P ,
grounding is defined as:

ground(P) =
⋃
r∈P

ground(r)

Definition 22 (Reduct). Let P be a ground logic program. For any Herbrand interpretation
of P , let P I be the program obtained from P by deleting:

• Each rule that has a literal not e in its body with e ∈ I ;

• All literals of the form not e in the bodies of the remaining rules.

Definition 23 (Stable Model/Answer Set). Let P be a logic program. A Herbrand inter-
pretation I is a stable model of P if I coincides with the least model of ground(P)I .

If a rule of a logic program represents a constraint, then it has the effect of pruning
those answer sets that match the body of the rule, changing the semantics of a program.

Definition 24 (Support). [Alv11] Given a model I for a ground program P , we say that
a ground atom A is supported by P in I if there exists a rule r of ground(P) such that
H(r) = A and B(r) ⊆ I .

Proposition 2. [MT99] Every stable model of P is a minimal model of P and a supported model
of P .

2.3 Databases

This section is divided in three aspects: the basic concepts, the ICs and the repairs. The
basic concepts subsection clarifies the concepts about databases that are essential to un-
derstand the focus of the document. The subsection about integrity constraints intro-
duces the various constraint types, clarifies their purpose and defines their semantics us-
ing first-order logic, but treating null values the same way as ordinary ones. The database
repairs subsection explains some basic concepts in order to understand what is a repair
and a minimal repair.

Throughout our definitions we assume that x̄ and ȳ are sequences of pairwise distinct
variables with appropriate arity, such that xi denotes the ith component of x̄.

17

2. PRELIMINARIES 2.3. Databases

2.3.1 Database concepts

With respect to database structure, in this document we focus on a specific data model
that is the relational model which was introduced first by E. Codd in [Cod70]. Since then
many database books focus on the use of that model and we refer these to define the main
concepts of databases and also of the relational model like [SKS10] and [CMR09].

We start by introducing the domain concept. Each domain specify a set of values
and it can include a value that represents the absence of information: the null value. An
attribute is composed by a sequence of these values and each attribute has a corresponding
domain. A set of attributes compose an entity, that is uniquely represented by those and
each attribute represents a property of that entity. Each entity is also called a tuple.

One example is mentioned by [SKS10], regarding null values, where we have an at-
tribute that represents a phone number in an instructor table. It may be the case that the
instructor does not have any phone number. In this case, it is correct to use a null value
because the value is unknown or does not exist. These values also complicate relational
operations, namely arithmetic operations or even aggregates.

A table is a structure that groups a set of tuples that represent the same object/concept
type. All tuples of a given table have the same properties, that is, the same attributes,
with the same domains. Each table is organized into rows and columns, where each row
represents a tuple and each column represents an attribute. Each row has a corresponding
row identifier (rowid) which is number that is unique for each tuple of the database and
that cannot be a null value.

In order to better understand these concepts, here is an example:

Example 4 (Table Composition Example). A table about departments [SKS10]:

dept_name building budget

Comp.Sci . Taylor 100000
Biology Watson 90000
Elec.Eng . Taylor 85000
Music null 80000
Finance Painter 120000
History Painter 50000
Physics Watson 70000

Table 2.2: Departments table

On this example, each column of the table is an attribute, in this case, dept_name ,
building and budget are attributes and each row is a tuple, like 〈Elec.Eng .,Taylor , 85000 〉,
for example. The domain of dept_name and building is a string and the domain of
budget is a number. We can also observe that we do not know what is the building of the
Music department, so we represent it by using a null value.

Now, that we already introduced the concepts involved in the structure of a database,

18

2. PRELIMINARIES 2.3. Databases

as the tuples, the tables, and so on, and how these tables interact, we can define what a
database is.

A database is an “integrated collection of data” [LM98]. It is used to represent “things”
(entities) that are of interest to some organization and also specifies how they are related
to each other. Therefore, a database is a structure that can store information about multi-
ple types of entities, their attributes and relationships between those. It is a collection of
tables and their relationships. Also, if we take a snapshot of the data in the database at
a given instant in time, it is called a database instance. We can represent it using ground
first-order atoms.

Definition 25 (Database). A table is a tuple of the form 〈N, 〈A1, . . . , An〉, R〉, where N
is a predicate symbol of arity n, A1, . . . , An are pairwise different attributes names and
R ⊆ Cn. A database D is a set of tables.

Definition 26 (Database Instance Mapping). [BBB03] A database instance D can be rep-
resented as a finite collection of ground atoms, denoted by M(D):

M(D) = {N(c1, . . . , cn)|〈N,A,R〉 ∈ D ∧ 〈c1, . . . , cn〉 ∈ R}

From this point forward, when we mention a database D, we consider that D =

M(D).

Also, in order to obtain useful information about data in a database, we query it.
A query to a database is a statement requesting the retrieval of information [SKS10].
The standardized language used to formulate these queries is called Structured Query
Language (SQL). It is “composed of commands that enable users to create database and
table structures, perform various types of data manipulation and data administration,
and query the database to extract useful information” [CMR09].

In this context, we denote the set of tables’ names of a database D by ND and use
AD,N to denote the sequence of attributes’ names of a table N in a database D.

2.3.2 Integrity constraints

ICs form part of a database, capturing the real-world relationships among tables and data
of that database. They are normally expressed in the form of rules.

These ICs can be of several types, for instance:

• Keys, unique constraints and functional dependencies: keys are used with the goal
of uniquely identify tuples by means of a set of attributes, so that no two tuples are
allowed to have the same values on all attributes of the key set. These type of keys
are called candidate keys and can be expressed with unique constraints. The key
chosen to identify each tuple in a table, that does not have unnecessary attributes,
is the primary key [CMR09]. However, unique constraints do not forbid null values
as opposed to primary keys.

19

2. PRELIMINARIES 2.3. Databases

A foreign key is a set of attributes of a table that refers a candidate key of another
table. It guarantees that for all tuples in the first table there must be one tuple in the
second table having the same values on all referred attributes.

Keys are special cases of functional dependencies. With functional dependencies,
we can determine a set of attributes B by knowing a set of attributes A for a table R.
The difference is that with keys we determine ALL the attributes of the table, while
with functional dependencies, we just determine some of them;

• Inclusion Dependencies: an inclusion dependency is a set of attributes of a table
that refers a set of attributes of the same or another table. They are similar to foreign
keys, the only difference is that the referred set of attributes does not have to be a
candidate key of that table;

• Denial constraints: we use them to prevent a property to hold in a database. They
can be very general but here we just consider that they are divided into domain
constraints, check constraints and not-null constraints.

– Domain constraints: every attribute must have a domain of possible values.
That is, when we declare the domain of an attribute, it acts as a constraint,
limiting the values that that attribute can have;

– Check constraints: permit to restrict the values of the attributes by using con-
ditions;

– Not-Null constraint: the domain of the attribute cannot include the null value.

Next, we specify some definitions to then formally represent the IC types. The fol-
lowing auxiliary definitions 2 are adapted from [Alv11].

Definition 27 (Attribute Index Function). Let D be a database and 〈N, 〈A1, . . . , An〉, R〉 ∈
D. # is defined as follows:

• For any attribute name A, #N
A :

#N
A =

undefined if ∀i∈{1,...,n}A 6= Ai

i ifA = Ai

• For any set of names of attributes X, let #N
X :

#N
X = {#N

A |A ∈ X}

Definition 28 (Arity Function). Let N be a table name and n the arity of that table name.
AR returns the arity of the table with name N and it is defined as:

AR(N) = n

2In the following definitions we refer to a table by its name, using the N notation.

20

2. PRELIMINARIES 2.3. Databases

Keys, unique constraints and functional dependencies These IC types are similar be-
cause they have to check every tuples of the corresponding table in order to determine
if there is a inconsistency. Also, they define some uniqueness for a sequence of attribute
values that cannot be violated.

First, each primary key is a pair 〈N,A〉pk where N is a table name and A is a set of
attributes that form the key constraint of that table.

Definition 29 (Semantics of Primary Keys). Let c = 〈N,A〉pk be a primary key and n =

AR(N). The semantics of c, denoted by βσ(c), is defined using the first-order formula:

∀x̄,ȳ¬

[
N(x̄) ∧N(ȳ) ∧

∧
i∈#N

A

xi = yi ∧
∨

j∈{1,2,3,...,n}\#N
A

xj 6= yj

]

We also have unique constraints that, as primary keys, do not allow the database to
have two tuples that have the same values on all attributes that form the unique set.
However, we can have multiple unique constraints on a single table but we cannot have
more than one primary key. Each unique constraint is a pair 〈N,A〉uc where N is a table
name and A is a set of attributes that form the constraint of that table.

Definition 30 (Semantics of Unique Constraints). Let c = 〈N,A〉uc be a unique constraint
and n = AR(N). The semantics of c, denoted by βσ(c), is defined using the first-order
formula:

∀x̄,ȳ¬

[
N(x̄) ∧N(ȳ) ∧

∧
i∈#N

A

xi = yi ∧
∨

j∈{1,2,3,...,n}\#N
A

xj 6= yj

]

Each functional dependency is a tuple 〈N,A,B〉fd where N is a table name and two
sets of attributes A and B from that table form the constraint.

Definition 31 (Semantics of Functional Dependencies). Let c = 〈N,A,B〉fd be a func-
tional dependency. The semantics of c, denoted by βσ(c), is defined using the first-order
formula:

∀x̄,ȳ¬

[
N(x̄) ∧N(ȳ) ∧

∧
i∈#N

A

xi = yi ∧
∨

j∈#N
B

xj 6= yj

]

Referential constraints This group of ICs represents a set of ICs that are similar because
they require that the values of a set of attributes of a table also appears in the set of
attributes of another table.

Each foreign key is a tuple 〈N1, N2, A,B〉fk, with two table names N1 and N2, two
sequences of attribute names A = 〈A1, . . . , Ak〉 and B = 〈B1, . . . , Bk〉 from the table N1

and N2 respectively. The attributes in A are referring the attributes in B. B must form a
candidate key of table N2.

21

2. PRELIMINARIES 2.3. Databases

Definition 32 (Semantics of Foreign Keys). Let c = 〈N1, N2, A,B〉fk be a foreign key, A
and B two sequences of attribute names where A = 〈A1, . . . , Ak〉 and B = 〈B1, . . . , Bk〉.
The semantics of c, denoted by βσ(c), is defined using the first-order formula:

∀x̄∃ȳ

[
¬N1(x̄) ∨

(
N2(ȳ) ∧

k∧
i=1

x
#

N1
Ai

= y
#

N2
Bi

)]

Each inclusion dependency is a tuple 〈N1, N2, A,B〉incd, composed of two table names
N1 and N2, two sequences of attribute names A = 〈A1, . . . , Ak〉 and B = 〈B1, . . . , Bk〉
from the table N1 and N2 respectively. The attributes in A are referring the attributes in
B. The different between these and foreign keys is that these simply generalize foreign
keys by no longer requiring that B form a candidate key in N2.

Definition 33 (Semantics of Inclusion Dependencies). Let c = 〈N1, N2, A,B〉incd be an
inclusion dependency,A andB two sequences of attribute names whereA = 〈A1, . . . , Ak〉
and B = 〈B1, . . . , Bk〉. The semantics of c, denoted by βσ(c), is defined using the first-
order formula:

∀x̄∃ȳ

[
¬N1(x̄) ∨

(
N2(ȳ) ∧

k∧
i=1

x
#

N1
Ai

= y
#

N2
Bi

)]

Example 5 (Inclusion Dependencies). Considering the databaseD that has a table P with
the tuple 〈a, b, c〉where the table P has the sequence of attributes 〈x, y, z〉, the table R has
the sequence of attributes 〈v, w〉 and considering the inclusion dependency represented
by:

〈P,R, 〈y, z〉, 〈v, w〉〉incd

D only is consistent with respect to the specified IC if the tuple R(b, c) also exists in the
database D, otherwise, it violates the constraint.

Denial constraints This group of ICs represents a set of ICs that are similar because
they express conditions that limit the domain of the attributes.

Each check constraint is a tuple 〈N,A, θ,V〉ckc composed of a table name N , an at-
tribute A, a mathematical operator θ ∈ {>,<,≥,≤,=, 6=} and a value V of the domain of
A. The operator θ with respect to the value V , indicates the condition that attribute A has
to respect.

Definition 34 (Semantics of Check Constraints). Let c = 〈N,A, θ, V 〉ckc be a check con-
straint. The semantics of c, denoted by βσ(c), is defined using the first-order formula:

∀x̄

[
N(x̄) ∧ x#N

A
θ V

]

22

2. PRELIMINARIES 2.3. Databases

Each domain constraint is a tuple 〈N,A,DA〉dc composed of a table name N , an at-
tribute A and a domain DA, express by: DA = {val1, val2, . . . , valk}.

Definition 35 (Semantics of Domain Constraints). Let c = 〈N,A,DA〉dc be a domain
constraint. The semantics of c, denoted by βs(c), is defined using the first-order formula:

∀x̄¬

[
N(x̄) ∧

∧
val∈DA

x#N
A
6= val

]

A more specific case of domain constraints are not-null constraints. These do not
allow an attribute to have null values. Each not-null constraint is a tuple 〈N,A〉nn com-
posed of a table name N and an attribute A.

Definition 36 (Semantics of Not-Null Constraints). Let c = 〈N,A〉nn be a not-null con-
straint. The semantics of c, denoted by βs(c), is defined using the first-order formula:

∀x̄¬

[
N(x̄) ∧ x#N

A
= null

]

A consistent database state is when a set composed by all ICs are satisfied by the
database [CMR09].

Definition 37 (Database Consistency). Given a database instance D, represented as a set
of atoms of the form P (c1, . . . , cn), and a set of ICs F , we say that D is consistent with F
if D |= F .

ICs help to keep the database consistent, but they may be costly to test. Database
modifications can cause violations of integrity and when new constraints are added it is
difficult to enforce them in the database [SKS10].

There are a few ways to try to keep databases consistent regarding ICs. One of them
consists in declaring the ICs together with the database declaration and then the DBMS is
the responsible for keeping it consistent by rejecting the actions that result in a violation
of the ICs. However, there is another important factor that has to be taken into account:
the null values. The admission of an IC in presence of null values depends of the chosen
semantics for these values. There is no general agreement on the semantics of null values
because the null value can be interpreted in many ways: it can express the unknown,
inapplicable or withheld value [BB06].

There are three main semantics described in SQL Standard [Mel03] for foreign key
constraints, in order to specify when tuples with null values respect the ICs:

• Simple match;

• Partial match;

23

2. PRELIMINARIES 2.3. Databases

• Full match.

Details about these semantics are approached in Chapter 4.

2.3.3 Repairs

After we know that a database is inconsistent with respect to the ICs, we can move on to
the repairing process. Repairing consists of modifying the tuples of the database in order
to obtain consistency through insertion, deletion or attribute update operations. Each
alternative instance that results from different set of operations and that is consistent
with the ICs, is called a repair. A database instance can have multiple possible repairs.

Example 6 (Repairing Students Table Example). Considering the functional dependency
IC from [Ber11], where Students is the table name and {StuNum,StuName} is the set of
attributes of that table:

〈Students, {StuNum}, {StuName}〉fd

and a database D that collects information about students:

StuNum StuName

101 john bell
101 joe logan
104 claire stevens
107 pat norton

Table 2.3: Students table

The database presents an inconsistency. The possible repairs are:

StuNum StuName

101 john bell
104 claire stevens
107 pat norton

Table 2.4: Repair 1 of Students table

StuNum StuName

101 joe logan
104 claire stevens
107 pat norton

Table 2.5: Repair 2 of Students table

These two repairs are consistent regarding the IC and they minimally differ from the
original database. However, how to measure the distance between instances in order to
choose the minimal one? We have to define a method to measure the differences between
two databases in order to determine which alternative repair is closer to the original
database. We can choose different criteria to measure these differences.

Definition 38 (Databases Symmetric Difference). Let D1 and D2 denote two databases.
The symmetric difference between D1 and D2, denoted by ∆(D1, D2), is:

∆(D1, D2) = (D1\D2) ∪ (D2\D1)

24

2. PRELIMINARIES 2.3. Databases

Definition 39 (Closeness Relation). [Ber11] Let D denote a database, D1 and D2 denote
two database instances with respect to D and ∆(D1, D2) denote the set of changes be-
tween them. We say that D1 is at least as close to D as D2 , denoted D1 ≤v

D D2 iff:

1. if v = c, then ∆(D,D1) ⊆ ∆(D,D2);

2. if v = s, then |∆(D,D1)| ≤ |∆(D,D2)|.

Definition 40 (Repair). [ABC99] Let D be a database and F a finite set of ICs. A repair of
D is a database G that satisfies F , that is, G |= F .

After we know what is a repair and how to compare repairs considering their dis-
tances with respect to the original database, we can define what is a minimal repair.

Definition 41 (Minimal Repair). [ABC99] Let D be a database, F a finite set of ICs and v
a closeness relation. A minimal repair of D is a database G such that G ≤v

D-minimal in
the class of instances that satisfy F .

The minimal repairs are the ones in which we have interest, since we prefer to keep
the new database instance as close as possible to the original one. For example, we do
not want to clear the whole database when deleting a single tuple would solve the incon-
sistency, because we would lose a lot of information unnecessarily. Therefore, we always
prefer a repair that changes the database the least as possible.

25

2. PRELIMINARIES 2.3. Databases

26

3
Related work

In the previous chapter we introduced the basic concepts associated with the composition
of databases, the type of ICs we can find when checking databases’ consistency, what
are repairs (and minimal ones) and how to use them to solve inconsistency problems
so, now we can present some approaches that also discuss this topic and propose some
solutions. In this chapter, we highlight some options regarding the repairing process
without including null values. We will cope with these values from the next chapter
onward.

Now, regarding existing approaches, most of them just assume that null values do
not appear in the database to be repaired. Some of them are:

1. Characterizing and computing semantically correct answers from databases with
annotated logic and answer sets [BBB03]: This approach uses a disjunctive logic
program with annotation arguments and it specifies repairs as minimal models of
a theory written in Annotated Predicate Logic. They establish a one to one corre-
spondence between the models of that program and the repairs. Annotations are
constants that specify when a tuple should be deleted or not or if it should be kept,
for example;

2. Answer sets for consistent query answering in inconsistent databases [ABC03]:
This approach uses logic programming based on answer sets to retrieve consistent
data from an inconsistent database when a query is posed to the database using the
DLV system. They determine database repairs using a disjunctive logic program
with exceptions, declaring persistent data and changes to restore consistency by
using exceptions. They provide approximated answers, using well-founded inter-
pretations and identify the cases where it provides an exact solution;

27

3. RELATED WORK

3. Integrity constraints: semantics and applications [GGGM97]: This approach does
not provide an implementation to repair databases. It is focused in ICs, what they
mean, how they are used to represent knowledge of the database, reasoning with
these and also mentions applications that employ ICs (like cooperative answering,
semantic query optimization and so on). They express these ICs by transforming it
into a disjunctive logic program and in modal logic;

4. The Consistency Extractor System: Querying inconsistent databases using answer
set programs [CB07]: This approach presents an application that uses ASP to com-
pute answers to first-order queries to relational databases. In this application the
user can specify the ICs to be imposed and the query to the database. It distin-
guishes from other approaches because it uses an optimization technique called
magic sets that transforms the query program and the repair program into a new
one that contains a subset of the original rules in the repair program, those that are
relevant to evaluate;

5. Sampling the repairs of functional dependency violations under hard constraints
[BIG10]: Here, the authors propose to repair databases focused on functional de-
pendencies, because their violations are “common in practice”. They propose a
new class of repairs and present an algorithm that randomly samples from this
space of repairs. They focus on finding a meaningful number of repairs that can be
generated in an efficient way. They also provide an application where the user can
define the ICs and also the tuples or attributes that cannot be changed during the
repairing process;

6. Efficient approximation algorithms for repairing inconsistent databases [LB07]: Here
the authors do not develop a program to obtain the repairs of a database but they
consider the problem of repairing a database that is inconsistent by updating nu-
merical values. They focus is on denial ICs and, besides they do not provide an
implementation, they provide the algorithms to do the repairing. Also, they pro-
vide an efficient approximation algorithm to obtain database repairs;

7. On approximating optimum repairs for functional dependency violations [KL09]:
The authors present an approximation algorithm to produce repairs as closer as
possible to the optimum ones, similarly to the previous approach, focusing on func-
tional dependencies only and by only updating attribute values. They do not pro-
vide an implementation but they present the algorithms to use in the proposed
approach;

8. Optimized encodings for consistent query answering via ASP from different per-
spectives [MT10]: Here the authors provide an uniform solution that comes from
different perspectives of several notions of CQA under a common core and provide
some optimizations to identify the inefficient part of the computation of consis-
tent answers. This common core is defined using ASP and the problem of CQA is

28

3. RELATED WORK

reduced to disjunctive Datalog programs. To prove that the optimizations are sig-
nificant they do some experiments that evidence the effectiveness of the approach.
One of these optimizations is, for example, about excluding ICs that have no effect
on the specific query.

Besides we have found many more approaches that not contemplate null values, we just
analyze in more detail the most interesting and similar approaches of them, because the
major interest is about including null values in the repairing process and the approaches
to deal with them.

But first, as an aside, it is important to discuss a topic that is going to be emphasized
when mentioning other approaches: the type of the repairing method. Here, we chose
to adopt the DR because it tries to actually repair the inconsistent database by minimally
modifying it so that the resulting database satisfies the ICs. In this alternative, a repair is
seen as a natural and alternative “clean” version of the original instance. We get rid of
semantic violations while staying as close as possible to the database. This is the natural
approach because the database really is modified in order to always be consistent with
the ICs and it refers to the entire database, not portions of it. This approach is inspired by
the fact that violations are commonly due to different ways to refer the same entity so, the
repair matches those ways into a single one, computing a single repair with a minimum
cost [Ber11]. However, there is another alternative, the CQA, that is used when restoring
the consistency of a database may be difficult, impossible or undesirable. We may not
have the permission to do that and we may not want to lose useful data. This motivates
the use of CQA which is based on the idea that not all data participate in the violation
of ICs and the database can give semantically correct answers to some queries. In that
case, inconsistency is not a big problem. Here, the ICs are not constraints on the database
but on the sets of answers to queries [Ber11]. The answers are the data that matches the
query and satisfies the ICs, that is, there are present in every minimal repair when the
database cannot retrieve the data that is consistent with the ICs. We do not get rid of the
tuples in the original database, so we do not lose information. However, we do not see
the states of the database because we are always working with the inconsistent database
and inconsistencies are solved at query time [BB04] and is also limited with respect to the
class of ICs and queries it can handle [CB07].

The first approach that is analyzed is [Alv11] that was already mentioned as the only
approach that provides an application that allows to repair a database.

With respect to the theoretical part, it is presented a transformation of the problem
into a logic program and also the soundness and completeness proofs, as in this docu-
ment, showing that the results obtained from the logic program correspond to the pro-
posed approach and so, the application that uses the program behaves as defined theo-
retically.

In the developed application, the user can insert ICs to be enforced in the specified

29

3. RELATED WORK

database. The possible repairs are constructed through insert and delete operations, giv-
ing to the user the option of limiting the number of allowed operations. It is also possible
to provide an extra database that is used to insert tuples in the database to be repaired or
insert those tuples manually.

An interesting option that is provided in the implementation of [Alv11] is a SQL con-
verter that allows the user to specify the ICs in SQL and then the program is responsible
of converting them to ASP. This allows the user to specify ICs that are not possible to ex-
press using the application interface, without having to know ASP syntax. Besides, it is
also possible to the user to do changes in the generated ASP code for each defined IC. Af-
ter that specification, it is possible to choose the minimality criteria. The available criteria
used are under set inclusion and under cardinality of operations. Also, the application
automatically determines which are the relevant relations that should be included in the
repairing procedure but in order to avoid to proceed with wrong relations in the case
of the application do not correctly determine them, the user has the option of correcting
them in the application interface.

As mentioned earlier, the [Alv11] approach does not take null values into account:
it is not assumed that they are present in the database, nor used when doing insertions.
Therefore, when inserting new tuples, the unknown values are asked to the user that is
responsible by providing the extra database from which these values are extracted.

Also about the application, are provided some interesting optimizations that should
be taken into account for our approach, for example:

• Importing ICs: only import ICs that are related directly or indirectly with the rele-
vant tables;

• Deletions/insertions optimization: generate only the number of delete/insert op-
erations that correspond to the maximum number of allowed operations for each
one of them;

• Forbidding deletions in relations and of specific tuples: forbid deletions and forbid
the deletion of a specific tuple;

• Maximum number of operations: specify a maximum global number of operations;

• Projection of attributes: consider only the relevant attributes.

In conclusion, the approach of this dissertation is very similar with this approach
when not treating null values. The application to develop in the context of this disser-
tation is very similar to this one (more detail in Chapter 6), having the same goal of
repairing a database but this time, with null values.

In [ABC99], it is made a logical characterization of the notion of consistent query an-
swers in a relational database that may violate the given ICs. It is mentioned that solving
this problem is useful for some areas like data warehousing and database integration.

30

3. RELATED WORK

In this approach, Arenas et al. do not provide a practical implementation, just the
formalization. Although they left the completeness proof incomplete, because it is only
made for some type of ICs, this is one of the few approaches that, like in this document,
make the soundness and completeness proofs.

It is also presented a definition for the concept of consistency and introduced a repair
definition that is based on the definition of distance between instances.

With respect to the allowed operations for consistency restoration, the choices are
about insertions and deletions and the minimal criteria considered is under set inclusion.

Their approach is focused in optimizing the process of answering queries using se-
mantic knowledge regarding the domain that is contained in the ICs. However, we do not
analyze this in more detail because it is not directly related to the goal of this dissertation.

Lastly, the approach is similar to ours in the sense of presenting theoretical proofs.
However, we do not present any optimizations to the process of answering queries be-
cause we do not use CQA and we present a practical component, as opposed to them.

In [GZ03], they propose a framework for computing repairs and consistent answers.
There, it is stated that, when integrating two databases, it is not easy to define a preference
criteria about the information sources. For example, if we have two tuples from two
different databases (the ones that we are integrating), and when together in the same
database provoke a IC violation, then it is not easy to choose just one to be part of the
database that results from the integration because it is subjective and does not guarantee
the consistency of the integrated database.

The contributions are a technique based on the rewriting of ICs, introduction of repair
constraints and the introduction of prioritized updates.

About the rewriting of ICs, that allows the derived program to be used to both gener-
ate repairs for the database and produce consistent answers.

The repair constraints contribution allows to specify which repairs are feasible.

Regarding prioritized updates, they give preference to some repairs with respect to
others, which is an interesting approach. However, the introduction of prioritized up-
dates increases the complexity of computing repairs and one of the big disadvantages is
the fact that this approach is neither ready for quantified variables in ICs, nor for answers
containing null values. Also, it is proved that each of the three techniques is sound and
complete and that the technique is more general than other techniques.

The approach works for both CQA and DR, and its mentioned how to proceed for
both cases, being one of the few approaches that uses DR.

About the similarities with our approach, we also did the same choices with respect
to some parameters as the allowed operations (insertions and deletions) and minimal-
ity criteria (under set inclusion), for example, and we also allow updates, as opposed to
them, and cardinality minimal criteria. However we do not present prioritized updates
but we provide to the user the option of choosing answers that make use of null values,
reducing the number of available answers.

31

3. RELATED WORK

In [SMG10] an extended argumentation framework is introduced, which provides a
comprehensive and alternative way to identify, represent and resolve the conflicts be-
tween inconsistent tuples in a database. The main goal of the framework is not to just
repair the database but instead, to understand the reasoning process behind the repair-
ing by using a technique that allows to explain and justify the conclusion of the process,
to identify the conflicts (the inconsistencies) and find the pros and cons for a given con-
clusion through arguments (an argument “represents a statement about the relationship
between a set of tuples and a set of ICs”) and counter-arguments (an counter- argument
“represents an alternative consistency restoration procedure for a given argument”).

In order to restore the consistency of the database, the tuples that are in conflict are
found and the authors define four types of conflicts that allow to identify which incon-
sistencies must be resolved in order to restore the database consistency. Also, Santos et
al. define a notion of priority between pairs of conflicting tuples in order to establish
preferences among repairs.

This article presents a new approach on relating argumentation with data repairing,
although the decision support system that could assist the user in consistency restoration
process was left as future work.

Comparing with other approaches, the use of argumentation gives the advantage of,
besides resolving conflicts between tuples, justify those conflicts thought the understand-
ing of the reasoning process behind database reparation. With respect to our approach,
the similarities are just about the repairing method (DR) (they state that it maximizes
database quality, being also one of the few approaches found that chose to use DR) and
some options, for example, the operations allowed. However, there are not more similari-
ties because the focus of this approach is not the repairing of databases but to understand
the conflicts.

As a conclusion, we can see that the current state of the art with respect to this topic,
have some common characteristics like the use of CQA or DR, the use of ASP to solve the
problems, the allowed operations to perform in the repairing process (mostly insertions
and deletions) or the minimality criteria (mostly under set inclusion). Although there
are some proposes to deal with the problem, some of them are not directly focus on
restoring the database consistency using DR and others simply do not provide a practical
implementation.

References Repair Type Operations Minimality criteria Nulls? Implementation?
[Alv11] DR Insert and delete Set inclusion and Cardinality No Yes
[ABC99] CQA Insert and delete Set inclusion No No
[GZ03] CQA, DR Insert and delete Set inclusion No No

[SMG10] DR Insert and delete (none) No Yes

Table 3.1: Approaches without null values summary

32

4
Taking null values into account:

approaches and repairs

At this point, we already have an overall notion about what has been done to solve the
problem of repairing databases without null values. However, we cannot assume that
the information stored is perfect, therefore we cannot exclude the importance of null val-
ues. Null values occur very often in databases because it is common to have information
that is unknown. When checking IC satisfaction with the existence of null values without
specifying a behavior adapted to them, the results can be undesired, since we are consid-
ering null values as if they were regular values, but they are not. They have different
interpretations and each interpretation can be represented with a different constant. For
example, a null value can be missing or unknown, then we can represent a null value
that is missing with a specific constant and a null value that is unknown with a different
constant, and in this way, we would know which null values are missing and which are
unknown. However, as mentioned, here, we represent all the interpretations with a sin-
gle constant, as in commercial DBMSs, because we do not want to ask the user about the
meaning associated to each null value in order to adopt different approaches.

Now that the meaning and the importance of considering null values in databases
was already introduced, and how these values change the focus of the repairing databases
problem, it is time to start to consider them in the repairing process. We begin by men-
tioning the repairing approaches that consider null values in some way, so we can reuse
some results of those approaches in our analysis and approach and then we proceed to
the proposed approach for the repairing process. We start with IC satisfaction and then
we talk about the allowed operations and minimality criteria.

33

4. TAKING NULL VALUES INTO ACCOUNT: APPROACHES AND REPAIRS 4.1. Approaches with null values

4.1 Approaches with null values

We begin with the approach in [BB04]. In this approach it is considered the presence of
null values and it is suggested a semantics that is the focus of the document.

The provided semantics consider that, as null values represent no information, they
not raise any inconsistencies, and so when at least one attribute of the tuple that is being
checked has a null value, the tuple is considered to be consistent with the IC that is
being tested. That is, all the tuples that have at least one null value in its attributes,
have the necessary condition to be considered as consistent. Also, about the null values
representation in logic programming, they are specified as a special constant.

With respect to the repairing, the repairs can be built with insert and delete operations
and they must have a minimal distance from the original database. The insertions can
also be obtained by introducing null values which avoid to generate a lot of alternative
repairs, which is an advantage.

In order to get the repairs, the repair program runs together with a query program
(since it used CQA method), the stable models are built and then is possible to extract the
repairs making use of annotation constants. However, this approach faces the problem of
obtaining undesirable models that do not correspond to repairs because not all the atoms
that are minimized are relevant.

The authors also mention the problem of research being strong in computing stable
models but not in query answering. However, we do not have to deal with this prob-
lem because we use DR instead of CQA, avoiding the use of queries to get a consistent
database.

One suggestion that is given is to use a consistency check to determine if the query
can be answered directly from the database and, in that case, the repair program can be
avoided, because build stable models is a source of complexity.

The similarities of this approach with ours include treating null values by providing
a semantics and also the use of null values to do insertions. Also, we have the advantage
of not having problems with the minimization and so we do not get incorrect repairs. We
also do not have to concern about the mentioned problem of query answering and we
already implement the optimization that was proposed.

The next approach is [BB06] and it presents an improvement with respect to the pre-
vious approach.

First, the authors discuss how to represent a null value (with different constants or
with a single constant) and it is decided to use a single constant to be according with
commercial DBMSs. Then, are present the existent null semantics (in addiction to the
semantics presented in [BB04]): simple-match, partial-match and full-match approaches.
However, it is just considered the simple-match semantics, with the justification of being
the one that is implemented by commercial DBMSs and there is not giving much attention
to other possible semantics besides some simple examples. Also, the semantics are just

34

4. TAKING NULL VALUES INTO ACCOUNT: APPROACHES AND REPAIRS 4.1. Approaches with null values

applied to foreign keys and in this approach it is extended to all types of ICs.

Besides the chosen semantics, regarding the repair decisions, the authors chose to use
insert and delete operations. It is also discussed the case of inserting null values to avoid
using values of the domain and consequently preventing to generate an infinite number
of repairs, which is an advantage.

With respect to the transformation to a logic program, they use annotation constants
that are used as an extra attribute introduced in the database. These annotations express
when a tuple should be deleted or inserted.

To finalize, their approach only considers some types of ICs as foreign keys and not-
null constraints.

This approach is actually close to ours here because it is considered the presence of
null values on the database, present the same null semantics and propose a transfor-
mation into logic programming to then get the repairs. Besides, the representation of
null values with one constant is common to our representation, the allowed operations
include insertion and deletion operations, as in our approach, and it is also used min-
imality under set inclusion, as we do. However, the authors do not provide a careful
study of the semantics and that is why we try to extend this approach and do a more
careful analysis.

In [ABC03], the approach consists on specifying database repairs using disjunctive
logic programs with exceptions. This extends [CAB00] by addressing several issues, like
the extension of the methodology to more general ICs and the use of weak constraints to
capture database repairs based on a minimal number of changes. Weak constraints differ
from the regular constraints, because they have the effect of keeping the answer sets that
minimize the number of violated ICs, instead of removing every answer set that violates
at least one IC.

With respect to the allowed operations, the authors consider insert and delete opera-
tions and the minimality is measured by the set of changes. It is also give preference to
use null values for insertion purposes and the other values are used only when it is really
needed.

The main different between this approach and the other ones is the possibility of spec-
ify more “soft” constraints (weak constraints), allowing to express preferences instead of
obligations, as in typical constraints. However, in our approach the ICs are considered as
obligations and consequently they are always respected and so the user always get the
more accurate solutions to repair the database.

We can also analyze a more “real” application, as in [FPL+01]. This system allows the
correction of information of census questionnaires that may be incomplete (represented
by null values) and/or contain inconsistent information. Here it is presented a real sit-
uation where it is necessary to represent unknown information and then it is initiated
the flaws correction process. The result of this process should minimally diverge from

35

4. TAKING NULL VALUES INTO ACCOUNT: APPROACHES AND REPAIRS 4.1. Approaches with null values

the original. In this case, that should be done in order not to impact significantly the
statistics.

Here are considered strong and weak constraints. The use of strong constraints dis-
cards all models which do not satisfy some of them. However, in real life, sometimes we
get satisfied by an approximated solution, in which the constraints are satisfied as much
as possible. This is possible by the use of weak constraints, like was mentioned previ-
ously. Therefore, a resulting stable model satisfies all strong constraints and minimizes
the number of violated weak constraints according to some specified prioritisation.

In order to solve the problem of considering null values, they use two approaches.
In one of the approaches, when a questionnaire fails the rules, initially is made a search
by similar questionnaires that passed the rules (donors) and that match the maximum as
possible the attributes’ values of the failed one. Then it analyses the rules to determine
the minimum number of non-matching attributes between the failed one and the donor
such that the failed one now can pass the rules. The other approach, first determines the
minimum number of attributes and then searches by donors.

With respect to allowed operations, it is only used attribute updates in order to keep
the information as closer as possible to the original one with the goal of not changing the
statistics.

Comparing this approach with ours, it differs because it is a real application but that
also needs to do repairs for a specific goal instead of doing repairs to general purpose
databases. It is a perfect example to demonstrate the need of considering null values in
real databases and their importance when doing databases repairing, as we consider in
this dissertation. About the semantics, the authors do not really propose a semantics to
deal with null values but instead there are presented two methods for dealing with these
values in the context of this specific problem. Also, they use weak constraints but it is not
considered an important feature for our purpose, as mentioned before.

In [AM86], the null values are adopted due to its characteristics of generality and
naturalness and as a easy way to represent information on a fragment of the real world.
In this article, the focus is only on the study of the interaction between two classes of ICs:
functional dependencies and constraints on null values.

When in the presence of null values, a decomposition of tables can be achieved where
tables with null values can be turned into tables where the presence of null values is
somehow minimized. About null values when checking functional dependencies, where
X determines Y, tuples with null values in the sequence of attributes X cannot cause a
violation of the dependency because, as mentioned, null values mean that no information
is available about those attributes. On the other hand, if the sequence X for two tuples is
equal, and at least one of the attributes of Y is null, it causes a violation. The authors also
highlight the importance of considering null values by stating that databases without
null values assume that the real world is represented faithfully and that the knowledge is
complete, and they highlight the fact that databases are approximations of the real world.

36

4. TAKING NULL VALUES INTO ACCOUNT: APPROACHES AND REPAIRS 4.2. Integrity constraints and null values

The similarities with this approach and ours are about the concern of treating null
values and to provide reasons to consider them in databases. Also, they provide some
kind of semantics to deal with theses values, but only with respect to functional depen-
dencies, as opposite with ours, that consider semantics for all types of ICs.

As a conclusion, we can state that the use of null values is a problem that many times
is ignored when repairing databases but there are some authors that realize that is a very
real problem, and that it is necessary to represent information in databases like it is in
real world. So, besides the small number of approaches that consider, in some way, null
values, there are some that really try to assign semantics to null values and adopt the
repairing procedure to these values. However, or the criteria used are too permissive or
there is not a practical implementation.

References Repair Type Operations Minimality criteria Nulls? Implementation?
[BB06] CQA Insert and delete Set inclusion Yes No
[BB04] CQA Insert and delete Set inclusion Yes No (current)

[ABC03] CQA Update Set inclusion On insert No
[FPL+01] (kind of) DR Update (kind of) Set inclusion Yes Yes
[AM86] (none) (none) (none) Yes No

Table 4.1: Approaches with null values summary

4.2 Integrity constraints and null values

Some alternative semantics for null values are presented in the literature that specify
how to deal with them. However, some of the approaches do not consider how to treat
these values for each IC type in particular and there is no global consensus on a specific
semantics.

We continue the investigation started in [BB06], by considering alternative seman-
tics other than simple-match applied to examples where we can interpret null values in
different ways and try to conclude which is the best semantics for each example.

In the previous section, we mentioned some approaches that also present some se-
mantics to deal with these values, for example, in [FPL+01], the null values are replaced
by values from a tuple that is as close as possible to the tuple that is being analyzed and in
[AM86] it is present a semantics to deal with functional dependencies, but both are more
focused in the context where they are presented. Other semantics is mentioned in [BB04],
where it was explicitly introduced a semantics that is very permissive with null values
but that can be applied to general cases. There are also three semantics mentioned on
literature, namely in SQL Standard [Mel03], that we give more attention. We chose these
semantics because, besides they are explicit on SQL Standard, they also are specified for
foreign keys but they are applicable (or adaptable) to the other considered ICs.

1. Permissive semantics: a null value, as it represents a lack of information, should

37

4. TAKING NULL VALUES INTO ACCOUNT: APPROACHES AND REPAIRS 4.2. Integrity constraints and null values

not be a cause for an inconsistency when it is present in any of the attributes of a
tuple [BB04]. So, for each row, if at least one of the values of the row is a null value
then, it is not necessary to check the other attributes violate any constraint;

2. Simple-match: “for each row R1 of the referencing table, either at least one of the
values of the referencing columns in R1 shall be a null value, or the value of the
each referencing column in R1 shall be equal to the value of the corresponding
referenced columns in some row of the referenced table” [Mel03]. It is implemented
in all commercial DBMSs;

3. Partial-match: “for each row R1 of the referencing table, there shall be some row R2
of the referenced table that the value of each referencing column in R1 is either null
or is equal to the value of the corresponding referenced column in R2” [Mel03];

4. Full-match: “for each row R1 of the referencing table, either the value of every
referencing column in R1 shall be a null value, or the value of every referencing
column in R1 shall not be null and there shall be some row R2 of the referenced
table such that the value of each referencing column in R1 is equal to the value of
the corresponding referenced column in R2” [Mel03].

In summary, the permissive semantics considers that an IC is satified if at least one of
the attributes has a null value. Similarly to the simple-match semantics that considers an
IC as satisfied if at least one of the referring attributes has a null value, in opposite to full-
match that, in most cases, if at least one of the referring attributes has a null value, then
the IC is not satisfied. With partial-match semantics, we need to check if every referring
attribute that does not have a null value has a correspondence with the referred attribute.

In order to better understand these semantics, here is an example:

Example 7 (Semantics Introduction Example). Consider that we have a Students table
with the attributes {StudentID ,Name,Age,School ,Course}, the Courses table with the
attributes {CourseID ,Course,School ,MaxStudents}, the foreign key IC

〈Students,Courses, 〈School ,Course〉, 〈School ,Course〉〉fk

the candidate key {Course,School} of Courses table and the database:

38

4. TAKING NULL VALUES INTO ACCOUNT: APPROACHES AND REPAIRS 4.2. Integrity constraints and null values

StudentID Name Age School Course

E1 John null School A Average Course
E2 Claire 20 null Basic Course
E3 Francis 21 Some School null

CourseID Course School MaxStudents

C2 Advanced Course Some School 10

Table 4.2: Students with Courses table

The results for the semantics are the following:

• Permissive: The IC is respected by all the tuples. For example, the first tuple of
Students table does not have a correspondence with the Courses table but the Age

attribute has a null value, so the IC is satisfied.

• Simple-match: The first tuple does not respect the IC since the only attribute that
has a null value is not a relevant one and the attributes that are relevant to verify,
do not have corresponding values in Courses table. The second tuple satisfies the
IC since one of the relevant attributes has a null value. However, in this tuple, the
other relevant attribute does not have a corresponding value in Courses table nor a
null value: it refers a course that does not exist (does not appear in Courses table);

• Partial-match: The first tuple of Students table does not respect the IC because none
of the relevant attributes has a value that is equal to the corresponding attribute
of the referenced table and none of them has a null value. The last tuple has a
null value in one of its relevant attributes and the other relevant attribute has a
corresponding value in Courses table, so it is consistent with the IC. Considering
the last tuple, we do not have any information about the course of the student but
we already know the school the student is studying. By knowing the school, a part
of our IC is accomplished. Also, in this case, since that school only has one course,
it is easy to guess the course of the student;

• Full-match: The first tuple is not satisfied since the attributes do not have corre-
sponding values in the Courses table. In this tuple, the null value is not a problem
since its attribute does not belong to the relevant ones. The second and third tuples
do not satisfy the IC since they have null values in its relevant attributes.

Tuples Permissive Simple Partial Full
Students(E1 , John,null ,School A,Average Course) X 5 5 5

Students(E2 ,Claire, 20 ,null ,Basic Course) X X 5 5
Students(E3 ,Francis, 21 ,Some School ,null) X X X 5

Table 4.3: Semantics introduction example results

39

4. TAKING NULL VALUES INTO ACCOUNT: APPROACHES AND REPAIRS 4.2. Integrity constraints and null values

As we can see from the results of the example, we can conclude that the more permis-
sive semantics is not very appropriate to this kind of scenario because the Age attribute
is not related to the purpose of the IC, that is to relate students with their courses and
schools. So, the purpose of the IC is not accomplished yet.

With respect to the simple-match, its simplicity can complicate the main goal of ICs
in modeling the given context by stating that much more tuples that intuitively should,
satisfy the ICs.

Regarding partial-match, it is semantics that fits better until now, for this example.
The partial-match approach is closer to the approach taken by commercial DBMSs in the
absence of null values.

About full-match, and regarding that we are appealing to the existence of null values
in databases, this is not what we expect from a semantics because many tuples would be
removed only by the occurrence of null values. The full-match approach is more restric-
tive than the other approaches, in sense that none of the relevant attributes can have a
null value, otherwise it represents an inconsistency (but not if ALL attributes have null
values).

The next step is to see some more examples where it becomes easier to see when it is
better to use each semantics. However, we do not include the semantics of [BB04] because
it is the most permissive approach and we have enough of it with simple-match, that is
actually similar to the [BB04] approach. The type of explanations of the next subsection
with respect to simple-match sometimes “fit” to the [BB04] approach too.

4.2.1 Examples and constraint satisfaction discussion

There are situations where the way we want to interpret null values vary and this is one
of the reasons why it is difficult to deal with these values. So it is important to examine
multiple examples in order to understand which is the better semantics to use in each
situation, which may include different IC types.

Keys, unique constraints and functional dependencies With respect to primary keys,
we do not compare the different semantics, since the primary key constraints do not allow
null values in any of the attributes that compose the key.

Relatively to unique constraints, they are very similar to primary keys. However they
allow the existence of null values and so we can compare the semantics.

Example 8 (Students Table Unique Constraint Example). Consider that {Name,Age}
form the unique constraint and considering the following table:

40

4. TAKING NULL VALUES INTO ACCOUNT: APPROACHES AND REPAIRS 4.2. Integrity constraints and null values

StudentID Name Age Course

E1 John C . null Average Course
E2 Claire L. 20 Basic Course
E3 John C . null Advanced Course

Table 4.4: Students table

In this specific example, since both students have the same name, then they probably
represent the same person, they have the same age, and it makes sense to consider that
both tuples correspond to the same person and to state that there is an inconsistency.

Here, there is no inconsistency considering simple-match since there are two tuples
with the same value for the Name and Age attributes that correspond to different
Course values. However, as the Age attribute has a null value, the IC is satisfied. The
interpretation that we expected is not accomplished by the simple-match semantics in
this case because one of the relevant attributes has a null value. Partial-match would
behave as simple-match, since when we find two tuples that have in common the values
of the relevant attributes, even the null values, the null values of one of the tuples may
be different of the null values of the other tuple, then it would be enough to consider that
we do not have an inconsistency because the uniqueness is not violated.

However, if we consider full-match, both tuples are rejected since they have null val-
ues on the relevant attributes, achieving what is expected. With full-match, we never
have two tuples that represent the same student when in presence of null values in this
type of examples.

In the next example we just change the focus of the Example 8, by introducing the
null values in other attribute, that is, from an attribute that represents ages of persons to
other that represents names of persons. The results are the following:

Example 9 (Students Table Unique Constraint Example Modified). Consider a different
version of the initial Students table:

StudentID Name Age Course

E1 null 21 Average Course
E2 Claire L. 20 Basic Course
E3 null 21 Advanced Course

Table 4.5: Students table (2)

In the example, we have two tuples that have the same value for the Age attribute
but we do not know the Name value for both. In this specific example, since we just
know the age of a person (and not the name), we cannot state that if two persons have
the same age, they are the same person. So, we should consider that the two tuples
represent different persons. As consequence, if we choose to use full-match we get an
unexpected result because we would find an inconsistency in the example and remove

41

4. TAKING NULL VALUES INTO ACCOUNT: APPROACHES AND REPAIRS 4.2. Integrity constraints and null values

the responsible tuples as if they were representing the same student and, so in this case,
we expect the tuples to represent different persons and remain in the database, as would
be possible with use simple-match/partial-match.

Also, if we exclude one of the tuples that full-match, in this context, would interpret
as representing the same student and consequently violating the unique constraint, we
get the following results:

Example 10 (Students Table Unique Constraint Example Modified - Full-match). Con-
sider a different version of the initial Students table:

StudentID Name Age Course

E1 null 21 Average Course
E2 Claire L. 20 Basic Course

Table 4.6: Students table (3)

Here, the problem of the previous example considering that two students with the
same age and unknown names are violating the unique constraint, it not present no more.
However, as one tuple has a null value in the Name attribute there is still an inconsis-
tency without any specific reason, despite there are not two tuples that have the same
values for the other attribute that compose the unique constraint.

So, regarding the first two examples, we can see that changing just the attribute where
the null values appear, can provoke a big change on the interpretation of them and con-
sequently the need to use a different semantics. It just depends on the context.

However, in the first example, just by having two attributes with the same value for
the Name attribute does not mean that they are the same person because there can be
more than a person with the same name and the attribute Age probably would unveil it
(if known) and consequently, we would not have an inconsistency.

In the third example, we can see that just by adding one more tuple, it can change the
interpretation that we give to a null value in that specific database instance. That is, it
affects the choose of the semantics.

The previous examples related with unique constraints can also be applied to func-
tional dependencies as 8, for example. The only difference would be to, instead of con-
sider that {Name,Age} form an unique pair, we consider that Name determines Age ,
and the justifications are similar.

We provide an additional example, with respect to functional dependencies, that is
about a different domain:

Example 11 (Cities Table Functional Dependency Example). Consider the functional de-
pendency IC

〈Cities, {Country ,City}, {PostalCode}〉fd

and the database:

42

4. TAKING NULL VALUES INTO ACCOUNT: APPROACHES AND REPAIRS 4.2. Integrity constraints and null values

Country City PostalCode

null Lisbon 0001
null Lisbon 0002

Table 4.7: Cities table

Here, we consider that we have information about countries, cities and their postal
codes. In the table of the example, if we have unknown countries and they represent the
same, since they have a city in common, then we should have an inconsistency because
we have the same pair of values for both tuples that correspond to different postal code
values.

Here, with simple-match/partial-match, the database is consistent regarding the IC,
because there are null values in the relevant attributes of both tuples. However, consid-
ering full-match appears to be a better option because we are expecting the null values to
represent the same country.

However, if we had other tuples where the country is also unknown but city names
that appear in the table are all different, then these tuples should not represent an incon-
sistency and full-match would suggest to delete them. So, none of the semantics is good
enough for this example.

Referential constraints About foreign keys, considering that we have the Example 7,
including the null values. Since our goal is to connect the student to the information
about her course and school in their corresponding table (so they are connected with
a foreign key), if for the second tuple of Students table, we consider that this tuple
is satisfying the constraint, since we know its course, we know half of the information
that we need and later we can also know a school that has that course and add it to our
Courses table. If we accept this kind of flexibility, the best approach is the simple-match
semantics. If we adopt full-match, then we are excluding all the students which the
information of the course or of the school is unknown which can lead to the removal of
the student. However, we may also allow the flexibility of accepting the IC as consistent
of simple-match if we have a null value in one of the referring attributes but we demand
that the referring attributes, since they are known, to exist in the corresponding table so
that they do not refer to schools or courses that we do not know any information. This
last situations matches with the behavior of partial-match.

The situations of this example do not always occur and to show that we consider the
following example:

Example 12 (Organizations’ Locations Example). Consider the Organizations table with
the attributes {OrgID ,OrgName,City ,Country}, the Locations table with the attributes
{LocationID ,City ,Country ,PostalCode} and the foreign key IC, where {City ,Country}

43

4. TAKING NULL VALUES INTO ACCOUNT: APPROACHES AND REPAIRS 4.2. Integrity constraints and null values

forms a candidate key for Location table:

〈Organizations,Locations, 〈City ,Country〉, 〈City ,Country〉〉fk

and the database:

OrgID OrgName City Country

O1 Happy Company null Magic Country
O2 Sad Company null Portugal

LocationID City Country PostalCode

L1 Lisbon Portugal 0001

Table 4.8: Organizations and locations table

Suppose that we ask some organizations to fill questionnaires in order to obtain in-
formation from them and that we intend to build a map with the organizations in a
specific country. If we consider that the organizations are presented in the previous
Organizations table, we cannot represent them in a map if the city is not specified.

In this case, we can avoid to have organizations where do not know where they are
located and consequently we will have null values representing these situations. So, full-
match seems to be a better approach to state what we are looking for. Simple-match,
for example, would accept as consistent every tuple that has a null value in the City

attribute, that is the opposite of what we intend. So, we would prefer to use full-match
semantics than simple-match.

However, we may not want to remove all the tuples where we do not know the city,
since if we have the country, we know that the unknown city is one of the cities of that
country in Locations table. This may seem similar to simple-match, but it simple would
accept the tuples as consistent even if there are not tuples with the correspondent city
in Locations table, unlike partial-match. So, in this case we should consider the partial-
match approach.

With this previous example and also referring to the Example 7, we can state that
just considering the purpose for which the database is used we can conclude to allow
or not the null values and consequently, the semantics. In this case, an intermediate
approach probably be preferred so that it can fit to different purposes without completing
excluding or completely allowing null values.

Denial constraints Regarding check constraints, the Example 13 illustrates this situa-
tion as presented in [BB06]:

Example 13 (Employee Table Check Constraint Example). Consider the check constraint
IC

〈Employee,Salary , >, 100〉ckc

44

4. TAKING NULL VALUES INTO ACCOUNT: APPROACHES AND REPAIRS 4.2. Integrity constraints and null values

and the database:

ID Name Salary

32 null 1000
41 Paul null

Table 4.9: Employees table

In this case, we only need to check if the attribute Salary has a value that is bigger
than 100. Most DBMSs accept the IC when the condition evaluates to true or unknown,
that is the case for both tuples of the table. If we do not accept the null value in this type
of ICs, we are assuming that, for example in the second tuple, the null value in Salary

attribute represents a value that is lower than 100. The justification is the following: the
IC states that the value has to be bigger than 100 to be accepted, by rejecting it we are
stating the opposite, that is, that the value is lower than 100. However the null value can
be representing many values that are above the 100 value and consider that null values
are accepted as consistent seems to be a more reasonable approach for this particular case,
that is, we should use simple-match. This also corresponds to the partial-match approach
because, in general, they accept null values as consistent.

Full-match would consider that the second tuple represents an inconsistency.

We can also consider other check constraint like

〈Cities,Country ,=, “Portugal ′′〉ckc

and the table 4.7.

Here, simple-match/partial-match do not make as sense as before because here we
are stating that we only accept tuples which country corresponds to “Portugal ′′ and if
we accept null values as consistent, we are allowing many cities that clearly belong to
other countries that are not “ Portugal ”. Here, seems to be more reasonable to not accept
null values as consistent, that is, to use full-match.

Another example that illustrates another type of situation:

Example 14 (Products Table Check Constraint Example). Consider the check constraint
IC

〈Products,Price, >, 0〉ckc

and the database:

ProductName Price

Pen 5
Pencil null

Table 4.10: Products table

45

4. TAKING NULL VALUES INTO ACCOUNT: APPROACHES AND REPAIRS 4.2. Integrity constraints and null values

In this example, if we consider that we never insert a negative price number, then ev-
ery null value would represent a positive number and so they should always be accepted
as consistent, that is, using simple-match or partial-match.

As we can see in the examples, the need to allow null values prevails and so, in this
case, probably simple-match/partial-match would be more reasonable choices.

With respect to domain constraints, we do not have much to discuss since we only
have to decide in which cases we want to use null values in the attributes’ domain or not.

Finally, there is nothing to compare with respect to not-null constraints since they just
show when to accept or not a null value in a specific attribute.

4.2.2 Semantics with null values

In the previous subsection, we analyzed some cases where slightly changes could change
the semantics that seems more reasonable to apply. However, there were cases where
none of the semantics seemed to be “good enough”, that is, any semantics cover all the
cases in a reasonable way.

Taking this into account, overall, we choose to use partial-match as a semantic for the
null values. Partial-match does not just consider that a single null value is the motive
for accepting any IC as consistent, nor to reject immediately an IC. It accepts null values
as consistent but also checks if the others not-null values are consistent with the corre-
sponding table and the IC. Also, it is the most preferred semantics in the examples of the
previous subsection as in 7, 13 and 9.

There are ICs that do not have a direct application of partial-match but we adapt it in
order to follow the same line of thinking that was used in the foreign keys example.

From now on we consider that x̄ and ȳ are sequences of pairwise distinct variables
with appropriate arity, such that xi denotes the ith component of x̄.

Keys, unique constraints and functional dependencies Relatively to primary keys, we
just consider that a primary key can only be a non-null value or a set of non-null values.
So, each attribute that compose a primary has to contain a non-null value. This is the
approach taken by most DBMSs e.g. MySQL and PostgreSQL. These DBMSs specify
that any key column is defined with a not-null constraint. That is, this IC is basically
an unique constraint together with a not-null constraint over each of the attributes that
compose the primary key.

For example, if we consider the Table Students of the Example 7, if {Name,Age} forms
the primary key, then an inconsistency arise due to the first tuple.

Definition 42 (Semantics With Null Values of Primary Keys). Let c = 〈N,A〉pk be a pri-
mary key, N a table name and n = AR(N). The semantics considering null values for
that primary key, βsn(c), is defined as:

46

4. TAKING NULL VALUES INTO ACCOUNT: APPROACHES AND REPAIRS 4.2. Integrity constraints and null values

∀x̄,ȳ¬

[
N(x̄) ∧N(ȳ) ∧

(∨
i∈#N

A

xi = null ∨
(∧

i∈#N
A

xi = yi ∧
∨

j∈{0,1,2,3,...,n}\#N
A

xj 6= yj

))]

With respect to unique constraints, when comparing the attributes in order to check if
they match, we consider that any comparison with a null value should return false since
any operation with a null value results in an unknown value, as stated in SQL standard
[Mel03]. Since, we do not know when two null values correspond to the same regular
value, then we consider that any comparison with a null value returns false. This is also
applied when comparing two null values, which returns false, that is, two null values are
considered to be different values, for the same reason.

As we can see in the Modified Example 8, both partial-match and simple-match have
the expected result, then we adopt what was defined in [BB06] (simple-match approach)
but adapted to unique constraints.

Definition 43 (Semantics With Null Values of Unique Constraints). Let c = 〈N,A〉uc be
a unique constraint, N a table name and n = AR(N). The semantics considering null
values for that unique constraint, βsn(c), is defined as:

∀x̄,ȳ¬

[
N(x̄) ∧N(ȳ) ∧

(∧
i∈#N

A

xi = yi ∧ xi 6= null ∧ yi 6= null
)
∧

∨
j∈{0,1,2,3,...,n}\#N

A

xj 6= yj

]

With respect to functional dependencies, when comparing the attributes that deter-
mine the value of other attributes, we consider that any comparison with a null value
returns false with the same motives mentioned for the previous IC and that also corre-
sponds to use simple-match.

For example, in Example 11, by our approach, there is not an inconsistency since
we have two tuples with the same values in the {Country ,City} pair that correspond to
different postal code values but the null values in the Country attribute are considered to
be different since the cities may belong to different countries (and simply have city names
in common). One of the tuples may be representing Lisbon city from Portugal and the
other one may be representing Lisbon city from United States (Maine), also, there can be
more cities named Lisbon around the world.

Definition 44 (Semantics With Null Values of Functional Dependencies). Let c = 〈N,A,B〉fd

be a functional dependency. The semantics considering null values for that functional de-
pendency, βsn(c), is defined as:

∀x̄,ȳ¬

[
N(x̄) ∧N(ȳ) ∧

(∧
i∈#N

A

xi = yi ∧ xi 6= null ∧ yi 6= null
)
∧
∨

j∈#N
B

xj 6= yj

]

47

4. TAKING NULL VALUES INTO ACCOUNT: APPROACHES AND REPAIRS 4.2. Integrity constraints and null values

Referential constraints Here, we can refer to the example 12 to see an example where
partial-match works well. In that case, the goal is to know the location of certain organi-
zations and so, by having the information about the country where they are placed, we
already have half the information. Also, we do not want to remove existent organizations
just because we do not know in what specific city they are placed.

Definition 45 (Semantics With Null Values of Foreign Keys). Let c = 〈N1, N2, A,B〉fk be
a foreign key, A = 〈A1, . . . , Ak〉 and B = 〈B1, . . . , Bk〉. The semantics considering null
values for that foreign key, βsn(c), is defined as:

∀x̄∃ȳ

[
¬N1(x̄) ∨

[
N2(ȳ) ∧

(k∧
i=1

x
#

N1
Ai

= y
#

N2
Bi

∨ x
#

N1
Ai

= null
)]]

With respect to inclusion dependencies, we proceed as in foreign keys, using partial-
match. We can state that that makes sense to use the same approach since they are very
similar constraints. The only difference is that in foreign keys, we consider that the re-
ferred set of attributes has to be a candidate key of the correspondent table and in inclu-
sion dependencies, it does not happen.

Definition 46 (Semantics With Null Values of Inclusion Dependencies). Let c = 〈N1, N2, A,B〉incd

be a foreign key, A = 〈A1, . . . , Ak〉 and B = 〈B1, . . . , Bk〉. The semantics considering null
values for that inclusion dependency, βsn(c), is defined as:

∀x̄∃ȳ

[
¬N1(x̄) ∨

[
N2(ȳ) ∧

(k∧
i=1

x
#

N1
Ai

= y
#

N2
Bi

∨ x
#

N1
Ai

= null
)]]

Denial constraints With respect to denial constraints, we consider that a null value,
since it is an unknown value, can be considered as consistent, for check constraints. But
why did we not proceed in that way for the previous ICs? We consider that, if the at-
tribute has a null value, we do not know the value it may assume if the information
was known, it could be a value that is consistent with the IC, so we allow it. Until now,
could it be applicable for the previous ICs? Yes, it could. However, check constraints are
based in the use of operators and if otherwise we assumed that the null value should be
considered as a motive for an inconsistency then we would considering that the value
is consistent with the opposite operation that we are checking. Also, the SQL Standard
[Mel03] refers that “a table check constraint is satisfied if and only if the specified <search
condition> is not false for any row of a table”. This way, if the evaluation of the condition
results in true or unknown (in the case of having null values), then the check constraint
is satisfied. We can also confirm that “DBMSs will accept as consistent any state where
the condition (the consequent) evaluates to true or unknown” [BB06], for example by us-
ing PostgreSQL, since any attribute that has a null value is accepted as consistent by any

48

4. TAKING NULL VALUES INTO ACCOUNT: APPROACHES AND REPAIRS 4.3. Repairs

check constraint on that attribute.

Definition 47 (Semantics With Null Values of Check Constraints). Let c = 〈N,A, θ,V〉ckc

be a check constraint. The semantics considering null values for that check constraint,
βsn(c), is defined as:

∀x̄¬

[
N(x̄) ∧ ¬(x#N

A
θ V ∨ x#N

A
= null)

]

For domain constraints, we consider that the domain of an attribute is composed
of the specified domain and the null value too. If we do not consider null values in
the domains of the attributes then we would only have not-null values in the attributes
and we would obtain repairs that do not contain null values. Besides, we are providing
an approach to deal with their presence, and we also explained previously why it is
important. For exceptional cases where we do not allow their presence, then the user can
specify some not-null constraints and avoid those values for some specific attributes.

Definition 48 (Semantics With Null Values of Domain Constraints). Let c = 〈N,A,DA〉dc

be a domain constraint where null ∈ DA . The semantics considering null values for that
domain constraint, βsn(c), is defined as:

∀x̄¬

[
N(x̄) ∧

(∧
val∈DA

x#N
A
6= val

)]

Finally, about not-null constraints, we just consider that an attribute where we apply
a not-null constraint cannot contain a null value.

Definition 49 (Semantics With Null Values of Not-Null Constraints). Let c = 〈N,A〉nn be
a not-null constraint. The semantics considering null values for that not-null constraint,
βsn(c), is defined as:

∀x̄¬

[
N(x̄) ∧ x#N

A
= null

]

4.3 Repairs

Now that is known how to identify the ICs violations over the data, it is time to know
how it can be correct, in order to get a consistent database. This is achieved by repairs.

Definition 50 (Database Repair Problem). Let D and DE denote two databases and F

denote a set of ICs, such that D 6|= F . A database repair problem is 〈D,DE , F 〉.

It is relevant to clarify that, in the above definition, DE is a database that is the source
of tuples to be used in insertions to repair the database D.

49

4. TAKING NULL VALUES INTO ACCOUNT: APPROACHES AND REPAIRS 4.3. Repairs

First, we should determine what are the operations that allow to lead the database
into a consistent state.

4.3.1 Operations: Insertions, deletions and updates

In order to define a repair, we have to apply some operations to the database to cause
some change that makes the database consistent with the ICs. The alternative operations
are: deletions, insertions and updates.

Definition 51 (Change Operation). Let D be a database, N a table name of D, each t

denote a tuple and A denote an attribute name. A change operation is defined as one of
the following:

• i(N, t): insertion change operation;

• d(N, t): delete change operation;

• u(N, t,A): update change operation.

Each change operation, when applied to a database, changes that databases’ data. In
addiction, the insert change operation requires a tuple t that is inserted in a database D;
the delete change operation needs a tuple t is the tuple that is deleted from a database
D and the update change operation has a third argument that denotes the name of the
attribute that is being updated with a null value with respect to the t tuple.

Definition 52 (Set of Changes). Let P = 〈D,DE , F 〉 be a database repair problem, t is a
tuple, N a table name where N ∈ ND, A an attribute name. The set of all possible changes
with regard to P , denoted by ∆(P) is defined as follows:

∆(P) = { d(N, t) | 〈N,A,R〉 ∈ D ∧ t ∈ R }∪{
u(N, t,A)

∣∣ 〈N, 〈A1, . . . , An〉, R〉 ∈ D ∧ t ∈ R ∧ ∃i(i∈{ 1,2,...,n }∧A=Ai)

}
∪

{ i(N, t) | 〈N,A,R〉 ∈ DE ∧ t ∈ R }

Definition 53 (Update Change Operation Aggregate). Let P = 〈D,DE , F 〉 be a database
repair problem, ∆ ⊆ ∆(P), 〈N, 〈A1, . . . , An〉, R〉 ∈ D and t = 〈t1, . . . , tn〉 ∈ R a tuple. The
aggregation of unitary updates to t is the tuple uaggr(∆, N, t) = 〈t′1, . . . , t′n〉 where for every
i ∈ { 1, 2, . . . , n }

t′i =

null if u(N, t,Ai) ∈ ∆

ti otherwise

Definition 54 (Change Set). Let P = 〈D,DE , F 〉 be a database repair problem. A change
set is a set ∆ ⊆ ∆(P) such that for every table nameN ∈ ND and the tuple t, the following
holds:

50

4. TAKING NULL VALUES INTO ACCOUNT: APPROACHES AND REPAIRS 4.3. Repairs

1. if d(N, t) ∈ ∆, then i(N, t) 6∈ ∆;

2. if u(N, t,A) ∈ ∆, then i(N, t) 6∈ ∆ and d(N, uaggr(∆, N, t)) 6∈ ∆.

With respect to insert change operation, when we have to insert new tuples, we have
to deal with the problem of needing information that is not present in the database.

We could overcome this problem by only consider deletion of tuples, so it would not
be necessary to find new values to do insertions. However, it would cause a big loss
of information, which is not desirable in a database context. So, we chose to consider
insertions and also deletion of tuples. This way, we can choose between repairs obtained
by insertion and deletion of tuples, and choose the one that better respects the minimality
criteria that will be specified in the next subsection. So, the database does not have a big
increase in its size (because if we always repair a database by doing insertions we are
constantly increasing the size of the database), growing with the number of repairs, nor
a big decrease in its size (because if we always repair a database by doing deletions we
are constantly decreasing the size of the database).

Regarding the updates, we also do not consider attributes updates because, we do
not want to change values that are already stored in the database and that have a con-
text given by the other tuples’ attribute values, and when replaced by other values, the
information may makes no more sense. Also, after updating a value, that combination of
attribute values, can be violating another constraint.

Although we do not allow the update of attribute values to different values, because
of the mentioned problems, we allow to update them to null values. This has the advan-
tage of just “removing” some values instead of removing the whole tuple, for example,
simultaneously avoid mixing old values with new ones and avoid the generate of an
alternative update for each possible value of the domain.

Since we treat each attribute update as a single update operation, we need to deter-
mine the resulting tuple that corresponds to the original one with the changes of the set
of single attribute update operations to that tuple.

Besides the above, we also need to merge the set of operations with the original
database in order to get the resulting database that is consistent with the ICs.

Definition 55 (Database and Change Set Merging). Let P = 〈D,DE , F 〉 be a database
repair problem, N denote a table, t and t′ denote tuples, ∆ denote a change set and E the
result of applying ∆ to D denoted as E = D ⊕∆. Then

E = D ∪ {N(t) | i(N, t) ∈ ∆ }

∪ {N(t′) | t′ = uaggr(∆, N, t) ∧ t′ 6= t }

\ {N(t) | d(N, t) ∈ ∆ }

\ {N(t) | uaggr(∆, N, t) 6= t }

51

4. TAKING NULL VALUES INTO ACCOUNT: APPROACHES AND REPAIRS 4.3. Repairs

Definition 56 (Set of Change Sets). The set of change sets that achieve a repair, denoted by
∆(P)S , consists of all change sets ∆ for P such that D ⊕∆ |= F .

Definition 57 (Repair). 1 Let P = 〈D,DE , F 〉 denote a database repair problem. A repair
G is defined as a database instance such as there is a ∆ ∈ ∆(P)S that G = D ⊕∆.

4.3.2 Minimality

It was mentioned that the performed operations should be minimal but that minimality
can be achieved considering different criteria. Each measurement criteria is determined
based on its partial order and it used to compare the alternative repairs. This measure
results in a distance between the possible repairs, that is, how these repairs differ.

In the context of this dissertation, the minimality criteria that are used are the under
set inclusion, cardinality and weight criteria. These first two were chosen because they
are very common and at least one of them is mentioned in each approach referred in
the related work, when the topic of minimal criteria is introduced. The third one, the
weight criteria, compensates the fact of other two criteria give the same weight to every
operation, the same importance. That is, deleting a whole tuple would be as wanted as
an update of a single attribute. This criteria is useful for this kind of cases, where we
want to give preference for some operations.

We can start by defining what is an ordering criteria but first we define some auxiliary
definitions.

Definition 58 (Weight Assignment Function). A weight assignment function is a function
that maps change operations to real numbers, denoted by ω(c) where c is a change oper-
ation.

Definition 59 (Balanced Weight Assignment Function). Let D be a database, each t de-
note a tuple from a table N , n = AR(N) and A is an attribute name. ωd denotes the
balanced weight assignment function that:

• ωd(i(N, t)) = 1;

• ωd(d(N, t)) = 1;

• ωd(u(N, t,A)) = 1
n .

Definition 60 (Ordering Type). An ordering type is denoted by T where T ∈ {Dc,Ds,Dω}
For the case of Dω, ω denotes a weight assignment function.

1This concept of repair is now different from the previous one in the sense that it is being obtained by
considering null values strategies. However, the same name is adopted for a matter of simplicity.

52

4. TAKING NULL VALUES INTO ACCOUNT: APPROACHES AND REPAIRS 4.3. Repairs

About the above definition, an ordering type is basically a criteria to order two or
more database instances. The criteria that we consider are: cardinality criteria (Dc), sub-
set criteria (Ds) and weight criteria (Dω).

The under set inclusion criteria consists on choosing the repairs that, if some of its
changes subsets are removed, then the repair does not respect the constraints anymore.
As we want the repairs to be minimal, if a subset of the modifications of the repaired
instance are unnecessary, there is no interest in maintaining that repair. We do not want
a repair that is not as minimal as possible.

The cardinality criteria consists on choosing the repairs which the number of opera-
tions performed (insertions, deletions and updates) are minimal. So, if we want that the
repair instance is as close as possible to the original instance, we want a instance that is
obtained by the smallest set of operations, since each operation does a modification on
the original instance, getting more “distance” from the original instance.

The weight criteria consists on assigning a weight to each operation type. This one is
similar to a cardinality criteria that uses the weight value one, that is, we are considering
that each operation type has an weight of one. With weight criteria, we can assign differ-
ent weight values to different operation types, minimizing the sum of weights multiplied
by the number of operations associated with that weight. So, we preferably want to get
repairs where the operations that compose them have a lower weight value.

Definition 61 (Strict preorder). Given a set S, a strict preorder over S is an irreflexive and
transitive binary relation over S. Given a strict preorder < over S, for any subset R of S,
the set of minimal elements of R with regard to < is:

min(R,<) = { a ∈ R | ¬∃b∈Rb < a }

Definition 62 (Closeness Relation). Let P be a database repair problem. A closeness rela-
tion is a strict preorder on ∆(P)S .

Definition 63 (Instances Ordering). Let P = 〈D,DE , F 〉 denote a database repair prob-
lem, T denote an ordering type, ∆ ∈ ∆(P)S and ∆′ ∈ ∆(P)S . ∆ <TP ∆′ iff one of the
following cases hold:

1. T=Dc then |∆| ≤ |∆′|;

2. T=Ds then ∆ (∆′;

3. T=Dω then Σs∈∆ ω(s) ≤ Σs′∈∆′ ω(s′).

Regarding the previous definition, we allow two change sets with the same cardinal-
ity or sum of weights to be indistinguishable minimal because two change sets can have
the same cardinality/sum of weights and be composed by different operations and so
one cannot be easily preferred with respect to the other. This happens as opposed to sets

53

4. TAKING NULL VALUES INTO ACCOUNT: APPROACHES AND REPAIRS 4.3. Repairs

of operations where one change set only can be a subset of other when they refer to the
same operations.

So, here is the minimal repair definition considering the previous concepts:

Definition 64 (T-Minimal Repair). Let P = 〈D,DE , F 〉 denote a database repair problem
and T an ordering type.

A T-minimal repair with regard to P is a database G such that for some ∆ ∈ ∆S(P),
D ⊕∆ = G and ∆ ∈ min(∆S(P), <TP).

Now, here is an example that integrates the mentioned concepts in a simple way.

Example 15 (Students Repairing Example). Let P = 〈D,DE , F 〉 be a repair problem
where the database D is the one from Example 7 (just the first and the third tuple of
the students table), the following foreign key IC:

〈Students,Course, 〈School ,Course〉, 〈School ,Course〉〉fk

the candidate key {Course,School} for Courses table, the database:

StudentID Name Age School Course

E1 John null School A Average Course
E3 Francis 21 Some School null

Table 4.11: Students with courses table

CourseID Course School MaxStudents

C2 Advanced Course Some School 10

Table 4.12: Courses table

And also the tuples of DE :

CourseID Course School MaxStudents

C3 Average Course School A null
C4 Medium Course null null
C5 Basic Course School B 35

Table 4.13: Courses table

Also, we consider the cardinality criteria but if the chosen was the under-set inclusion,
the result would be the same.

The database is inconsistent considering partial-match because there is no tuple in
Courses table for the tuple Students(E1 , John,null ,School A,Average Course) . This can
be repaired by deleting the tuple of Students table, by inserting a new tuple into Courses

table or by updating the Course and School attribute of the mentioned tuple to null . To

54

4. TAKING NULL VALUES INTO ACCOUNT: APPROACHES AND REPAIRS 4.3. Repairs

insert a new tuple it is necessary to know the maximum number of students associated
to that course, but it is unknown, so it could be considered to use all the possible values
of the domain. However, it is not necessary if we use a null value. So, the repairs are:

The first repair is:

ID Name Age School Course

E3 Francis 21 Some School null

Table 4.14: Repair 1 - Students with courses table

ID Course School MaxStudents

C2 Advanced Course Some School 10

Table 4.15: Repair 1 - Courses table

The second repairs is:

ID Name Age School Course

E1 John null School A Average Course
E3 Francis 21 Some School null

Table 4.16: Repair 2 - Students with courses table

ID Course School MaxStudents

C2 Advanced Course Some School 10
C3 Average Course School A null

Table 4.17: Repair 2 - Courses table

Third repair is:

ID Name Age School Course

E1 John null null null
E3 Francis 21 Some School null

Table 4.18: Repair 3 - Students with courses table

ID Course School MaxStudents

C2 Advanced Course Some School 10

Table 4.19: Repair 3 - Courses table

55

4. TAKING NULL VALUES INTO ACCOUNT: APPROACHES AND REPAIRS 4.3. Repairs

The first repair corresponds to removing the problematic tuple, the second corre-
sponds to the insertion of a new tuple where we are replacing an infinite number of
repairs, each one using different domain values, by a null value, and the third repair
corresponds of replacing the School A value and the Average Course value by null .

In the following chapters we focus on applying our approach, namely the transfor-
mation propose (Chapter 5) and the resulting application and corresponding features
(Chapter 6).

56

5
Approaching the problem by using

logic programming

Now that we discussed the alternative approaches and made the decisions, we need to
compute repairs that are based on that theory. So now, we specify how to transform the
rules associated with the decisions previous specified (ICs specification, deletion, inser-
tion and update of tuples) into a logic program that should give us the answer sets that
correspond to the repairs of the specified database.

About the notation of the null values, in ASP, only the terms that are ground and
belong to the Herbrand Universe, are considered. So, we represent the null values by
using a specific constant symbol that is used for whatever interpretation is given to that
null value.

Just for remembering, we use the notation ND to denote the set of tables’ names of
a database D and AD,N to denote the set of attributes’ names of a database D and table
name N . We also use x, y and w to represent sequences of distinct variables with a
specific arity (being x0, y0 and w0 the corresponding RowId of the tuple) and c, d and e

that represent a sequence of constants (being c0, d0 and e0 the corresponding RowId).

5.1 Determining the repairs

In order to build the logic program we need to define the rules that allow the represen-
tation of the problem namely the tuples of the database or the allowed operations, for
example. We use the following predicate symbols (where n represents arities that are

57

5. APPROACHING THE PROBLEM BY USING LOGIC PROGRAMMING 5.1. Determining the repairs

dependent from the table that is being used):

{pN /n, p_keepN /n, p_newN /n, p_update_singleAN /1 |N ∈ ND ∧A ∈ AD,N} ∪

{insert/1 , delete/1 , p_updateAN /1 , update
A
N /1 ,n_insert/1 ,n_delete/1 ,n_updateAN /1} ∪

{updateAttrValAN /2 , update_aggrN /n|N ∈ ND ∧A ∈ AD,N} ∪

{aux ai ,bi
N1 ,N2

/n|N1 ,N2 ∈ ND ∧ ai ∈ AD ,N1 ∧ bi ∈ AD ,N2 } ∪

{aux 〈ai ,...,ak 〉,〈bi ,...,bk 〉N1 ,N2
/n|N1 ,N2 ∈ ND ∧ k ∈ N ∧ ∀ki=0ai ∈ AD ,N1 ∧ ∀ki=0 bi ∈ AD ,N2 } ∪

{p_deletedN /n, p_insertedN /n, p_was_updateN /n, p_updatedN /n}

{domA
N /1}

The first step of the transformation consists in getting the tuples of database tables and
represent them as facts by using some predicates, specifying the corresponding table
name and the values of the different attributes. We also represent the source of extra
tuples database (the ones that can be inserted) by using a different predicate and the
possible update to attributes with another predicate. Then, we generate all the possible
combinations of delete, insert and update operations that can compose a repair and next
we specify the constraints that prune the answer sets that do not satisfy the ICs. Those
constraints are represented by different types of rules depending of the type of the repre-
sented constraint.

Definition 65 (Generating Tuples Facts). Let P = 〈D,DE , F 〉 denote a database repair
problem, the tuples facts of the database D and of the database DE , denoted by ϕT (P),
are:

1. For every atom N(c) in M(D), ϕ(P) contains:

pN (c).

2. For every atom N(c) in M(DE), ϕ(P) contains:

p_newN (c).

3. For every atom N(c) in M(D) and for every A in AD,N , ϕT (P) contains:

p_update_singleAN (c0).

Definition 66 (Generating Rules). Let P = 〈D,DE , F 〉 denote a database repair problem,
the generating rules for all the possible insertions, deletions and updates, denoted by
ϕG(P) are:

58

5. APPROACHING THE PROBLEM BY USING LOGIC PROGRAMMING 5.1. Determining the repairs

1. For every relation N ∈ ND:

(a) delete(x0)← pN (x) ∧ not n_delete(x0) ∧ not update(x0).

(b) n_delete(x0)← pN (x) ∧ not delete(x0).

(c) p_keepN (x)← pN (x) ∧ not delete(x0) ∧ not update(x0).

2. For every relation N ∈ NDE
:

(a) insert(x0)← p_newN (x) ∧ not n_insert(x0).

(b) n_insert(x0)← p_newN (x) ∧ not insert(x0).

(c) p_keepN (x)← p_newN (x) ∧ insert(x0) ∧ not delete(x0) ∧ not update(x0).

3. For every relation N ∈ ND, where n = AR(N):

(a) For each i ∈ { 1, 2, . . . , n }:

i. p_updateAi
N (x0)← pN (x) ∧ p_update_singleAi

N (x0) ∧ not n_updateAi
N (x0).

ii. n_updateAi
N (x0)← pN (x) ∧ p_update_singleAi

N (x0) ∧ not p_updateAi
N (x0).

(b) updateAttrValAN (x0 , x#N
A

)← pN (x) ∧ not p_updateAN (x0).

(c) updateAttrValAN (x0 ,null)← pN (x) ∧ p_updateAN (x0).

(d) update_aggrN (x0 , y)← updateAttrValA0
N (x0 , y0) ∧ . . .∧

updateAttrValAn
N (x0 , yn) ∧ p_updateAi

N (x0).

(e) update(x0)← update_aggrN (x0 , y).

(f) p_keepN (y)← update_aggrN (x0 , y) ∧ not delete(x0).

About the updates, it is relevant to note that each p_update predicate represents an
update to null for a specific attribute of a specific tuple. Each updatable attribute is rep-
resented by a p_update_single predicate. If an attribute of a tuple is updated with that
predicate then the value of that attribute becomes null, otherwise the original value is
kept (this is represented with the updateAttrVal predicate). Also the update_aggr predicate
represents the tuple’s values after all the updates to its attributes.

Next, after getting the tuples and generating all possible operations that may compose
the repair, we define all the constraint rules.

Definition 67 (Primary Key Rules). Let δpk = 〈N,A〉 denote a primary key and F de-
note a set of constraints. For every primary key constraint where δpk ∈ F , for each
j ∈ {0, 1, 2, ..., n}\#N

A , ϕδpk(F), that represents the set of rules corresponding to δpk, con-
tains:

⊥ ← p_keepN (x) ∧ p_keepN (y) ∧
∧
i∈#N

A

xi = yi ∧ xj 6= yj .

Also, for each i ∈ #N
A :

⊥ ← p_keepN (x), xi = null.

59

5. APPROACHING THE PROBLEM BY USING LOGIC PROGRAMMING 5.1. Determining the repairs

Definition 68 (Unique Constraint with Simple Match Rules). Let δuc = 〈N,A〉 denote a
unique constraint and F denote a set of constraints. For every unique constraint where
δuc ∈ F , for each j ∈ {0, 1, 2, ..., n}\#N

A , ϕδuc(F), that represents the set of rules corre-
sponding to δuc, contains:

⊥ ← p_keepN (x) ∧ p_keepN (y) ∧
∧
i∈#N

A

(xi = yi ∧ xi 6= null ∧ yi 6= null ∧ xj 6= yj).

Definition 69 (Functional Dependency with Simple Match Rules). Let δfd = 〈N,A,B〉
denote a functional dependency and F denote a set of constraints. For every functional
dependency constraint where δfd ∈ F , for each j ∈ #N

B , ϕδfd(F), that represents the set
of rules corresponding to δfd, contains:

⊥ ← p_keepN (x) ∧ p_keepN (y) ∧
∧
i∈#N

A

(xi = yi ∧ xi 6= null ∧ yi 6= null ∧ xj 6= yj).

Definition 70 (Foreign Key with Partial Match Rules). Let δfk = 〈N1, N2, A,B〉 denote
a foreign key, F denote a set of constraints, A and B two sequences of attribute names
where A = 〈A1, . . . , Ak〉 and B = 〈B1, . . . , Bk〉 and i an index where i ∈ { 1, 2, . . . , k }.
For every foreign key constraint δfk ∈ F , ϕδfk(F), that represents the set of rules corre-
sponding to δfk, contains:

auxAi,Bi

N1,N2
(x, y)← x

#
N1
Ai

= y
#

N2
Bi

.

auxAi,Bi

N1,N2
(x, y)← x

#
N1
Ai

= null.

auxA,BN1,N2
(x)← p_keepN1(x) ∧ p_keepN2(y) ∧

k∧
i=1

auxAi,Bi

N1,N2
(x, y).

⊥ ← p_keepN1(x) ∧ not auxA,BN1,N2
(x).

Definition 71 (Inclusion Dependency with Partial Match Rules). Let δincd = 〈N1, N2, A,B〉
denote an inclusion dependency, F denote a set of constraints, A and B two sequences
of attribute names where A = 〈A1, . . . , Ak〉 and B = 〈B1, . . . , Bk〉 and i an index where
i ∈ { 1, 2, . . . , k }. For every inclusion dependency constraint where δincd ∈ F , ϕδincd

(F),
that represents the set of rules corresponding to δincd, contains:

auxAi,Bi

N1,N2
(x, y)← x

#
N1
Ai

= y
#

N2
Bi

.

auxAi,Bi

N1,N2
(x, y)← x

#
N1
Ai

= null.

60

5. APPROACHING THE PROBLEM BY USING LOGIC PROGRAMMING 5.1. Determining the repairs

auxA,BN1,N2
(x)← p_keepN1(x) ∧ p_keepN2(y) ∧

k∧
i=1

auxAi,Bi

N1,N2
(x, y).

⊥ ← p_keepN1(x) ∧ not auxA,BN1,N2
(x).

Definition 72 (Check Constraint accepting Nulls Rules). Let δckc = 〈N,A, θ, V 〉 denote
a check constraint and F denote a set of constraints. For every check constraint where
δckc ∈ F , ϕδckc(F), that represents the set of rules corresponding to δckc, contains:

auxAN (x)← x#N
A
θ V.

auxAN (x)← x#N
A

= null.

⊥ ← p_keepN (x) ∧ not auxAN (x).

Definition 73 (Domain Constraint including Nulls Rules). Let δdc = 〈N,A,Dom〉 denote
a domain constraint andF denote a set of constraints, whereDom = {val1, val2, . . . , valn}.
For every domain constraint where δdc ∈ F , ϕδdc(F), that represents the set of rules cor-
responding to δdc, contains:

For each vali ∈ Dom, we add:
domA

N (vali).

Where A stands for the name of the attribute, and:

⊥ ← p_keepN (x) ∧ not domA
N (x#N

A
) ∧ x#N

A
6= null.

Definition 74 (Not-Null Rules). Let δnn = 〈N,A〉 denote a not-null constraint and F

denote a set of constraints. For every not-null constraint where δnn ∈ F , ϕδnn(F), that
represents the set of rules corresponding to δnn, contains:

⊥ ← p_keepN (x) ∧ x#N
A

= null.

Now that the answers that have the necessary conditions are filtered, we have to
extract them.

Definition 75 (Transformation Function). Let ϕ(P) denote the transformation function
of a database repair problem P = 〈D,DE , F 〉 to a logic program. The logic program,
denoted by ϕ(P) is:

ϕ(P) = ϕT (P) ∪ ϕG(P) ∪
⋃
δ∈F

ϕ(δ)

61

5. APPROACHING THE PROBLEM BY USING LOGIC PROGRAMMING 5.1. Determining the repairs

After getting all the answer sets, we have to extract the useful information from them
in order to obtain the tuples that actually remain in the repaired database and the opera-
tions that were made to have them.

Definition 76 (Extracting Function). Let P = 〈D,DE , F 〉 be a database repair problem
and let X be an answer set of ϕ(P). We can extract the repair atoms using the function α
defined as:

αN (X) = {N(c) | p_keepN (c) ∈ X}

α(X) =
⋃

N∈ND

αN (X)

And we can obtain the modifications with respect to the original database with:

∆(X) = { d(N, t) | delete(t0) ∈ X ∧ pN (t) ∈ X }

∪ { i(N, t) | insert(t0) ∈ X ∧ p_newN (t) ∈ X }

∪ {u(N, t,A) | p_updateAN (t0) ∈ X ∧ pN (t) ∈ X }

These modifications are useful to extract so that we know which operations we have
to do in the database in order to make it consistent.

The next step is to define some theorems in order to specify the relation between
repairs and answer sets obtained by the logic program. Their proofs are about the sound-
ness and completeness properties, so that every answer set corresponds to a valid database
repair and every database repair corresponds to an answer set, corresponding with the
defined theory.

In order to prove that the atoms of each answer set are consistent with the theory (that
they constitute a repair), we start by proving that the extracted tuples correspond with
the available ones: original database’s tuples; the set of tuples to be inserted or that result
from updates from the original tuples. Then we ensure that they are consistent with the
constraints.

Theorem 3 (Repair Soundness). Let P = 〈D,DE , F 〉 be a database repair problem. For every
answer set X of ϕ(P), α(X) is a repair of D with respect to P .

Proof (sketch). Let P = 〈D,DE , F 〉 be a database repair problem and X an answer set of
ϕ(P) such that α(X) is a repair of D with respect to P .

In order to α(X) be a repair ofD with respect to P , by Definition 57, we need to prove
that ∃∆∈∆(P)Sα(X) = D ⊕∆. Assume that ∆ that corresponds to ∆(X).

62

5. APPROACHING THE PROBLEM BY USING LOGIC PROGRAMMING 5.1. Determining the repairs

In order to ∆ ∈ ∆(P)S it must be a change set, by Definition 56, that with respect to
Definition 54, means that ∆:

1. for every d(N, t) ∈ ∆, then i(N, t) 6∈ ∆;

2. for every u(N, t,A) ∈ ∆, then i(N, t) 6∈ ∆ and d(N, uaggr(∆, N, t)) 6∈ ∆.

For the first case, if we assume that delete(t0) ∈ X , considering that t0 is the zero-th
attribute of a tuple from D, since t0 uniquely identifies that tuple in the database, there
are no insertion rules for that tuple (since the tuples to be inserted are from DE and
to be deleted from D), and if insert(t0) ∈ X then by Proposition 2 there has to be an
insertion rule for the tuple, resulting in a conflict. Then, insert(t0) 6∈ X , consequently
insert(t0) 6∈ X ∨ p_newN (t) /∈ X and so i(N, t) 6∈ ∆.

For the second case, if we assume that u(N, t,A) ∈ ∆, then p_updateAN (t0) ∈ X ∧
pN (t) ∈ X , and as in the previous case, i(N, t) 6∈ ∆. Let t′ = uaggr(∆, N, t), then t′0 = t0.
Assuming that d(N, t′) ∈ ∆, then delete(t′0) ∈ X and delete(t0) ∈ X , that consequently, by
support, update(t0) 6∈ X . As update(t0) 6∈ X , by support, update_aggrN (t0, t

′) 6∈ X and
also (since the updateAttrV al predicate covers all cases (the null and not null attributes)
and so it belongs to X), by support, ¬∃Ai p_updateAi

N (t0) ∈ X , resulting in a conflict.
Then d(N, t′) 6∈ ∆.

Then, ∆ is a change set.
We now prove that, regarding the change set ∆, α(X) = D⊕∆. By Definition 55, it is

equivalent to α(X) = D′ where:

D′ = D ∪ {N(t) | i(N, t) ∈ ∆ }

∪ {N(t′) | t′ = uaggr(∆, N, t) ∧ t′ 6= t }

\ {N(t) | d(N, t) ∈ ∆ }

\ {N(t) | uaggr(∆, N, t) 6= t }

α(X) = D′ is equivalent to α(X) ⊂ D′ ∧D′ ⊂ α(X), then we first prove that α(X) ⊂ D′.
First, we take someN(t) ∈ α(X), that by Definition 75, means that p_keepN (t) ∈ X . In

order to p_keepN (t) ∈ X , it can be generated by three possible rules, considering support
of Definition 24. We treat each one by cases:

• Case 1: pN (t) ∈ X and delete(t0) 6∈ X and update(t0) 6∈ X .

As pN (t) ∈ X then N(t) ∈ D by Definition 65. Also, as delete(t0) 6∈ X , then there is
no d(N, t) ∈ ∆ which implies that the tuple is not removed from D’.

Since update(t0) 6∈ X , then by support, update_aggrN (t0, t
′) 6∈ X , which implies

that ¬∃Aip_updateAi
N (t0) ∈ X . Regarding ∆, since ¬∃Aip_updateAi

N (t0) ∈ X then
u(N, t,A) 6∈ ∆ which by Definition 53 means that uaggr(∆, N, t) = t. Then t is not
updated.

These conditions imply that N(t) ∈ D′.

63

5. APPROACHING THE PROBLEM BY USING LOGIC PROGRAMMING 5.1. Determining the repairs

• Case 2: p_newN (t) ∈ X and insert(t0) ∈ X and delete(t0) 6∈ X and update(t0) 6∈ X .

First, p_newN (t) ∈ X and insert(t0) ∈ X imply that i(N, t) ∈ ∆, and so N(t) ∈
{N(t) | i(N, t) ∈ ∆ }.

As delete(t0) 6∈ X , then there is no d(N, t) ∈ ∆ which implies that the tuple is not
removed from D’.

Since update(t0) 6∈ X , then by support, update_aggrN (t0, t
′) 6∈ X , which implies

that ¬∃Aip_updateAi
N (t0) ∈ X . Regarding ∆, since ¬∃Aip_updateAi

N (t0) ∈ X then
u(N, t,A) 6∈ ∆ which by Definition 53 means that uaggr(∆, N, t) = t. Then t is not
updated.

These conditions imply that N(t) ∈ D′.

• Case 3: update_aggrN (t0, t
′) ∈ X and delete(t0) 6∈ X .

Since, update_aggrN (t0, t
′) ∈ X then ∃Aip_updateAi

N (t0) ∈ X by support, that means
that the attribute Ai of t has been updated to null.

If the updated attribute already had a null value then the tuple stays equal and it
trivially corresponds to Case 1.

Otherwise, N(t) ∈ {N(t′) | t′ = uaggr(∆, N, t) ∧ t′ 6= t }. Also, delete(t0) 6∈ X , then
there is no d(N, t) ∈ ∆ which implies that the tuple is not removed from D’. As
mentioned, t′ = uaggr(∆, N, t)∧ t′ 6= t, which implies thatN(t) is not removed. This
implies that N(t) ∈ D′.

We now prove thatD′ ⊂ α(X). We take someN(t) ∈ D′, and prove that p_keepN (t) ∈
X . N(t) can be included in D’ by three different alternatives. We treat each one by cases:

• Case 1: N(t) ∈ D

By Definition 65, N(t) ∈ D implies that pN (t) ∈ X . Also, as we extracted N(t) from
D′, it implies that N(t) 6∈ {N(t) | d(N, t) ∈ ∆ }, which implies that d(N, t) 6∈ ∆. As
d(N, t) 6∈ ∆ then, delete(t0) 6∈ X ∨ pN (t) 6∈ X . We previous stated that pN (t) ∈ X .
Both these statements, show a contradiction with respect to pN (t) and so we can
state that delete(t0) 6∈ X .

Also, as we extractedN(t) fromD′, it implies thatN(t) 6∈ {N(t) | uaggr(∆, N, t) 6= t }.
That is, there is no u(N, t,A) ∈ ∆ and so p_updateAN (t0) 6∈ X ∨pN (t) 6∈ X . We previ-
ous stated that pN (t) ∈ X . Both these statements, show a contradiction with respect
to pN (t) and so we can state that p_updateAN (t0) 6∈ X . Also, as p_updateAN (t0) 6∈ X ,
then by Definition 66, then update_aggrN (t0, t

′) 6∈ X and consequently update(t0) 6∈
X . Then, as pN (t) ∈ X , delete(t0) 6∈ X and update(t0) 6∈ X , consequently, as X is a
model, for all rule r if X |= B(r), then it implies X |= H(r), so p_keepN (t) ∈ X .

• Case 2: N(t) ∈ {N(t) | i(N, t) ∈ ∆ }

Since i(N, t) ∈ ∆ it implies that insert(t0) ∈ X ∧ p_newN (t) ∈ X . Also, as we
extracted N(t) from D′, it implies that N(t) 6∈ {N(t) | d(N, t) ∈ ∆ }, which implies

64

5. APPROACHING THE PROBLEM BY USING LOGIC PROGRAMMING 5.1. Determining the repairs

that d(N, t) 6∈ ∆. As d(N, t) 6∈ ∆, then delete(t0) 6∈ X ∨ pN (t) 6∈ X . Assuming
that delete(t0) ∈ X . Then, by support, pN (t) ∈ X which is a contradiction. Then
delete(t0) 6∈ X .

Also, as we extractedN(t) fromD′, it implies thatN(t) 6∈ {N(t) | uaggr(∆, N, t) 6= t }.
That is, there is no u(N, t,A) ∈ ∆. Even because p_newN (t) ∈ X , then it cannot be
updated, consequently update(t0) 6∈ X .

Then, as insert(t0) ∈ X , p_newN (t) ∈ X , delete(t0) 6∈ X and update(t0) 6∈ X ,
consequently, as X is a model, for all rule r if X |= B(r), then it implies X |= H(r),
so p_keepN (t) ∈ X .

• Case 3: N(t) ∈ {N(t′) | t′ = uaggr(∆, N, t) ∧ t′ 6= t }

Since N(t) ∈ {N(t′) | t′ = uaggr(∆, N, t) ∧ t′ 6= t }, it implies that ∃Au(N, t,A) ∈ ∆

by Definition 53, and this implies p_updateAN (t0) ∈ X ∧ pN (t) ∈ X .

Also, as we extracted N(t) from D′, it implies that N(t) 6∈ {N(t) | d(N, t) ∈ ∆ },
which implies that d(N, t) 6∈ ∆. As d(N, t) 6∈ ∆ then, delete(t0) 6∈ X ∨ pN (t) 6∈ X .
Assuming that delete(t0) ∈ X . Then, by support, pN (t) ∈ X which is a contradic-
tion. Then delete(t0) /∈ X .

Also, as we extractedN(t) fromD′, it implies thatN(t) 6∈ {N(t) | uaggr(∆, N, t) 6= t }.
Then, by Definition 53, ∃Au(N, t,A) ∈ ∆ and consequently p_updateAN (t0) ∈ X ∧
pN (t) ∈ X . As ∃Ap_updateAN (t0) ∈ X then update_aggrN (t0, t

′) ∈ X .

Then, as delete(t0) 6∈ X and update_aggrN (t0, t
′) ∈ X , consequently, as X is a

model, for all rule r if X |= B(r), then it implies X |= H(r), so p_keepN (t) ∈ X .

So, as α(X) ⊂ D′ and D′ ⊂ α(X) then α(X) = D′.
In addiction to prove that ∆ ∈ ∆(P)S , we also need to show that D ⊕∆ |= F , since

α(X) = D ⊕∆, then α(X) |= F . So, we take some δ ∈ F and it has to respect one of the
following cases:

1. δ is a primary key:

For any two vectors of terms c and d. The formula:

¬

[
N(c̄) ∧N(d̄) ∧

(∨
i∈#N

A

ci = null ∨
(∧

i∈#N
A

ci = di ∧
∨

j∈{0,1,2,3,...,n}\#N
A

cj 6= dj

))]

is true iff:[
N(c̄) ∧N(d̄) ∧

(∨
i∈#N

A

ci = null ∨
(∧

i∈#N
A

ci = di ∧
∨

j∈{0,1,2,3,...,n}\#N
A

cj 6= dj

))]

is false.

Suppose that N(c) is true, N(d) is true, then:

65

5. APPROACHING THE PROBLEM BY USING LOGIC PROGRAMMING 5.1. Determining the repairs

• if ci for some i ∈ #N
A is null, then X is not a model of the rules of Definition 67

and so we have a conflict;

• if ci for all i ∈ #N
A is not null, then if

∧
i∈#N

A
ci = di ∧

∨
j∈{0,1,2,3,...,n} cj 6= dj is

true, a rule is violated by X , then X is not a model of the rules of Definition 67
and so we have a conflict.

For both cases, we have a conflict when the vector of terms corresponds to the
expression, which means that that cannot exist an answer set X where two tuples
correspond to the expression.

2. δ is an unique constraint:

For any two vectors of terms c and d. The formula:

¬

[
N(c̄) ∧N(d̄) ∧

(∧
i∈#N

A

ci = di ∧ ci 6= null ∧ di 6= null
)
∧

∨
j∈{0,1,2,3,...,n}\#N

A

cj 6= dj

]

is true iff:[
N(c̄) ∧N(d̄) ∧

(∧
i∈#N

A

ci = di ∧ ci 6= null ∧ di 6= null
)
∧

∨
j∈{0,1,2,3,...,n}\#N

A

cj 6= dj

]

is false.

Suppose that N(c) is true, N(d) is true, and
∧

i∈#N
A
ci = di ∧ ci 6= null ∧ di 6= null is

true then:

• If
∨

j∈{0,1,2,3,...,n}\#N
A
cj 6= dj is true, a rule of Definition 68 is violated byX , then

X is not a model of the rules and so we have a conflict.

In that case, we have a conflict when the vector of terms corresponds to the ex-
pression, which means that that cannot exist an answer set X where two tuples
correspond to the expression.

3. δ is a functional dependency:

For any two vectors of terms c and d.The formula:

¬

[
N(c̄) ∧N(d̄) ∧

(∧
i∈#N

A

ci = di ∧ ci 6= null ∧ di 6= null
)
∧
∨

j∈#N
B

cj 6= dj

]

is true iff:[
N(c̄) ∧N(d̄) ∧

(∧
i∈#N

A

ci = di ∧ ci 6= null ∧ di 6= null
)
∧
∨

j∈#N
B

cj 6= dj

]

is false.

66

5. APPROACHING THE PROBLEM BY USING LOGIC PROGRAMMING 5.1. Determining the repairs

Suppose that N(c) is true, N(d) is true, and
∧

i∈#N
A
ci = di ∧ ci 6= null ∧ di 6= null is

true then:

• If
∨

j∈#N
B
cj 6= dj is true, a rule of Definition 69 is violated by X , then X is not a

model of the rules and so we have a conflict.

We have a conflict when the vector of terms corresponds to the expression, which
means that that cannot exist an answer set X where two tuples correspond to the
expression.

4. δ is a foreign key:

For any vector of terms c, the formula:[
¬N1(c̄) ∨ ∃d̄

[
N2(d̄) ∧

(k∧
i=1

c
#

N1
Ai

= d
#

N2
Bi

∨ c
#

N1
Ai

= null
)]]

is true, considering that there is a vector of terms d. Regarding Definition 70,
auxA,BN1,N2

(c) must be true so that the model is not removed. By support, there must
be a d such that p_keepN (d) ∈ X and so all auxAi,Bi

N1,N2
(c, d) ∈ X .

Suppose that N1(c) is true, that is, ¬N1(c) is false, then:

• If N2(d̄)∧
(∧k

i=1 c#
N1
Ai

= d
#

N2
Bi

∨ c
#

N1
Ai

= null
)

is false, then a rule of Definition

70 is violated by X , then X is not a model of one of the rules and so we have a
conflict.

We have a conflict when the vector of terms does not correspond to the expression,
which means that that cannot exist an answer set X that does not correspond to the
expression.

5. δ is an inclusion dependency:

For any vector of terms c, the formula:[
¬N1(c̄) ∨ ∃d̄

[
N2(d̄) ∧

(k∧
i=1

c
#

N1
Ai

= d
#

N2
Bi

∨ c
#

N1
Ai

= null
)]]

is true, considering that there is a vector of terms d. Regarding Definition 71,
auxA,BN1,N2

(c) must be true so that the model is not removed. By support, there must
be a d such that p_keepN (d) ∈ X and so all auxAi,Bi

N1,N2
(c, d) ∈ X .

Suppose that N1(c) is true, that is, ¬N1(c) is false, then:

• If N2(d̄)∧
(∧k

i=1 c#
N1
Ai

= d
#

N2
Bi

∨ c
#

N1
Ai

= null
)

is false, then a rule of Definition

71 is violated by X , then X is not a model of one of the rules and so we have a
conflict.

67

5. APPROACHING THE PROBLEM BY USING LOGIC PROGRAMMING 5.1. Determining the repairs

We have a conflict when the vector of terms does not correspond to the expression,
which means that that cannot exist an answer set X that does not correspond to the
expression.

6. δ is a check constraint:

For any vector of terms c.The formula:

¬

[
N(c̄) ∧ ¬(c#N

A
θ V ∨ c#N

A
= null)

]

is true iff: [
N(c̄) ∧ ¬(c#N

A
θ V ∨ c#N

A
= null)

]
is false.

Suppose that N(c) is true then:

• if c#N
A

is not null, then X is not a model of one of the rules of Definition 72 but
it is dependent of c#N

A
;

• if c#N
A

is null, then we still need to show ¬c#N
A
θ V is false. Assuming it is true,

a rule of Definition 72 is violated by X , then X is not a model of the rules and
so we have a conflict.

We have a conflict when the vector of terms corresponds to the expression, which
means that that cannot exist an answer set X where the tuples correspond to the
expression.

7. δ is a domain constraint:

For any vector of terms c.The formula:

¬

[
N(c̄) ∧

(∧
val∈DA

c#N
A
6= val

)]

is true iff: [
N(c̄) ∧

(∧
val∈DA

c#N
A
6= val

)]

is false.

Suppose that N(c) is true, then:

• If
∧
val∈DA

c#N
A
6= val is true, a rule of Definition 73 is violated by X , then X is

not a model of one of the rules and so we have a conflict.

We have a conflict when the vector of terms corresponds to the expression, which
means that that cannot exist an answer set X where each tuple correspond to the
expression.

68

5. APPROACHING THE PROBLEM BY USING LOGIC PROGRAMMING 5.1. Determining the repairs

8. δ is a not-null constraint:

For any vector of terms c.The formula:

¬

[
N(c̄) ∧ c#N

A
= null

]

is true iff: [
N(c̄) ∧ c#N

A
= null

]
is false.

Suppose that N(c) is true, then:

• If c#N
A

= null is true, a rule of Definition 74 is violated by X , then X is not a
model of one of the rules and so we have a conflict.

We have a conflict when the vector of terms corresponds to the expression, which
means that that cannot exist an answer set X where the tuples correspond to the
expression.

Then, we can conclude that α(X) |= F and so α(X) is a repair of D.

In order to prove that a repair D′ always match with some answer set X , we start by
proving that, since the repair is according to the theory, X is according to the program
that results from that theory (considering D′), that is, X is a model of that program and
also a minimal one.

Theorem 4 (Repair Completeness). Let P = 〈D,DE , F 〉 be a database repair problem. For
every repairD′ ofD, with respect to P , there is an answer setX of ϕ(P) such as α(X) = M(D′).

Proof (sketch). Let P = 〈D,DE , F 〉 be a database repair problem, and D′ a repair of D,
with respect to P , where D′ = D ⊕∆ and an answer set X such that α(X) = M(D′).

In order to X be an answer set, with respect to the Definition 23 and then 20, it needs
to be a Herbrand model where X = X ′ and X ′ is the least model of ground(P)X , such
that ∀Y :Y is a model of ground(P)X

′ ⊆ Y . Assume that there is a X such that:

X = { pN (t) | N(t) ∈M(D) } ∪ { p_newN (t) | N(t) ∈M(DE) }∪

{ p_update_singleAN (t) | N(t) ∈M(D) } ∪ { p_keepN (t) | N(t) ∈M(D′) }∪

{ delete(t0) | N(t) ∈M(D) ∧ d(N, t) ∈ ∆ }∪

{n_delete(t0) | N(t) ∈M(D) ∧ d(N, t) 6∈ ∆ }∪

{ insert(t0) | N(t) ∈M(DE) ∧ i(N, t) ∈ ∆ }∪

69

5. APPROACHING THE PROBLEM BY USING LOGIC PROGRAMMING 5.1. Determining the repairs

{n_insert(t0) | N(t) ∈M(DE) ∧ i(N, t) 6∈ ∆ }∪

{ p_updateAN (t0), updateAttrV alAN (t0, null) | N(t) ∈M(D) ∧ u(N, t,A) ∈ ∆ }∪

{n_updateAN (t0), updateAttrV alAN (t0, t#N
A

) | N(t) ∈M(D) ∧ u(N, t,A 6∈ ∆ }∪

{update_aggrN (t0, t
′), update(t0) | N(t) ∈M(D) ∧ t′ = uaggr(∆, N, t) ∧ ∃Au(N, t,A) ∈ ∆ }∪

{ auxA,BN1,N2
(t) | ∃δfk=〈N1,N2,A,B〉∧δfk∈F∃t′∀

k
i=1aux

Ai,Bi

N1,N2
(t, t′) }∪

{ auxAi,Bi

N1,N2
(t, t′) | ∃δfk=〈N1,N2,A,B〉∧δfk∈F (t#N1

Ai

= null ∨ t#N1
Ai

= t′
#N2

Bi

) }∪

{ auxAN (t) | ∃δckc=〈N,A,θ,V〉ckc∧δckc∈F (t#N
A

= null ∨ t#N
A
θ V) }∪

{ domA
N (val) | ∃δdc=〈N,A,Dom〉val ∈ Dom }

First, we prove that X is a model. In order to be a model, with respect to Definition
20, it needs to entail π(ground(P)X), that is, for every ground rule r of P , when X |=
ground(B(r)) then X |= ground(H(r)). We treat each rule of ground(P)X , determined as
in defined in Definition 22, in cases, assuming thatX |= B(r) and proving thatX |= H(r):

• Rules of Definition 65:

By definition of X , these facts always belong to it because the only condition is that
they are in D or DE , so they are all satisfied in X .

• Rules of Definition 66:

With respect to 1., when delete(t0) ∈ X then n_delete(t0) 6∈ X and when n_delete(t0) ∈
X then delete(t0) 6∈ X because of the cycle made by the rules of the definition, so
they are exclusive between them. As, pN (t) is a fact and always belong to X , then
the existent of delete(t0) or n_delete(t0) in X only depends of the cycle. So when
X |= B(r) then X |= H(r). About the p_keepN (t), it only depends of delete(t0) ∈ X
or update(t0) ∈ X , then when X |= B(r) then X |= H(r).

With respect to 2., when insert(t0) ∈ X then n_insert(t0) 6∈ X and when n_insert(t0) ∈
X then insert(t0) 6∈ X because of the cycle made by the rules of the definition, so
they are exclusive between them. As, p_newN (t) is a fact and always belong to
X , then the existent of insert(t0) or n_insert(t0) in X only depends of the cycle.
So when X |= B(r) then X |= H(r). About the p_keepN (t), it only depends of
insert(t0) ∈ X , delete(t0) ∈ X or update(t0) ∈ X , then when X |= B(r) then
X |= H(r).

With respect to 3., when p_updateAN (t0) ∈ X then n_updateAN (t0) 6∈ X and when
n_updateAN (t0) ∈ X then p_updateAN (t0) 6∈ X because of the cycle made by the
rules of the definition, so they are exclusive between them. As, pN (t) is a fact and
always belong to X , then the existent of p_updateAN (t0) or n_updateAN (t0) in X only
depends of the cycle. So when X |= B(r) then X |= H(r). With respect to 3. c)
and d), both predicates cover all the cases, the cases where p_updateAN (t0) ∈ X ,

70

5. APPROACHING THE PROBLEM BY USING LOGIC PROGRAMMING 5.1. Determining the repairs

and the cases where p_updateAN (t0) 6∈ X that is, in all occasions, X |= H(r). With
respect to 3. e) and f), they are trivial. About the p_keepN (t), it only depends of
update_aggrN (t0, t

′) ∈ X and delete(t0) ∈ X then when X |= B(r) then X |= H(r).

• Rules of Definition 67:

We assumed that X |= B(r) then p_keepN (t) ∈ X and p_keepN (t′) ∈ X , which
implies that N(t) ∈M(D′) and N(t′) ∈M(D′) which contradicts Definition 42 and
so D′ cannot be a repair, which is a contradiction. Then, X would be eliminated
and so, X |= H(r).

• Rules of Definition 68:

We assumed that X |= B(r) then p_keepN (t) ∈ X and p_keepN (t′) ∈ X , which
implies that N(t) ∈M(D′) and N(t′) ∈M(D′) which contradicts Definition 43 and
so D′ cannot be a repair, which is a contradiction. Then, X would be eliminated
and so, X |= H(r).

• Rules of Definition 69:

We assumed that X |= B(r) then p_keepN (t) ∈ X and p_keepN (t′) ∈ X , which
implies that N(t) ∈M(D′) and N(t′) ∈M(D′) which contradicts Definition 44 and
so D′ cannot be a repair, which is a contradiction. Then, X would be eliminated
and so, X |= H(r).

• Rules of Definition 70:

Here, if auxA,BN1,N2
(t) ∈ X then the rule is eliminated. Otherwise, r′ = ground(r)X =←

p_keepN1(t). As we assumed that X |= B(r) then p_keepN1(t) ∈ X , which implies
that N(t) ∈ M(D′), but as auxA,BN1,N2

(t) 6∈ X , it contradicts the Definition 45, and so
D′ cannot be a repair, which is a contradiction. Then, X would be eliminated and
so, X |= H(r).

• Rules of Definition 71:

Here, if auxA,BN1,N2
(t) ∈ X then the rule is eliminated. Otherwise, r′ = ground(r)X =←

p_keepN1(t). As we assumed that X |= B(r) then p_keepN1(t) ∈ X , which implies
that N(t) ∈ M(D′), but as auxA,BN1,N2

(t) 6∈ X , it contradicts the Definition 46, and so
D′ cannot be a repair, which is a contradiction. Then, X would be eliminated and
so, X |= H(r).

• Rules of Definition 72:

Here, if auxAN (t) ∈ X then the rule is eliminated. Otherwise, r′ = ground(r)X =←
p_keepN (t). As we assumed that X |= B(r) then p_keepN (t) ∈ X , which implies
that N(t) ∈ M(D′), but as auxAN (t) 6∈ X , it contradicts the Definition 47, and so D′

cannot be a repair, which is a contradiction. Then, X would be eliminated and so,
X |= H(r).

71

5. APPROACHING THE PROBLEM BY USING LOGIC PROGRAMMING 5.1. Determining the repairs

• Rules of Definition 73:

Here, if domA
N (val) ∈ X then the rule is eliminated. Otherwise, r′ = ground(r)X =←

p_keepN (t) ∧ t#N
A
6= null. As we assumed that X |= B(r) then p_keepN (t) ∈ X and

t#N
A
6= null, which implies that N(t) ∈M(D′), but as domA

N (val) 6∈ X , it contradicts
the Definition 48, and so D′ cannot be a repair, which is a contradiction. Then, X
would be eliminated and so, X |= H(r).

• Rules of Definition 74:

r′ = ground(r)X = r. We assumed that X |= B(r) then p_keepN (t) ∈ X and
x#N

A
= null ∈ X , which implies that N(t) ∈M(D′) which contradicts Definition 49

and soD′ cannot be a repair, which is a contradiction. Then,X would be eliminated
and so, X |= H(r).

Then, for every considered rule, X follows that when X |= B(r) also X |= H(r), and
so X is a model. Now, we check if X coincides with the least model. If it is a least model,
then X ⊆ I , for all models I . We separate every predicate that may belong to X by cases:

• pN (t) ∈ X , p_newN (t) ∈ X , p_update_singleAN (t0) ∈ X

If pN (t) ∈ X then pN (t) ∈ I because pN (t) is a fact and otherwise I would not be a
model. Same if p_newN (t) ∈ X and p_update_singleAN (t0) ∈ X .

• delete(t0) ∈ X

If delete(t0) ∈ X then n_delete(t0) 6∈ X and update(t0) 6∈ X , then the reduct of the
corresponding rule is delete(t0)← pN (t). As pN (t) ∈ I , because it is a model of the
same program regarding X , then delete(t0) ∈ I .

• n_delete(t0) ∈ X

If n_delete(t0) ∈ X then delete(t0) 6∈ X , then the reduct of the corresponding rule
is n_delete(t0) ← pN (t). As pN (t) ∈ I , because it is a model of the same program
regarding X then n_delete(t0) ∈ I .

• insert(t0) ∈ X

If insert(t0) ∈ X then n_insert(t0) 6∈ X then the reduct of the corresponding rule
is insert(t0) ← p_newN (t). As p_newN (t) ∈ I , because it is a model of the same
program regarding X , then insert(t0) ∈ I .

• n_insert(t0) ∈ X

If n_insert(t0) ∈ X then insert(t0) 6∈ X , then the reduct of the corresponding rule
is n_insert(t0) ← p_newN (t). As p_newN (t) ∈ I , because it is a model of the same
program regarding X , then n_insert(t0) ∈ I .

72

5. APPROACHING THE PROBLEM BY USING LOGIC PROGRAMMING 5.1. Determining the repairs

• p_updateAN (t0) ∈ X

If p_updateAN (t0) ∈ X then n_updateAN (t0) 6∈ X then the reduct of the correspond-
ing rule is p_updateAN (t0) ← pN (t) ∧ p_update_singleAN (t0). As pN (t) ∈ I and
p_update_singleAN (t0) ∈ I , because it is a model of the same program regarding
X , then p_updateAN ∈ I .

• n_updateAN (t0) ∈ X

If n_updateAN (t0) ∈ X then p_updateAN (t0) 6∈ X then the reduct of the correspond-
ing rule is n_updateAN (t0) ← pN (t) ∧ p_update_singleAN (t0). As pN (t) ∈ I and
p_update_singleAN (t0) ∈ I , because it is a model of the same program regarding
X , then n_updateAN ∈ I .

• updateAttrV alAN (t0, t#N
A

) ∈ X

If updateAttrV alAN (t0, t#N
A

) ∈ X then p_updateAN (t0) 6∈ X then the reduct of the
corresponding rule is updateAttrV alAN (t0, t#N

A
)← pN (t). As pN (t) ∈ I , because it is

a model of the same program regarding X , then updateAttrV alAN (t0, t#N
A

) ∈ I .

• updateAttrV alAN (t0, null) ∈ X

If updateAttrV alAN (t0, null) ∈ X then the reduct of the corresponding rule is

updateAttrV alAN (t0, null) ← pN (t) ∧ p_updateAN (t0). As pN (t) ∈ I , because it is a
model of the same program regardingX , and all p_updateAN (t0) ∈ X also p_updateAN (t0) ∈
I then updateAttrV alAN (t0, null) ∈ I .

• update_aggrN (t0, t
′) ∈ X

If update_aggrN (t0, t
′) ∈ X , since all the predicates of the reduct of the rule that

belong to X also belong to I then, update_aggrN (t0, t
′) ∈ I .

• update(t0) ∈ X

If update(t0) ∈ X , since all the predicates of the reduct of the rule that belong to X
also belong to I then, update(t0) ∈ I .

• p_keepN (t) ∈ X

If p_keepN (t) ∈ X , since all the predicates of the reduct of the rule that belong to X
also belong to I then, p_keepN (t) ∈ I .

• auxA,BN1,N2
(t) ∈ X

Since all p_keepN (t) ∈ X also p_keepN (t) ∈ I , then all auxA,BN1,N2
(t) ∈ X also

auxA,BN1,N2
(t) ∈ I .

• auxAi,Bi

N1,N2
(t, t′) ∈ X

Since all p_keepN (t) ∈ X also p_keepN (t) ∈ I , then all auxAi,Bi

N1,N2
(t, t′) ∈ X also

auxAi,Bi

N1,N2
(t, t′) ∈ I .

73

5. APPROACHING THE PROBLEM BY USING LOGIC PROGRAMMING 5.2. Determining the minimal repairs

• auxAN (t) ∈ X ′

Since all p_keepN (t) ∈ X also p_keepN (t) ∈ I , then all auxAN (t) ∈ X also auxAN (t) ∈
I .

• domA
N (val) ∈ X ′

Since both X and I are models of the same program, they consider the same set of
ICs, F , and so all δdc consider byX are also consider by I , and so, all domA

N (val) ∈ X
also domA

N (val) ∈ I .

Then, for any model I , X ⊆ I , coinciding with the least model.
At last, it is needed to prove that α(X) = M(D′). That corresponds to α(X) ⊂M(D′)

and M(D′) ⊂ α(X). That M(D′) ⊂ α(X) is easy to check to be true because all N(t) such
thatN(t) ∈M(D′) were added toX with p_keepN (t) atoms. Also, we do not added more
tuples to X so α(X) = M(D′).

Theorem 5 (Repair Soundness and Completeness). Let P = 〈D,DE , F 〉 be a database repair
problem. If and only if X is an answer set of ϕ(P), then α(X) is a repair of D with respect to P .

Proof (sketch). Let P = 〈D,DE , F 〉 be a database repair problem. There is an answer set
X regarding ϕ(P), such that α(X) is a repair of D with respect to P . This follows from
Theorem 3 and from Theorem 4.

5.2 Determining the minimal repairs

Since we allow the user to choose a minimality criteria, we have to filter the answer sets
previous determined in order to show to the user only the minimal ones with respect to
the chosen criteria. To accomplish that, since the implementation becomes difficult and
increases the computational complexity, we use a collection of encodings named Metasp.
In order to use it we only need to make use of the provided encodings, change the calls in
the command line (that is used to execute the program) and add a line with the minimize
predicate to the program file. The minimize predicate has the following form [Bar01]:

#minimize[l1 = w1@J1 , ..., lk = wk@Jk]

where every li is a literal, every wi is an integer weight and Ji is an integer priority
level. However, with respect to cardinality and under-set inclusion minimal criteria we
only use minimize as:

#minimize[l1 , ..., lk]

After we have the program and execute it, the obtained results do not assume the
form that we are expecting. They are encapsulated in other predicates and we have to
extract those results.

74

5. APPROACHING THE PROBLEM BY USING LOGIC PROGRAMMING 5.2. Determining the minimal repairs

Definition 77 (Extracting Function from Metasp Results). LetP = 〈D,DE , F 〉 be a database
repair problem and let X be an answer set of ϕ(P) executed with the Metasp encodings.
The extracting function αm is defined as:

αmN (X) = {p_keepN (c) | hold(atom(p_keepN (c))) ∈ X}

αm(X) =
⋃

N∈ND

αmN (X)

The function ∆m(X), that gets the modifications with respect to the original database
considering X, is defined as:

∆m(X) = { d(N, t) | hold(atom(delete(t0))) ∈ X ∧ hold(atom(pN (t))) ∈ X }

∪ { i(N, t) | hold(atom(insert(t0))) ∈ X ∧ hold(atom(p_newN (t))) ∈ X }

∪ {u(N, t,A) | hold(atom(p_updateAN (t0))) ∈ X ∧ hold(atom(pN (t))) ∈ X }

However, this tool only helps with the cardinality and under-set inclusion minimality
where the weight of the considered operations to minimize has to be equal to all types,
leaving us with the weight minimality to deal with, where the weight can vary according
to each operation type. In order to deal with this criteria, we start by applying a different
use of the minimize predicate with the following form:

#minimize[l1 = w1 , ..., lk = wk]

where each li represent a different operation type and wi the corresponding weight
value. Then, when we execute the program, it gives us the answers, each one associated
with an optimization value that is the sum of the weights of all operations contained
in each answer set. However, only the last obtained answer has an optimal weight as
opposed to the other. So, in order to get all other answers with the optimal value, we use
the following parameter in the command line call to get only answers with the optimal
sum of weights value:

opt-all=optimalValue

This allows to just retrieve the answers which optimization value is the optimal one.
Here, predicates are not encapsulated with other predicates and so the extracting

function is the following:

Definition 78 (Extracting Function with Cardinality and Weight Minimality). Let P =

〈D,DE , F 〉 be a database repair problem and let X be an answer set of ϕ(P) obtained by
using weight minimality criteria. The extracting function αwm is defined as

75

5. APPROACHING THE PROBLEM BY USING LOGIC PROGRAMMING 5.2. Determining the minimal repairs

αwmN (X) = {p_keepN (c) | p_keepN (c) ∈ X}

αwm(X) =
⋃

N∈ND

αwmN (X)

The function ∆wm(X), that gets the modifications with respect to the original database
considering X , is defined as:

∆(X) = { d(N, t) | delete(t0) ∈ X ∧ pN (t) ∈ X }

∪ { i(N, t) | insert(t0) ∈ X ∧ p_newN (t) ∈ X }

∪ {u(N, t,A) | p_updateAN (t0) ∈ X ∧ pN (t) ∈ X }

With the last two definitions, we know how to extract the answers of the program
regardless the minimality criteria chosen. We only need to extract the relevant predicates.
With those, we also know the operations made (insert, delete and update predicates)
and which are the tuples that remain in the database after the repairing process (p_keep
predicate).

76

6
The DRSys application

We already defined the ASP code that helps to get a database’s repairs so now we describe
the developed application that supports the interaction with the user and generates the
ASP program regarding the repair problem. This application allows to connect to a Post-
greSQL database, retrieve its data, specify new ICs and store the chosen repair in the
database, changing it. In order to achieve that, it presents a sequence of screens where
the user can specify the ICs semantics, view and edit the generated ASP code, provide
information to generate new tuples to be inserted, limit the delete and update operations,
choose the minimality criteria, and more.

This chapter is dedicated to the application1, namely, its architecture in order to un-
derstand how each component interact with others, the provided features, the technical
decisions and also some examples to show how the application matches the expected
results for some ICs depending on the chosen semantics.

6.1 Architecture

The application is organized in components. They interact with each other but the appli-
cation does not accomplish its goals without interacting with external entities. In order
to illustrate the entities that interact with the system, here is a schematic diagram:

1Application available upon request: lr.luis@campus.fct.unl.pt

77

6. THE DRSYS APPLICATION 6.1. Architecture

Figure 6.1: Architecture - Interaction with external entities

The system has to interact with the user so that she can insert new ICs and make the
decisions associated with the insert, delete and update operations, minimality criteria
and so on. Also, it has to interact with the database specified by the user in order to re-
trieve data and already stored ICs. Finally, in order to determine the repairs, it generates
a file with the ASP program, uses a grounder (Gringo), a compiler (clasp) and a tool to
retrieve minimal repairs (Metasp). Gringo is a grounder that translates logic programs
into equivalent propositional logic programs. The answer sets of such programs can be
computed by a solver, e.g. clasp [GS]. Metasp is used to choose the answers sets that are
minimal and it is executed when the application runs the ASP program, piping the output
of Gringo back into Gringo and then running it in conjunction with meta-encodings.

The system itself is also divided in components in order to separate the different type
of tasks namely the input processing, conversion of the ICs to ASP code, check if the
database is consistent with the ICs, execute and process the ASP program answers. It has
the following detailed architecture:

Figure 6.2: Architecture - Components

78

6. THE DRSYS APPLICATION 6.2. Features

The responsible for beginning the execution of the system is the user which interacts
with the interface that is implemented in Java (and also partitioned in components that
represent the different screens) and then the latter starts the interaction with the compo-
nents of the system. First, the user interacts with the database by specifying the needed
information to do the connection, but not directly. He interacts with a component that
represents the database, the Database one, that offers the operations necessary to do the
connection and retrieve information from the database namely the already stored ICs.
Then, everything that is specified by the user in the interface is processed by the Input
Processing module that is responsible for parsing and processing all the information in-
serted in the interface (e.g. the new ICs) and interacts with the other modules for the
execution of some procedures that make use of the parsed information. Namely, it pro-
cesses the information about the new tuples that can be inserted, so that the Constraint
Checker and Code Generating modules can use them in the ASP code. The Constraint
Checker module creates an ASP program that checks if the database content respects
the ICs defined by the user in the interface. To build the program, it uses the Code
Generating module that generates all the ASP code for the tuples of the database, the
generating rules and also the ICs code. The Code Generating module also interacts with
the Database module in order to obtain the ICs that were defined in the DBMS. Both
Constraint Checker and Code Generating modules interact with another module that
contains some methods to help with some string processing needs. The ASP Program
Utils module is responsible for getting the ASP code and write it in the corresponding
file, also executes the program and extract the answers when it is requested by the Code
Generating module. These answers are also retrieved by the Constraint Checker in order
to conclude if the database is already consistent with the ICs or not. The ASP Program
Utils module also stores the ICs in the database, in the “constraints” table, and uses the
p_deleted, p_inserted, p_was_updated and p_updated predicates to obtain the operations that
need to be performed in corresponding tables in order to retrieve the consistency. Finally,
there is a module called Global Data that is responsible for keeping the data structures
that are common to all other modules.

6.2 Features

Now that we know the composition of the system and how its components interact, we
proceed to the explanation of the features and how to interact with the interface in order
to make use of them.

The first step consists on specifying the necessary information to connect to the database.
It is inserted in the first screen of the application, the connection screen, where the user is
asked to insert the host name, the database name, user name and password with respect
to an existing database created on the DBMS. Also, the user can specify if she is a basic
user or an expert user. In the case of being a basic user, she only sees the screen to specify
the ICs, the corresponding semantics and the allowed operations (insert, delete or update

79

6. THE DRSYS APPLICATION 6.2. Features

operations) and the screen where the user can choose the minimality criteria, etc.

Figure 6.3: Connection screen

6.2.1 ICs specification screen

After the connection to the database, there is a screen that is common to both user types:
the constraints specification screen. In this screen we present the options that allow to
specify the different IC types. The user can specify the type of the IC (e.g. primary key)
and then she can enter the involved attributes by clicking in their names in the left panel
and filling the corresponding boxes. About the check constraints, in this document, they
are defined as simple constraints that only involve one attribute, one operator and one
value however, in the application, we allow to define a little more complex ones that
may involve more than one attribute of the same table, multiple operators and multiple
values.

Besides, in this screen, we also allow the user to choose the semantics to be applied to
each specified IC. We chose to give that option to the user based on the analysis made on
Chapter 4. In that chapter, we stated that some alternatives were better than others but
we also observed some examples where we wanted to use a semantics that usually is not
the more desired one. So, in order to provide good results to the user for whatever the
rules to be modeled, we provide the not so usual semantics so that the user can choose
what is better for each situation. In the case of the user does not know technical details,
then by not changing the default definitions, the recommended ones that were specified
in Chapter 4 are applied.

As mentioned before, in this screen, it is also possible to choose the allowed opera-
tions.

After all these choices, the user can add the new IC to the list of defined ICs and then

80

6. THE DRSYS APPLICATION 6.2. Features

proceed for the next screen or just add more ICs.

Figure 6.4: Constraints screen

The next screen is a trivial one, to an expert user, where she can see the generated
code (with the new ICs) so that she can have an overall notion of the program to keep in
mind when doing the choices that come next.

Figure 6.5: View ASP screen

The next screen allows to insert some additional ASP code to merge with the gen-
erated one. This gives some freedom to the user by allowing to specify other criteria
that are not provided by the application like to treat some specific case with a constraint,
for example, or just add another constraint type different from the ones provided in the
previous screen, as we show in the next example.

81

6. THE DRSYS APPLICATION 6.2. Features

Example 16. Considering the database:

ID Name Location AvailableChairs

C1 Blue Cinema null 60
C3 Red Cinema Lisbon 50

Table 6.1: Cinema table

ID Name Location Director AvailableChairs

T1 Green Theater Porto null 20

Table 6.2: Theater table

For this example, we could add some new constraint like:

← p_keepCinema(CID,CName,CLocation, CAval),

p_keepTheater(TID, TName, TLocation, TDirector, TAval), TAval > CAval.

This constraint expresses that we cannot have theaters with more available places than
some cinema, that is, it is a check constraint that refers to two tables.

Figure 6.6: Add ASP screen

6.2.2 Insert options screen

In the insertion process we have to know what are the combinations of values that form
the tuples that can be inserted in the database in order to repair it. With the purpose
of getting all the tuples that can be inserted avoiding the effort (to the user) to provide

82

6. THE DRSYS APPLICATION 6.2. Features

another supplemental database or to specify all the possible tuples by hand, we present
three different ways of specifying new tuples.

The first one is the simplest. It allows to add tuples by hand or select them from
another table of the same database.

The second one allows the user to specify a list of values to assign to an attribute for
insertion purposes. Those values are the ones that can be used for that attribute in new
tuples and each of these tuples is a possible combination of values of the attributes that
compose them. In the insertions screen, the attribute can be specified in the left box and
the allowed values for that attribute in the right box.

The third one allows the user to specify that an attribute (specified in the left box)
can have all the values of the attribute specified in the right box. These values are the
ones that are present in the database tuples for that specific attribute. This option allows
to specify that an attribute can have exactly the same values as other attribute, as an
inclusion dependency or an foreign key.

These last two options allow to generate tuples with all the combinations of values
that were specified forming the tuples that are possible to be inserted.

Figure 6.7: Insertion operations screen

Also in this screen, it is possible to specify the maximal number of insert operations
that are allowed to do in a specific table. This is useful when the user prefers not to do
a big number of insertions, because she wants to have a balanced number of operations
or just because she does not want to increase much the size of the table. If that limit is
not specified for a table, it means that we can do any number of insert operations in that
table. If the user specify more than one limit to the same table, the latter is the one that is
used.

83

6. THE DRSYS APPLICATION 6.2. Features

6.2.3 Delete options screen

After the options regarding insert operations, we have the options related to delete oper-
ations. This screen is divided in three sections.

The first allows to specify the maximal number of delete operations of a specific table
as in insert options screen, that is useful when the user does not want to lose a lot of data
of a specific table, for example.

The second allows to specify tables from where we cannot delete any tuple. For ex-
ample, we could have a database that has information about stores and its costumers,
workers, suppliers, products, then we would not want to simply remove existent stores
from stores table if they still exist.

The third option allows to view the database tuples separated by table and select
tuples from different tables that we do not allow to be deleted, for example, when some
specific tuple has information that must remain. Returning to the previous example, we
could not want, for example, to remove some specific store but we do not mind if others
are removed because they no longer exist.

Figure 6.8: Delete operations screen

After this screen, we also have one that has the options related to the update opera-
tions. These options are the same that we have for the deletion operations but applied to
the update ones. The reasons are the same as before but in this case we may do not want
to introduce more null values into the database and so we limit the number of update
operations.

84

6. THE DRSYS APPLICATION 6.2. Features

Figure 6.9: Update operations screen

Besides the options related to operations, there is also a screen where the user can
choose another options that are independent of the type of the operations.

6.2.4 Other options screen

Here, we present more options to constraint the set of repairs that appear in a following
screen.

First, the user can specify the chosen minimality criteria and she has to choose exactly
one. It is possible to choose under set, cardinality or weight minimality. When the weight
one is chosen, then the user can choose to use the default weight values or assign new
ones.

We also let the user choose if she wants to see only the repairs that are obtained by
updates or insertions where the irrelevant attributes values (the ones that not affect the
result) are null values, or insertions where the attributes are non-null values.

Besides these two options, we also allow the user to specify an overall maximal num-
ber of operations (the sum of delete, insert and update operations) that cannot be ex-
ceeded by any repair. Also, it is possible to specify the maximal number of operations for
a specific table in the case of the user wanting to keep a specific table more “stable” than
others, with less information changing.

Finally, there is an option that allows the user to choose if she allows to save the
defined ICs in a “constraints” table or not. Allowing it saves work for next executions of
the application where the previous defined ICs are uploaded to the current ASP program.
However, the user may not want to change the database schema by adding an extra
unrelated table.

85

6. THE DRSYS APPLICATION 6.2. Features

Figure 6.10: Other options screen

The next screen is about editing the final generated ASP code because the user may
want to change or remove code (e.g. some constraint). Here, we show the code that
corresponds to the tables that are involved in the ICs, the corresponding tuples, the new
ICs, database’s ICs code and the code that results from the user’s options.

Figure 6.11: Edit ASP code screen

If the database is already consistent with the defined ICs, then instead of showing the
generated code, we present a message stating that the database is already consistent.

The last step is about executing the final code and the repairs are obtained. So, the
resulting repairs are presented to the user and she can choose to expand them in order to
see which are the operations involved in each possible repair and then choose one to be
performed in the database.

86

6. THE DRSYS APPLICATION 6.3. Decisions

Figure 6.12: Results screen

6.3 Decisions

In order to implement the presented application, we had to choose the adequate tools
considering the technical needs. Namely, about the implementation of the interface,
about the implementation in ASP and about the used DBMS. Also, after the technical
decisions, we had to make some decisions in order to determine the needs of the user
that we want to satisfy and so provide the adequate features.

6.3.1 Tools

First, about the interface, it is implemented in Java since it provides an easy way to
develop interfaces. We also make use of xswingx2 to help in some interface details.
Also, Java supports connection to some DBMSs in order to obtain information about the
database and the corresponding data. By using Java, we can connect both the DBMSs
and the grounder+solver since we can use Java to connect to the database, to generate
the ASP code and execute it by using the command line, the grounder and the solver.

After the programming languages decisions, we determine the DBMS in which the
application is based on because all DBMSs have different syntaxes (that vary when we
want to do insertion, deletion or update operations) and different features that sometimes
are related to ICs. Here, we only analyze the more popular DBMSs.

Starting with PostgreSQL and MySQL (only InnoDB engine), regarding the supported
constraints, the former and the latter support the definition of primary keys, foreign keys,
unique constraints and not-null constraints. Besides both support the definition of check
constraints, only PostgreSQL actually verify the data to check if the constraint is being
ensured and implement domain constraints. With respect to optimization techniques
each one has its own and it is not relevant to analyze them. About Oracle, it is similar
with PostgreSQL but the latter is free and it has Java support.

2https://code.google.com/p/xswingx

87

6. THE DRSYS APPLICATION 6.3. Decisions

About the grounder and the solver, we use Gringo and clasp (and claspD) respec-
tively. This decision is due to our minimality criteria needs. About Gringo and claspD,
they are the tools that are supported by Metasp. Metasp is a collection of encodings
that are responsible for retrieving the minimal repairs and it is ready just for Gringo
and claspD. Metasp helps in avoiding the difficulty of implementing an ASP program
responsible by the optimization part. It allows to determine the under-set inclusion and
cardinality minimal repairs, but it is not the only way of getting answers regarding car-
dinality criteria, it is also possible to get them by using just the minimize predicate (as
in weight minimality). Considering these two options with respect to cardinality criteria,
we decided just to use Metasp with under set inclusion criteria because, after experiment-
ing both options, we concluded that we can get cardinality minimal answers faster only
with the minimize predicate than with Metasp, as it is used in [Alv11].

About clasp, it supports the opt-all parameter that is used in cardinality and weight
minimality. We need this parameter because with the minimize predicate, we first get
some answers that are not minimal and as we wait to get more answers from the solver,
they are better (more accurate) than the previous ones and so, only the last obtained
answer is the minimal that we were waiting for. By using the parameter, after we know
one of the optimal (minimal) answers (and its corresponding optimization value), we run
the program again but this time with the parameter using the optimization value, and we
get all the answers that have that optimal value (that corresponds to the sum of weights
of the operations that compose that repair).

6.3.2 Main features

There are also some other decisions that are related more specifically with the provided
features of the application.

In the first screen, the user is asked to specify if she is a basic or an expert user. It was
decided to provide this option because the application has a lot of screens where, for an
inexperienced user, it may be confusing or unnecessary and so, in the basic version, only
the essential screens are shown.

About the insert operations, it was decided to generate new tuples that were speci-
fied manually, based on a specified list of values and domains of other attributes. If the
allowed values are few and the user knows the combination of values that form the al-
lowed tuples, then specifying them by hand could be a good option. Also, it is possible
to use the tuples of an extra table (e.g. that contains data that is no longer used but that
stills works for insertion purposes).

However, there are cases where the user does not know the specific combination of
values that form the tuples but she knows the allowed values for each attribute and so,
we chose to provide an option where the user can specify the list of allowed values for
each attribute and then the program does the combination of all these values and the
resulting combinations form the new tuples. This is useful when specifying each tuple

88

6. THE DRSYS APPLICATION 6.3. Decisions

one by one is very exhausting for the user or the user just do not know exactly the possible
combination of attribute values and so, specifying the allowed values for each attribute,
it is faster for the user.

There are other cases, where we want that an attribute assumes all the values of other
attribute and in that case, just referring that both have the same domain, is much more
faster than specifying each value by hand. This is useful for cases where specifying
foreign keys or inclusion dependencies does not fit because the referred values can be
moved from time to time and so, when that happens, we would have to delete the tuples
that were referring them.

In the last two options, the combination of values is made in a different ASP program
file from where the resulting tuples are extracted and then joined with the main repairing
code in the form of p_new predicates. However, it may seem that we just calculate all the
possible combination of values of the different attributes but it is not the case. We just
generate a predicate when it is useful to repair some IC. This code is only generated with
respect to foreign keys and inclusion dependencies since they are the only constraints
where the insertion of new tuples can repair an inconsistency. This is also what is made
with the updates.

We generate all the possible updates only for the relevant attributes. In order to de-
termine what are the relevant attributes, the update code is processed each time the user
returns to the ICs definition screen and if a specific attribute appears in some IC, then it
is a relevant attribute.

Moving on to one of the final steps, there is a screen where the user can see multiple
general options, for example, if she wants only to see answers with null values or not-null
values. Here is an example where we prefer to only get the repairs with null values:

Example 17. Considering the inclusion dependency IC

〈Employee,Salary , 〈Name〉, 〈Name〉〉incd

and the database:

Name Address Birth_Date

John Streetnumber1 05 − 04 − 1990
Claire Streetnumber2 07 − 06 − 1990

Table 6.3: Employees table

Name Value

John 600

Table 6.4: Salaries table

89

6. THE DRSYS APPLICATION 6.3. Decisions

Here, the first repair consists on removing the second tuple from the Employees table
and the second repair consists on inserting a new tuple in Salaries table. We know that
the tuple to be inserted has to have the value “ Claire ” for the Name attribute in order
to respect the IC. But what about the Value attribute? We can assume the value 300,
400, 500, 650... There are a lot of possible values that make the IC consistent and we
do not know which. If the user specify a range of possible values, from 200 to 600 for
example, then we get a lot of possible repairs and the computation would need a lot
of time. In this case, we prefer a repair where the Value attribute has a null value
instead of getting a set of repairs with different irrelevant values, that would increase the
computation complexity.

However, this not always happens:

Example 18. Considering the inclusion dependency IC

〈Order ,Product , 〈ProductID〉, 〈ProductID〉〉incd

and the following database:

ID ProductID Date Address

O1 P1 04 − 05 − 2013 Street1
O2 P2 06 − 07 − 2013 Street2

Table 6.5: Orders table

ProductID isAvailable

P1 yes

Table 6.6: Products table

In this case, the first repair consists on removing the second tuple from Orders table
and the second repair consists on inserting a new tuple into Products table. We already
know that for the new tuple, the ProductID attribute has to have the value “ P2 ” but we
do not know the value for the isAvailable attribute. However, this attribute only allows
the “ yes ” or “ no ” values, so the alternative repairs only have two distinct values for
this attribute and it does not increase the computation complexity. So, we can ask for the
repairs with the non-null values and not the null ones.

Also in the same screen, it is possible to chose the weight minimal criteria. We chose
to provide this option to allow the preference of operations over others, giving a lower
weight values for priority operations and so we get repairs where the preferred operation
type appears more times than others.

There are assigned default values to the operations. In these default values we con-
sider that an insert and a delete operation have 1 as weight value. However, the update

90

6. THE DRSYS APPLICATION 6.3. Decisions

operations are consider to have a weight of 1
numOfAttributes value, which means that the

weight value of each update operation depends on the table that is being updated, that
is, if we are updating a table with four attributes, then an update operation would have
a weigh of 1

4 . But why these have so specific weight values? Why they have a default
value lower than the other operations? In the case of deleting a tuple from a table with
four attributes, we are changing all the values of the tuple (deleting them), that is, we are
changing the four attributes. In the case of updating only a value to null (since we con-
sider that each update only changes on attribute to null), then we are only changing one
value of four values (to null), that is 1

4 . An update only has the same weight as a delete
one when we update the four attributes (as in delete), that is, we have four updates to
the same tuple (1

4 + 1
4 + 1

4 + 1
4 = 1) and in that case, the update operation has the same

weight as a delete operation, because they change the same quantity of data.

However, we cannot apply these values directly. Clasp does not allow to use non-
integer weight values and Gringo just rounds the weights to integer numbers which may
cause to getting repairs that are not update-minimal. In order to solve that, we multiply
a single number by each weight value that is specified in minimize statement, in order to
convert the non-integer numbers to numbers bigger than 0 and then round them, and so,
Gringo can deal with them because they are already integer numbers that are higher than
0. That single number to multiply is the Least Common Multiplier (LCM) of the number
of attributes of each table that is included in the logic program (because the number of
attributes of each table determines the corresponding weight value).

Now about storing results, in order to save them in the database, we use some ad-
ditional predicates that were already mentioned before: the p_inserted predicate is for
knowing the values of each inserted tuple; the p_deleted predicate is for knowing the val-
ues of each deleted tuple; the p_was_updated predicate and the p_updated predicate are for
knowing the values of each tuple that was update and should be updated in the database
and we also need to know those new values. Directly extracting these predicates from the
chosen repair, we get all the information that is needed to change the database avoiding
the access to database information.

About saving the new ICs, we chose to store the new ICs defined by the user in a
table. This is useful in order to the user know at any time what were the ICs previously
defined and also for future repairing procedures. This information about ICs is not stored
in system tables since the user may not have permissions. Also, these ICs are stored as
the ones specified directly in the DBMS (in a different and simpler table but with the same
essential attributes) and so we can extract them almost in the same way as we do with
the ICs that were stored by the DBMS. However, in the case of being undesirable to put
a new table in the database just for the purpose of storing new ICs, the user may choose
not to do it in the application interface.

At last, before we get the results of the possible repairs, it is important to check first if
the database is already consistent with the previously defined ICs, avoiding unnecessary
computations. So, it is also generated a program where all the tuples and the defined

91

6. THE DRSYS APPLICATION 6.4. Optimizations

constraints are presented but not the generating rules since we are just checking if the
tuples respect the defined ICs. If we get a model resulting from that program then the
database is already consistent and we do not need to determine the possible repairs.

6.4 Optimizations

There are several optimizations where the main goal is to minimize the number of ground-
ings and the volume of data to be processed in ASP. The optimizations are the following:

• Avoiding to generate the code of unnecessary tables: In order to reduce the gener-
ated ASP code, we only consider relevant tables. Relevant tables are determined
by the tables that are present in at least one constraint (defined in the application
or previously defined in the DBMS). The list of relevant tables is updated every
time the user returns to the ICs definition screen because some ICs may have been
added or removed and consequently the relevant tables change. These tables are
used to filter tuples that appear in ASP program, the generating of auxiliary rules
and the generating rules in order to avoid using code of unnecessary tables, reduc-
ing grounding and consequently the computation time;

• Avoiding requests to the DBMS: In order to avoid to constantly request data to
the DBMS, that is a slow operation, the database tuples are retrieved when the
application starts and stored in a data structure, and then along with the use of
the application, they are filtered based on the relevant tables. The ICs defined in
the DBMS are also obtained in the beginning of the execution and stored in the
correspondent structures to avoid to constantly repeating the operation of getting
and processing them;

• Reducing unnecessary attributes instantiation: Not all the attributes are necessary
when checking for IC consistency or pruning the answers sets. By knowing it, we
replace the unnecessary attributes with a “_”, that is, to ignore those values and so,
they are not instantiated, reducing the computational complexity. The attributes to
be ignored are the ones that are not used in any IC;

• Reducing instantiation on ICs: The rules that form the ICs that prune the answer
sets are formulated in order to reduce the number of predicates to be instantiated.
That is, it is avoided to define rules that make use of another rules that would
cause more instantiation. Each IC, depending on the corresponding semantics, has
different “forms” in order to avoid that;

• Reducing the number of generated p_new predicates: We can generate the tuples
to be inserted in three different ways. Two of those three involve to determine
the combination of several values and each combination forms a tuple. However,
that would increase a lot the computational complexity and so, we only generate

92

6. THE DRSYS APPLICATION 6.5. Some examples and analysis of the results

the tuples that are useful in satisfying a IC that we are trying to fix. In order to
achieve that, when we have ICs where it is mandatory to have tuples with a specific
attribute value, we just generate the tuples with those values in the corresponding
attributes and the combination of values is just made with the other not mandatory
values;

• Avoiding to generate rules related to not allowed operations: For each relevant
table, we have to generate the delete, insert and update rules and so if we have
a lot of relevant tables, we would have to generate a lot of rules. Having that in
consideration, and by knowing that we allow the user to pick what are the allowed
operations, we avoid to generate the rules associated with the operations that are
not allowed by the user.

6.5 Some examples and analysis of the results

In order to check if the application really returns what is expected we again refer some
examples, mention what are the expected results and then show the results obtained by
the application.

First, we begin with the Example 7 and the IC that is a foreign key. If we choose to
use simple match, the expected results are 1) the removal of the first tuple of the Students

table 2) the insertion of a new tuple in Courses table where the Course attribute has
the “ AverageCourse ” value, the School attribute has the “ SchoolA ” value and the
MaxStudents attribute can have a value of the ones defined by the user or a null value
and 3) the update of at least one of the referring attributes of the first tuple to null.

In this case the application returns the following:

Figure 6.13: Results of foreign key example with simple match

The image shows that the repair number 1 shows the 1) alternative just mentioned.

93

6. THE DRSYS APPLICATION 6.5. Some examples and analysis of the results

The repair number 2 and 5 show the 2) alternative mentioned. Here, we just have one
repair with a value of the domain because the user just defined that value, otherwise, we
would have a different repair for each possible value. The repairs number 3 and 4 show
the updates to null combinations on the relevant attributes (the referring ones).

If we choose to use partial match, the expected results for solving the problem with
the first tuple of Students table is 1) the removal of this first tuple 2) the insertion of a
new tuple in Courses table where the Course attribute has the “ AverageCourse ” value,
the School attribute has the “ SchoolA ” value and the MaxStudents attribute can have
a value of the ones defined by the user or a null value. For solving the problem with the
second tuple of Students table, the expected result is 1) the removal of this second tuple
2) the insertion of a new tuple in Courses table where the Course attribute has the “
BasicCourse ” value, the School attribute can have a value of the ones defined by the
user or a null value and the MaxStudents attribute can have a value of the ones defined
by the user or a null value.

In this case the application returns the following:

Figure 6.14: Results of foreign key example with partial match

The images show some of the possible repairs. Each repair corresponds to a combi-
nation of operations from all the possible combinations that satisfy the ICs. So, they are
the combination of the possible alternatives for the first tuple and the possible alterna-
tives for the second tuple together. We can have two insert operations each one solving
the problem of each tuple, or two delete operations that delete the problematic tuples,
the deletion of a tuple and the update of the other, or the insertion of one tuple and the
update of the other. Besides, we also have the combinations of the domain values and
the null values when we can apply them.

If we choose to use full match, the expected result for solving the problem with the
first tuple of Students table is 1) the removal of this first tuple 2) the insertion of a new

94

6. THE DRSYS APPLICATION 6.5. Some examples and analysis of the results

Figure 6.15: Results of foreign key example with partial match

tuple in Courses table where the Course attribute has the “ AverageCourse ” value, the
School attribute has the “ SchoolA ” value and the MaxStudents attribute can has a value
of the ones defined by the user or a null value. For solving the problem with the second
tuple of Students table, the expected result is 1) the removal of this second tuple. For
solving the problem with the third tuple of Students table, the expected result is 1) the
removal of this third tuple.

In this case the application returns the following:

Figure 6.16: Results of foreign key example with full match

Here, since the only alternative for the second and third tuple is to eliminate them,
the results show that every repair includes their removal and one of the alternatives of
repairing the first tuple. The alternatives of the first tuple include the deletion of the tuple
and the insertion of a new one in Courses table where we have an attribute that is not
a relevant one, so it can be represented with a null value or other value of the domain.
Here, we just specified one value for that attribute’s domain so it just corresponds to one
repair.

95

6. THE DRSYS APPLICATION 6.5. Some examples and analysis of the results

Let’s look at another example to see if with functional dependencies we get the ex-
pected results.

We can look to the Example 11 and the corresponding IC. If we choose to use sim-
ple match (or partial match since they have the same behavior as simple match in this
case), then we expect the result is that the database is already consistent. In this case the
application returns the following:

Figure 6.17: Results of functional dependency example with simple match and partial
match

If we choose full match then we expect that 1) both tuples are deleted. In this case the
application returns the following:

Figure 6.18: Results of functional dependency example with full match

In the image we can easily see that the only possible repair consists on removing both
the tuples because both have a null value in one of the relevant attributes.

Let’s look at another example to see if with check constraints we get the expected
results.

We can look to the Example 13 and the corresponding IC. If we choose to use simple
match then we expect that the result is that the database is already consistent. In this case
the application returns the following:

Figure 6.19: Results of check constraint example with simple match and partial match

If we choose to use partial match then we expect that the result is that the database is
already consistent too, so the result is the same as in the previous case.

If we choose to use full match then we expect that the result is 1) removal of the
second tuple.

96

6. THE DRSYS APPLICATION 6.5. Some examples and analysis of the results

Figure 6.20: Results of check constraint example with full match

In the image we can easily see that the only possible repair consists on removing the
second tuple because it has a null value in a relevant attribute.

The final example is to show how the weight minimality works and if the obtained
results match with the expected ones.

We use the Example 7 and the IC that is a foreign key, again, with partial-match. If
we choose to use the weight minimality criteria with default weight values, the expected
results should contain mostly update operations, because we assign a lower weight value
for update operations than for insert and delete operations, as we explained before.

For this example, the alternative repairs for the tuples are exactly the same that we
mentioned before but this time the minimality is concerned with having more update
operations than delete and insert ones because we only need a single update to the first
tuple (that is, a weight of 1

4 instead of deleting or inserting that have a weight of 1) and
two updates for the second tuple. So, the obtained results are:

Figure 6.21: Results of foreign key example using weight minimality with default values

The image shows that we get one repair, that only contains update operations and
also just the necessary updates for the first and second tuple, as we stated before. As
we can see, to repair the database, we only need to update one or two attributes of each
corresponding tuple instead of deleting the whole tuple, which means a higher loss of
information.

So, when the priority is to reduce data loss, repairing databases with update oper-
ations probably is a better option, since they change the least data possible in order to
repair the database and, in the worst case, it would change as much data as a deletion
operation, when it is really necessary.

However, we can choose to assign new weight values to the operations that we test
with the same example again.

97

6. THE DRSYS APPLICATION 6.5. Some examples and analysis of the results

Now, we give to the insert and update operations a weight with value 3 and delete
operations with value 1. This time, the expected results should contain mostly delete
operations.

Figure 6.22: Results of foreign key example using weight minimality with custom values

The image shows that we get a repair that only contains delete operations (one for
each problematic tuple) as we expected.

With these examples, we conclude that the application returns the expected results for
some of the analyzed ICs. However, in these examples, we just used simple and default
options in order to easily understand the results of the application and match with the
real results.

98

7
Scalability tests

In Chapter 5, we theoretically evaluated the application where we proved that the results
of the ASP code match with the defined theory. In the previous chapter we introduced the
developed application, namely its architecture, its features, how to interact with it and
also how the output matches the expected results of the repairing process. That is, we
already proved in a theoretical and practical way, that the application gives the expected
results.

Now, that we already know that the results match with the expecting ones, we need
to evaluate the application by its scalability. That is, how the application behaves when
dealing with high volumes of information that in this case means the number of tables,
the number of tuples, the number of ICs, and so on.

In order to test this, it is necessary to use a realistic database where it is possible to
vary the observed characteristics so, we chose to use the TPC-W Benchmark’s database.
TPC-W1 is a transactional web benchmark. Its data is based on an “internet commerce en-
vironment that simulates the activities of a business oriented transactional web server”,
it models an online bookstore. It is structured as in the following database schema2:

1TPC-W Benchmark homepage: http://www.tpc.org/tpcw
2Generated using DbVisualizer 9.0.8

99

7. SCALABILITY TESTS

Fi
gu

re
7.

1:
TP

C
W

da
ta

ba
se

sc
he

m
a

100

7. SCALABILITY TESTS

The other advantage of using this database, besides its dimension, is the possibility of
comparing the results of the experiments with the ones performed in [Alv11]. We actually
use the database and tests instances that were used in [Alv11] and that are available
online 3.

Therefore, we decided to analyze the influence of some characteristics that are ana-
lyzed in [Alv11] so that we can compare them and some other characteristics that are
more specific to the application developed in this dissertation. Then, the analyzed char-
acteristics are the following:

1. Number of relevant tables considered;

2. Number of irrelevant tables considered;

3. Number of new integrity constraints considered;

4. Number of new irrelevant integrity constraints considered;

5. Tables operations limit defined by the user;

6. Number of relevant attributes that can be updated for repairing purposes;

7. Obtaining repairs only with null values confronted with repairs without null val-
ues;

8. Number of attributes that compose the tables involved in the repairing process;

9. Number of tuples of the tables that are involved in the repairing process.

All the tests are performed in a AMD AthlonTM X2 Dual-Core QL-62 @ 2.00 GHz with
6 GB RAM, with Windows 8 and 64 bits operating system and the tests of [Alv11] were
performed in an Intel R© Core TM i7 CPU 920 @ 267 GHz with 6 GB of RAM, with Windows
7 Professional and 64 bits operating system. Both use PostgreSQL 8.4, we use Gringo
version 3.0.5 instead of version 3.0.3 that is used in [Alv11], claspD version 1.1.2 and clasp
version 2.1.1. instead of 1.3.4 that is used in [Alv11]. Taking this in consideration, the
performances of the computers do not completely match. However, we try to compare
the type of behavior took by the applications in each test.

Each test was repeated three times and the results presented here are the average of
these three so that we do not provide results that represent deviations. Also, each result
represents the sum of the average of consistency check times and the average of the times
of getting the alternative repairing answers.

3http://sourceforge.net/projects/drsys/files/drsys1.0

101

7. SCALABILITY TESTS 7.1. Tests results and analysis

7.1 Tests results and analysis

7.1.1 Number of relevant tables

The tables that are referred in at least one IC are considered to be relevant tables. Those
ICs may specify dependencies between tables and so, when we change a table’s data from
which other depends on, their data may have to be changed too. That is, these dependent
tables are also relevant.

For example, considering Figure 7.1, if we consider the Author table as a relevant
table, then Item is also a relevant table because the attribute i_a_id refers the attribute
a_id from Author table and so, if we delete some tuple from the latter, there may be a
tuple from Item table referring it.

In this test we want to notice the influence of the number of relevant tables on ap-
plication’s performance. If a lot of tables depend from a table that participates in an IC,
it affects the program execution time? For that, we use a database instance of TPC-W
Benchmark provided by [Alv11] that is composed of 10.000 tuples and the following ICs:

F1 = 〈Country , co_id ,≤, 1〉ckc

F2 = 〈Author , a_id ,≤, 1〉ckc

F3 = 〈Orders, author , 〈o_date〉, 〈a_id〉〉fk

Where F1, as explained in [Alv11], means that all tuples from Country table must
have a value lower or equal to 1 for co_id attribute, that is, we cannot have tuples such
that the value of co_id attribute is bigger than 1. Its relevant tables are: Country ,
Address , Customer , Orders , Order_line and Cc_xacts . F2 means that all tuples from
Author table must have a value lower or equal to 1 for a_id attribute, that is, we cannot
have tuples such that the value of a_id attribute is bigger than 1. Its relevant tables are:
Author , Item and Order_line . The last IC, the F3 one, means that every value from
Orders ′ o_date attribute must exist in the values of author ′ s a_id attribute. Its relevant
tables are: Author , Item , Order_line , Orders and Cc_xacts .

In all tests, we included the ICs already defined in the DBMS (primary keys, foreign
keys to establish the relation between tables and not-null constraints) and a growing
number of relevant tables until including all relevant tables with respect to the analyzed
IC. The first test uses F1; the second one uses F2; the third one uses F1 and F2 and the
fourth uses F3.

About the other options, the minimality criteria chose is the cardinality criteria and
the only allowed operations are delete operations.

102

7. SCALABILITY TESTS 7.1. Tests results and analysis

Figure 7.2: Number of relevant tables results

As we can see in the charts, increasing the number of relevant tables affects a lot the
execution time. This happens probably because, by considering more tables, we are also
increasing the number of considered tuples and the number of generated combinations
for deleting or not each tuple. With more tables, there is an explosion on the grounding,
and there are more alternative repair combinations that can be generated because there
are tables that are dependent from the relevant ones and so they are also repaired if
needed.

We can also state, by observing the curves of the charts, that the referred time grows
exponentially. For example, if we observe the chart of test 1, we can see that by using
2 relevant tables we get approximately 17 seconds to get the repairs results and when
using the double of the tables, that is, 4 tables, we do not get the double of the time but
50 seconds.

About comparing the obtained charts between them, we cannot actually compare
them because they are related to different tables and also different ICs so the time values
vary.

7.1.2 Number of irrelevant tables

Besides having relevant tables, there are also the irrelevant ones. These are the ones that
do not participate in any IC and so, should not be included in the logic program, avoiding
unnecessary computations.

For example, considering Figure 7.1, considering that we are defining the IC
〈Item, i_cost , >, 0〉ckc, then Order_line is a relevant table because the attribute ol_i_id

refers the attribute i_id from Item table, however, Cc_xacts is an irrelevant table be-
cause it does not depend neither from Item nor Order_line tables, direct or indirectly.

In this test we want to observe the influence of the number of irrelevant tables. Since

103

7. SCALABILITY TESTS 7.1. Tests results and analysis

they are irrelevant for generating repairs, would they affect the program execution time?
Here, we use a database instance provided by [Alv11] that is composed of 10.000

tuples and the ICs introduced in the last subsection: F1, F2 and F3. The first test uses the
IC F1; the second one uses the IC F2; the third one uses the ICs F1 and F2 and the fourth
uses the IC F3. In all tests we included the ICs already defined in the DBMS (primary
keys, foreign keys to establish the relation between tables and not-null constraints) and
for each test we include all the relevant tables with respect to the IC that is being tested
and a growing number of irrelevant tables until including eight irrelevant tables. All
irrelevant tables have four attributes and 1.000 tuples.

About the other options, the minimality criteria chose is the cardinality criteria and
the only allowed operations are delete operations.

Figure 7.3: Number of irrelevant tables results

As we can see in the charts, increasing the number of irrelevant tables affects the ex-
ecution time. This happens probably because, by considering more tables, we are also
increasing the number of considered tuples and the number of generated combinations
for deleting or not each tuple. With more tables, there are more alternative repair combi-
nations that can be generated even when these combinations are not relevant, resulting
in more grounding when generating these combinations.

This test was also perform in [Alv11]. There we can observe that the execution time
also increases with the increasing of the number of irrelevant tables. However, there, the
execution time grows exponentially while here it grows linearly. This can occur because
of possible changes between Gringo and clasp versions because here, we use more recent
ones. However, it may occur due to other motives related to how the program is built.
For example, there, they use Lua to retrieve tuples from the database instead of using
Java to retrieve them as we do here. Also, the rules used there lead to more instantiation
(e.g. here we just ignore the irrelevant attributes in IC rules but there they make use of

104

7. SCALABILITY TESTS 7.1. Tests results and analysis

other predicates with different arities to ignore those attributes, leading to more instanti-
ation). Finally, the times are different but in both applications the time increases with the
increasing number of tables.

These results show how our application’s feature of automatically determining the
relevant tables is important. This situation would never occur in the application, since it
determines which are the relevant tables to be considered for the logic program based on
the tables included in at least one IC. So, it would never consider as relevant a table that
does not need to be repaired, avoiding the extra computation.

7.1.3 Number of new integrity constraints

The user can define an unlimited number of ICs, in the application, that are expected to
provoke changes on data.

For example, considering Figure 7.1, considering that we are defining the IC

〈Item, i_cost , >, 10〉ckc and that we do a query to the item table:

select i_id, i_cost from item

And suppose that we get:

i_id i_cost
1 12
2 9
3 7

Table 7.1: Item table instance

The Item table instance is violating the IC in second and third tuples, that is, we need
to repair it, and so, the IC revealed to be relevant.

In this test we want to observe the influence of the number of ICs. If the user defines
a lot of ICs, would it affect the program execution time?

Here, we use a database instance provided by [Alv11] that is composed of 5.000 tuples
and the following ICs:

F1 =← p_keepcountry(RowId, Id, _, _, _), p_keepauthor(RowId2, Id, _, _, _, _, _)

F2 = 〈Address, addr_co_id ,≤, 25〉ckc

F3 = 〈Country , co_id ,≤, 40〉ckc

F4 = 〈Author , a_id ,≥, 45〉ckc

With respect to their meaning, F1 forbids tuples from Country and Author tables to
have the same value for the co_id and a_id attributes, respectively; F2 forbids tuples
from Address table to have values greater than 25 for the addr_co_id attribute; F3

forbids tuples from Country table to have values greater than 40 for the co_id attribute

105

7. SCALABILITY TESTS 7.1. Tests results and analysis

and F4 forbids tuples from Author table to have values lower than 45 for the a_id
attribute.

In all tests, we include the ICs already defined in the DBMS (primary keys, foreign
keys to establish the relation between tables and not-null constraints) and considered
relevant tables are all the tables of the database because they all depend from the tables
referred in the ICs. The first test uses F1 first, then F2, F3 and finally F4; the second one
uses F4, F3, F2 and finally F1; and the third one uses F3, F2, F4 and finally F1.

About the other options, the minimality criteria chose is the cardinality criteria and
the only allowed operations are delete operations.

Figure 7.4: Number of relevant ICs results

As we can see in the charts, by adding more ICs, the execution time decreases. The
latter is also affected by the ordering of the ICs, as we can see in the tests results, because
they all make use of the same ICs but in different orderings which results in very different
times. For example, if we add F1 in first place (test 1), we get a much higher execution
time than we get when it is added after the other ICs (test 2 and test 3).

These results are very similar with the results obtained in [Alv11] where the charts are
very similar (they have the same shape) even with different time results. This similarity
was expected because the logic program generated by both approaches is similar and the
ICs have very similar transformations too. But why this happened here and in [Alv11]?
By adding constraints we can increase the grounding that is made (because the ICs must
be instantiated) but constraints prune answers and it can be significant in reducing the
search space. Some ICs prune more answers than others and so, the ordering matters
because if we start with an IC that reduces a lot the search space, the following ICs may
have less alternatives to deal with and take less time to filter the answers that fit. For
example, if we have two ICs that prune a lot of answers from the search space, then by
having one after the other, the second one may not prune a significant part of the search

106

7. SCALABILITY TESTS 7.1. Tests results and analysis

space because the first IC has done it before. So, here, we can state that what matters
when increasing the number of ICs is not the number of them, it is the contribute that
they have to prune answers. We can justify this behavior with strategies adopted by the
solver, clasp, that are also mentioned as a motive in [Alv11].

Clasp allows to apply advanced techniques from Constraint Processing and Satisfia-
bility Checking as backjumping and conflict-driven learning, making use of an approach
centered in the concept of a nogood. A nogood is a set of literals that results in a con-
straint violation and that can be learned from conflicts [GT09]. They are preprocessed
using techniques adapted from Satisfiability Checking [GKS09] and are checked when
computing answer sets. Then, we can state that when there is a conflict, clasp saves the
conflict (a constraint) expressed as a nogood, and when an assignment violates some no-
good then it is not extended to a solution [GT09] and so, by rejecting possible solutions,
it is restricting the search space and saving time.

Note: The executions that are signed with a “*” do not ended until reach 86.400 sec-
onds but we decided to end it because it is not meaningful to let it run more time.

7.1.4 Number of new irrelevant integrity constraints

As mentioned before, the user can define an unlimited number of ICs. However, not
every IC actually provokes changes on data and in that case, it makes no difference when
they are or not defined because the database is not repaired with respect to that IC.

For example, considering Figure 7.1, considering that we are defining the IC
〈Country , {co_id}〉pk and that we do a query to the Country table:

select co_id from country

And suppose that we get:

co_id
1
2
5

Table 7.2: Country table instance

The Country table instance is not violating the IC because the values for the co_id
are already unique, without repetitions and also do not have null values and so, all the
constraints for defining a primary key in that attribute are already accomplished.

In this test we want to observe the influence of that number of irrelevant ICs. If the
defined ICs are irrelevant, would it affect the program execution time?

For this test, we use a database instance provided by [Alv11] that is composed of 5.000
tuples and the following ICs:

F1 = 〈Country , co_id ,≤, 40 〉ckc

F2 = 〈Address, addr_id ,≥, 45 〉ckc

107

7. SCALABILITY TESTS 7.1. Tests results and analysis

Where F1 forbids tuples from Country table to have values greater than 40 for the
co_id attribute and F2 forbids tuples from Address table to have values lower than 45
for the addr_id attribute. With respect to those ICs, the considered relevant tables for F1

are: Country , Address , Customer , Orders , Order_line and Cc_xacts . The considered
relevant tables for F2 are: Address , Customer , Orders , Order_line and Cc_xacts .

About the tests, for the first test we use F1 and, first, we execute the program consider-
ing all primary key constraints associated with the considered relations and then without
considering them. For the second test we use F2 and then, first, we execute the program
considering all primary key constraints associated with the considered relations and then
without considering them. For both tests the primary keys are irrelevant ICs and we in-
clude the ICs already defined in the DBMS (primary keys, foreign keys to establish the
relation between tables and not-null constraints) .

About the other options, the minimality criteria chose is the cardinality criteria and
the only allowed operations are delete operations.

Figure 7.5: Number of irrelevant ICs results

As we can see in the charts, by increasing the number of irrelevant ICs, the execution
time increases a little but it is not significant so, we can conclude that the number of
irrelevant ICs does not affect the performance of the application.

These results are very similar with the results obtained in [Alv11] where the charts
have the same shape, the same behavior. This similarity was expected because the ICs
have similar transformations in both approaches and also because both use the same
solving mechanisms when using clasp. We can justify this indifference in using irrelevant
ICs or not through Gringo and clasp mechanisms. As we can see, by using irrelevant ICs,
we have a higher time that when not considering them. This happens because, when
considering them, we need to do more grounding to instantiate the ICs, and as they do
not prune answers (since they are irrelevant) then the time does not decreases. However,
when not considering them, we avoid the grounding, reducing the time.

As mentioned before, clasp makes use of nogoods to record conflicts and reducing
the search space. However, these irrelevant ICs are not violated by any instance of the
database (they do not have corresponding nogoods) and so, they do not represent con-
flicts, that is, they can be ignored, as stated in [Alv11], not producing any modification in
performance.

108

7. SCALABILITY TESTS 7.1. Tests results and analysis

7.1.5 Tables operations limit

In order to repair a database we can use a set of delete, insert or update operations.
However, the user can define a limit to the number of operations that can be made to a
specific table.

For example, considering Figure 7.1, considering that we are defining the IC
〈Order_line, ol_discount ,≤, 20 〉ckc and that we do a query to the Order_line table:

select ol_id, ol_discount from order_line

And suppose that we get:

ol_id ol_discount
1 35
2 12
5 21

Table 7.3: Order_line table instance

The Order_line table instance is violating the IC because of the first and third tuples.
Suppose also that we establish a limit of one delete operation for Order_line table. We
cannot repair the database deleting the first and third tuples because of the limit for that
table is of one delete operation but we can update the attribute ol_discount to null in
both tuples without disrespect any constraint.

In this test we want to observe the influence of that number of relation operations
limit. If we define a low maximum number of operations, would it affect the program
execution time? Would it take more or less time with a high maximum number of opera-
tions?

For this test, we use a database instance provided by [Alv11] that is composed of
15.000 tuples and the following IC:

F =← p_keeporder_line(RowId, _, _, _, Ol_qty,Ol_discount, _),

p_keeporder_line(RowId2, _, _, _, Ol_qty,Ol_discount2,) , Ol_discount < Ol_discount2.

F forbids two tuples from Order_line table to have the same values for ol_qty at-
tribute, being the ol_discount attribute of one tuple lower than the same attribute of the
other tuple. Considering this IC, the only relevant table is the Order_line table.

Finally, about the tests, they consider the constraint F and the execution is repeated
with different limits for the number of delete operations for the Order_line table, that are:
255 (corresponds to the minimal repair), 300, 400, 500 and unbounded (without limit).
Also, in all executions, we include the ICs already defined in the DBMS (primary keys,
foreign keys to establish the relation between tables and not-null constraints) .

About the other options, the minimality criteria chose is the cardinality criteria and
the only allowed operations are delete operations.

109

7. SCALABILITY TESTS 7.1. Tests results and analysis

Figure 7.6: Limited number of operations results

As we can see in the chart, by increasing the limit of allowed operations, the execution
time does not represent big changes. This is because the only answer that is returned is
the minimal answer, that is, that corresponds to the 255 limit. So, it makes no indifference
to use them or not because they do not reduce the execution time. Otherwise, if we had
other answers composed of more operations than the minimal answer, the limits could
probably reduce the search space and consequently reduce the execution time. However,
the result that considers the 255 value should result in an equal/very similar time with
respect to the other limits since the answer that is found is the same one. The justification
for this is not understood, so it probably is due to the internal functioning of clasp.

In [Alv11] the time decreases when the limit is closer to the minimal repair because in
their approach, the number of operations is already limiting the generating of operations
predicates thus, never generating answers where the limit is exceeded and so the search
space is smaller when the limit is also smaller.

It is also important to note that if we specify a limit that is lower than the number of
operations that compose the minimal answer, then we would not get any repairs.

7.1.6 Number of relevant updatable attributes

Instead of deleting or inserting whole tuples, we provide the feature of updating specific
relevant attributes to null .

For example, if we consider the example of the previous subsection, the Address table
instance is violating the IC because of the first tuple. Instead of generating and inserting
new tuples, we can just update the address_co_id to null and the database is repaired.

In this test we want to observe the influence of that number of attributes that are
possible to be updated. If we allow to update a big number of attributes to null , would
it affect the program execution time?

For this test, we use a database instance provided by [Alv11] that is composed of 5.000
tuples and the following ICs:

F1 = 〈Orders,Customer , 〈o_c_id〉, 〈c_id〉〉fk

110

7. SCALABILITY TESTS 7.1. Tests results and analysis

F2 = 〈Orders,Address, 〈o_bill_addr_id〉, 〈addr_id〉〉fk

F3 = 〈Orders,Address, 〈o_ship_addr_id〉, 〈addr_id〉〉fk

The ICs state that for every tuple that belongs to Orders table, the referred attributes
must exist in Customer table (in the case of o_c_id attribute) and exist in Address table
(in the case of o_bill_addr_id and o_ship_addr_id attributes). The considered relevant
tables are Orders , Customer and Address .

Finally, all tests use the three ICs but first, not allowing updates in any of the referring
attributes, then allowing only to update one attribute, then allowing two and then three
attributes. Also, in this test, we do not include the ICs already defined in the DBMS (pri-
mary keys, foreign keys to establish the relation between tables and not-null constraints).

About the other options, the minimality criteria chose is the cardinality criteria and
the only allowed operations are delete and update operations.

Figure 7.7: Number of updatable attributes results

As we can see in the chart, increasing the number of updatable attributes changes a
lot the execution time and, as in previous test, even with a small number of values. This
has a reason similar to the previous test because, when we allow to update the tuples of
a table, it is generated the combination of possible updates to each relevant attribute of
each tuple of the table that is being updated, which is a complex computation because
we are increasing a lot the number of combinations that are done that can possibly repair
the database.

We can also state, by observing the bars of the charts, that the time growth does not
scales very well, because, for example, if we choose to only update one attribute we waste
around 3.000 seconds and with the double of the attributes, that are only two, we waste
not the double of the time but around 10.000 seconds.

7.1.7 Obtaining repairs only with null values vs without null values

As noticed in the previous test, updates are heavy operations because of the combinations
that are necessary to do to generate the multiple alternatives. The user can choose to wait
and be able to choose the combination of values that compose the tuples that she wants to

111

7. SCALABILITY TESTS 7.1. Tests results and analysis

be inserted or make use of null values and instead of getting the combination of values,
use null values when possible.

For example, returning to example of Number of domain’s values subsection, instead
of generating the tuples like Country(4 ,UnitedStates, 2 ,Dollars) or

Country(4 ,UnitedStates, 1 ,Dollars) , we can just use Country(4 ,null ,null ,null) .

In this test we want to observe the influence of using or not-null values instead of
generating the values combinations when inserting new tuples. If we choose to use null
values instead of regular values for insertion purposes, would it affect the program exe-
cution time?

For this test, we use a database instance provided by [Alv11] that is composed of
10.000 tuples and the following IC:

F = 〈Address,Country , 〈addr_co_id〉, 〈co_id〉〉fk

F states that for every tuple that belongs to Address table, the referred attribute must
exist in Country table. The considered relevant tables are Address and Country .

Finally, about the test, we first run the program using only null values when doing
insertions and then we run it again but using some combinations of values. Also, in
this test, we include the ICs already defined in the DBMS (primary keys, foreign keys to
establish the relation between tables and not-null constraints).

About the other options, the minimality criteria chose is the cardinality criteria and
the only allowed operations are delete and insert operations.

Figure 7.8: Influence of using null values or not results

As we can see in the chart, it takes much more execution time to use the combination
of values than to choose to use only null values. As stated before, the computation of
the combinations is a very heavy approach and so, taking advantage of using null values
to replace the multiple alternative values is a good option, because it avoids to compute
combinations, reducing the grounding.

112

7. SCALABILITY TESTS 7.1. Tests results and analysis

7.1.8 Number of attributes that compose the tables

We already mentioned the influence of some parameters that are specified by the user
as the defined ICs and the maximum number of operations. Now, we analyze the influ-
ence of one of the characteristics that belong to the structure of the database, that is, the
number of attributes.

For example, considering Figure 7.1, considering the Item table. Since it has 22
attributes, would it be relevant if instead of 22 it had 10 attributes, for example?

In this test we want to observe the influence of that number of attributes in a table
that belongs to some IC.

For this test, we use a database instance provided by [Alv11] that is composed of 5.000
tuples and the following IC:

F = 〈Item, i_cost ,≤, 30000 〉ckc

F forbids tuples from Item table to have values greater than 30.000 for the i_cost
attribute. Considering F , the relevant tables are: Item and Order_line .

Finally, about the test, it is repeated four times, where in each time we consider that
the Item table (the table directly covered by the IC) has a different number of attributes.
Also, in all tests, we include the ICs already defined in the DBMS (primary keys, foreign
keys to establish the relation between tables and not-null constraints).

About the other options, the minimality criteria chose is the cardinality criteria and
the only allowed operations are delete operations.

Figure 7.9: Number of attributes results

As we can see in the chart, by increasing the number of attributes, the execution time
increases a little but not with very relevant values. The execution time increases because
with more attributes it is necessary to do more grounding however, the program is opti-
mized to avoid irrelevant grounding in ICs rules and the grounding does not participate
in the more relevant part of the computation that corresponds to generating the multiple
combination of operations to perform to the database. We can then conclude that the
number of attributes does not affect the performance of the application.

113

7. SCALABILITY TESTS 7.1. Tests results and analysis

7.1.9 Number of tuples of the tables

The tables that are referred in the ICs can have a lot of tuples or a small number of them.
For example, considering Figure 7.1, considering the Address table. Would it be

relevant if it has 1.000 tuples or 100 tuples, for example?
In this test we want to observe the influence of that number of tuples in a table that

belongs to some IC.
For this test, we use a database instance provided by [Alv11] that is composed of

10.000 tuples and the following IC:

F = 〈Order_line, ol_discount ,≤, 26 〉ckc

F forbids tuples from Order_line table to have values greater than 26 for the ol_discount
attribute. Considering F , the only relevant table is Order_line table.

Finally, about the tests, the repairing process is repeated with different number of
tuples in the table where we define a new IC. First, with 20 tuples, then 100, 300, 500, 800
and 1.500. Also, we included the ICs already defined in the DBMS (primary keys, foreign
keys to establish the relation between tables and not-null constraints).

About the other options, the minimality criteria chose is the cardinality criteria and
the only allowed operations are delete operations.

Figure 7.10: Number of tuples results

As we can see in the chart, by increasing the number of tuples, the execution time
increases a little but it is not very accentuated as the number of tuples increases. The
time increases because there are more tuples to check and more tuples that can represent
inconsistencies and consequently more tuples to repair. Probably, it does not increases the
time a lot at each tested number of tuples because that number does not represent more
combinations of operations, which is more complex than just having more grounding,
that is what happens here. Also, sometimes when doing more grounding, it can result in
a less computation time due to intelligent grounding that avoids to ground the instances
that are not relevant.

114

7. SCALABILITY TESTS 7.2. Overall considerations

7.2 Overall considerations

Overall, by increasing the volume of handled data, we are increasing the execution time
of the application. This generally occurs because we are increasing the grounding of the
program, because with bigger programs we get more grounding since there are more
variables to instantiate and more combinations to generate. This not always occur be-
cause of intelligent grounding, where sometimes, it is more efficient with more ground-
ing because it avoids the instantiation of variables that are pruned later for some con-
straint.

What also influences the performance of the program is the ICs that are used. If we
provide features that help to restrict the search and provide constraints that prune a lot
of the search space, then it means a big improving on the performance, as we witnessed
in the previous example.

Also, what gives “weight” to the program is the solving part because it has to deal
with lots of combinations and consequently, alternative repairs and so, it takes a big piece
of the execution time.

One limitation noted during the tests phase, was the memory RAM available in the
machine where the tests are performed that establishes a limit for the handled data and
when exceeded, it causes a program’s crash.

115

7. SCALABILITY TESTS 7.2. Overall considerations

116

8
Conclusion

In this dissertation we analyzed the problems of considering null values, noticed the
multiple interpretations that a null can has, analyzed the existing semantics to deal with
their ambiguous meaning and proposed a solution for dealing with them in constraint
satisfaction and repairing process.

Developments

One of the main components of this dissertation is composed by the study of the state of
the art that allowed to analyze the multiple approaches available to deal with null values
and providing examples to each IC type according the semantics. The study provided in
this document complements what is already available in the state of the art because they
provide multiple semantics but do not do a diagnosis of each one of them in the context
of each different IC. Also, we suggest a best semantics to each IC and formalize it.

About the repairing part, we determined how to repair the databases that represent
inconsistencies regarding the previously analyzed ICs as the allowed operations, where
we decided to allow insertions and deletions in order to avoid the database to just grow
or just to shrink when repaired. We also decided to allow updates to null values because
avoids to lose a lot of information when deletion is the only choice. Also, updates are
operations that may consider less lost of information considering delete operations be-
cause, as opposed to delete operations, it may consist of updating less attributes that the
total of attributes of a specific table. These considered tables are not all the tables of the
database, they are filtered by the application to do not being considered tables that do
not influence the repairing process, that is, the ones that do not appear in the ICs and
that are not related with the tables that participate in the ICs. This is a contribution to the

117

8. CONCLUSION

performance of the application, as analyzed in Chapter 7.

About the minimal answers, we decided to allow cardinality, under-set inclusion and
weight minimality in order to cover the majority of cases. Regarding weight minimality,
it presents advantages when preferring some operations over the others. For example,
we may prefer to reduce the size of the database instead of increasing it, that is, preferring
delete operations over insert operations. This criteria also provides a way of preferring
update operations because they reduce the amount of lost information, as just mentioned.

About the implementation, which is one of the big contributions of this dissertation,
since there are not available applications that repair databases with null values, besides
allowing to repair a database with null values, it allows to specify which is the semantics
to apply to each of the specified IC in the moment of the specification. Also, it allows
to specify multiple options regarding the allowed operations. For example, it allows to
specify tables from where is not possible to remove tuples, tuples that cannot be updated
or the maximum number of insert, delete or update operations. Also a valuable feature is
one where it is possible to choose what kind of answers to determine: repairs that make
use of null values to generate tuples to be inserted or updated, or repairs that do not
consider null values for repairing proposes. As seen in Chapter 7, this has advantages in
the performance of the application.

In this Chapter 7, we also showed the influence of some evaluated parameters as the
influence of the number of tables, the type of answers obtained, the number of updat-
able attributes, and showed how the grounder and the solver behave to provide the best
performance possible.

We can now compare our decisions with the approach that, as mentioned, is very
similar to this one when not considering null values, [Alv11]. There it is defined the
same type of ICs that we define in the dissertation and we also provide basically the
same options related to operations. However, we have the advantage of providing two
more options to ease the process of generating new tuples based on specified attribute
domains. Also, in this approach the authors use the same minimal criteria as we do, use
DR instead of CQA and also implement the application in ASP. However, null values are
excluded from the domain of the attributes and even do not insert them, it was left as
future work, and we do not provide the feature of specifying ICs using SQL because we
do not think that this is a very important feature because the user can already specify
them using the interface or ASP.

Limitations

After all the developments just mentioned, that are also some points that could be im-
proved.

Considering the development of the application, about the ICs, the check constraints
are a little limited because they only allow to refer attributes of a single table for the same
IC. There are also some features that may have been provided as, for example, the update

118

8. CONCLUSION

of null values to regular values, because we already have the update of regular values to
null values and the opposite may also be useful. Also about the updates, it could be
useful to choose not to update specific attributes, as we allow to choose not to update
specific tuples.

However, the main limitation of the application is the fact that it takes a lot of time
to compute the repairs for large databases. This is a consequence of the application just
getting the repairs that are absolutely correct and precise, not approximations, as we
proved with the soundness and completeness proofs. It is a complex problem. If the user
prefers to use an application with approximate repairs but with a better performance,
then this application would also be useful to compare the results and for benchmark
tests to more efficient solutions.

Future Work

Taking into account the previous limitations, there are some improvements that are left
for future work. About the theoretical part, there are some improvements that can be
made and that were just mentioned, but now we focus on improvements on the devel-
oped application.

About the application interface, that was made in Java, it would be nice to have a
more user-friendly one making use of for example, some drag and drop to put the tables
and attributes names in the corresponding boxes. At the moment, Java is used to handle
the interaction with the user which means that the computer where the application runs
has to have Java installed. In order to overcome this disadvantage and also to make the
application available in every place and every computer, it could be developed a web
version of the application, which also would contribute to a more user-friendly interface,
certainly.

Something that was already mentioned is about saving ICs. It could be improved
by, for example, saving the ICs in a file or even in the original database but without
participating in database’s schema.

Finally, it was noticed, when performing scalability tests, that in some cases the time
to wait for alternative repairs is a little long. In the application, it happens that the user
has to wait for all repairs to be obtained and then choose one of the alternative repairs.
In order to avoid the user to wait for all the answers, it could be a good improvement to
show the answers to the user as they are obtained from the solver and so the user has to
wait less time to start to see some answers. In the case of the user wants to see all the
repairs, then she can wait until the process is terminated.

To speed up the process, it could also be interesting to use concurrency as suggested
in [Alv11]. The goal here is to split the work by a set of nodes. However, we have to pay
attention in how to split the work so that we do not introduce possible inconsistencies.
For example, we should not split a single table where we apply an IC by multiple nodes
because, if the IC needs to compare the tuples with each other, each node may consider

119

8. CONCLUSION

some tuples as consistent without comparing with the tuples from the other nodes, and
so, in the end when the results are merged, we still have inconsistencies. We could also
split the ICs by different nodes but, as noticed before, have many ICs is good for improv-
ing performance, and in the case of splitting ICs that refer the same table, we are worsen
the performance in each node. A good option could be to dedicate each node to the ICs
of a specific table (and its depending tables) and so, in the end, we just need to merge the
results and as they are related to different tables that are not related between them, no
inconsistency should arise. However, this suggestion is not very realistic yet because the
solver does not distribute the work by more than one node and the results could originate
a conflict, this is just an hypothesis.

Lastly, we hope to give a contribution to the current state of the art by enhancing
the already existing analysis to the interpretation of null values by considering the con-
tributions already available, as the different semantics, for example. We also tried to
overcome the lack of applications that allow the user to repair databases considering null
values and also provide some extra features to help the user in the repairing process.

However, there is still some work to do as mentioned in future work so hopefully this
motivates to continue to research and solve the yet existing problems also beyond this
project.

120

Bibliography

[ABC99] Marcelo Arenas, Leopoldo Bertossi, and Jan Chomicki. Consistent query
answers in inconsistent databases. In Proceedings of the eighteenth ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database systems, PODS
’99, pages 68–79, New York, NY, USA, 1999. ACM.

[ABC03] Marcelo Arenas, Leopoldo Bertossi, and Jan Chomicki. Answer sets for con-
sistent query answering in inconsistent databases. Theory Pract. Log. Pro-
gram., 3(4):393–424, July 2003.

[Alv11] Ricardo Alves. Database Repairs with Answer Set Programming. (Master
Thesis). Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa,
Monte da Caparica, 2011.

[AM86] Paolo Atzeni and Nicola M. Morfuni. Functional dependencies and con-
straints on null values in database relations. Information and Control, 70(1):1–
31, July 1986.

[Bar01] Chitta Baral. Knowledge Representation, Reasoning and Declarative Problem Solv-
ing with Answer sets. Cambridge University Press, August 2001.

[BB02] Pablo Barceló and Leopoldo Bertossi. Repairing databases with annotated
predicate logic. In NMR, pages 160–170, 2002.

[BB04] Loreto Bravo and Leopoldo Bertossi. Consistent query answering under in-
clusion dependencies. In Proceedings of the 2004 conference of the Centre for
Advanced Studies on Collaborative research, CASCON ’04, pages 202–216. Car-
leton University, IBM Press, 2004.

[BB06] Loreto Bravo and Leopoldo Bertossi. Semantically correct query answers
in the presence of null values. In Proceedings of the 2006 international confer-
ence on Current Trends in Database Technology, EDBT’06, pages 336–357, Berlin,
Heidelberg, 2006. Carleton University, Springer-Verlag.

121

BIBLIOGRAPHY

[BBB03] Pablo Barceló, Leopoldo Bertossi, and Loreto Bravo. Characterizing and
Computing Semantically Correct Answers from Databases with Annotated
Logic and Answer Sets. In Proceedings of the 2nd international conference on
Semantics in databases, volume 2582, pages 7–33, Berlin, Heidelberg, 2003.
Springer-Verlag.

[Ber11] Leopoldo Bertossi. Database Repairs and Consistent Query Answering. Synthe-
sis Lectures on Data Management. Morgan & Claypool, 2011.

[BIG10] George Beskales, Ihab F. Ilyas, and Lukasz Golab. Sampling the repairs of
functional dependency violations under hard constraints. Proc. VLDB En-
dow., 3(1-2):197–207, September 2010.

[BL04] Ronald. Brachman and Hector Levesque. Knowledge Representation and Rea-
soning. The Morgan Kaufmann Series in Artificial Intelligence. Elsevier Sci-
ence, 1 edition, 2004.

[CAB00] Jan Chomicki, Marcelo Arenas, and Leopoldo Bertossi. Specifying and
Querying Database Repairs using Logic Programs with Exceptions. In
Kacprzyk Januss Zadrozny Slawomir Andreasen Troels Larsen, Henrik L.
and Henning Christiansen, editors, In Flexible Query Answering Systems. Re-
cent Developments, Advances in Intelligent and Soft Computing (Book 7),
pages 27–41. Springer, 2000.

[CB07] Monica Caniupan and Leopoldo Bertossi. The consistency extractor system:
Querying inconsistent databases using answer set programs. In Henri Prade
and V.S. Subrahmanian, editors, Scalable Uncertainty Management, volume
4772 of Lecture Notes in Computer Science, pages 74–88, Berlin Heidelberg,
2007. Springer.

[CMR09] C. Coronel, S. Morris, and Peter Rob. Database Systems: Design, Implementa-
tion, and Management (with Bind-in Printed Access Card). Bpa Series. Course
Technology Ptr, 9 edition, 2009.

[Cod70] E. F. Codd. A relational model of data for large shared data banks. Commun.
ACM, 13(6):377–387, June 1970.

[Eri09] John Erickson. Database Technologies: Concepts, Methodologies, Tools and Appli-
cations. Number vol. 1-4 in Premier reference source. Igi Global, 1 edition,
2009.

[Fit96] Melvin Fitting. First-Order Logic and Automated Theorem Proving. Graduate
Texts in Computer Science Series. Springer-Verlag, New York, USA, 2 edi-
tion, 1996.

122

BIBLIOGRAPHY

[FPL+01] Enrico Franconi, Antonio Laureti Palma, Nicola Leone, Simona Perri, and
Francesco Scarcello. Census data repair: a challenging application of disjunc-
tive logic programming. In Proceedings of the Artificial Intelligence on Logic for
Programming, LPAR ’01, pages 561–578, London, UK, 2001. Springer-Verlag.

[Gel07] Michael Gelfond. In Handbook of Knowledge Representation, chapter Answer
Sets. Elsevier Science, 2007.

[GGGM97] P. Godfrey, J. Grant, J. Gryz, and J. Minker. Integrity constraints: Semantics
and applications. In Logics for Databases and Information Systems, chapter 9,
number April, pages 265–306. Kluwer, 1997.

[GKS09] Martin Gebser, Benjamin Kaufmann, and Torsten Schaub. The conflict-
driven answer set solver clasp: Progress report. In Proceedings of the 10th In-
ternational Conference on Logic Programming and Nonmonotonic Reasoning, LP-
NMR ’09, pages 509–514, Berlin, Heidelberg, 2009. Springer-Verlag.

[GL88] Michael Gelfond and Vladimir Lifschitz. The stable model semantics for
logic programming. pages 1070–1080. MIT Press, 1988.

[GL91] Michael Gelfond and Vladimir Lifschitz. Classical negation in logic pro-
grams and disjunctive databases. New Generation Computing, 9:365–385, 1991.

[GS] Kaminski Roland Kaufmann Benjamin Ostrowski Max Schaub Torsten Geb-
ser, Martin and Thiele Sven. A User’s Guide to gringo, clasp, clingo, and iclingo.
University of Potsdam.

[GT09] Kaminski Roland Ostrowski Max Schaub Torsten Gebser, Martin and Sven
Thiele. On the input language of asp grounder gringo. In LPNMR, pages
502–508, 2009.

[GZ03] Greco Sergio Greco, Gianluigi and Ester Zumpano. A logical framework for
querying and repairing inconsistent databases. IEEE Transactions on Knowl-
edge and Data Engineering, 15(6):1389–1408, November 2003.

[JSVdC12] J. Janssen, S. Schockaert, D. Vermeir, and M. de Cock. Answer Set Program-
ming for Continuous Domains: A Fuzzy Logic Approach, volume 5 of Atlantis
Computational Intelligence Systems. Atlantis Press, 2012 edition, 2012.

[KL09] Solmaz Kolahi and Laks V. S. Lakshmanan. On approximating optimum
repairs for functional dependency violations. In Proceedings of the 12th Inter-
national Conference on Database Theory, volume 361 of ICDT ’09, pages 53–62,
New York, NY, USA, 2009. University of British Columbia, ACM.

[LB07] Andrei Lopatenko and Loreto Bravo. Efficient Approximation Algorithms
for Repairing Inconsistent Databases. pages 216–225. Free Univ. of Bozen-
Bolzano, Bolzano, Ieee, 2007.

123

BIBLIOGRAPHY

[Lif08] Vladimir Lifschitz. What is answer set programming? In AAAI, pages 1594–
1597, 2008.

[LM98] A.C. Lorents and J.N. Morgan. Database Systems: Concepts, Management and
Application. Dryden Press Series in Information Systems Series. Dryden
Press, 1998.

[Mel03] Jim Melton. Information technology — Database languages — SQL — Part 2:
Foundation (SQL/Foundation). International Organization for Standardization,
10, 2003.

[MT99] Victor W. Marek and Miroslaw Truszczynski. Stable models and an alterna-
tive logic programming paradigm. In In The Logic Programming Paradigm: a
25-Year Perspective, pages 375–398. Department of Computer Science, Univer-
sity of Kentucky, USA, Springer-Verlag, 1999.

[MT10] Ricca Francesco Manna, Marco and Giorgio Terracina. Optimized encodings
for consistent query answering via asp from different perspectives. In CILC,
2010.

[RG02] R. Ramakrishnan and J. Gehrke. Database Management Systems. McGraw-Hill
international editions: Computer science series. McGraw-Hill Companies,
Incorporated, 3 edition, 2002.

[SKS10] A. Silberschatz, H. Korth, and S. Sudarshan. Database System Concepts. Con-
nect, learn, succeed. McGraw-Hill Companies, Incorporated, 6 edition, 2010.

[SMG10] Emanuel Santos, João Pavão Martins, and Helena Galhardas. An
argumentation-based approach to database repair. In Proceedings of the 2010
conference on ECAI 2010: 19th European Conference on Artificial Intelligence,
pages 125–130, Amsterdam, The Netherlands, The Netherlands, 2010. IOS
Press.

124

	Introduction
	Integrity constraints
	Null values
	Problem

	Preliminaries
	First-order logic
	Syntax
	Semantics

	Answer set programming
	Syntax
	Semantics

	Databases
	Database concepts
	Integrity constraints
	Repairs

	Related work
	Taking null values into account: approaches and repairs
	Approaches with null values
	Integrity constraints and null values
	Examples and constraint satisfaction discussion
	Semantics with null values

	Repairs
	Operations: Insertions, deletions and updates
	Minimality

	Approaching the problem by using logic programming
	Determining the repairs
	Determining the minimal repairs

	The DRSys application
	Architecture
	Features
	ICs specification screen
	Insert options screen
	Delete options screen
	Other options screen

	Decisions
	Tools
	Main features

	Optimizations
	Some examples and analysis of the results

	Scalability tests
	Tests results and analysis
	Number of relevant tables
	Number of irrelevant tables
	Number of new integrity constraints
	Number of new irrelevant integrity constraints
	Tables operations limit
	Number of relevant updatable attributes
	Obtaining repairs only with null values vs without null values
	Number of attributes that compose the tables
	Number of tuples of the tables

	Overall considerations

	Conclusion

