17 research outputs found

    Some Results on the Identification and Estimation of Vector ARMAX Processes

    Get PDF
    This paper addresses the problem of identifying echelon canonical forms for a vector autoregressive moving average model with exogenous variables using finite algorithms. For given values of the Kronecker indices a method for estimating the structural parameters of a model using ordinary least squares calculations is presented. These procedures give rise, rather naturally, to a technique for the determination of the structural indices based on the use of conventional model selection criteria. A detailed analysis of the statistical properties of the estimation and identification procedures is given and some evidence on the practical significance of the results obtained is also provided. Modifications designed to improve the performance of the methods are presented. Some discussion of the practical significance of the results obtained is also provided.ARMAX model, consistency, echelon canonical form, efficiency, estimation, identification, Kronecker invariants, least squares, selection criterion, structure determination, subspace algorithm.

    Consistency and asymptotic normality of some subspace algorithms for systems without observed inputs

    No full text
    Bauer D, Deistler M, Scherrer W. Consistency and asymptotic normality of some subspace algorithms for systems without observed inputs. Automatica. 1999;35(7):1243-1254

    The Performance of Subspace Algorithm Cointegration Analysis: A Simulation Study

    Get PDF
    This paper presents a simulation study that assesses the finite sample performance of the subspace algorithm cointegration analysis developed in Bauer und Wagner (2002b). The method is formulated in the state space framework, which is equivalent to the VARMA framework, in a sense made precise in the paper. This implies applicability to VARMA processes. The paper proposes and compares six different tests for the cointegrating rank. The simulations investigate four issues: the order estimation, the size performance of the proposed tests, the accuracy of the estimation of the cointegrating space and the forecasting performance. of the state space models estimated by the proposed method. The simulations are performed on a set of trivariate processes with cointegrating ranks ranging from zero to three as well as on processes of output dimension four and cointegrating rank two. We analyze the influence of the sample size on the results as well as the sensitivity of the results with respect to stable poles approaching the unit circle. All results are compared to benchmark results obtained by applying the Johansen procedure on VAR models fitted to the data. The simulations show advantages of subspace algorithm cointegration analysis for the small sample performance of the tests for the cointegrating rank in many cases. However, we find that the accuracy of the subspace algorithm based estimation of the cointegrating space is unsatisfactory for the four-dimensional simulated systems. The forecasting performance is grosso modo comparable to the results obtained by applying the Johansen methodology on VAR approximations, although for very small sample sizes the forecasts based on VAR approximations outperform the subspace forecasts. The appendix provides critical values for the test statisticsState space representation; cointegration; subspace algorithms; simulation study

    Using Subspace Methods for Estimating ARMA Models for Multivariate Time Series with Conditionally Heteroskedastic Innovations

    Get PDF
    This paper deals with the estimation of linear dynamic models of the ARMA type for the conditional mean for time series with conditionally heteroskedastic innovation process widely used in modelling financial time series. Estimation is performed using subspace methods which are known to have computational advantages as compared to prediction error methods based on criterion minimization. These advantages are especially strong for high dimensional time series. The subspace methods are shown to provide consistent estimators. Moreover asymptotic equivalence to prediction error estimators in terms of the asymptotic variance is proved. Also order estimation techniques are proposed and analyzed. The estimators are not efficient as they do not model the conditional variance. Nevertheless, they can be used to obtain consistent estimators of the innovations. In a second step these estimated residuals can be used in order to levitate the problem of specifying the variance model in particular in the multi-output case. This is demonstrated in an ARCH setting, where it is proved that the estimated innovations can be used in place of the true innovations for testing in a linear least squares context in order to specify the structure of the ARCH model without changing the asymptotic distribution.Multivariate models, conditional heteroskedasticity, ARMA systems, subspace methods

    Застосування зваженого методу найменших квадратів для оцінювання параметрів математичних моделей коливань ротора

    Get PDF
    Перманентне підвищення робочих параметрів роторних машин пов’язане із сучасними викликами щодо інтенсифікації робочих процесів у машинах і апаратах. При цьому актуальною постає проблема забезпечення вібраційної надійності роторних машин як одних з найбільш уживаних у сучасному високотехнологічному виробництві. При цьому коливання роторів є однією з основних проблем динаміки роторних машин. Застосування достовірних математичних моделей вільних і вимушених коливань дозволяє ефективно контролювати та прогнозувати вібраційні характеристики ротора. Основні завдання дослідження полягають у визначенні вхідних даних та параметрів математичної моделі, розроблені процедури оцінювання параметрів моделі з використанням зваженого методу найменших квадратів та аналізі результатів оцінювання порівняно з традиційним методом найменших квадратів

    Using Subspace Methods for Estimating ARMA Models for Multivariate Time Series with Conditionally Heteroskedastic Innovations

    Get PDF
    This paper deals with the estimation of linear dynamic models of the ARMA type for the conditional mean for time series with conditionally heteroskedastic innovation process widely used in modelling financial time series. Estimation is performed using subspace methods which are known to have computational advantages as compared to prediction error methods based on criterion minimization. These advantages are especially strong for high dimensional time series. The subspace methods are shown to provide consistent estimators. Moreover asymptotic equivalence to prediction error estimators in terms of the asymptotic variance is proved. Also order estimation techniques are proposed and analyzed. The estimators are not efficient as they do not model the conditional variance. Nevertheless, they can be used to obtain consistent estimators of the innovations. In a second step these estimated residuals can be used in order to levitate the problem of specifying the variance model in particular in the multi-output case. This is demonstrated in an ARCH setting, where it is proved that the estimated innovations can be used in place of the true innovations for testing in a linear least squares context in order to specify the structure of the ARCH model without changing the asymptotic distribution

    Some results on the identification and estimation of vector ARMAX processes

    Get PDF
    This paper addresses the problem of identifying echelon canonical forms for a vector autoregressive moving average model with exogenous variables using finite algorithms. For given values of the Kronecker indices a method for estimating the structural parameters of a model using ordinary least squares calculations is presented. These procedures give rise, rather naturally, to a technique for the determination of the structural indices based on the use of conventional model selection criteria. A detailed analysis of the statistical properties of the estimation and identification procedures is given and some evidence on the practical significance of the results obtained is also provided. Modifications designed to improve the performance of the methods are presented. Some discussion of the practical significance of the results obtained is also provided
    corecore