

Edinburgh Research Explorer

Approximating Certainty in Querying Data and Metadata
Citation for published version:
Civili, C & Libkin, L 2018, Approximating Certainty in Querying Data and Metadata. in Principles of
Knowledge Representation and Reasoning: Proceedings of the Sixteenth International Conference
(KR2018). AAAI Press, Palo Alto, California, 16th International Conference on Principles of Knowledge
Representation and Reasoning, Tempe, United States, 30/10/18.
<https://aaai.org/ocs/index.php/KR/KR18/paper/view/18014>

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Principles of Knowledge Representation and Reasoning

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 12. Jun. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/323961507?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://aaai.org/ocs/index.php/KR/KR18/paper/view/18014
https://www.research.ed.ac.uk/portal/en/publications/approximating-certainty-in-querying-data-and-metadata(7900a049-480e-4da5-8278-701ee29091ec).html

Approximating Certainty in Querying Data and Metadata

Cristina Civili and Leonid Libkin
University of Edinburgh

Abstract

Metadata, such as mappings or constraints, is used in a vari-
ety of scenarios to facilitate query answering; these include
data integration and exchange, consistent query answering,
and ontology-based data access. A common feature of these
scenarios is that data and metadata together produce multiple
databases, and answers to queries must be certain, i.e., true
in all such databases. This usually incurs prohibitively high
complexity outside very restricted classes of queries such as
conjunctive queries and their unions.
To overcome this, we propose to approximate such query an-
swering by reducing it to another scenario where multiple
databases need to be taken into account, namely incomplete
information in databases. For them, well-behaved approxima-
tion schemes exist for much larger classes of queries. We give
a generic representation of query answering via incomplete
data, and show how it works in the scenarios listed above.
We use the connection to show how to effectively approxi-
mate several intractable query answering problems, and dis-
cuss differences between applying this framework under open
and closed world semantics.

1 Introduction
There are many applications where reasoning about data
and metadata is essential for providing meaningful answers
to queries. These include data integration (Lenzerini 2002),
data exchange (Arenas et al. 2014), ontology-based data ac-
cess (OBDA) (Bienvenu and Ortiz 2015; Poggi et al. 2008),
and consistent query answering (CQA) (Bertossi 2011).
They all follow the same pattern: using existing data together
with some additional knowledge provided as metadata, they
define a set of possible – but unknown to us – datasets, and
then attempt to find query answers that are guaranteed to
be true in all of them. For example, in data integration and
data exchange, existing data is information we have in data
sources, and metadata is provided by the schema mapping.
Together, they define multiple databases of global or target
schema, and query answering has to take all of them into
account. In consistent query answering, one takes an incon-
sistent database and constraints as metadata, and looks at re-
pairs that restore consistency. In OBDA, a database, a map-
ping, and an ontology together define the set of all database

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

extensions consistent with the ontology; query answering
must take all of them into account.

In all these applications, query answering must extract
certain information from many databases. This can only be
done efficiently for a rather restricted class of queries. In-
deed, to check a query in many databases, we essentially
need to solve a version of the validity problem, and such
problems are hard. As a result, a frequent assumption under-
lying most of the above scenarios is that only unions of con-
junctive queries (UCQs) are considered. There is very little
known about answering queries beyond UCQs; it is viewed
as being very costly.

There is another area that faces a very similar problem,
namely handling of incomplete information in databases.
An incomplete database represents many (perhaps infinitely
many) complete ones, and query answers must be certain,
i.e., consistent with all of them. Similarly, only queries such
as UCQs can be answered efficiently with certainty (Imielin-
ski and Lipski 1984). However, in the case of incomplete
information, we know that for many more queries certain
answers can be approximated (e.g., all those definable in
first-order logic, under the closed world semantics of incom-
pleteness (Guagliardo and Libkin 2016)).

Our idea then is to leverage this knowledge of how to ef-
ficiently approximate answers to queries over incomplete
databases, and apply it to the scenarios where additional
knowledge assists query answering, towards the goal of pro-
viding answers – even partial ones – to queries that go be-
yond UCQs. Specifically, for each of the application scenar-
ios where we have a database D, some metadata Σ, and a
query Q:

1. we first build a single incomplete database D′ that rep-
resents all (and perhaps more) datasets that arise from D
and Σ combined;

2. then we find an approximation to answers to query Q on
that database D′, and show that it will be guaranteed to
provide an approximation in our application scenario.

Here and elsewhere, by approximating a query we mean
finding a subset of its answers, that is, finding some of the
query answers that are guaranteed to be correct.

The reason we cannot simply run the original query Q
over the incomplete database D′ that the first step produces
is that this may return false answers for queries outside the

Figure 1: Source data and canonical solution for Example 1

Source: UnpaidOrder
oid cid total
02 771 46
03 771 31

ScheduledPaymentOrder
oid cid total pdate
01 894 60 9/24/18

PaidOrder
oid cid total
04 894 22

Client
cid name status
771 John ‘gold’
894 Mary ‘silver’

Canonical Solution: Order
oid cid total
01 894 60
02 771 46
03 771 31
04 894 22

Payment
pid poid pcid pdate
⊥1 04 894 ⊥2

⊥3 ⊥4 771 ⊥5

⊥6 01 894 9/24/18

Client
cid name status
771 John ‘gold’
894 Mary ‘silver’

class of UCQs (we shall see an example shortly). As for the
second step, of course there are many trivial approximation
schemes (in the extreme case one can just return the empty
set), but we shall see that better solutions exist. In fact we
will show that genuinely useful approximations of this sort
exist, for queries that go beyond UCQs and cannot be an-
swered efficiently in application scenarios, and where fur-
thermore runningQ on the incomplete databaseD′ produces
wrong answers, but running the approximation to Q restores
correctness and returns meaningful answers.

Let us illustrate this by an example based on a data ex-
change scenario.
Example 1. Consider a data exchange setting aimed at
restructuring a database that stores data about orders and
clients of a company. The source schema has relations Un-
paidOrd(oid,cid,total) of unpaid orders with their ids, cus-
tomer ids, and amount; ScheduledOrd(oid,cid,total,pdate) of
orders scheduled for payment that also have the pdate at-
tribute for payment date; PaidOrd(oid,cid,total) of paid or-
ders, and Client(cid,name,status) of clients, with status indi-
cating their standing with the company (gold, silver, etc.).

The company wants to restructure the data to keep track
of payments and dates, and to enforce the rule that mem-
bers with the ‘gold’ status have made at least one pay-
ment. This is reflected in the target schema with rela-
tions for orders: Order(oid,cid,total), for payments: Pay-
ment(pid,poid,pcid,pdate) (with payment, order, client ids,
and dates), together with a copy of the Client relation.

Typically in data exchange and integration (Arenas et
al. 2014; Lenzerini 2002), metadata comes in the form of
source-to-target constraints known as tuple-generating de-
pendencies; they are (abbreviating relation names in the ob-
vious way):

UO(o, c, t) → O(o, c, t)
SO(o, c, t, p) → ∃z O(o, c, t) ∧ P(z, o, c, p)
PO(o, c, t) → ∃z1, z2 O(o, c, t) ∧ P(z1, o, c, z2)

C(c, n, “gold”) → ∃z1, z2, z3 P(z1, z2, n, z3)
C(c, n, s) → C(c, n, s)

The first constraint copies all unpaid orders into Order, the
second copies all scheduled orders and creates a payment
record with an unknown id, the third copies paid orders and
creates a payment record with unknown id and date, and
fourth says that for each ‘gold’ customer there is a payment
record, and the last one copies the Client table.

Figure 1 shows sample source data. LetQ be a query, over
the target schema, asking for the ids of orders that will not
be paid by today (expressed below in relational algebra):

πoid(O− πoid,cid,total(O ./oid=poid P))
∪ πoid(σpdate≥$today(O ./oid=poid P))

A simple reasoning based on analyzing information in the
source shows that 01 is such an id that will certainly be in
the answer, no matter what target instance we build, since
it comes with a known order date (we assume it to be later
than today). In data exchange, one answers queries over one
particular target instance, most commonly the canonical so-
lution. It is obtained by populating the target based on the
rules, putting in null values for existential variables. It is
shown in Figure 1, with nulls denoted by ⊥.

Running Q on the canonical solution produces three an-
swers: 01, 02, and 03. Of them, 02 and 03, are false positive,
i.e., they are returned as answers to the query over the canon-
ical solution, but they are not certain answers. In fact it has
long been known that running the query over the canonical
solution works only for unions of conjunctive queries (Are-
nas et al. 2014; Fagin et al. 2005) or small extensions thereof
(Arenas, Barceló, and Reutter 2011).

Can we get rid of false positives? Notice that the canoni-
cal solution is a database with nulls, and for such databases,
we know how to answer queries in a way that false pos-
itives are avoided, see e.g., (Guagliardo and Libkin 2016;
Greco, Molinaro, and Trubitsyna 2017). But why would this
be of any help? We are talking about different levels of cer-
tainty here: we need to produce answers that are true in all
possible targets, but we only have techniques for approxi-
mating answers over one incomplete database. The reason it
makes sense to approximate query answers on the canoni-
cal solution is a special property of it that, viewed as an in-
complete database, it represents all possible target databases.
This connection enables approximate query answering in
data exchange via approximate query answering in incom-
plete databases.

This example illustrates points 1) and 2) made earlier: we
can build an incomplete database instance that represents all
databases we are interested in, and then approximate query
answering over it, using techniques from query answering
over incomplete data. The first of these steps is often easy
to make in the applications such as data exchange, data in-

tegration, CQA, and OBDA. We refer to them as applica-
tion scenarios from now on. For each of them, we can con-
struct a specific incomplete instance that captures all the
databases that a given application scenario generates (and
perhaps more). This means that every approximation of cer-
tain query answering we can use from the incomplete in-
formation domain becomes usable in these application sce-
narios: it produces an approximation of query answers, and
can be applied to much larger classes of queries for which
previously no techniques existed.

In fact the process of building a database instance in step
1) is not our focus here as such instances, in most cases, are
built by algorithms well known in the literature. Our main
interest is in showing that they, together with approximation
algorithms for querying incomplete information, can pro-
vide meaningful answers to queries that hitherto could not
be handled in applications involving data and metadata (i.e.,
queries going beyond UCQs).

After formalizing this general technique, we show how
it can be applied in data integration and exchange (us-
ing canonical solutions as incomplete databases), consistent
query answering (using a special instance called canonical
repair), and OBDA (using the result – even partial – of the
chase). We give specific instances of approximations where
nontrivial query answers without false positives can be pro-
duced for arbitrary first-order queries, in scenarios that were
previously beyond reach.

Organization. Basic definition are in Section 2. Section 3
defines the notions of application scenarios. Section 4 shows
how to reduce certain query answering in application scenar-
ios to that over incomplete data. Section 5 and 6 use approx-
imation schemes for first-order queries to find approxima-
tions of intractable querying problems in application scenar-
ios. Concluding remarks are in Section 7.

2 Preliminaries
Relational databases A relational schemaR is a set of re-
lation names with associated arities. Database elements will
come from a countably infinite set C of constants, which
applications commonly supplement by inserting some un-
known elements. These are called nulls; we assume that they
come from a countably infinite set N, disjoint from C. A re-
lational database instance, or just database, D over R, is a
finite set of atoms of the form R(t1, . . . , tk), where R is a
k-ary relation in R, and t1, . . . , tk ∈ C ∪ N. The set of all
elements from C∪N that appear in atoms of D is called the
active domain of D, denoted by adom(D). A database D is
complete if adom(D) ⊂ C. The set of all databases over R
is denoted by Inst(R).

Given two relational instances D1, D2 over C ∪ N, a ho-
momorphism h : D1 → D2 is a map from adom(D1) to
adom(D2) such that h(c) = c if c ∈ C, and for each atom
R(t1, . . . , tk) of D1, the atom R(h(t1), . . . , h(tk)) is in D2.
A homomorphism h whose range contains only constants
is called a valuation (it provides values for nulls). Valua-
tions are used to provide the semantics of a database D
with nulls as JDK = {v(D) | v is a valuation}. In other
words, an incomplete database D represents complete ones

in which nulls are replaced by constants. This is known as
the closed-world semantics (Reiter 1977); we shall deal with
open-world semantics as well.

As our basic query language we take first-order logic (FO)
over the relational schema. Its formulae are built up from re-
lational atoms R(t̄) and equality atoms t = t′ by using con-
junction, disjunction, negation, and existential and universal
quantification. We also look at fragments such as conjunc-
tive queries (CQs) that only allow existential quantifiers and
conjunction, and unions of conjunctive queries (UCQs) that
also allow disjunction.

Some of the queries will be presented in relational alge-
bra which of course is equivalent in expressiveness to FO,
and is used to implement declarative queries in relational
databases. The reason is that approximation schemes for
finding query answers over incomplete databases are often
presented at the level of relational algebra, and presenting
queries in it allows us to skip the extra step of translating
between languages.

Certain and correct answers In the scenarios we con-
sider, a common feature of query answering is that answers
must be consistent with a family D of databases, for in-
stance, JDK for an incomplete database D. To answer a
query Q, one therefore needs to extract certain information
from Q(D) = {Q(D) | D ∈ D}.

If Q returns a set (e.g., of tuples, as for re-
lational queries), one often defines certainty as
�∩(Q,D) =

⋂
D′∈JDKQ(D′), see (Imielinski and

Lipski 1984), or alternatively as �⊥(Q,D) = {ā | v(ā) ∈
Q(v(D)) for every valuation v}, see (Lipski 1984). The
latter has the advantage of also producing certain tuples
that contain nulls, and �∩(Q,D) is simply the set of tuples
without nulls that occur in �⊥(Q,D).

Since our goal is to reason about approximations of query
answers, and we do not want to be tied to one particular
definition, we adopt a generic approach that defines certainty
based on relative informativeness of query answers (Libkin
2016). The idea is that we have a relation � on objects that
can appear as query answers, with X � Y meaning that Y
is at least as informative asX; this relation is a preorder, i.e.,
reflexive and transitive.
Definition 1 (Correct and certain answers). LetD be a set of
databases of the same schema R, let Q be a query over R,
and let � be the relative informativeness ordering on query
answers. Then an object X is a correct answer to Q over D
if X � Y for each Y ∈ Q(D), and it is a certain answer to
Q on D if it is a maximal element, with respect to �, among
correct answers.

If D and D′ are sets of databases then Q(D) ∼ Q(D′)
means that correct answers to Q are the same on D and D′.

Thus, if a certain answer exists, it is the greatest lower
bound of all answers Q(D′) for D′ ∈ D, with respect to �.
For queries over relational data that return sets of tuples, it
is standard to use the following definition: X � Y iff there
exists a homomorphism h : X → Y . Indeed, a homomor-
phism provides additional information by replacing nulls by
constants, or equating nulls, or adding more tuples to the an-
swers, thus giving a better approximation to correct answers.

If Q is a relational query over incomplete databases that re-
turns a set of tuples, then both �⊥(Q,D) and �∩(Q,D) are
correct answers to Q over JDK, with respect to �.

3 Query Answering in Application Scenarios
We now provide a definition that formally captures scenarios
of query answering assisted by additional knowledge pro-
vided as metadata. Essentially, we start with a data set and
metadata (often given as a set of rules), and use those to pro-
duce (physically or virtually) multiple new data sets.

Definition 2. An application scenario is modeled as a tuple
A = 〈Rs, Rt, L·M〉 that consists of two relational schemas
Rs and Rt, and a function L·M that takes an instance of Rs

and produces a set of instances of Rt.

Following the tradition of data integration and exchange
scenarios, we callRs andRt source and target schemas (this
is just a naming convention: in other cases this need not be
their exact interpretation). Metadata may appear as a set of
rules in data integration and exchange, or a set of constraints
for CQA, or an ontology for OBDA. It is captured by the
function L·M, as will be explained shortly.

In the cases we consider, instances of Rt are arbitrary
databases, and instances of Rs are complete. This is in line
with the applications considered here, but is not a hard re-
striction and it does not affect the results. In fact in some
cases, like data exchange, dealing with incomplete source in-
stances has been studied (Arenas, Pérez, and Reutter 2013).

Given an application scenario A and a database instance
D ∈ Inst(Rs), we define the support A(D) of D under A
as the set of all complete databases that represent databases
in LDM, i.e., {v(D′) | D′ ∈ LDM and v is a valuation}. In
other words, if we have incomplete databases in LDM, as of-
ten happens, the support expands LDM by adding all possible
interpretations of nulls in them.

We shall see, in Section 4, how instances of query answer-
ing appear as these application scenarios. Finding query an-
swers then boils down to finding certain answers over sup-
ports A(D). These are often infeasible, and then one needs
to approximate them by finding correct answers. We next
explain the key idea behind finding such approximations.

Approximate Query Answering
The idea of approximating queries in application scenarios is
to overapproximate their supports via incomplete databases,
and then use our knowledge of how to approximate query
answering over incomplete data, i.e., how to find correct an-
swers to such queries. We consider two semantics of incom-
pleteness. The CWA semantics (i.e., the semantics under the
closed-world assumption), was introduced earlier; it is de-
noted as JDKCWA or simply JDK. The OWA semantics (un-
der the open-world assumption), is defined as JDKOWA =
{v(D) ∪ D′ | v is a valuation and D′ is complete}. It ex-
tends the closed world semantics by adding arbitrary sets
of complete tuples to databases.

Definition 3. Given a semantics J·K∗ of incomplete data,
an application scenario A = 〈Rs, Rt, L·M〉, and an instance
D ∈ Inst(Rs), we say that D′ ∈ Inst(Rt) is an A-cover

of D under J·K∗ if A(D) ⊆ JD′K∗. If A is clear from the
context, we shall omit it.

The key observation is the following.
Theorem 1. Given an application scenario A =
〈Rs, Rt, L·M〉, an incompleteness semantics J·K∗, and a query
Q over Rt, if D is an instance of Rs and D′ is a cover of D
under J·K∗, then every correct answer to Q over JD′K∗ is a
correct answer to Q over A(D).

As our goal is to find correct answers toQ overA(D), this
observation suggests looking for covers under some seman-
tics of incompleteness and then providing correct answers
for them. In the next section we show that such covers are
very easy to find in the main applications we study here.

Running the query on a cover does not yet guarantee cor-
rectness, due to the presence of false positive, informally in-
troduced earlier. For our purposes, it suffices to define them
for queries returning sets of tuples. In the setting of Theorem
1, a tuple ā is a false positive if it belongs to Q(D′) but is
not a correct answer to Q over A(D).
Remark. While we chose to work with the notions of
correctness and certainty based on relative informative-
ness of query answers, it is very common in the literature
to define them as intersections of all query answers, i.e.,
�∩(Q,A, D) =

⋂
D′∈A(D)Q(D′). Note that such answers

contain only constant tuples, i.e., tuples without nulls. It
turns out that our more general approach to certain and cor-
rect answers also provides guarantees for such answers.
Proposition 1. LetA = 〈Rs, Rt, L·M〉 be an application sce-
nario, Q a query over Rt, and D an instance of Rs. If D′
is a cover of D under J·K∗, and c̄ is a constant tuple that
belongs to a correct answer to Q on D′ under J·K∗, then
c̄ ∈ �∩(Q,A, D).

Thus, for the definition based on the intersection operator,
to approximate query answers it still suffices to find a correct
answer on a cover, and then restrict to constant tuples in it.

4 Correct Answers in Application Scenarios
We show how the approximation idea of Theorem 1 works in
four application scenarios: data exchange, data integration,
CQA, and OBDA. Specifically,
• finding correct answers to queries over incomplete

databases under the CWA semantics works for closed-
world data exchange, exact and complete data integration,
and CQA;

• finding correct answers to queries over incomplete
databases under the OWA semantics works for open-world
data exchange, sound data integration, and OBDA.
In all these application scenarios, finding certain answers

is computationally hard even for first-order queries, with
data complexity ranging from CONP-hard to undecidable
(Fagin et al. 2005; Lenzerini 2002; Bertossi 2011). How-
ever, by identifying suitable covers, we can find approxi-
mations efficiently. This section explains how covers can be
constructed and gives general statements about the existence
of approximations; then in Sections 5 and 6 we show con-
crete instances of reducing complexity from intractable to
tractable.

Data Exchange
First recall some basic definitions, cf. (Arenas et al. 2014).
A schema mapping M is a tuple 〈Rs, Rt,Σst,Σt〉, where
Rs and Rt are source and target relational schemas, Σst

is a set of source-to-target dependencies that specify how
Rs instances are restructured under Rt, and Σt is a set of
constraints over Rt. This is represented by an application
scenario AM,∗ = 〈Rs, Rt, L·M∗Σ〉, where Σ = Σst ∪ Σt,
and, given a source instance D ∈ Inst(Rs), LDM∗Σ is the
set of solutions in data exchange under semantics indicated
by ∗. Most commonly one uses an open-world (OWA) or
closed-world (CWA) semantics. Under OWA, instances in
LDMOWA

Σ are D′ ∈ Inst(Rt) such that D and D′ together
satisfy Σst and D′ satisfies Σt. Under CWA, instances in
LDMCWA

Σ are D′ ∈ Inst(Rt) satisfying Σt in which every
fact is justified by D and Σst (see (Arenas et al. 2014;
Hernich, Libkin, and Schweikardt 2011) for the somewhat
involved definition of being justified). It is known that
LDMCWA

Σ ⊆ LDMOWA
Σ . We shall refer to OWA- or CWA-data ex-

change, depending on the semantics of the solutions.
A special solution, called canonical (universal) solution

for D and denoted by CanSolM(D), plays a very impor-
tant role in data exchange. It is constructed by applying
constraints from Σst to D; these constraints are the form
∀x̄ φ(x̄) → ∃z̄ψ(x̄, z̄), where φ and ψ are conjunctive
queries overRs andRt. One example was given in Figure 1.
If Σt 6= ∅, this is followed by applying the chase procedure,
i.e., using constraints in Σt to derive new facts. Canonical
universal solution is the preferred solution in data exchange,
and is the one that is most often materialized for query an-
swering. It is also a cover.

Proposition 2. Let M be a schema mapping, and D a
source instance. Assume that CanSolM(D) exists. Then
CanSolM(D) is an AM,∗-cover of D under J·K∗, where ∗
is OWA or CWA.

Combining this with Theorem 1, we have a recipe for
finding correct answers in data exchange for arbitrary
queries: build the canonical solution CanSolM(D), and ap-
ply any known algorithm for approximating certain answers
with CanSolM(D) viewed as an incomplete database. Note
that we do not put any restrictions on the query Q.

Corollary 1. If M is a schema mapping, D a source in-
stance,Q an arbitrary query overRt, and CanSolM(D) ex-
ists, then every correct answer to Q over JCanSolM(D)K∗
is a correct answer to Q over AM,∗(D), where ∗ is OWA or
CWA.

Sometimes this can be pushed further, and we can capture
all correct answers. The treatment below applies in other ap-
plication scenarios as well, but due to space limitations we
only present full details for the case for data exchange.

For this, we restrict the class of queries, but still not nearly
as much as UCQs, allowing a fair amount of negation in
them. We use the class Pos(∀G) of first-order formulae, de-
fined in (Compton 1983). It contains the positive fragment,
i.e., all atomic formulae, is closed under ∧,∨,∃,∀, and is
also closed under the following universal guarded rule: if
φ(x̄, ȳ) is a formula in Pos(∀G), and α(x̄) is an atomic

formula with the variables in x̄ distinct, then ∀x̄ (α(x̄) →
φ(x̄, ȳ)) is a formula in Pos(∀G). This is a very expressive
fragment: it corresponds to relational algebra operations of
selection, projection, union, join, and division by a relation
(i.e., queries like ‘find students who take all courses’).
Proposition 3. IfM is a schema mapping, D a source in-
stance, Q a query over Rt, and T = CanSolM(D) exists,
then:

• Q(JT KOWA) ∼ Q(AM,OWA(D)) for Q ∈ UCQ;
• Q(JT KCWA) ∼ Q(AM,CWA(D)) for Q ∈ Pos(∀G).

Recall that the ∼ notation means that correct answers are
the same over both families of databases (see Definition 1).

For queries from UCQ and Pos(∀G), certain answers un-
der OWA and CWA respectively can be found by naively
evaluating Q over the incomplete database, i.e., treating
nulls as distinct constants, cf. (Imielinski and Lipski 1984;
Gheerbrant, Libkin, and Sirangelo 2014). This gives us the
following.
Corollary 2. LetM be a schema mapping, D a source in-
stance, and Q a query over Rt. If CanSolM(D) exists, then
Q(CanSolM(D)) is the certain answer to Q on:

1. AM,OWA(D) if Q ∈ UCQ; and
2. AM,CWA(D) if Q ∈ Pos(∀G).

This goes beyond known results (Fagin et al. 2005), which
only proved item 1, and only for tuples without nulls.

Data Integration
A data integration system (Lenzerini 2002) is a triple I =
〈G,S,Σ〉, where G is the global schema, S is the source
schema (both assumed to be relational), and Σ is the map-
ping between them, consisting of rules of the form qS ; qG
or qG ; qS , where qS is a k-ary conjunctive query over S
and qG is a k-ary conjunctive query over G. More precisely,
we talk about LAV (local as view) mappings for rules of the
form s; qG, where s is a k-ary predicate in S, GAV (global
as view) mappings for rules of the form g ; qS where g is
an k-ary predicate in G, and GLAV mappings for arbitrary
combinations of the previous two.

This is captured by an application scenario AI,∗ =
〈S,G, L·M∗Σ〉, where L·M∗Σ produces instances of the global
schema consistent with the source and the mapping, and ∗
is one of the standard assumptions on the interpretation of
the mapping rules, such as exact (e), sound (s) or complete
(c) view. For a source instance D ∈ Inst(S), a database D′
over the global schema is in LDM∗ iff for each rule qS ; qG
of Σ, the pair (D,D′) satisfies ∀x̄ qS(x̄) θ qG(x̄), where θ
is→ for ∗ = s, or← for ∗ = c, or↔ for ∗ = e.

Consider a LAV mapping. As for data exchange, we start
with a source instance D and produce the canonical solution
CanSolI(D) by viewing mapping rules as source-to-target
dependencies. This gives us covers for all the interpretations:
Proposition 4. Let I = 〈G,S,Σ〉 be a data integration sys-
tem and D a source instance. Then CanSolI(D) is an AI,∗-
cover of D under J·KOWA for ∗ = s, and under J·KCWA for
∗ ∈ {c, e}.

Combined with Theorem 1, this gives us:

Corollary 3. Let I = 〈G,S,Σ〉 be a data integration sys-
tem, D a source instance, and Q an arbitrary query over G.
Then every correct answer to Q over JCanSolI(D)KOWA is
a correct answer to Q over AI,s(D), and every correct an-
swer to Q over JCanSolI(D)KCWA is a correct answer to Q
over AI,e(D) and AI,c(D).

Consistent Query Answering (CQA)
In CQA applications, we have a database schemaR, a set of
constraints Σ, and a database D that violates Σ. The prob-
lem is to find query answers one can be certain about even
though the database violates constraints (Arenas, Bertossi,
and Chomicki 1999; Bertossi 2011). For this, one defines
the notion of a repair of D as a database D′ that satisfies
Σ and differs from D as little as possible. There are several
ways of formalizing this by imposing a minimality criterion
on the difference between D and D′. We shall look at a spe-
cific case where there is a single universally agreed notion
of repair. This happens when constraints are given as keys –
the most common database constraints (Abiteboul, Hull, and
Vianu 1995) and in fact constraints most commonly studied
in the context of CQA (Bertossi 2011).

Assume that each relation name R ∈ R has a key, i.e., a
set of attributesK ofR such that no two tuples ofR have the
same values of these attributes. If a relation violates the key
constraint, then for each possible tuple t̄ of values of K, it
may have multiple tuples t̄1, . . . , t̄m that coincide with t̄ on
attributes inK. Then for each such a group a repair will pick
just one tuple, to restore consistency (thus leading to poten-
tially an exponential number of repairs). We let RepΣ(D)
be the set of all repairs of D. Consistent query answers then
must be true in all repairs.

A CQA setting C = 〈R,Σ〉 is modeled as an application
scenario AC = 〈R,R, L·MΣ〉, where LDMΣ = RepΣ(D) for
a database D. Unlike in the previous examples, we cannot
rely on the canonical solution. Instead we use the canonical
repair CanRepΣ(D), which is an incomplete database de-
fined as follows. For each tuple t̄ of values of K, if we have
multiple tuples t̄1, . . . , t̄m that coincide with t̄ on attributes
in K, then we replace them with one new tuple t̄′ that coin-
cides with t̄ on attributes in K, and has fresh nulls as values
of other attributes.
Proposition 5. Let C = 〈R,Σ〉 be a CQA setting where all
constraints in Σ are keys, and D an instance over R. Then
CanRepΣ(D) is a cover of D under J·KCWA.

Again, combining with Theorem 1, we get:
Corollary 4. Let C = 〈R,Σ〉 be a CQA setting where
Σ contains keys, D an instance over R and Q an arbi-
trary query over R. Then every correct answer to Q over
JCanRepΣ(D)KCWA is a correct answer to Q over AC(D).

Ontology-Based Data Access
We recall that an ontology is constituted by a pair 〈T,A〉.
where T is called TBox and contains the intensional knowl-
edge of the ontology, i.e., the inference rules, while A is
called ABox and contains the extensional part of the ontol-
ogy, i.e., the facts. By sgn(T) we denote the signature of T,
i.e., the set of predicates occurring in T.

An OBDA specification (Poggi et al. 2008) is a tupleO =
〈R,T,M〉 consisting of a relational schema R, a TBox T,
and a set of mappings M between the predicates of T and
the predicates of R. In this context, we assume M to be a
set of GAV mapping (as defined earlier) of the form g ;

qg , where g is a k-ary predicate in sgn(T) and qg is a k-
ary conjunctive query over R. Then for a database D of R,
by M(D) we mean the database of sgn(T) in which each
relation g is interpreted as qg(D).

Given a database instance D over R, such a specification
denotes the set of all the ABoxes that can be obtained by
translating the facts in D in terms of sgn(T) using the rules
in M, and extended with the knowledge that can be inferred
from T. This is modeled by an application scenario AO =
〈R, sgn(T), L·MΣ〉, where Σ = T ∪M, and LDMΣ = {D′ |
M(D) ⊆ D′ and D′ |= T}, see (Poggi et al. 2008; Bienvenu
and Ortiz 2015).

This also applies to a simplified OBDA scenario, known
as ontology-mediated query answering (OMQA), in which
an actual ABox over sgn(T) takes the place of the virtual
ABox constituted by 〈D,M〉 in the above description.

Similarly, given an ontology 〈T,A〉, such a case denotes
the set of all ABoxes that constitute extensions of A and
satisfy the ontology constraints, and can be also modeled by
an application scenarioAO = 〈sgn(T), sgn(T), L·MT〉, where
LAMT = {A′ ⊇ A | A′ |= T}.

The complexity of OBDA query answering has been
studied almost exclusively for CQs and their unions. The
few exceptions one can find in the literature, in fact, have
the purpose of showing the limitations of ontology lan-
guages beyond such well-behaved classes (Rosati 2007;
Gutiérrez-Basulto et al. 2015). Techniques for finding cer-
tain answers generally follow three approaches. One is by
rewriting the original query in a tractable language (e.g.,
FO) to obtain the certain answers, as is done, e.g., for on-
tologies in DL-Lite (Calvanese et al. 2007), some frag-
ments of Datalog± (Calı̀, Gottlob, and Lukasiewicz 2012;
Calı̀, Gottlob, and Pieris 2012), or weakly recursive depen-
dencies (Civili and Rosati 2012). Another approach is to
use the chase procedure that uses ontology rules to derive
new facts, and apply the query on its result, if the procedure
terminates. This includes ontologies with weakly acyclic
tgds (Fagin et al. 2005) or acyclic graphs of rule depen-
dencies (Baget et al. 2011), where chase always terminates,
or guarded Datalog± (Calautti, Gottlob, and Pieris 2015),
where termination is decidable. The third combined ap-
proach, often used with the EL family of description logics
(Baader, Brandt, and Lutz 2005; Lutz, Toman, and Wolter
2009), uses both chase and rewriting.

Here we look at the approach based on the chase proce-
dure, as defined, in the case of ontological languages men-
tioned above, in (Greco, Molinaro, and Spezzano 2012) and
other references above. We denote the result of its applica-
tion, if it terminates successfully, by chase(M(D),T). Then:

Proposition 6. Let O = 〈T,R,M〉 be an OBDA specifica-
tion and D a relational instance overR. If chase(M(D),T)
is well-defined (i.e., chase terminates without failures), then
it is an AO-cover of D under J·KOWA.

Once again, from Theorem 1, we derive the following.

Corollary 5. LetO = 〈T,R,M〉 be an OBDA specification,
D a relational instance over R and Q an arbitrary query
over sgn(T). If chase(M(D),T) is well-defined (i.e., chase
terminates without failures) then every correct answer to Q
over Jchase(M(D),T)KOWA is a correct answer to Q over
AO(D).

Notice that, in the simplified scenario of OMQA men-
tioned earlier, the above results still apply. In particular,
given an ontology 〈T,A〉, we have that chase(A,T) is an
AO-cover of A under J·KOWA, therefore, every correct answer
to an arbitrary query Q over Jchase(A,T)KOWA is a correct
answer to Q over AO(A).

5 Approximations under Closed World
All the results of the previous section were of the same
shape: correct answers over a particular cover, under some
semantics of incompleteness, are also correct answers in ap-
plication scenarios. For the former, we know (at least in
some cases), how to find nontrivial correct answers effi-
ciently even if certain answers are intractable. Such results
exist primarily under CWA, where finding certain answers is
CONP-complete, as opposed to OWA, where certain answers
cannot be computed for arbitrary FO queries (Abiteboul,
Kanellakis, and Grahne 1991). Indeed, it is easier to approx-
imate a CONP-complete rather than an undecidable prob-
lem. We now look at one existing approximation scheme for
queries over incomplete data, and show that it lets us pro-
duce nontrivial approximations of query answering in CWA
data exchange, complete or exact data integration, and CQA
scenarios (these are exactly the scenarios from Section 4
where the CWA semantics of incompleteness was used).

As a concrete approximation scheme, we use one from
(Guagliardo and Libkin 2016). It takes a first-order query Q
and translates it into another first-order query Q+ with the
following properties:

1. Q+(D) ⊆ �⊥(Q,D) for every database D, and thus
Q+(D) is a correct answer on JDKCWA;

2. Q+(D) = Q(D) if D is complete (i.e., it does not miss
any answers in the case there are no nulls in the database);
and

3. if Q is expressed in relational algebra (as, e.g., the query
in the introduction), then Q+ is linear in the size of Q.

This, together with the results of the previous section, im-
plies that if, in an application scenario A, an instance D′ is
a cover, under J·KCWA, for a source databaseD, thenQ+(D′)
is a correct answer to Q over A(D).

We now illustrate how this approximation scheme will
work for Example 1.

Example 2. We first formalize the setting of Example 1
as an application scenario. Let AM,CWA be 〈Rs, Rt, L·MCWA

Σ 〉
with Rs, Rt and Σ as in Example 1. The canonical so-
lution CanSolM(D) is shown in Figure 1. From Theo-
rem 1, we know that every correct answer to Q over
JCanSolM(D)KCWA is also a correct answer to Q over
AM,CWA(D). Using the transformation of (Guagliardo and

Libkin 2016) on Q, we obtain Q+, again expressed in rela-
tional algebra:

πoid(O− (Onunif πoid,cid,total(O ./oid=poid P))
∪ πoid(σpdate≥$today∧const(pdate)(O ./oid=poid P))

Here nunif is the left unification semijoin, i.e.,

Rnunif S = {r̄ ∈ R | ∃s̄ ∈ S : unif(r̄, s̄)}.

The condition unif(r̄, s̄) says that r̄ and s̄ are unifiable, i.e.,
h(r̄) = h(s̄) for some homomorphism h. This is checkable
in linear time (Paterson and Wegman 1978).

Recall that Q(CanSolM(D)) was not a correct answer, as
it produced two false positives, 02 and 03. But when Q+

is evaluated over CanSolM(D), it produces a single correct
answer 01, eliminating false positives.

We know that in all the application scenarios where cov-
ers under the CWA semantics are constructed – closed-
world data exchange, exact and complete data integration,
CQA – the complexity of answering FO queries could be
CONP-complete (Arenas et al. 2014; Hernich, Libkin, and
Schweikardt 2011; Bertossi 2011). The complexity of evalu-
atingQ+ is polynomial (even logspace), as it is an FO query.
Thus, using Q+ over the cover in these scenarios does seem
to reduce the complexity of query answering from CONP to
tractable.

Nontrivial approximations There are several situations
when going through the procedure we described – that is,
constructing a cover and answering Q+ over it – produces
effectively a trivial approximation. For example, if Q+ re-
turns the empty set of tuples, it is hardly useful as an approx-
imation for a CONP-hard query answering problem. Also, if
D′ is a cover, and Q(D′) produces no false positives, then
one could argue that just running Q would already give use-
ful information and computing Q+ is an overkill. Also, if
Q(D′) is the empty set of tuples, there is no need to approx-
imate it using Q+.

Thus, to demonstrate real usefulness of approximations,
we need to show that they can be produced in cases where:
• evaluatingQ directly on the cover gives false positives, or

empty answers, and
• evaluating Q+ on the cover returns some tuples.

In what follows, we formalize this idea by introducing the
notion of an application scenario admitting a non-trivial ap-
proximation to a C-hard L-query answering problem, where
C is a complexity class and L is a query language. The def-
inition below essentially excludes the informally presented
cases when approximation is not useful.
Definition 4. An application scenario A admits a non-
trivial approximation to a C-hard L-query answering prob-
lem if there exists a family of source databases D =
{Di}i∈N and a query Q ∈ L such that:

a) the data complexity of computing �∩(Q,A, D) is C-hard
for instances D ∈ D;

b) for each i, the answer Q(Di) is not useful for query an-
swering inA; that is, either Q(Di) has false positives or
Q(Di) = ∅;

c) there exist a query Q′ that depends on Q and has poly-
nomial time data complexity, such that for each i there is
anA-coverD′i ofDi computable in polynomial time and
Q′(D′i) is not empty and provides a correct answer to Q
over A(Di).

We now show that this is indeed the case for the three
application scenarios mentioned above.

Theorem 2. Each of the following application scenariosA:

1. CWA data exchange,
2. complete or exact data integration,
3. CQA,

admits a non-trivial approximation to a CONP-hard FO-
query answering problem.

In all the three cases of Theorem 2, we find an FO query
Q for which the problem of computing query answers is
CONP-hard and the evaluation of Q over the cover produces
false positives, yet the evaluation of the approximation Q+

over the cover produces some tuples, all of which are correct
answers.

6 Approximations under Open World
As we have seen in the previous section, the complexity
of answering FO queries can already be CONP-complete
for the cases in which we build covers under the CWA se-
mantics. For the cases in which we build covers under the
OWA semantics – open world data exchange, sound data in-
tegration, OBDA – the situation is even worse. In fact, it is
well-known that computing certain answers to arbitrary FO
queries under OWA is undecidable, in both data complexity
and query complexity. That is (assuming for the simplicity
of notation thatQ is a Boolean FO query), checking whether
Q(JDKOWA) = {>} could be undecidable even for a fixed
FO query Q, and it likewise can be undecidable even for a
fixed database D. Here of course > stands for true.

Therefore, there is little hope of getting a good approx-
imation schema for the OWA semantics similar to the one
in (Guagliardo and Libkin 2016); in fact no such scheme is
known. One can then ask what are the advantages of build-
ing a cover under the OWA-semantics in the above mentioned
cases. Although the situation looks more daunting than in
the previous case, there are still some possibilities to exploit.
One way is to restrict to classes of queries for which comput-
ing certain answers to arbitrary FO queries under the OWA is
decidable, but still to classes that extend UCQs.

One option is to look at prefix-vocabulary classes, for
which the classical decision problem has been thoroughly
investigated (Börger, Grädel, and Gurevich 2001), and con-
centrate on decidable classes with the finite model property,
so that our results would be applicable in the finite case. The
most fitting such class is the ∃∗∀∗ prefix class, known as
the Bernays-Schönfinkel class. Its formulae are those whose
quantifier prefix consists of existential quantifiers, followed
by universal quantifiers, followed by a quantifier-free for-
mula. Formulae in this class have the finite model property,
and their satisfiability problem has NEXPTIME complexity,
or PSPACE complexity for a fixed relational vocabulary.

The idea of reducing certain answers to satisfiability is as
follows. Given an incomplete database D with k constants
and m nulls, we can write a formula φD with the existential
prefix ∃y1 . . . ∃yk∃x1 . . . ∃xm whose quantifier-free part has
the conjunction of all inequalities yi 6= yj for i 6= j and of
all the facts in D, with variables y1, . . . , yk used in place of
constants and x1, . . . , xm used in place of nulls. Then finite
models of this formula are precisely the databases isomor-
phic to databases in the OWA semantics of D.

Now given a Boolean query Q, consider β(Q,D) =
φD → Q. Then Q(JDKOWA) = {>} iff β(Q,D) is finitely
valid (since we only deal with finite validity and satisfi-
ability, we omit the word finite from now on). This hap-
pens iff ¬β(Q,D) is not satisfiable. Thus, to compute cer-
tain answers under OWA, we need to check satisfiability of
β(Q,D). Since φD is an existential formula, it follows that
if Q is in the ∀∗∃∗ class, then β(Q,D) is in the Bernays–
Schönfinkel class. This gives us the following.
Proposition 7. Let R be a relational schema, D an incom-
plete database and Q a boolean FO query over R which
belongs to the ∀∗∃∗ class. Then Q(JDKOWA) = {>} can be
checked in coNEXPTIME, or in PSPACE ifR is fixed.

There are several well known classes of queries which sat-
isfy conditions of Proposition 7:
• UCQs with inequalities, denoted by UCQ6=, are FO for-

mula of the form Q1 ∨ · · · ∨ Qn where each Qi is a
CQ extended with inequality atoms x 6= y (for example,
∃y, z P (x, y) ∧ P (y, z) ∧ y 6= z);

• Boolean combinations of conjunctive queries (BCCQs)
are obtained from CQs by closing them under union, in-
tersection and difference.

Corollary 6. For each of the following application scenar-
ios A: (i) OWA data exchange, (ii) sound data integration,
(iii) OBDA, given a BCCQs or a UCQ 6=query Q and an in-
stance D, if D′ is an A-cover D′ of D under J·KOWA, then
Q(JD′KOWA) is a correct answer to Q over A(D), com-
putable with coNEXPTIME combined and PSPACE data
complexity in the sizes of Q and D′.

The literature on application scenarios captured by OWA
covers uses almost entirely UCQs as queries to be answered,
with very few exceptions, e.g., (Arenas, Pérez, and Reutter
2013), that provide very mild extensions. Corollary 6 gives a
way of finding approximations to queries that extend UCQs
in more significant ways, allowing a fair amount of nega-
tion. We now investigate their complexity in more details
and show under which circumstances our approach gener-
ates nontrivial approximations of reasonable complexity.

Boolean Combinations of Conjunctive Queries For the
case of BCCQs, we show how to reduce the prohibitively
expensive combined complexity (coNEXPTIME, effectively
double-exponential) to single-exponential. More specifi-
cally, we show that, given an application scenario A and a
source instance D for which there exists an A-cover under
J·KOWA, the complexity of checking certainty of a BCCQ in
such a scenario drops to EXPTIME.
Theorem 3. LetA = 〈Rs, Rt, L·MΣ〉 be one of the following
application scenarios:

1. OWA data exchange,
2. sound data integration, or
3. OBDA.
LetD be a source instance, andQ a BCCQ. If there exists an
A-cover D′ of D under J·KOWA, then the problem of check-
ing whether Q(A(D)) = {>} is in EXPTIME in combined
complexity and PSPACE in data complexity.

This result is based on a lemma showing that, in each
such application scenarios, for two conjunctive queries Q1

and Q2, the problem of checking whether Q1 ⊆ Q2 on all
databases in A(D) is in EXPTIME. Checking certainty of a
BCCQ is then reduced to such containment checking.

UCQs with inequalities From Section 4, we know that
if A in an OWA application scenario as one of those listed
in Theorem 3, D an instance, D′ is an A-cover of D un-
der J·KOWA, and Q an arbitrary query, then every correct
answer to Q on D′ under OWA is a correct answer to Q
on A(D). In particular, if we have any table R such that
R � Q(JD′KOWA), then such R is a correct answer in the
application scenario.

We now show how to find such an R when Q is a UCQ6=
query. Of course Theorem 7 tells us that we can check
for satisfiability of ¬β(Q,D′), but this is rather expensive,
PSPACE in data complexity and coNEXPTIME in com-
bined complexity. Instead, we propose a different procedure
of much lower complexity.

LetQ be a UCQ 6= query over schemaR. We define a new
query Q6=, over R expanded with a unary predicate IsNull
interpreted as follows: IsNull(a) is true iff a ∈ N. This cor-
responds to the standard IS NULL statement found in query
languages such as SQL. Now Q6= is obtained by replacing
each atom x 6= y with

(x 6= y) ∧ ¬ IsNull(x) ∧ ¬ IsNull(y) .

Lemma 1. Let D be an incomplete database and Q a
UCQ6=. Then Q6=(D) � Q(JDKOWA), i.e., Q6=(D) is a cor-
rect answer to Q on D under OWA.

Combined with previous results, this gives us an approach
for approximating unions of conjunctive queries with nega-
tion in application scenarios.
Theorem 4. LetA = 〈Rs, Rt, L·MΣ〉 be one of the following
application scenarios A:

1. OWA data exchange,
2. sound data integration,
3. OBDA.
LetD be a source instance,Q a UCQ6= query, andD′ anA-
cover of D under L·MOWA. Then Q6=(D′) is a correct answer
to Q on A(D).

To make this result applicable in OWA data exchange, and
OBDA, we need to find suitable covers (it can be used in data
integration as well, but we omit additional technical details
due to space limitations). For these scenarios, as discussed
in Section 4, results of terminating chase sequences can be
used as covers. However, quite often, a terminating chase is
hard to achieve without strong restrictions. But in our case

there is a way around it: one can chase for a finite number
of steps, and the result is still a cover under our definition.
Such a cover of course would only be useful if running Q6=
over it produces some tuples (which are then guaranteed to
be correct answers). We now show that this can happen, and
chasing for a finite number of steps could be useful for an-
swering UCQ6= queries, if chase does not terminate.
Lemma 2. Consider OWA data exchange and OBDA appli-
cation scenarios and a source instance D. Then, for every
k > 0, chasing D0 with constraints in C is a cover, where:
• for data exchange, D0 = D and C = Σ;
• for OBDA, D0 is the result of applying the GAV mapping

M to D, and C = T.
The above result is useful towards the goal of approxi-

mating UCQ 6=. We recall that the complexity of handling
query answering with inequalities for the application sce-
narios of interest for this section ranges from CONP to unde-
cidable, depending on the constraint language used (Rosati
2007; Gutiérrez-Basulto et al. 2015; Abiteboul and Duschka
1998). Building on these results, and mirroring what we did
in Section 5, we conclude this section by showing the appli-
cation scenarios discussed in this section admit a non-trivial
approximations (using Definition 4 for the concept of non-
trivial approximations).
Theorem 5. Both OWA data exchange and OBDA applica-
tion scenarios admit non-trivial approximations to a CONP-
hard UCQ6=-query answering problem.

Specifically, we show how to find, for each scenario A,
source instances D and a UCQ6= query Q so that finding
certain answer to Q over A(D) is CONP-hard. Then, using
Lemma 2, we construct in polynomial time the new instance
D0. Running Q6= on D0 results in the empty table and thus
is not useful. However, we can chase D0 for just three steps
in order to get a new instance D3 such that Q6=(D3) is not
empty – and thus returns tuples which are correct answers.

7 Conclusions
We proposed a framework aimed at generalizing multiple
scenarios in which one or more source databases are en-
hanced with an additional layer of knowledge that is taken
into account for query answering. We showed how query an-
swering can be approximated via producing query answers
over incomplete database instances. When such approxima-
tions work under closed-world assumption, we obtain effi-
cient approximations of CONP-hard query answering prob-
lems. Under OWA, we can still go beyond UCQs, although
not as far as in the case of CWA.

Thus, as the main future direction, we aim at extending
the classes of queries that this approach can capture via the
OWA semantics of incompleteness. We would like to devise
new approximation schemes that capture larger classes of
FO than extensions of UCQs with inequalities and Boolean
combinations.

Acknowledgments We thank referees for their helpful
comments. Work supported by EPSRC grants M025268 and
N023056.

References
Abiteboul, S., and Duschka, O. M. 1998. Complexity of
answering queries using materialized views. In Proceedings
of the 17th ACM Symposium on Principles of Database Sys-
tems, 254–263.
Abiteboul, S.; Hull, R.; and Vianu, V. 1995. Foundations of
Databases. Addison-Wesley.
Abiteboul, S.; Kanellakis, P.; and Grahne, G. 1991. On
the representation and querying of sets of possible worlds.
Theoretical Computer Science 78(1):158–187.
Arenas, M.; Barceló, P.; and Reutter, J. L. 2011. Query
languages for data exchange: Beyond unions of conjunctive
queries. Theory Comput. Syst. 49(2):489–564.
Arenas, M.; Bertossi, L. E.; and Chomicki, J. 1999. Con-
sistent query answers in inconsistent databases. In PODS,
68–79.
Arenas, M.; Barceló, P.; Libkin, L.; and Murlak, F. 2014.
Foundations of Data Exchange. Cambridge University
Press.
Arenas, M.; Pérez, J.; and Reutter, J. L. 2013. Data exchange
beyond complete data. Journal of the ACM 60(4).
Baader, F.; Brandt, S.; and Lutz, C. 2005. Pushing the EL
envelope. In IJCAI, 364–369.
Baget, J.; Leclère, M.; Mugnier, M.; and Salvat, E. 2011.
On rules with existential variables: Walking the decidability
line. Artif. Intell. 175(9-10):1620–1654.
Bertossi, L. 2011. Database Repairing and Consistent
Query Answering. Morgan&Claypool Publishers.
Bienvenu, M., and Ortiz, M. 2015. Ontology-mediated
query answering with data-tractable description logics. In
Reasoning Web, 218–307.
Börger, E.; Grädel, E.; and Gurevich, Y. 2001. The classical
decision problem. Springer Science & Business Media.
Calautti, M.; Gottlob, G.; and Pieris, A. 2015. Chase termi-
nation for guarded existential rules. In PODS, 91–103.
Calı̀, A.; Gottlob, G.; and Lukasiewicz, T. 2012. A general
datalog-based framework for tractable query answering over
ontologies. J. Web Sem. 14:57–83.
Calı̀, A.; Gottlob, G.; and Pieris, A. 2012. Towards more ex-
pressive ontology languages: The query answering problem.
Artif. Intell. 193:87–128.
Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini, M.;
and Rosati, R. 2007. Tractable reasoning and efficient query
answering in description logics: The DL-Lite family. J. Au-
tom. Reasoning 39(3):385–429.
Civili, C., and Rosati, R. 2012. A broad class of first-order
rewritable tuple-generating dependencies. In Datalog 2.0,
68–80.
Compton, K. 1983. Some useful preservation theorems.
Journal of Symbolic Logic 48(2):427–440.
Fagin, R.; Kolaitis, P. G.; Miller, R. J.; and Popa, L. 2005.
Data exchange: semantics and query answering. Theor.
Comput. Sci. 336(1):89–124.

Gheerbrant, A.; Libkin, L.; and Sirangelo, C. 2014. Naı̈ve
evaluation of queries over incomplete databases. ACM
Trans. Database Syst. 39(4):31:1–31:42.
Greco, S.; Molinaro, C.; and Spezzano, F. 2012. Incom-
plete Data and Data Dependencies in Relational Databases.
Morgan & Claypool Publishers.
Greco, S.; Molinaro, C.; and Trubitsyna, I. 2017. Computing
approximate certain answers over incomplete databases. In
AMW.
Guagliardo, P., and Libkin, L. 2016. Making SQL queries
correct on incomplete databases: A feasibility study. In
PODS, 211–223.
Gutiérrez-Basulto, V.; Ibáñez-Garcı́a, Y. A.; Kontchakov, R.;
and Kostylev, E. V. 2015. Queries with negation and in-
equalities over lightweight ontologies. J. Web Sem. 35:184–
202.
Hernich, A.; Libkin, L.; and Schweikardt, N. 2011. Closed
world data exchange. ACM Trans. Database Syst. 36(2):14.
Imielinski, T., and Lipski, W. 1984. Incomplete information
in relational databases. Journal of the ACM 31(4):761–791.
Lenzerini, M. 2002. Data integration: A theoretical perspec-
tive. In PODS, 233–246.
Libkin, L. 2016. Certain answers as objects and knowledge.
Artif. Intell. 232:1–19.
Lipski, W. 1984. On relational algebra with marked nulls.
In PODS, 201–203.
Lutz, C.; Toman, D.; and Wolter, F. 2009. Conjunctive
query answering in the description logic EL using a rela-
tional database system. In IJCAI, 2070–2075.
Paterson, M., and Wegman, M. N. 1978. Linear unification.
J. Comput. Syst. Sci. 16(2):158–167.
Poggi, A.; Lembo, D.; Calvanese, D.; De Giacomo, G.;
Lenzerini, M.; and Rosati, R. 2008. Linking data to on-
tologies. J. Data Semantics 10:133–173.
Reiter, R. 1977. On closed world data bases. In Logic and
Data Bases, 55–76.
Rosati, R. 2007. The limits of querying ontologies. In ICDT:
International Conference on Database Theory, 164–178.

