2,325 research outputs found

    The Fog Makes Sense: Enabling Social Sensing Services With Limited Internet Connectivity

    Full text link
    Social sensing services use humans as sensor carriers, sensor operators and sensors themselves in order to provide situation-awareness to applications. This promises to provide a multitude of benefits to the users, for example in the management of natural disasters or in community empowerment. However, current social sensing services depend on Internet connectivity since the services are deployed on central Cloud platforms. In many circumstances, Internet connectivity is constrained, for instance when a natural disaster causes Internet outages or when people do not have Internet access due to economical reasons. In this paper, we propose the emerging Fog Computing infrastructure to become a key-enabler of social sensing services in situations of constrained Internet connectivity. To this end, we develop a generic architecture and API of Fog-enabled social sensing services. We exemplify the usage of the proposed social sensing architecture on a number of concrete use cases from two different scenarios.Comment: Ruben Mayer, Harshit Gupta, Enrique Saurez, and Umakishore Ramachandran. 2017. The Fog Makes Sense: Enabling Social Sensing Services With Limited Internet Connectivity. In Proceedings of The 2nd International Workshop on Social Sensing, Pittsburgh, PA, USA, April 21 2017 (SocialSens'17), 6 page

    Information-based complexity, feedback and dynamics in convex programming

    Get PDF
    We study the intrinsic limitations of sequential convex optimization through the lens of feedback information theory. In the oracle model of optimization, an algorithm queries an {\em oracle} for noisy information about the unknown objective function, and the goal is to (approximately) minimize every function in a given class using as few queries as possible. We show that, in order for a function to be optimized, the algorithm must be able to accumulate enough information about the objective. This, in turn, puts limits on the speed of optimization under specific assumptions on the oracle and the type of feedback. Our techniques are akin to the ones used in statistical literature to obtain minimax lower bounds on the risks of estimation procedures; the notable difference is that, unlike in the case of i.i.d. data, a sequential optimization algorithm can gather observations in a {\em controlled} manner, so that the amount of information at each step is allowed to change in time. In particular, we show that optimization algorithms often obey the law of diminishing returns: the signal-to-noise ratio drops as the optimization algorithm approaches the optimum. To underscore the generality of the tools, we use our approach to derive fundamental lower bounds for a certain active learning problem. Overall, the present work connects the intuitive notions of information in optimization, experimental design, estimation, and active learning to the quantitative notion of Shannon information.Comment: final version; to appear in IEEE Transactions on Information Theor

    Efficient Data Streaming Analytic Designs for Parallel and Distributed Processing

    Get PDF
    Today, ubiquitously sensing technologies enable inter-connection of physical\ua0objects, as part of Internet of Things (IoT), and provide massive amounts of\ua0data streams. In such scenarios, the demand for timely analysis has resulted in\ua0a shift of data processing paradigms towards continuous, parallel, and multitier\ua0computing. However, these paradigms are followed by several challenges\ua0especially regarding analysis speed, precision, costs, and deterministic execution.\ua0This thesis studies a number of such challenges to enable efficient continuous\ua0processing of streams of data in a decentralized and timely manner.In the first part of the thesis, we investigate techniques aiming at speeding\ua0up the processing without a loss in precision. The focus is on continuous\ua0machine learning/data mining types of problems, appearing commonly in IoT\ua0applications, and in particular continuous clustering and monitoring, for which\ua0we present novel algorithms; (i) Lisco, a sequential algorithm to cluster data\ua0points collected by LiDAR (a distance sensor that creates a 3D mapping of the\ua0environment), (ii) p-Lisco, the parallel version of Lisco to enhance pipeline- and\ua0data-parallelism of the latter, (iii) pi-Lisco, the parallel and incremental version\ua0to reuse the information and prevent redundant computations, (iv) g-Lisco, a\ua0generalized version of Lisco to cluster any data with spatio-temporal locality\ua0by leveraging the implicit ordering of the data, and (v) Amble, a continuous\ua0monitoring solution in an industrial process.In the second part, we investigate techniques to reduce the analysis costs\ua0in addition to speeding up the processing while also supporting deterministic\ua0execution. The focus is on problems associated with availability and utilization\ua0of computing resources, namely reducing the volumes of data, involving\ua0concurrent computing elements, and adjusting the level of concurrency. For\ua0that, we propose three frameworks; (i) DRIVEN, a framework to continuously\ua0compress the data and enable efficient transmission of the compact data in the\ua0processing pipeline, (ii) STRATUM, a framework to continuously pre-process\ua0the data before transferring the later to upper tiers for further processing, and\ua0(iii) STRETCH, a framework to enable instantaneous elastic reconfigurations\ua0to adjust intra-node resources at runtime while ensuring determinism.The algorithms and frameworks presented in this thesis contribute to an\ua0efficient processing of data streams in an online manner while utilizing available\ua0resources. Using extensive evaluations, we show the efficiency and achievements\ua0of the proposed techniques for IoT representative applications that involve a\ua0wide spectrum of platforms, and illustrate that the performance of our work\ua0exceeds that of state-of-the-art techniques

    Low-latency, query-driven analytics over voluminous multidimensional, spatiotemporal datasets

    Get PDF
    2017 Summer.Includes bibliographical references.Ubiquitous data collection from sources such as remote sensing equipment, networked observational devices, location-based services, and sales tracking has led to the accumulation of voluminous datasets; IDC projects that by 2020 we will generate 40 zettabytes of data per year, while Gartner and ABI estimate 20-35 billion new devices will be connected to the Internet in the same time frame. The storage and processing requirements of these datasets far exceed the capabilities of modern computing hardware, which has led to the development of distributed storage frameworks that can scale out by assimilating more computing resources as necessary. While challenging in its own right, storing and managing voluminous datasets is only the precursor to a broader field of study: extracting knowledge, insights, and relationships from the underlying datasets. The basic building block of this knowledge discovery process is analytic queries, encompassing both query instrumentation and evaluation. This dissertation is centered around query-driven exploratory and predictive analytics over voluminous, multidimensional datasets. Both of these types of analysis represent a higher-level abstraction over classical query models; rather than indexing every discrete value for subsequent retrieval, our framework autonomously learns the relationships and interactions between dimensions in the dataset (including time series and geospatial aspects), and makes the information readily available to users. This functionality includes statistical synopses, correlation analysis, hypothesis testing, probabilistic structures, and predictive models that not only enable the discovery of nuanced relationships between dimensions, but also allow future events and trends to be predicted. This requires specialized data structures and partitioning algorithms, along with adaptive reductions in the search space and management of the inherent trade-off between timeliness and accuracy. The algorithms presented in this dissertation were evaluated empirically on real-world geospatial time-series datasets in a production environment, and are broadly applicable across other storage frameworks

    Spatial Data Quality in the IoT Era:Management and Exploitation

    Get PDF
    Within the rapidly expanding Internet of Things (IoT), growing amounts of spatially referenced data are being generated. Due to the dynamic, decentralized, and heterogeneous nature of the IoT, spatial IoT data (SID) quality has attracted considerable attention in academia and industry. How to invent and use technologies for managing spatial data quality and exploiting low-quality spatial data are key challenges in the IoT. In this tutorial, we highlight the SID consumption requirements in applications and offer an overview of spatial data quality in the IoT setting. In addition, we review pertinent technologies for quality management and low-quality data exploitation, and we identify trends and future directions for quality-aware SID management and utilization. The tutorial aims to not only help researchers and practitioners to better comprehend SID quality challenges and solutions, but also offer insights that may enable innovative research and applications

    Data semantic enrichment for complex event processing over IoT Data Streams

    Get PDF
    This thesis generalizes techniques for processing IoT data streams, semantically enrich data with contextual information, as well as complex event processing in IoT applications. A case study for ECG anomaly detection and signal classification was conducted to validate the knowledge foundation
    • …
    corecore