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Abstract

This paper deals with the estimation of linear dynamic models of the ARMA type for
the conditional mean for time series with conditionally heteroskedastic innovation process
widely used in modelling financial time series. Estimation is performed using subspace
methods which are known to have computational advantages as compared to prediction
error methods based on criterion minimization. These advantages are especially strong
for high dimensional time series. The subspace methods are shown to provide consistent
estimators. Moreover asymptotic equivalence to prediction error estimators in terms of
the asymptotic variance is proved. Also order estimation techniques are proposed and
analyzed. The estimators are not efficient as they do not model the conditional variance.
Nevertheless, they can be used to obtain consistent estimators of the innovations. In
a second step these estimated residuals can be used in order to levitate the problem of
specifying the variance model in particular in the multi-output case. This is demonstrated
in an ARCH setting, where it is proved that the estimated innovations can be used in
place of the true innovations for testing in a linear least squares context in order to specify
the structure of the ARCH model without changing the asymptotic distribution.
JEL Classification: C13, C32
Keywords: multivariate models, conditional heteroskedasticity, ARMA systems, subspace
methods
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1 Introduction

In financial econometrics it is common practice to use ARMA models for modelling the
conditional mean in combination with GARCH type assumptions to allow for conditional
heteroskedasticity (see e.g. the references in Gourieroux, 1997). This is in particular so for
high frequency data, where significant autocorrelations in the return series have been observed
(see e.g. Baillie and Bollerslev, 1990, and the references contained therein). Most of the stud-
ies focus on univariate time series, which is surprising since one of the main applications of
models for financial time series lies in aiding the portfolio selection process which unavoid-
ably deals with multivariate time series. Hence techniques for the modeling and estimation
of the returns and the variability of several stocks jointly seem to be a relevant issue. While
for the return series predominantly ARMA type of models are applied, the models for the
conditional variances are legion. This is especially true for multivariate data sets. One of
the main reasons for this seems to be the fact that a naive extension of the models for the
conditional variance from the univariate case to the multivariate case includes (beside other
problems related to the positiveness of the conditional variance) too many parameters for
estimation purposes even for large data sets. Assuming the output to be s dimensional the
number of parameters for an ARMA model for the vector of returns is linear in s (i.e. for fixed
model order, say McMillan degree n). However even a simple (unrestricted) ARCH(1) model
for the conditional variance contains more than s4/4 parameters. Beside other problems
with multivariate variance models this seems to be the reason for the growing amount of pro-
posed restricted models (see Gourieroux, 1997, Chapter 6 for a somewhat outdated overview).
Estimation of the models is usually performed using a three step procedure (see e.g. Gourieroux,
1997, Section 4.2.):

1. Estimate an initial model for the return of the series neglecting the heteroskedasticity.
This also leads to estimates of the innovations.

2. Specify and estimate a model for the conditional variances based on a transformation
of the estimated innovations (usually either squared innovations or logarithm thereof).

3. Re-estimate the full model including the model for the return and the model for the
variance using quasi maximum likelihood based on an assumed distribution (usually
Gaussian or student-t) of the standardized innovations.

Such a procedure for the univariate case is discussed in detail in Mills (1994, chapter 4). The
third step is often referred to as the BHHH procedure (Berndt et al., 1974). The asymptotic
properties, i.e. consistency and asymptotic normality, of the pseudo ML estimates for the
parameter of the model for the conditional mean disregarding the conditional heteroskedas-
ticity are derived in (Hannan and Deistler, 1988, Theorem 4.3.1) under the assumptions of
this paper presented below. In the univariate case consistency and asymptotic normality of
the pseudo ML estimates under ARCH errors of the full parameter vector including param-
eters for the variance model has been derived by Weiss (1986). Jeantheau (1998) proved
consistency for the full parameter vector for pseudo ML estimators for multivariate ARCH
processes 1. Asymptotic normality results for the full parameter vector under restricted as-
sumptions on the model for the return appear to be included in (Boussama, 1998). For BEKK

1In fact Jeantheau (1998) contains a more general result dealing with linear filters subject to certain
boundedness restrictions both for the model of the conditional mean and the conditional variance.
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type of models where the innovations are assumed to be known Comte and Lieberman (2003)
prove consistency and asymptotic normality of the pseudo ML estimator of the model for the
conditional variance. Ling and McAleer (2003) deal with ARMA-GARCH systems, where
the GARCH model is restricted such that conditional correlations are constant over time.
They provide consistency and asymptotic normality of the pseudo ML estimators for the full
parameter vector including both the model for the conditional mean and the conditional vari-
ance.
This paper deals with numerically fast methods for the first step in the above outline. Sub-
space methods seem to be of interest here, since in the framework considered in this paper
they are much faster than traditional prediction error methods based on minimizing the sum
of squared innovation estimates (see section 5 for simulations in this respect). This is espe-
cially true for high dimensional data sets with, say, tens of outputs. As will be shown in the
main part of this paper one does not pay a price in terms of asymptotic accuracy for the
numerical advantages.
Subspace methods appeared in the engineering community in the early eighties by the pro-
posal2 of CCA in (Larimore, 1983) and became popular in the nineties (Van Overschee and
DeMoor, 1994; Verhaegen, 1994). They have been extended to a large number of different
model classes (see e.g. Bauer, 2003, for a recent survey). The asymptotic properties for the
particular method used in this paper have been analyzed thoroughly in the stationary condi-
tionally homoskedastic case (see again Bauer, 2003, for a survey). The bottom line of these
results is that in the case of known order of the true system generating the data the estimates
obtained by using CCA are consistent, asymptotically normal and asymptotically equivalent
to estimates obtained by minimizing the one step ahead prediction error in the sense that the
asymptotic distributions coincide (see section 2 for precise statements).
The aim of this paper is twofold: Firstly as noted above the asymptotic properties for sub-
space methods have been derived for the conditionally homoskedastic case and showed some
analogy to the prediction error methods. Since the asymptotic theory for prediction error
estimators has been developed also in the conditionally heteroskedastic case an analogous
extension for subspace algorithms seems to be interesting. Secondly and more importantly
subspace algorithms do not suffer from numerical problems involved in estimating models
using pseudo likelihood maximization or prediction error minimization for time series with
many outputs and/or large data sets. The arguably most interesting data sets in financial
time series contain a large portfolio of stocks combined with high frequency of measurements
(typically five minute returns are used). This paper tries to elucidate the potential of sub-
space methods for the analysis of such data sets.
The paper is organized as follows: In the next section the model set and the assumptions are
discussed. Section 3 presents the CCA subspace method. Section 4 presents the main results of
this paper, which are proved in the appendix. Section 5 presents a simulation study. Finally
section 6 presents the conclusions of the paper.
Throughout the paper we will use the notation FT = o(gT ) for random matrix sequences FT

and scalar sequences gT meaning that maxi,j |FT,i,j/gT | → 0 a.s. Here FT,i,j denotes the (i, j)
entry of the matrix FT . Further FT = O(gT ) means that there exists a constant C < ∞ such
that lim supT→∞maxi,j |FT,i,j/gT | ≤ C a.s. Let oP (gT ) and OP (gT ) denote the corresponding
in probability versions. Note that these concepts differ from the usual definition in situations
where the dimension of the matrix FT depends on T . We assume uniform boundedness of the

2Originally the algorithm has been proposed under the name CVA.
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entries rather than boundedness of the norm of the matrix. λmax(A) denotes an eigenvalue of
maximum modulus of the matrix A. The Kronecker product is denoted by ⊗. The Euclidean
norm of a matrix or a vector will be denoted by ‖.‖.

2 Model set and assumptions

In this paper we consider processes (yt)t∈Z generated by a linear, time invariant, finite dimen-
sional, discrete time, state space system of the form

xt+1 = Axt + Kεt

yt = Cxt + εt + dt
(1)

for t ∈ Z where yt ∈ Rs denotes the s-dimensional observed output, (xt)t∈Z the unobserved
n-dimensional state process and (εt)t∈Z the s-dimensional innovation sequence. The assump-
tions on (dt)t∈Z will vary in the theorems to follow. Throughout we require dt = DTt for
some observed strictly stationary process (Tt)t∈Z having finite fourth moments. Further-
more it is assumed that (Tt)t∈Z and (εt)t∈Z are independent. These assumptions include
e.g. the constant or cyclical components as well as certain dummy variables (with ran-
dom timing). Note, however, that e.g. linear time trends (i.e. Tt = a + bt) are excluded.
A ∈ Rn×n,K ∈ Rn×s, C ∈ Rs×n are real matrices. Throughout the paper it is assumed that
the system is stable, i.e. all the eigenvalues of A are assumed to lie within the open unit disc,
and strictly minimum-phase, i.e. all the eigenvalues of A − KC are assumed to lie within
the unit circle. Under these assumptions stationary innovation sequences generate stationary
output processes (yt)t∈Z.
It is well known (cf. e.g. Hannan and Deistler, 1988, Chapter 1) that in the given context
state space models and ARMA models are just two representations of the same mathematical
object, namely the transfer function: It is easy to verify (using the assumptions on the noise
sequence (εt)t∈Z given below) that the stationary solution to the difference equation given
above is of the form

yt = εt +
∞∑

j=1

K(j)εt−j + dt,

where K(j) = CAj−1K, j > 0 and the infinite sum corresponds to a.s. convergence. The
transfer function k(z) describing the input/output mapping, where z as usual denotes the
backward shift operator, then is defined as k(z) = I +zC(I−zA)−1K = I +

∑∞
j=1 K(j)zj . In

the following we will provide a very brief discussion of the main concepts in the state space
framework that are needed for the estimation theory in this paper. The presentation of the
concepts is intended to serve as a reference list of technical terms in the state space framework
and is hence far from being self-contained. For a detailed discussion we refer the interested
reader to Chapters 1 and 2 of Hannan and Deistler (1988).
k(z) = I + zC(I − zA)−1K is a matrix valued function which is rational in z seen as a
complex variable. Therefore the transfer function has a representation as an ARMA sys-
tem according to a left matrix fraction representation k(z) = a−1(z)b(z), where a(z) =
I + a1z + . . . + apz

p, b(z) = I + b1z + . . . + bqz
q. Furthermore (yt − dt)t∈Z satisfies the corre-

sponding ARMA vector difference equations a(z)yt = b(z)εt. Conversely each ARMA process
has a representation as a solution to state space equations. See (Hannan and Deistler, 1988,
p. 15) for an explicit construction of a state space system based on the ARMA representation.
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In this sense ARMA representations and state space representations are equivalent. A more
detailed discussion on the relation between ARMA and state space systems can be found in
(Hannan and Deistler, 1988, section 1.2).
Let π denote the mapping attaching the transfer function k(z) = I + zC(I − zA)−1K to
the state space system (A,K, C). State space systems corresponding to a given transfer
function k(z) are not unique, i.e. the mapping π is not injective. There are two sources
of nonuniqueness: The choice of the state basis and non-minimality. A state space sys-
tem (A,K, C) is called minimal, if no other state space system (Ã, K̃, C̃) exists, such that
π(A,K, C) = π(Ã, K̃, C̃), where Ã ∈ Rñ×ñ, A ∈ Rn×n such that ñ < n. In other words
minimality refers to minimal state dimension. When modeling the transfer function k(z) it is
no restriction of generality to restrict attention to minimal systems which will be done hence-
forth. The set of transfer functions corresponding to minimal, stable, minimum-phase state
space systems with state dimension equal to n will be denoted as M(n). For k(z) ∈ M(n)
the integer n will be called the order of the system.
Two systems (A,K, C) and (Ã, K̃, C̃) are called observationally equivalent if π(A,K, C) =
π(Ã, K̃, C̃). The set of minimal observationally equivalent systems can be described using
the group of nonsingular matrices T ∈ Rn×n: Two minimal systems (A,K, C) and (Ã, K̃, C̃)
are observationally equivalent if and only if there exists a nonsingular transformation T of the
state basis such that A = TÃT−1,K = TK̃, C = C̃T−1 corresponding to xt = T x̃t. There-
fore minimality is not restrictive enough in order to uniquely specify one state space system
corresponding to a particular transfer function k(z). Such a one-to-one relation is usually
used in order to define a parameterization of subsets of M(n). In this paper we will use the
overlapping echelon forms presented in section 2.6 of Hannan and Deistler (1988) to define a
parameterization of M(n). Overlapping forms make it possible to parameterize continuously
generic (and hence not disjoint) pieces of M(n). In general overlapping forms are defined as
a collection of bijective mappings ϕi : Ti ⊂ R2ns → M(n; i), i ∈ I, where I is a finite index
set, such that each set M(n; i) is open and dense in M(n) and each k(z) ∈ M(n) lies in the
interior of some M(n; i). The mappings ϕi are continuous where the topology in M(n) is
the so called pointwise topology and Ti is equipped with the Euclidean topology. For details
on the structure of the various pieces M(n; i) of M(n) and the geometrical properties of the
decomposition see section 2.6 in Hannan and Deistler (1988). For this paper it is sufficient
to state that to each θ ∈ Ti the parameterization attaches a system (A(θ),K(θ), C(θ)) such
that k(z, θ) = π(A(θ),K(θ), C(θ)) ∈ M(n; i). Conversely for each k(z) ∈ M(n) there exists
for each index i such that k(z) ∈ M(n; i) a unique parameter vector θi = ϕ−1

i (k(z)) in the in-
terior of Ti. Furthermore the mapping ρi : θ 7→ (A(θ),K(θ), C(θ)) is differentiable for θ ∈ Ti.
Finally Ti is an open subset of R2ns.
Throughout this paper we will always use the following assumptions on the noise:

Assumption 1 The process (εt)t∈Z is assumed to be an ergodic, strictly stationary, martin-
gale difference sequence with respect to the sequence of increasing sigma fields Ft = σ{εt, εt−1, . . .}
having the following properties:

E{εt|Ft−1} = 0 , lim
k→∞

E{εtε
′
t|Ft−k} = Ω = Eεtε

′
t, a.s.

Eε4
t,j < ∞ , j = 1, . . . , s,

where εt,i denotes the i-th component of the vector εt.

These assumptions on the innovation sequence hold for a number of commonly used models.
Among these are:
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• univariate ARCH(p) processes (Engle, 1982): These processes are defined by the equa-
tions

εt = ηt

√
ht, ht = c +

p∑

j=1

ajε
2
t−j ,

where (ηt)t∈Z is i.i.d. standard normally distributed. It follows that ht = E{ε2
t | Ft−1}.

The solutions to these difference equations are stationary, if aj ≥ 0, c > 0,
∑p

j=1 aj < 1.
Bougerol and Picard (1992) show that in this situation the solutions process is also
ergodic. Defining the matrix ψ ∈ Rp×p whose (i, j) entry is equal to ψi,j = ai+j +
ai−j , i, j = 1, . . . , p, where aj = 0, j < 1 or j > p is used, it follows that the fourth
moment is finite, if 3(a1, . . . , ap)(I − ψ)−1(a1, . . . , ap)′ < 1 (cf. Gourieroux, 1997, Ex-
ercise 3.4). The derivation of this result depends on Gaussianity of ηt. The condition
limk→∞ E{ε2

t |Ft−k} = Eε2
t follows from the proof of ergodicity and strict stationarity

given in Bougerol and Picard (1992).

• univariate GARCH(p,q) processes (Bollerslev, 1986): Here

ht = c +
p∑

j=1

ajε
2
t−j +

q∑

j=1

bjht−j .

Again for εt = ηt

√
ht, where (ηt)t∈Z is i.i.d. standard normally distributed Bougerol

and Picard (1992) show that the generated process is strictly stationary and ergodic for
c > 0, aj ≥ 0, bj ≥ 0,

∑p
j=1 aj +

∑q
j=1 bj < 1. Conditions for the existence of a fourth

moment are derived in Ling and McAleer (2002) without the assumption of normality
of ηt. The condition on the conditional second moments again follows from Bougerol
and Picard (1992).

• E-GARCH processes (Nelson, 1991): Here

log ht = α +
∞∑

j=1

βjg(ηt−j), g(z) = θz + γ(|z| − E|z|),

and the normalized innovations (ηt)t∈Z are assumed to be i.i.d. distributed according to
a GED type of distribution with tail thickness parameter ν > 1 with mean zero and unit
variance. Also for the solution processes to these difference equations the assumptions 1
are fulfilled (cf. Nelson, 1991).

• BEKK-ARCH (Engle and Kroner, 1995): The process is defined as εt = H
1/2
t ηt, where

(ηt)t∈Z is i.i.d. distributed with zero mean, unit variance and everywhere positive con-
tinuous density.

Ht = H0 +
m∑

i=1

n∑

j=1

Aijεt−iε
′
t−iA

′
ij , H0 = H ′

0 > 0.

Here H
1/2
t refers to the Cholesky factor of Ht. The number of free parameters contained

in this model is equal to mns2 + s(s + 1)/2. Rahbek et al. (2003) present an analysis of
the stochastic properties of the solution processes based on Markov chain theory. Let

Φ =
[ ∑n

j=1 A1j ⊗A1j , . . . ,
∑n

j=1 Am−1j ⊗Am−1j ,
∑n

j=1 Amj ⊗Amj ,

Is(m−1) ⊗ Is(m−1), 0s2(m−1)×s2

]
∈ Rms2×ms2

.
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If |λmax(Φ)| < 1 then there exists a solution process (εt)t∈Z that is strictly stationary,
ergodic and has finite second moments. Furthermore the solution is even geometrically
ergodic and hence the conditional second moment tends to the unconditional for con-
ditioning horizon tending to infinity. Therefore assumption 1 holds for this class of
processes if the fourth moment is finite. If further m = n = 1 then |λmax(Φ)| < 1/

√
3

is a sufficient condition for the fourth moments to be finite. In the univariate case the
same condition as in the ARCH(1) model cited above is obtained.

Rahbek et al. (2003) also discuss a number of different model classes, which will not be
cited here. Interestingly enough in the list above multivariate ARCH is not included. In
the multivariate case the requirement of Ht to be a covariance matrix seems to complicate
the formulation of the model considerably. Note that in this paper we do not assume any
particular model structure for the conditional variance, but use the high level assumptions 1.
Another remark is in order: As a main application we referred to high frequency data sets.
It has been observed that in these data sets the volatility does not only show conditional het-
eroskedasticity in the form of dependence on the return history but also a cyclical component
related to the time of the day. This additional heteroskedasticity component is sometimes
modelled as a time dependent multiplicative constant contradicting the strict stationarity as-
sumption. However, if one collects in this situation all returns within a given day into a large
vector the corresponding time series remains in the scope of the present paper. Obviously
the time series using the high frequent time scale as increments and the time series using
one day as the time increment are in one-to-one correspondence and results derived in the
one framework typically can be translated to the other framework. In particular the sample
covariance sequence of the high frequency data is just a finite summation of the entries of the
daily sample covariance sequence. Therefore the results on estimation accuracy can easily be
transferred from the stationary daily framework to the nonstationary high frequency frame-
work.
The main problem dealt with in this paper is the estimation of the state space model for the
conditional mean based on observations y1, . . . , yT of the output.

3 Estimation methods

The traditional method of estimation is pseudo maximum likelihood 3 which is described
below. Prior to estimation of the model for the mean, deterministic terms will be dealt with
typically. These terms have been included as dt where dt = DTt for some matrix D and some
observed process Tt has been assumed. Let ŷt denote the residuals of a regression of yt onto
Tt and let

εt(θ) = ŷt −
t−1∑

j=1

C(θ)(A(θ)−K(θ)C(θ))j−1K(θ)ŷt−j

denote the one step ahead prediction error based on the assumption 4 x1 = 0 at the parameter
vector θ ∈ Ti. Assume that a constant conditional variance Ω = Ω(ω) is parameterized using
the parameter vector ω ∈ S ⊂ Rs(s+1)/2 and the true innovation εt = Ω1/2(ω0)ηt, where

3Also the name quasi maximum likelihood is sometimes used in the literature.
4(Hannan and Deistler, 1988) show that under the stability and strict minimum-phase assumption the

choice of the initial values is not essential for the asymptotic properties of the estimators.
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ηt is conditionally standard normally distributed. Then −2/T times the logarithm of the
likelihood is equal to

L(ŷt, θ, ω) = log det Ω(ω) +

(
1
T

T∑

t=1

εt(θ)′Ω(ω)−1εt(θ)

)
.

The pseudo ML estimator then is obtained as the minimizing argument of this function, i.e.

τ̃i = arg min
τ∈Ψi

L(ŷt, τ)

where τ = [θ′, ω′]′ ∈ Ψi ⊂ Ti × S. Note that here we use a specific piece M(n; i) of M(n)
corresponding to the index i for the optimization rather than optimizing over the full M(n).
The fact that M(n; i) is open and dense in M(n) justifies this choice assuming that i is
chosen such that the true transfer function k(z) is contained in the interior of M(n; i) which
will implicitely always be assumed. Then it follows from the consistency results in section 4.2.
of Hannan and Deistler (1988) that it is no restriction of generality to assume that the pseudo
ML estimator also lies in M(n; i) for T large enough. Numerically the estimator is obtained by
using gradient search methods starting at an initial guess. Here the differentiability property
of the parameterization noted in section 2 is essential. In the (likely) case that (ηt)t∈Z is not
i.i.d. standard normally distributed or the model for the conditional variance is misspecified
the function L(ŷt, θ, ω) might still be a reasonable criterion function leading to estimators
having desirable asymptotic properties as documented by the results in Chapter 4 of Hannan
and Deistler (1988).
For τ ′ = [θ′, ω′] where θ parameterizes the model for the return and ω corresponds to a
parameterization for Ω and there are no restrictions on ω and no cross restrictions, i.e. Ψi =
Ti × S, then the criterion function can be concentrated with respect to ω leading to the
criterion function

L(ŷt, θ, ω̂) = log det

(
1
T

T∑

t=1

εt(θ)εt(θ)′
)

.

The minimizing parameter vector θ̂i is called the prediction error estimate 5. If the true
data generating process is in fact conditionally heteroskedastic, but the innovations fulfill
assumptions 1, then the theory of Hannan and Deistler (1988), Chapter 4, still applies and
the corresponding estimator θ̂i is consistent and asymptotically normal. For Gaussian ho-
moskedastic innovations the prediction error estimator attains the Cramer Rao lower bound
and hence is asymptotically efficient. For conditionally heteroskedastic innovations, however,
it loses the efficiency property.
Note that the treatment of the deterministic term DTt is nonstandard since it is not included
in the criterion function but rather assumed to be estimated prior to pseudo maximum likeli-
hood estimation of the parameter τ . This will not lead to identical estimates. It follows from
standard evaluations that in the case where each component Tt,i of Tt is a harmonic process
of the form

Tt,i = R(µt
iT

c
0,i)

for t ∈ Z for some µi ∈ C, |µi| = 1, T c
0,i ∈ C where R denotes the real part of the variable,

the asymptotic distribution of the estimates D̂ is not altered whether it is estimated using
5In the literature also estimators minimizing tr[Σ 1

T

PT
t=1 εt(θ)εt(θ)

′] are termed prediction error estimator.
We will not use this terminology.
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least squares fitting prior to pseudo likelihood minimization or the term DTt is included in
the likelihood. Furthermore if in that case θ̂ denotes the prediction error estimator based on
ŷt and θ̃ the (unfeasible) estimator based on yt −DTt then

√
T (θ̂ − θ̃) = oP (1).

Pseudo maximum likelihood estimation as presented above results in a nonlinear optimization
problem which in particular for high dimensional parameter sets is numerically problematic
(see e.g. the simulations in section 5). The search for numerically well behaved procedures
has been the motivation for the introduction of CCA in Larimore (1983). The CCA algorithm
uses the properties of the state in order to obtain estimates of the system matrices. In this
section we will not distinguish between yt, ỹt and ŷt notationally. For reasons of readability
we will only use yt under the implicit assumption that D = 0, whereas the estimation of
course can be performed on the basis of ŷt. The state is not observed directly. However, on
the basis of the system equations (1) the state can be reconstructed from the past of the time
series using the recursions defining the state:

xt = Axt−1 + Kεt−1 = Axt−1 + K(yt−1 − Cxt−1)
= (A−KC)xt−1 + Kyt−1 = (A−KC)2xt−2 + Kyt−1 + (A−KC)Kyt−2

= . . . = (A−KC)pxt−p +
p−1∑

j=0

(A−KC)jKyt−1−j =
∞∑

j=1

(A−KC)j−1Kyt−j

using the strict minimum-phase assumption implying (A−KC)p → 0 for p →∞. Again con-
vergence in the infinite sum is a.s. Defining Kp = [K, (A−KC)K, . . . , (A−KC)p−1K], Y −

t,p =
[y′t−1, y

′
t−2, . . . , y

′
t−p]

′ we obtain

xt = (A−KC)pxt−p +KpY
−
t,p.

Hence the state lies in the space spanned by the past of yt, i.e. span{yk,i, k < t, i = 1, . . . , s}.
Consider the best mean square prediction, yt+j|t−1 say, of yt+j , j ≥ 0 based on ys, s < t. It
follows from the system equations that

yt+j = Cxt+j + εt+j = CAjxt + εt+j +
j∑

i=1

CAi−1Kεt+j−i.

Since (εt)t∈Z is assumed to be a martingale difference we obtain yt+j|t−1 = CAjxt, j ≥ 0.
Therefore the prediction for all horizons is a linear function of the state. In this sense the
state contains all information of the past relevant for predicting the future.
These two facts can be combined into the following central equation by writing the equation
jointly for j = 0, . . . , f − 1 and t ∈ Z

Y +
t,f = Ofxt + EfE+

t,f = OfKpY
−
t,p +Of (A−KC)pxt−p + EfE+

t,f ,

where Y +
t,f = [y′t, y′t+1, . . . , y

′
t+f−1]

′ and E+
t,f is defined analogously by using εt instead of yt.

Further Of = [C ′, A′C ′, . . . , (A′)f−1C ′]′ and Ef denotes the matrix whose i-th block row for
i > 1 is equal to [CAi−2K, . . . , CK, I, 0, . . . , 0], while the first block row is equal to [I, 0, . . . , 0].
Note that this equation decomposes Y +

t,f into three parts:

1. OfKpY
−
t,p, where typically f and p are selected large enough such that OfKp is rank

reduced.
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2. Of (A−KC)pxt−p will be small for large p due to the strict minimum-phase assumption.

3. EfE+
t,f is uncorrelated with the remaining terms.

This motivates a class of estimation algorithms which can be described as follows:

1. Obtain a rank n matrix β̂ = Ôf K̂p estimating OfKp by using rank restricted regres-
sion techniques in the equation Y +

t,f = βY −
t,p + N+

t,f , t = 1, . . . , T where not available
observations are replaced by zero. Alternatively the regression can be performed for
t = f + 1, . . . , T − p without changing the asymptotic results.

2. Estimate the state as x̂t = K̂pY
−
t,p, t = p + 1, . . . , T + 1, x̂t = 0, t = 1, . . . , p. The system

matrix estimates are obtained using least squares fitting in the system equations where
the estimate x̂t of the state is used in place of the true state xt. Use the notation
〈at, bt〉 = T−1

∑T
t=1 atb

′
t, where we assume that not available data is replaced by zeros.

Here we use the same symbol for the processes (at)t∈Z, (bt)t∈Z and the random variables
at and bt respectively which should not cause any confusion. Then

Ĉ = 〈yt, x̂t〉〈x̂t, x̂t〉−1 , Â = 〈x̂t+1, x̂t〉〈x̂t, x̂t〉−1,

ε̂t = yt − Ĉx̂t, t = 1, . . . , T , K̂ = 〈x̂t+1, ε̂t〉〈ε̂t, ε̂t〉−1.

The class of algorithms described above has been called subspace algorithms in the engineering
literature. Note, however, that the term subspace algorithm is also used for a different
class of algorithms where the center of attention is the estimation of the range space of the
observability matrix Of , which motivates the term. These procedures have in common that
the first step usually is presented as two steps including a least squares fit followed by a model
reduction step based on a singular value decomposition (SVD). For a review of both classes
of subspace methods see Bauer (2003).
The rank restricted regression in the first step amounts to the minimization of the criterion
function

β̂ = arg min
β:rank(β)=n

tr
[
Ŵ 〈Y +

t,f − βY −
t,p, Y

+
t,f − βY −

t,p〉
]

where Ŵ = Ŵ ′ > 0 is a design variable to be chosen by the user. Ŵ = 〈Y +
t,f , Y +

t,f 〉−1

corresponds to the maximum likelihood estimate assuming Gaussian i.i.d. errors N+
t,f . The

algorithm obtained using this choice has been called CVA by Larimore (1983) and CCA by
Deistler et al. (1995) where the acronym stands for canonical variate (resp. correlation)
analysis. The estimate can be obtained using the singular value decomposition

Ŵ 1/2〈Y +
t,f , Y −

t,p〉〈Y −
t,p, Y

−
t,p〉−1/2 = Û Σ̂V̂ ′ = ÛnΣ̂nV̂ ′

n + R̂n

where Ûn ∈ Rsf×n denotes the matrix of left singular vectors corresponding to the n dom-
inating singular values. Σ̂n = diag(σ̂1, . . . , σ̂n) denotes the diagonal matrix containing the
dominant n singular values ordered decreasing in size. V̂n ∈ Rsp×n conformably contains the
right singular vectors. Here X1/2 denotes the uniquely defined symmetric square root of a
matrix X. In this step the order of the estimated system has to be supplied.
One possibility to estimate the order is to use the information contained in the estimated
singular values. Define the criterion

IC(n) = ‖R̂n‖2 +
d(n)CT

T

10



which can be minimized over n = 0, 1, . . . , HT for some upper bound HT ≤ min(fs, ps) to
obtain the order estimate. Here d(n) = 2ns denotes the number of parameters in a model
of order n and CT > 0, CT → ∞, CT /T → 0 denotes a penalty term. Although the form
is similar to the definition of information criteria no relation has been established. Typical
choices for ‖.‖ are the Frobenius norm (Peternell, 1995), the two norm (Bauer, 2001) and
restricted to the case of CCA weights ‖R̂n‖2 = −∑M

j=n+1 log(1 − σ̂2
j ), which is not a norm

(Camba-Mendez and Kapetanios, 2001).
An open point in the description of the algorithm is the choice of the integers f and p. In
the conditionally homoskedastic stationary case it has been suggested to use f = p = 2p̂AIC ,
where p̂AIC denotes the AIC order estimate in an autoregressive approximation of yt. Also
in the case of heteroskedastic innovations this choice is sufficient for the results of the next
section to hold. Throughout the text we will use two different scenarios for the choice of the
user parameters:

Assumption 2 f and Ŵ+
f are chosen corresponding to one of the following two possibilities:

• f ≥ n fixed and independent of the sample size where n denotes the true order. Ŵ+
f is

such that there exists a positive definite matrix W+
f where Ŵ+

f −W+
f = O(QT ).

• f = p depending on the sample size and Ŵ+
f = 〈Y +

t,f , Y +
t,f 〉−1/2. This choice will be

labeled CCA in the following.

In any case p →∞, p = O((log T )a) for some a < ∞.

4 Asymptotic properties

In this section we will state the results of this paper. Let ỹt = yt−DTt and ŷt = yt−D̂Tt where
D̂ = 〈yt, Tt〉〈Tt, Tt〉−1. The key to the results is the uniform convergence result for covariance
sequences as stated in (Hannan and Deistler, 1988, Theorem 5.3.2, see also (5.3.7)): Let
γ̂j = 〈ỹt, ỹt−j〉 and γ̇j =

∑∞
i=0 Ki+jΩ̇K ′

i, where Ω̇ = 〈εt, εt〉. Then (5.3.7) of Hannan and
Deistler (1988) states that for HT = o((log T )a) for some a < ∞ and QT =

√
log log T/T it

holds that
max
|j|≤HT

‖γ̂j − γ̇j‖ = O(QT ) a.s. (2)

However, ỹt is not observed and has to be replaced by ŷt = yt − D̂Tt. Corresponding to the
process (Tt)t∈Z we will use the following assumptions:

Assumption 3 The process (Tt)t∈Z is strictly stationary with finite fourth moments inde-
pendent of (εt)t∈Z where either of the following two conditions hold:

i) (Tt)t∈Z is ergodic.

ii) Tt,i = R(µt
iT

c
0,i) where Tt,i denotes the i-th component of Tt, |µi| = 1, µi ∈ C, T c

0,i ∈ C is
a random variable.

Under these assumptions it follows that

max
|j|≤HT

‖〈ỹt, ỹt−j〉 − 〈ŷt, ŷt−j〉‖ = O(Q2
T ) a.s. (3)

11



and hence the difference is negligible. This is a consequence of ŷt = ỹt + (D − D̂)Tt where
under the current assumptions D̂ −D = O(QT ). The result then follows from

max
|j|≤HT

‖〈Tt, ỹt−j〉‖ = O(QT ) a.s. (4)

corresponding to Theorem 5.3.4. of Hannan and Deistler (1988) under ergodicity of (Tt)t∈Z.
The result for the second set of assumptions for (Tt)t∈Z following from the arguments on
p. 159 of Hannan and Deistler (1988) and the structure of Tt. Hence the estimate of the
covariance sequence converges uniformly in the lag (up to some upper bound) at rate QT . Note
that γ̇j − Eỹtỹ

′
t−j =

∑∞
i=0 Ki+j(Ω̇ − Ω)K ′

i also converges to zero according to the ergodicity
assumption. The rate of convergence might be slower which, however, does not conflict with
the rate of convergence of the subspace estimators as follows from the following result which
is proved in the appendix.

Theorem 1 Let (ỹt)t∈Z be generated by a stable and strictly minimum-phase state space
system (A0, K0, C0) of order n, where the innovations process (εt)t∈Z fulfills assumptions 1.
Assume that ỹt is not directly observed, but only yt = ỹt + DTt is observed, where (Tt)t∈Z
denotes an observed process for which assumptions 3 hold. Let ŷt denote the residuals of yt

regressed onto Tt. Let θ0,i = ϕ−1
i (π(A0,K0, C0)) denote the true parameter vector where the

index i is chosen such that π(A0,K0, C0) is an interior point of M(n; i). Further let θ̂i =
ϕ−1

i (π(Â, K̂, Ĉ)), where (Â, K̂, Ĉ) denotes the subspace estimator based on ŷt, t = 1, . . . , T

described above using the true order, which depends on the choice of Ŵ and f, p. Then under
assumption 2 θ̂i is well defined (a.s. for large T ) for Ŵ = (Ŵ+

f )′Ŵ+
f . Further θ̂i → θ0,i a.s.

If p ≥ −d log T/(2 log ρ0), d > 1 arbitrary, where ρ0 = |λmax(A0 −K0C0)|, then ‖θ̂i − θ0,i‖ =
O(QT ).

The theorem gives a close to maximal result in terms of the speed of convergence of the esti-
mator being of the form of an LIL except for the fact that the constant in the O(.) statement
is not evaluated. The same rate applies also in the conditionally homoskedastic case, hence
the algorithms are robust with respect to the conditional heteroskedasticity of the innovations
subject to assumptions 1.
Note that the result holds true for any k(z) ∈ M(n). Only the coordinate system used to
present the result changes for different pieces M(n; i) of M(n). Also the presentation in terms
of the state space form is not essential. The results in Chapter 2 of Hannan and Deistler (1988)
show that it is simple to obtain the corresponding results of the ARMA representations for
the echelon forms used in this paper. Therefore the whole paper could be written avoiding
the mentioning of the state space representation at the expense of making the presentation
of the subspace algorithms complicated.
Beside consistency also the asymptotic distribution is of interest. As in the conditionally
homoskedastic case the estimators can be shown to follow a CLT. Without additional as-
sumptions on the behaviour of the conditional moments it is not possible to obtain simple
expressions for the asymptotic variance.

Theorem 2 Let the assumptions of Theorem 1 hold. Assume that p ≥ −d log T/(2 log ρ0)
for some d > 1 holds a.s. Then under assumptions 2 and 3,

√
T

(
θ̂i − θ0,i

)
d→ Z where Z is

multivariate normally distributed with mean zero and some variance V .
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This theorem highlights the major difference between the conditionally homoskedastic and
the conditionally heteroskedastic case: The asymptotic distribution remains to be Gaussian,
but the variance is hard to quantify (although straightforward to estimate). This is analogous
to the prediction error case and pseudo ML estimation as discussed in (Hannan and Deistler,
1988, section 4.3).
For the conditionally homoskedastic case the equivalence to prediction error minimization
has been proved in Bauer (2000). It turns out that the equivalence also prevails for the
conditionally heteroskedastic situation.

Theorem 3 Let the assumptions of Theorem 1 hold. Furthermore let the components of Tt

be harmonic processes, i.e. Tt,i = R(µt
iT

c
0,i) for some |µi| = 1, µi ∈ C, T c

0,i ∈ C. Assume
that the CCA algorithm using f = p, p ≥ −d log T/(2 log ρ0), d > 1 arbitrary, p = O((log T )a)
for some a < ∞ is used to obtain the estimate θ̂i. Let θ̃i denote the estimate obtained by
minimizing L(ŷt, θ, ω̂). Then

√
T‖θ̂i − θ̃i‖ = oP (1).

All prior results deal with the case that the true order of the system is known. In practice,
however, the order typically is estimated. For subspace methods a number of order estimation
techniques have been developed, which use the information contained in the singular values.
The main tool in the derivation of consistency of the order estimators again was the uniform
convergence of the sample covariance sequence. Hence also these results can be generalized.

Theorem 4 Let the assumptions of Theorem 1 hold. Assume that the order is estimated
using IC(n) for ‖R̂n‖2 = σ̂2

n+1. Let n̂ be obtained as the minimal minimizing argument of
IC(n) over 0 ≤ n ≤ min(fs, ps). Assume further that assumptions 2 and 3 hold. Then
CT /(fp log log T ) →∞ is a sufficient condition for consistency of n̂, i.e. n̂ → n0 a.s. where
n0 denotes the true order of the data generating process.

Again the proof of this theorem is given in the appendix.
Summing up the results presented so far essentially the robustness of subspace methods
with respect to the conditional heteroskedasticity has been showed. The estimators remain
consistent, asymptotically normal (though the asymptotic variance depends on the nature
of the conditional heteroskedasticity) and in the CCA case also asymptotically equivalent to
prediction error methods when allowing for some conditional heteroskedasticity. It has also
been showed that the CCA procedure does not achieve optimal accuracy. Hence the value
added from this procedure might be doubted. From my point of view the value added lies in
the relatively low cost for the estimation of the model of the mean, which at the very least
provides an initial guess for a subsequent pseudo likelihood analysis. Since the procedure
provides consistent estimates of the innovations these can be used in order to specify the model
for the conditional variance and also to obtain a consistent estimate thereof for initialization
of the full likelihood estimation. This is analogous to the discussion in section 4 of Mills
(1994) for the univariate case. Especially in a multivariate framework this is seen to be a
useful tool.
The subspace estimators of the innovations sequence can be useful in a number of ways: First
of all, the estimated innovations sequence can be used on a purely descriptive basis in order
to derive intuition about the nature of time variability of the conditional variance. Secondly
one could fix the model for the mean using the CCA estimates of the innovations, ε̂t say, and
specify and estimate the model for the variance based on the minimization of the criterion
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function

L(ŷt, θ̂, ω) =
1
T

T∑

t=1

(
log det(Ht(ω, θ̂)) + ε̂t(θ̂)′Ht(ω, θ̂)−1ε̂t(θ̂)

)
(5)

where Ht(ω, θ̂) denotes the conditional variance based on the parameter vector ω ∈ S and the
innovation estimates ε̂t(θ̂) obtained using the Kalman filter based on the parameter estimates
θ̂ and zero initial conditions. Under the assumption of supt∈N supω∈S,θ∈Ti

‖Ht(ω, θ)−1‖ < C <

∞ a.s. and supω∈S T−1
∑T

t=1 ‖Ht(ω, θ̂)−Ht(ω, θ0)‖2
Fr → 0 where ‖.‖Fr denotes the Frobenius

norm it can be showed that the difference between L(ŷt, θ̂, ω) and L(ŷt, θ0,i, ω), which uses
the true innovations εt in place of the estimated innovations ε̂t(θ̂) converges to zero uniformly
in ω ∈ S. Therefore typical consistency proofs for the estimation of ω based on L(ŷt, θ0,i, ω)
also apply for L(ŷt, θ̂, ω) under suitable assumptions on the model for the conditional vari-
ance ensuring the above mentioned conditions. The asymptotic distribution of the estimator
ω̂ however depends on whether θ0,i or θ̂ is used in the estimation (cf. Weiss, 1986, for the
univariate case). For a given variance model it seems to be possible in principle to find the
asymptotic distribution adjusted for the estimation of the innovations. Here we will describe
a different approach.
As a demonstration of this approach we derive tests for the structure of the covariance model
using the estimated innovations in an ARCH(p) framework. Rather than finding the distribu-
tion of tests based on adjusted variances we provide estimators whose asymptotic distribution
is invariant to the pre-estimation of the innovations:

Theorem 5 Let the assumptions of Theorem 2 hold. Let (εt)t∈Z denote the true innovation
process and (ε̂t)t∈Z the subspace estimators thereof obtained under the conditions of Theo-
rem 2, i.e. the estimators of the innovations corresponding to the Kalman filter according to
the estimate θ̂i using zero initial conditions. Consider the regression model (vech denotes the
operator of stacking the lower triangular part of the matrix into a vector)

vech[εtε
′
t] = C +

p∑

j=1

αjvech[εt−jε
′
t−j ] + ut = [C, α1, . . . , αp]xt + ut

in a multivariate ARCH(p) model such that E{ut|Ft−1} = 0. Let β = [C, α1, . . . , αp] ∈
Rs(s+1)/2×(1+s(s+1)p/2) denote the parameter matrix. The equation above defines xt the vector
of regressors. Let zt ∈ Rz, z ≥ [s(s + 1)p/2 + 1] denote instrumental variables, which are
assumed to be Ft−p−1 measurable, strictly stationary, and ergodic processes such that Extz

′
t

and Eztz
′
t are of full row rank. Furthermore it is assumed that supt ‖zt‖ < M < ∞ a.s. for

some constant M . Assume that the vector process [ε′t, T ′t , z′t]′ is ergodic and strictly stationary.
Let β̂IV denote the corresponding IV estimate defined as

β̂IV =
{
〈vech[εtε

′
t], zt〉〈zt, zt〉−1〈zt, xt〉

(〈xt, zt〉〈zt, zt〉−1〈zt, xt〉
)−1

}

Further consider the analogous equation

vech[ε̂tε̂
′
t] = C +

p∑

j=1

αjvech[ε̂t−j ε̂
′
t−j ] + ût.

Let β̃IV denote the corresponding IV estimate using identical instruments zt.
Then

√
T (β̂IV − β̃IV )

p→ 0 and therefore tests based on the asymptotic distribution of the
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estimated parameter vector remain asymptotically valid if calculated using the estimated in-
novations ε̂t in place of the true innovations εt. Let the asymptotic variance matrix of vec(β̂IV )
be estimated as

[
Σ̃XZ ⊗ I

]

 1

T

T∑

t=p+1

(
ztz

′
t ⊗ ũtũ

′
t

)



[
Σ̃′XZ ⊗ I

]

where Σ̃XZ =
(〈x̂t, zt〉〈zt, zt〉−1〈zt, x̂t〉

)−1 〈x̂t, zt〉〈zt, zt〉−1, x̂t denotes the estimates of xt based
on ε̂t and ũt = Êt− β̃IV x̂t. This estimator consistently estimates the variance of the limiting
normal distribution for

√
T (β̂IV − β).

This result contrasts the theory on post-estimation testing in Weiss (1986) for the univariate
ARMA-GARCH case. Rather than deriving the adjusted distribution of the test statistic we
show that the asymptotic distribution of the instrumental variables estimator based on suffi-
ciently lagged estimates is robust with respect to the estimation of the innovations sequence.
As a consequence standard software can be used to conduct the proposed test which is seen
to be an advantage.
Note that the weighting by 〈zt, zt〉−1 corresponds to the optimal weight in the conditionally
homoskedastic situation which need not necessarily be a good choice in the conditionally het-
eroskedastic case. A more general weighting could be included in the result. Since this result
is only seen as a prototypical result for demonstration purposes we refrain from elaborating
on this.
As for all instrumental variables estimators the question of suitable instruments arises. A sec-
ond concern is the loss of accuracy due to the usage of suboptimal estimators. In the present
case an attractive set of instruments is given by a subset of the variables 6 vec[ŷt−j ŷ

′
t−i], i, j >

p. This choice of instruments is attractive since typically in financial time series the correlation
in the returns dies out very fast (in daily return series typically the evidence for correlations
is rather weak, in high frequency data correlations are restricted to few periods, say up to
half a day), whereas the correlations of the squared returns die out slowly. Typically values
of α + β close to one for GARCH(1,1) models have been observed. Therefore it seems likely
that εt can be recovered using only a few past lags of ŷt, whereas the correlation of εtε

′
t with

εt−pε
′
t−p is still reasonably high. The measurability assumption is guaranteed for sufficiently

lagged ŷt’s. The remaining assumptions on the instrumental variables of course are model
dependent and cannot be verified in general.

5 Simulations

In this section three simulation experiments are presented dealing with two major points:
The first point refers to the computational comparison: The simulations below show that
subspace algorithms are computationally much cheaper than prediction error methods while
providing estimates of roughly the same accuracy. The general setup is to either increase the
sample size while keeping the structure (dimension of the output process and the order of
the state space system) fixed or to keep the sample size fixed and let the number of outputs
grow. Note that the size of the data sets considered here is smaller than typical applications
would require. This is done in order to keep the computational burden for the prediction
error methods in an acceptable range. The second point we are trying to make is that the

6In order to comply with the boundedness assumption a trimming might be necessary.

15



subspace estimates of the innovations can be used for purposes of specifying the model for
the conditional variances.
The setup for the first two experiments is as follows: For each experimental condition a num-
ber of time series of length T + 100 are created and the first 100 observations are omitted
in order to decrease the dependence on initial effects. One state space system of output
dimension s and state dimension n is generated randomly, where the strict minimum-phase
condition is imposed and |λmax(A)| < 0.3 is imposed in order to match typical high frequency
data characteristics. All eigenvalues of A are chosen to be real, which might be seen as a
limitation to randomness. The model for the conditional heteroskedasticity is of the constant
correlation GARCH type with random nonnegative coefficients. The coefficients for the uni-
variate GARCH models for the diagonal elements obey α + β < 1/2. For each experiment
only one system has been generated in order to make comparison across different conditions
possible. In the first experiment the sample size T has been chosen to be 1000, 2500, 5000
and 10000 respectively, s = 6 and n = 2 is used. In the second experiment T = 1000 is
fixed and s = 10, 20, 30, 40 is used and n = 6. In both experiments the accuracy is mea-
sured in terms of the sum of the two norm of the estimation errors in the estimated impulse
response coefficients ĈÂj−1K̂, j = 1, 2, · · · , 2n − 1. For each time series two estimates are
calculated using MATLAB: The prediction error estimate is obtained using the command mod =
pem(iddata(y(101:end,:)),n); contained in the system identification toolbox of MATLAB.
This algorithm obtains an initial guess using a subspace algorithm called N4SID (for a discus-
sion see Van Overschee and DeMoor, 1994) to start a Gauss-Newton search for the optimum.
Therefore it comes at no surprise that the numerical load is bigger for pem. The CCA esti-
mate is obtained using a self written program. No preprocessing of the data such as mean
extraction is performed. The consequences of these choices are the following: We compare a
commercial product (pem) with a code written for academic purposes which does not include
the usual consistency checks, error handling code etc. In particular it does also not contain
the calculation of the estimate of the covariance matrix. Therefore the computational burden
for CCA is lower than the burden for pem in this respect. This does not make up for a sig-
nificant part, however. The second implication is that the comparison really is based on the
numerical procedures, not on the theoretical concepts. In particular there is no guarantee that
pem delivers the correct minimizing argument of the criterion function. In fact it happened
in some (undocumented) cases that pem seems to be caught in a local minimum resulting in
overly large errors. Another point is in order here: Since a particular algorithm is used in the
comparison the simulations are of course subject to the critique that a different procedure
might not suffer from the problems encountered in pem. To a certain extent such a critique
is of course adequate, especially procedures based on maximizing the Whittle likelihood or
similar procedures starting from the estimated covariance sequence will probably show better
performance in terms of computations. Numerical issues with respect to illconditioning of the
Hessian for high dimensional parameter sets remain valid, however.
The results of the first experiment are given in Table 1. In this experiment pem performs
better than CCA for the smaller sample sizes while for the large sample sizes the difference in
estimation error is negligible as predicted by theory. For both procedures consistency can be
observed. In all cases CCA outperforms pem in terms of the number of computations where the
difference is significant. Somewhat surprisingly the difference decreases with increasing sam-
ple size. Undocumented additional simulations show that for CCA there is a trade-off between
the computational time and the achieved accuracy related to the allowed upper bound for the
autoregression in order to obtain the estimate p̂AIC . In the documented results this upper
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Mean error Comp. time (in sec.)
CCA pem Ratio CCA pem Ratio

T = 1000 0.7085 0.4440 1.60 0.1146 1.4287 12.47
T = 2500 0.3057 0.2887 1.06 0.4040 3.0433 7.53
T = 5000 0.2063 0.2030 1.02 1.1437 5.5747 4.87
T = 10000 0.1346 0.1346 1.00 3.7279 10.2962 2.76

Table 1: Experiment 1: Comparison of CCA to pem in MATLAB system identification toolbox.
s = 6, n = 2, numbers are based on 1000 simulations for each entry. Computation times are
given for estimation on one data set.

bound is chosen to be
√

T/2 so that potentially covariance estimates up to lag 2
√

T are used
in the subspace estimation. Almost all the computations for the two larger sample sizes are
spent on obtaining estimates for the covariance sequence (94% for T = 5000 and more than
97 % for T = 10000). Choosing the upper bound differently (such as e.g. 4 log T ) reduces
the computational load at large sample sizes, however, potentially limits the approximation
accuracy leading to a computations-accuracy tradeoff in this example. Note, however, that
in all cases the computation times for pem are acceptable. The conclusions drawn from the
first experiment (and undocumented others) is that in data sets of the given dimensions pem
still is feasible computationally and results on average in better accuracy of the estimates. In
these situations CCA might serve as an initial guess but prediction error methods appear to
be superior. However, bear in mind that in the conditionally heteroskedastic case the model
for the mean is estimated in any case only as an initial guess for subsequent pseudo likelihood
maximization including the model for the conditional variance.
The second experiment used the same setup as the first experiment except that in this ex-
periment the output dimension is increased for fixed sample size T = 1000 and order n = 6.
For s = 10 and s = 20 we generate 100 time series and perform the estimation, whereas the
number of simulation experiments are limited to 50 for s = 30 and 25 for s = 40. The results
are documented in Table 2. Here we report only the trimmed mean estimation error rather
than the mean error, since in a number of cases pem resulted in excessively large errors, which
are seen to be due to problems of finding the global minimum rather than problems for the
prediction error estimates themselves. Initialization in pem is done using a different subspace
algorithm, which seems to provide sometimes unreliable estimates. CCA did not show the same
problems in our simulations 7. In these examples the estimation accuracy is (statistically)
indistinguishable for s = 10 and s = 20 for the trimmed means while for s = 30 and s = 40
CCA clearly is outperformed by pem. The computation times, however, differ drastically. pem
is heavily affected by the increase of the parameter dimension from 24 parameters in the first
experiment to 120 for s = 10 and 240 for s = 20. The computational comparison now is
strongly favoring CCA even for the smaller output dimensions and is becoming drastic for the
two large output sizes. For s = 20 pem needs more than a minute. For s = 40 executing pem
takes more than 15 minutes even without order estimation, which typically requires a number
of models to be estimated. This seems to be prohibitive. CCA on the other hand still uses
only a few seconds 8.

7Of course, CCA could have been used as initial guess to pem. But the main point in this comparison is the
computational load which does not rely heavily on the initial estimate in this experiment.

8Adding order estimation using IC(n) introduces a negligible additional load.
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Trimmed mean error Comp. time (in sec.)
CCA pem Ratio CCA pem Ratio

s = 10 (100 rep.) 1.8399 1.9008 0.97 0.22 35.78 162.63
s = 20 (100 rep.) 0.9638 0.9483 1.02 0.46 77.64 168.78
s = 30 (50 rep.) 1.09 0.99 1.11 0.87 288.20 332.63
s = 40 (25 rep.) 3.25 2.90 1.12 1.41 854.09 605.73

Table 2: Experiment 2: Comparison of CCA to pem in MATLAB system identification toolbox.
n = 6 and T = 1000. Trimming omits 5% of the observations. Computation times are given
for estimation on one data set.

Test based on Size Power
εt/ε̂t acc/acc acc/rej rej/acc rej/rej acc/acc acc/rej rej/acc rej/rej

T = 1000 92.0 1.4 1.3 5.3 57.1 4.3 3.2 35.4
T = 5000 93.2 1.2 0.7 4.9 39.5 1.5 1.1 57.9
T = 10000 93.8 0.9 0.4 4.9 17.9 1.4 0.6 80.1

Table 3: Experiment 3: Performance of the testing procedures. All numbers are percentages
on the basis of 1000 simulations with s = n = 2 of a BEKK-ARCH model using n = m = 1.
Nominal size 95%. Acceptance (acc) and rejection (rej) rates for the tests based on the true
innovations εt and estimated innovations ε̂t.

Finally also the inference based on the estimated innovations is investigated. In this re-
spect a bivariate BEKK-ARCH model is used in the simulations. n = m = 1 is used in the
specification of the variance model. In the notation of Theorem 5 we thus have p = 1. The
model for the mean is drawn as before randomly. Two different tests will be considered: In
both cases p = 2 is used in the estimation with no restrictions to the ARCH model. The
first test considers testing the null of p = 1 against the alternative of p = 2, hence exploring
the size properties of the tests. The second situation tests the null of p = 0 (conditional ho-
moskedasticity) against the alternative of p = 2 exploring the power of the tests. In all cases
1000 time series are simulated. s = n = 2 is used and T is varied from T = 1000, T = 5000
to T = 10000. The results can be seen in Table 3. The results of this experiment are both
affirmative and to a certain extent discouraging: The procedure using the estimated inno-
vation sequence (ε̂t)t=1,...,T shows very similar behaviour to the tests based on (εt)t=1,...,T .
In all simulations the two tests gave the same result in more than 92% of the cases and for
T = 10000 even in 98% of the cases. Due to the high noise level in these models (due to
using εtε

′
t in place of the conditional variance) very large sample sizes are required in order

for the tests to have good size and power properties. Even at T = 10000 only in slightly more
than 80% of the cases evidence for heteroskedasticity is found. Therefore our conclusions
from these experiments is that the asymptotical equivalence of the tests is reflected in the
test results already in medium sized samples, however, this is contrasted by the fact that the
test performance in absolute terms is rather poor in this setting.
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6 Conclusions

In this paper the asymptotic properties of subspace algorithms have been extended to the
conditionally heteroskedastic case by a more careful study of the assumptions sufficient for
the previously published results. The main message is that – except for the expressions
for the asymptotic variance – all results achieved for the conditionally homoskedastic case
carry over also to the case of conditionally heteroskedastic innovations. In particular the
equivalence of CCA estimators to prediction error estimators prevails. This implies that the
CCA estimators are not asymptotically efficient in this case. Hence they should not be used
as final estimators. Nevertheless they are seen as valuable tools, as they provide estimates
for multivariable systems in situations, where prediction error minimization is numerically
not feasible as documented in the simulations section. This can be used in order to obtain
estimates of the residuals on which a subsequent modeling of the conditional variance can be
based.
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A Proofs

Throughout the proofs estimators of a quantity x will be denoted using x̂. For two sequences
(at)t∈Z, (bt)t∈Z we will use the notation 〈at, bt〉 = 1

T

∑T
t=1 atb

′
t where it is understood that

unavailable observations are replaced by zeros. An observation is unavailable if it is built using
yt for t < 1 or t > T . Expressions where the noise variance matrix Ω is replaced by 〈εt, εt〉 are
denoted using a superscripted ’.’ . Recall that ỹt = yt−DTt and ŷt = yt−〈yt, Tt〉〈Tt, Tt〉−1Tt.
Recall that FT = O(gT ) means lim supT→∞maxi,j |FT,i,j |/gT ≤ C a.s. for some constant
C < ∞. Here FT,i,j denotes the (i, j) entry of the matrix FT . This notation will be used
also for matrices of dimensions increasing with sample size T . Note that this definition differs
from conventional usage, where the norm of the matrix is bounded rather than the maximal
entry. Throughout the proof we will often use the following result:

Lemma 1 Let Φ̂ ∈ Ra×b and Ψ̂ ∈ Rb×c where the dimensions a, b, c possibly depend on the
sample size. Assume that there exist matrices Φ ∈ Ra×b and Ψ ∈ Rb×c such that Φ̂ − Φ =
O(aT ) and Ψ̂ − Ψ = O(bT ). Moreover assume that there exists a constant C < ∞ such that
max(lim supa,b ‖Φ‖∞, lim supb,c ‖Ψ′‖∞) < C. Then Φ̂Ψ̂− ΦΨ = O(max(aT , bT , aT bT b)). If Φ
is equal to zero, then Φ̂Ψ̂ = O(max(aT , aT bT b)).

Proof: Note that Φ̂Ψ̂−ΦΨ = (Φ̂−Φ)Ψ̂+Φ(Ψ̂−Ψ) = (Φ̂−Φ)(Ψ̂−Ψ)+(Φ̂−Φ)Ψ+Φ(Ψ̂−Ψ).
Due to the uniform bound on the infinity norms the latter two terms are of the order O(aT )
and O(bT ) respectively. The entries in the first term are of order O(aT bT b) being the sum of
b products of elements in Φ̂ − Φ and Ψ̂ − Ψ respectively. If Φ is zero then the last term is
zero and hence bT does not appear. ¤
Note that extensions to products containing more than two matrices are straightforward:
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Φ̂Ψ̂Θ̂−ΦΨΘ = (Φ̂Ψ̂−ΦΨ)Θ̂+ΦΨ(Θ̂−Θ) = (Φ̂Ψ̂−ΦΨ)Θ+(Φ̂Ψ̂−ΦΨ)(Θ̂−Θ)+ΦΨ(Θ̂−Θ) =
O(max(aT , bT , cT )) under the assumption that the order of convergence of each of the matrices
is faster than the increase in the dimensions, i.e. e.g. bT b → 0 holds, as will always be the
case for the expressions below. Also suitable assumptions on the matrices must ensure that
the infinity norm of all occurring matrices remains bounded, e.g. in the example given above
‖ΦΨ‖∞.

A.1 Proof of Theorem 1

The proof parallels the discussion of (Bauer, 2000, Lemma A.1) but replaces the true covari-
ance sequence with the sequence γ̇j . The main facts used in the proof will be provided in
lemmas.
The central estimate in subspace procedures is the estimate β̂ of OfKp. Its properties in the
various estimation conditions are stated in the first lemma:

Lemma 2 Let the assumptions of Theorem 1 hold. Then ‖Γ̇−∞‖∞ < ∞, sup1≤p≤((log T )a) ‖Γ̇−p ‖2 <

M, sup1≤p≤((log T )a) ‖(Γ̇−p )−1‖2 < M a.s. and sup1≤p≤((log T )a) ‖(Γ̇−p )−1‖∞ < M a.s. for some
constant M < ∞ and arbitrary a < ∞. The same bounds hold a.s. for large enough T for
Γ̇−p replaced with 〈Y −

t,p, Y
−
t,p〉.

Furthermore β̂ −OfKp = O(max(QT , ρp)) for arbitrary ρ0 < ρ < 1 for ρ0 = |λmax(A−KC)|
where (A,K, C) denotes a representation of the true system. Hence for p ≥ −d log T/(2 log ρ0), d >
1 it holds that β̂ −OfKp = O(QT ).

Proof: The norm bounds can be found in Theorem 6.6.10 and 6.6.11. of Hannan and Deistler
(1988).
The proof for the order of convergence of β̂ − OfKp will be given for the case D̂ = D first.
In the following we will use the symbols Y +

t,f and Y −
t,p neglecting the fact that these are built

using ỹt in place of ŷt. This should not cause any confusion. Let β̇ = Ḣf,p(Γ̇−p )−1 where
Ḣf,p = [γ̇i+j−1]i=1,...,f,j=1,...,p is the covariance of Y +

t,f and Y −
t,p with Ω replaced by Ω̇ such that

β̂ − β̇ = 〈Y +
t,f , Y −

t,p〉〈Y −
t,p, Y

−
t,p〉−1 − Ḣf,p(Γ̇−p )−1.

Due to the uniform convergence of the estimated covariance sequence, see (2), it follows that
〈Y +

t,f , Y −
t,p〉 − Ḣf,p = O(QT ) and 〈Y −

t,p, Y
−
t,p〉 − Γ̇−p = O(QT ). Using Lemma 1 the invertibility

of Γ̇−p a.s. for large T together with boundedness (uniformly in p) of ‖(Γ̇−p )−1‖∞ imply that
β̂ − β̇ = O(QT ). Furthermore OfKp − β̇ = O(ρp) for arbitrary ρ0 < ρ < 1 follows from

[Ḣf,p(Γ̇−p )−1, 0](Γ̇−∞)p − Ḣf,∞(Γ̇−∞)−1(Γ̇−∞)p = 0

a.s. where (Γ̇−∞)p denotes the first p block columns of Γ̇−∞ (cf. also Bauer et al., 1999, Lemma
6, where the same result is showed using the true noise covariance rather than Ω̇). This equa-
tion shows that β̇ − OfKp = Of (A − KC)pK∞(Γ̇−∞)2,p(Γ̇−p )−1 using Ḣf,∞(Γ̇−∞)−1 = OfK∞
where (Γ̇−∞)2,p denotes the matrix obtained from (Γ̇−∞)p by omitting the first p block rows.
The order of convergence then follows from the uniform bound (in p) on the smallest eigen-
value of Γ̇−p , ‖Γ̇−∞‖∞ < ∞ and ‖(Γ̇−p )−1‖∞ < ∞ a.s. uniformly in p = O((log T )a). In these
evaluations it is essential that all bounds hold uniformly in the noise covariance contained
in a compact set in the neighborhood of the true innovation variance since 〈εt, εt〉 will enter
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the neighborhood a.s. for large T . This shows the claim of the lemma for D̂ = D. If D is
estimated equation (3) shows that replacing ỹt by ŷt does not change the uniform error bound
on the estimated covariance sequence which is the only tool used in the proof given above.
Hence the result also holds in this case.
If p ≥ −d log T/(2 log ρ0) for some d > 1 it follows that ρp = o(T−1/2) for ρ > ρ0 sufficiently
small proving the second claim of the lemma. ¤

The next theorem is central to the consistency result and states an error bound on K̂p

and Kp using a specific normalization:

Lemma 3 Let the assumptions of Theorem 1 hold. For a given multiindex j let a corre-
sponding selector matrix Sn ∈ Rns×n be defined which is zero except for exactly one element
in each column and at most one element in each row being equal to one where the position
of the nonzero entries is indexed by j. Define the subset M(n, j) ⊂ M(n) via the fact that
k(z) ∈ M(n, j) if KnSn ∈ Rn×n is nonsingular where Kn corresponds to k(z). Then there
exists a finite set of multiindices J such that for each j ∈ J the set M(n; j) is open and dense
in M(n) and

⋃
j∈J M(n; j) = M(n). Further the restriction KnSn = In defines a canonical

form on M(n, j).
For Sn corresponding to a multiindex j such that the true transfer function k(z) ∈ M(n, j)
let Sp = [S′n, 0]′ ∈ Rps×n, p ≥ n. Then for the estimate K̃p = V̂ ′

n(Ŵ−
p )−1 it holds that K̃pSp is

nonsingular a.s. for T large enough and hence K̂p = [K̃pSp]−1K̃p is well defined a.s.
Let O†f = (O′fWOf )−1O′fW where W = (W+

f )′W+
f or W = (Γ̇+

f )−1 in the CCA case. Then

K̂p −Kp = (O′fWOf )−1O′fW (β̂ −OfKp)(I − SpKp) + O(max{ρp, QT }2f) (6)

where Of and Kp correspond to the representation of the true system implied by KpSp = In.
Thus for p ≥ −d log T/(2 log ρ0) it follows that K̂p −Kp = (O′fWOf )−1O′fW (β̂ −OfKp)(I −
SpKp) + o(T−1/2) = O(QT ).

Proof: The first part of the theorem is straightforward to see noting that K∞ = [K, (A−
KC)K, . . .] is the reachability matrix corresponding to the inverse transfer function k−1(z) ∈
M(n) due to the stability and strict minimum-phase assumption. Then the theory developed
for so called echelon overlapping forms (see Hannan and Deistler, 1988, Theorem 2.6.2) obvi-
ously has a dual counterpart operating on columns of the reachability matrix rather than on
rows of Of . This follows since the transpose of a Hankel matrix is again a Hankel matrix and
obviously the rank is not changed by taking the transpose. Then essentially Theorem 2.6.5,
of Hannan and Deistler (1988) shows the claims. The fact that the restriction KpSp = In

defines a unique representation on M(n; j) is obivous.
Next Ôf K̂p − OfKp = o(1) and the fact that KpSp is nonsingular by assumption show that
there exists a random matrix ŜT ∈ Rn×n such that ŜT V̂ ′

n〈Y −
t,p, Y

−
t,p〉1/2Sp is nonsingular a.s.

for T large enough. A proof of the convergence in the case f = p → ∞ at a certain rate
can be found in Deistler et al. (1995) in the proof of Proposition 3.2. For the case of fixed
f the arguments used there are straightforward to modify, also the different assumptions on
the increase of p do not conflict with the proof as is easily verified. This shows that K̂p is
welldefined for T large enough a.s. using this particular matrix Sp.
It remains to verify the order of convergence for K̂p − Kp using the normalization K̂pSp =
KpSp = In. This will be done first for D̂ = D and f is fixed and finite. Along the
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lines of (Bauer et al., 2000) a linearization of the SVD is derived in the following: Let
Ôf

†
= (Ôf

′
(Ŵ+

f )′Ŵ+
f Ôf )−1Ôf

′
(Ŵ+

f )′Ŵ+
f . Then

K̂p −Kp = Ôf
†
β̂ −O†fOfKp = O†f (β̂ −OfKp) + (Ôf

† −O†f )β̂

= O†f (β̂ −OfKp)PK + (Ôf
† −O†f )(β̂ −OfKp)PK

where PK = Ips−SpKp neglecting the dependence on p in the notation. In the third equality
(K̂p −Kp)SpKp = 0 and KpPK = 0 is used. Analogously

Ôf −Of = β̂K̂p
† −OfKpK†p = (β̂ −OfKp)K̂p

†
+OfKp(K̂p

† −K†p)
where K̂p

†
= 〈Y −

t,p, Y
−
t,p〉K̂p

′
(K̂p〈Y −

t,p, Y
−
t,p〉K̂p

′
)−1 and K†p is defined analogously using Kp and

Γ̇−p = [γ̇i−j ]i,j=1,...,p where (i, j)-th entry is shown. From the uniform boundedness of the eigen-
values of Γ̇−p and (Γ̇−p )−1 and the analogous property of 〈Y −

t,p, Y
−
t,p〉 and its inverse it follows

using the structure of K̂p and Kp that (K̂p〈Y −
t,p, Y

−
t,p〉K̂p

′
)−1 and (KpΓ̇−p K′p)−1 are of bounded

norm a.s. (Ôf
′
Ŵ Ôf )−1 and (O′fWOf )−1 are of bounded norm a.s. due to the assumptions

on Ŵ+
f and convergence of Ôf following from the convergence of Ôf K̂p → OfKp, see above.

Then the expression given above shows that K̂p −Kp = O(p−1) since β̂ −OfKp = O(p−1).
Next consider K̂p〈Y −

t,p, Y
−
t,p〉K̂p

′ − KpΓ̇−p K′p: Let kT be such that K̂p − Kp = O(kT ) where
pkT → 0 which is possible from the discussion just provided. Further 〈Y −

t,p, Y
−
t,p〉−Γ̇−p = O(QT )

due to (2). Note that ‖Kp‖∞ < M, ‖Γ̇p‖∞ < M, p ∈ N, and ‖KpΓ̇−p ‖∞ < M, p ∈ N for some
constant M a.s. since the typical entry of this matrix where Ω̇ is replaced by Ω (which does not
change the arguments but makes the notation simpler) is E(xt− (A−KC)pxt−p)y′t−j for 1 ≤
j ≤ p. Now Exty

′
t−j = Aj−1Ext+1y

′
t and Ext−py

′
t−j = Ext−px

′
t−p(A

p−j)′ proving the claim.

Then according to the discussion below Lemma 1 it follows that K̂p
†−K†p = O(max(kT , QT ))

and with fT denoting the order of convergence of β̂−OfKp the expression for Ôf −Of given
above implies that Ôf − Of = O(max(fT , kT , QT )). Here also fT p → 0 is used. Similarily

the assumptions on Ŵ+
f show that this implies that Ôf

† − O†f = O(max(fT , kT , QT )). In-

serting this into the expression given for K̂p −Kp the boundedness of O†f implies K̂p −Kp =
O(max(fT , fT kT f, fT QT f, f2

T f)) = O(kT ) by definition of kT . This proves the second claim
of the theorem for D̂ = D and fixed finite f . Note that in the case p ≥ −d log T/(2 log ρ0)
we obtain fT = O(QT ). Again only the uniform convergence of the estimated covariance se-
quence is used and hence the result also holds true for estimated D̂ according to equation (3).
It remains to deal with the case f = p → ∞. The proof given above in this situation holds
unchanged up to the error bound on Ôf

† −O†f where the bound on the error term has to be
showed to hold uniformly in f = O((log T )a). For the CCA weighting this is analogous to the
arguments for K̂p

† − K†p given above and hence the result also holds in this case. Note that
in this case the inclusion of f in the order of convergence given above is necessary. ¤
Note that the theorem states in all case that K̂p − Kp = o(1). The next lemma states two
facts that will frequently be used in the proof below:

Lemma 4 Let the assumptions of Theorem 1 hold and let K̂pSp = In. Then

K̂p〈Y −
t,p, Y

−
t,p〉K̂p

′ −KpΓ̇−p K′p = O(max(QT , ρpf)),
(A−KC)p〈xt,p, zt〉 = O(ρp)
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where zt is any process such that 〈zt, zt〉 = O(1).

Proof: The first claim follows from repeated application of Lemma 1 as K̂p〈Y −
t,p, Y

−
t,p〉K̂p

′ −
KpΓ̇−p K′p = (K̂p〈Y −

t,p, Y
−
t,p〉−KpΓ̇−p )K̂p

′
+KpΓ̇−p (K̂p−Kp)′. Note that the infinity norm of KpΓ̇−p

is uniformly bounded (see the proof above). Then the discussion below Lemma 1 together
with the uniform bound on the infinity norm Γ̇−p and Γ̇−p K′p and the fact that for K̂p − Kp

and 〈Y −
t,p, Y

−
t,p〉 − Γ̇−p the order of convergence multiplied by the number of entries tends to

zero implies the first claim. The second claim is immediate from (A − KC)p = O(ρp) and
〈xt−p, zt〉 = O(1) which follows from a componentwise application of the Cauchy-Schwartz
inequality noting that 〈xt−p, xt−p〉 = O(1) as is straightforward to show and 〈zt, zt〉 = O(1)
by assumption. ¤
In the following the representation (A,K, C) of the true system corresponds to the restriction
KpSp = In. The corresponding state will be denoted as xt. The second step in the algorithm
is the regression of ỹt (assuming D̂ = D) onto x̂t in order to obtain an estimate

Ĉ = 〈ỹt, x̂t〉〈x̂t, x̂t〉−1 = 〈εt + C(A−KC)pxt−p + CKpY
−
t,p, Y

−
t,p〉K̂p

′
(K̂p〈Y −

t,p, Y
−
t,p〉K̂p

′
)−1

= 〈εt + CKpY
−
t,p, Y

−
t,p〉K̂p

′
(KpΓ̇−p K′p)−1 + O(max(QT , ρpf))

= CKp〈Y −
t,p, Y

−
t,p〉K̂p

′
(KpΓ̇−p K′p)−1 + O(max(QT , ρpf))

= CKp〈Y −
t,p, Y

−
t,p〉K′p(KpΓ̇−p K′p)−1 + O(max(QT , ρpf)) = C + O(max(QT , ρpf)).

Here in the third equivalence the results of Lemma 4 is used, the fourth equivalence
follows from 〈εt, Y

−
t,p〉 = O(QT ) and the uniform bounds on ‖K̂p‖∞ and ‖(KpΓ̇−p K′p)−1‖ es-

tablished above. The fifth follows from K̂p −Kp = O(max(QT , ρpf)) according to Lemma 3.
The final equality is due to 〈Y −

t,p, Y
−
t,p〉 − Γ̇−p = O(QT ). Similar arguments show Â − A =

O(max(QT , ρpf)).
Next observe that

Ω̂ = 〈ỹt − ĈK̂pY
−
t,p, ỹt − ĈK̂pY

−
t,p〉

= 〈εt + C(A−KC)pxt−p + (CKp − ĈK̂p)Y −
t,p, εt + C(A−KC)pxt−p + (CKp − ĈK̂p)Y −

t,p〉
= 〈εt, εt〉+ C(A−KC)p〈xt−p, xt−p〉[C(A−KC)p]′

+(CKp − ĈK̂p)〈Y −
t,p, Y

−
t,p〉(CKp − ĈK̂p)′ + O(max(Q2

T , ρ2pf2)p)

= Ω̇ + O(max(Q2
T , ρ2pf2)p) (7)

by using the above derived order bounds and Lemma 1 repeatedly. Further x̂t+1 = K̂pY
−
t+1,p

and additionally

〈Y −
t+1,p, ε̂t〉 = 〈Y −

t+1,p, ỹt−ĈK̂pY
−
t,p〉 = 〈Y −

t+1,p, εt〉+〈Y −
t+1,p, Y

−
t,p〉(CKp−ĈK̂p)′+〈Y −

t+1,p, xt−p〉(Āp)′C ′

where Ā = A−KC. Each of these terms can be showed to be O(max(QT , ρpf)) and it follows
that replacing ε̂t with εt introduces an error of magnitude O(max(QT , ρpf)). This shows that

K̂ = 〈x̂t+1, ε̂t〉Ω̂−1 = 〈x̂t+1, ε̂t〉Ω̇−1 + O(max(Q2
T , ρ2pf2)p)

= K̂p〈Y −
t+1,p, ε̂t〉Ω̇−1 + O(max(Q2

T , ρ2pf2)p) = K̂p〈Y −
t+1,p, εt〉Ω̇−1 + O(max(QT , ρpf))

= K̂p,1〈ỹt, εt〉Ω̇−1 + O(max(QT , ρpf)) = K̂p,1〈εt, εt〉Ω̇−1 + O(QT ) = K̂p,1 + O(max(QT , ρpf))
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where K̂p,1 denotes the first block column of K̂p. In these evaluations we used the derivations
given above in order to replace Ω̂ by Ω̇, ε̂t by εt and the fact that 〈ỹt−j , εt〉 = O(QT ), 〈xt, εt〉 =
O(QT ). This shows K̂−K = K̂p,1−Kp,1 +O(max(QT , ρpf)) = O(max(QT , ρpf)) using obvi-
ous notation. For p ≥ −d log T/(2 log ρ0), d > 1 it follows that ρpf = o(QT ) for ρ0 < ρ small
enough. Hence the error bound is of order O(QT ) in this case. The same bound for estimated
D̂ again follows from (3).
It remains to show that there exists an index i such that the transformation to the over-
lapping echelon forms is differentiable and hence the rate of convergence holds also for the
new coordinate system. Note that the multiindex i here is different from the index j used
to define Sp in Lemma 2: There the index described columns of Kp, now the index is used
to describe rows of Of . The basic underlying idea is identical, however. To this end note
that given any system representation the system representation in echelon coordinates is ob-
tained from a state basis transformation using the transformation matrix T = S̃nOn where
S̃n ∈ Rn×ns is a selector matrix selecting the rows of On according to the multiindex i. Here
i has to be selected such that T is nonsingular. Hence (T̂ ÂT̂−1, T̂ K̂, ĈT̂−1) is equal to the
system representation in the echelon overlapping form for T̂ = S̃n[Ĉ ′, (ĈÂ)′, . . . , (ĈÂn−1)′]′.
Since T̂ → T according to the consistency for (Â, K̂, Ĉ) it follows that T̂ is nonsingular for
large enough sample size proving the well definedness of θ̂i. Furthermore consistency for θ̂i

is immediate and the order of convergence follows from the order of convergence of (Â, K̂, Ĉ)
and the obvious differentiability of T̂ as a function of the entries of (Â, K̂, Ĉ). This proves
the theorem. ¤

A.2 Proof of Theorem 2

Again the proof of the theorem consists in following the steps of the proof for the CLT in the
case of conditionally homoskedastic innovations as is implicitely contained in Bauer and Ljung
(2002). We will use linearization arguments analogously to the proof contained in (Bauer et
al., 1999). Consider the case of D̂ = D first. Lemma 3 of (Bauer and Ljung, 2002) shows
that 9

vec(Â−A, K̂ −K, Ĉ − C) = M̄1vec〈εt, xt〉+ M̄2,pvec
(
K̂p −Kp

)
+ oP (T−1/2)

where both systems (Â, K̂, Ĉ) and (A,K, C) correspond to a particular coordinate neighbor-
hood of the overlapping echelon forms. Part of the proof contained in (Bauer and Ljung, 2002)
is also used in the proof of Theorem 1 given above. Since the main argument used in the proof
is the uniform convergence of the estimated covariance sequence the proof of the lemma is
unaltered (except for the exchange of all expressions involving γj by the identical expressions
using γ̇j) under the assumptions on the noise of this paper with one exception: In Bauer and
Ljung (2002) it is argued that

√
T 〈εt − C(x̂t − xt), x̂t〉 converges in distribution, which has

not been showed under the current assumptions. However, this is not needed since the proof
that

〈εt − C(x̂t − xt), x̂t〉 = (Ĉ − C)〈x̂t, x̂t〉+ O(QT ) = O(QT )
9To be precise the lemma shows the result for a different system representation. The change of the system

representation, however, does not change the result as follows easily from using the Delta method. See the end
of the proof of Theorem 1 for a related discussion.
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is sufficient for the argument used in Bauer and Ljung (2002). Here the O(QT ) term in the
middle expression is due to replacing ŷt by ỹt. But Ĉ − C = O(QT ) and 〈x̂t, x̂t〉 = O(1) has
been showed in the proof of Theorem 1 given above. Therefore the conclusions of the lemma
also hold in the setting of the current paper. For the construction of M̄1 and M̄2,p see (Bauer
and Ljung, 2002).
From equation (6) we obtain an expression for K̂p −Kp whose central component is

β̂ −OfKp = 〈Y +
t,f −OfKpY

−
t,p, Y

−
t,p〉〈Y −

t,p, Y
−
t,p〉−1.

Further Y +
t,f−OfKpY

−
t,p = EfE+

t,f +Of (A−KC)pxt−p. The second term does not contribute to
the asymptotic distribution since (A−KC)p = o(T−1/2) and 〈xt−p, Y

−
t,p〉〈Y −

t,p, Y
−
t,p〉−1 = O(1)

under the assumptions of the theorem. According to lemma 1 we may replace 〈Y −
t,p, Y

−
t,p〉 by

Γ̇−p in the above expression without changing the asymptotic distribution since the difference
is o(T−1/2). Therefore the main ingredient in the asymptotic expression are terms of the form
〈εt+i, ỹt−j〉 = 〈εt, ỹt−j−i〉 + oP (T−1/2), 0 ≤ i ≤ f − 1, 1 ≤ j ≤ p using standard arguments
(see also Lemma B.3 of Bauer, 2000). The same terms also appear in 〈εt, xt〉 = 〈εt, Y

−
t,p〉K′p +

o(T−1/2) using lemma 4.
The remainders of the proof are based on the arguments provided in Hannan and Deistler
(1988), p. 145 ff, in particular on Bernstein’s lemma (see e.g. Hannan and Deistler, 1988,
Lemma 4.3.3.). In the notation of Hannan and Deistler (1988) we show that for the essential
term derived above (using r = f + p− 1)

vec(Â−A, K̂ −K, Ĉ − C) = Mrvec[〈εt, ỹt−1〉, 〈εt, ỹt−2〉, . . . , 〈εt, ỹt−r〉] + oP (T−1/2)

we can use

xT :=
√

TMrvec[〈εt, ỹt−1〉, 〈εt, ỹt−2〉, . . . , 〈εt, ỹt−r〉],
yT (ε) :=

√
TMr,1:mvec[〈εt, ỹt−1〉, 〈εt, ỹt−2〉, . . . , 〈εt, ỹt−m〉],

zT (ε) :=
√

TMr,m+1:rvec[〈εt, ỹt−m−1〉, . . . , 〈εt, ỹt−r〉].

in order to deduce asymptotic normality of xT and therefore of the system matrix estimates.
Here m is a fixed integer, i.e. not depending on T . Further the notation Mr,a:b is used to denote
the matrix composed of the block columns indexed a up to b of Mr. Then for asymptotic
normality of

√
Tvec(Â−A, K̂−K, Ĉ−C) it is sufficient to show that for each ζ > 0, η > 0, ε > 0

there exists an m such that yT (ε) is asymptotically normal (where the asymptotic variance
matrix Σ(ε) of yT (ε) converges to Σ for ε → 0) and P{zT (ε)′zT (ε) > ζ} < η. Using Bernstein’s
lemma again in order to rewrite ỹt−j as a truncated sum of past εt’s plus truncation error shows
that

√
Tvec[〈εt, ỹt−1〉, 〈εt, ỹt−2〉, . . . , 〈εt, ỹt−m〉] converges to a multivariate normal distribution

under assumptions 1 on the noise. The arguments for this are provided by Lemma 4.3.4. of
Hannan and Deistler (1988) and the discussion above the lemma. Therefore Mr,1:m → M1:m

for some matrix M1:m is a sufficient condition for yT (ε) to be asymptotically normal.
It remains to be showed that by choosing m sufficiently large zT (ε) can be made arbitrarily
small (in probability). This will be done below. For a scalar sequence (i.e. yt ∈ R)

ET 〈εt, ỹt−j〉〈εt, ỹt−j〉 =
1
T

T∑

t,s=j+1

Eεtεsỹt−j ỹs−j =
1
T

T∑

t=j+1

Eε2
t ỹ

2
t−j ≤ (Eε4

t )
1/2(Eỹ4

t )
1/2 < ∞
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due to the martingale difference assumption, strict stationarity and assumed finite fourth mo-
ments of εt. For vector valued εt the bound can be established for each coordinate separately.
Note that the bound is uniform in 0 < j < T . Hence

E|
√

Tx′Mr,m+1:rvec[〈εt, ỹt−m−1〉, . . . , 〈εt, ỹt−r〉]| ≤
r∑

j=m+1

‖M ′
r,j:j‖∞E

√
T‖〈εt, ỹt−j〉‖1

≤ c

r∑

j=m+1

‖M ′
r,j:j‖∞

(
E‖
√

T 〈εt, ỹt−j〉‖2
2

)1/2

≤ c‖Mr,m+1:r‖∞
for some suitably chosen constant c (not necessarily the same in each inequality) and any
vector x such that ‖x‖∞ = 1. Therefore in order to show that P{zT (ε)′zT (ε) > ζ} can be
made arbitrarily small it is sufficient to show that by choosing m large supr≥m ‖Mr,m+1:r‖∞
can be made arbitrarily small. Then choosing m large enough

P{zT (ε)′zT (ε) > ζ} ≤ P{‖zT (ε)‖∞ > c
√

ζ} ≤ E‖zT (ε)‖∞/(c
√

ζ) ≤ ‖Mr,m+1:r‖∞c′/
√

ζ ≤ η

for suitably small c using the equivalence of norms in finite dimensional spaces and the Markov
inequality. Here c′ denotes a suitable constant and the last inequality holds by choosing
m large enough. Therefore it follows that a sufficient condition for both assumptions of
Bernstein’s lemma to hold is ‖[Mr, 0]−M∞‖∞ → 0 for some matrix M∞ with ‖M∞‖∞ < ∞.
For the term

√
T 〈εt, xt〉 =

√
T 〈εt, Y

−
t,p〉K′p + oP (1) the condition is obvious. (Bauer and

Ljung, 2002) establish the required condition for M̄2,p in Lemma 3. There it is seen that M̄2,p

consists of a finite sum of terms of the form Nj(Lp,j ⊗ In) where Nj are finite dimensional
matrices independent of the sample size and where Lp,j is equal to either [Is, 0],KpΓ̇−p or
Kp[Ḣ′1,p, Γ̇

−
p ]. For

M̄2,pvec(K̂p−Kp) = M̄2,p

(
(I −K′pS′p)(Γ̇−p )−1 ⊗ (O′fWOf )−1O′fWEf

)
vec

[
〈E+

t,f , Y −
t,p〉

]
+oP (T−1/2)

the result follows from tedious but straightforward computations using the bound on the
infinity norm of (Γ̇−p )−1 presented in Lemma 6.6.11 of (Hannan and Deistler, 1988) and
the decomposition of M̄2,p given above. Also the fact that S′p(Γ̇−p )−1 converges to a matrix
whose elements decrease exponentially is used which can be showed using the arguments in
the proof of Lemma 5.5. of Bauer (2000). Here in the case that f = p → ∞ Lemma 4.1.2.
of (Bauer, 1998) is used in order to relate the expression using the matrix 〈E+

t,f , Y −
t,p〉 which

apart from initial effects is block Hankel to an expression using only the essential entries, i.e.
〈εt, ỹt−j〉, j = 1, . . . , f + p− 1. Also to account for f →∞ the fact that O′f (Γ̇+

f )−1 converges
to a matrix whose elements decrease exponentially is used (see equations (8,9,19) and Lemma
5.1. of Bauer (2000)).
The proof for the case of estimated D̂ is totally analogous noting that according to (3)
the asymptotic distribution of the estimated covariance sequence does not change due to
estimating D rather than knowing the true matrix. This concludes the proof. ¤

A.3 Proof of Theorem 3

Note that in the statement of this theorem Tt is restricted to be a harmonic process. This
has been done in order to preserve the equivalence of the estimators of θ as well as the pa-
rameters contained in D. For the pseudo maximum likelihood estimates it can be proved
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using standard linearization techniques that the estimators θ̂ML and D̂ML are asymptotically
equivalent to the estimators θ̃ML obtained using the unfeasible process ỹt, t = 1, . . . , T as
data for the estimation of θ and estimating D as D̂ = 〈yt, Tt〉〈Tt, Tt〉−1. Here the meaning
of asymptotically equivalent is that the difference of the estimators is of order oP (T−1/2).
It will be shown below that θ̃ML − θ̃CCA = oP (T−1/2) where θ̃CCA denotes the (unfeasible)
CCA estimator based on ỹt, t = 1, . . . , T . In the subspace case D̂CCA = D̂ by definition. The
theorem then follows from θ̂i− θ̃CCA = oP (T−1/2) which is straightforward to verify using (3)
reconsidering the proof of Theorem 2. Hence the details are omitted. Here all parameter
vectors refer to the same multiindex i.
Therefore it remains to establish the asymptotic equivalence of the unfeasible estimators
based on the process (ỹt)t∈Z. Again the proof consists in paralleling the proof for the condi-
tionally homoskedastic situation with analyzing the arguments which involve the assumption
E{εtε

′
t | Ft−1} = Ω which has been used in Bauer (2000) but is not imposed in the present

paper. The basis in this respect is the proof given in Bauer (2000). In the following we will
step through the proof by noting the points where the arguments have to be changed rather
than presenting a selfcontained proof. Such a proof would essentially replicate the arguments
given in Bauer (2000) as will be clear from the following analysis. Instead we will only discuss
the changes in the proof in order to hold also under the assumptions of this paper. This
implies that the following proof can only be understood once Bauer (2000) has been studied.
We also refrain from introducing concepts which are used in the proof but nowhere else in this
paper. For details see Bauer (2000). All cited lemmas and theorems refer to Bauer (2000).
The first three lemmas in appendix B are not specific to subspace methods. Lemma B.1
obviously continuous to hold. In Lemma B.2. γj has to be replaced by γ̇j in order for the
inequalities to hold. Note that γ̂j = O(1) continues to hold uniformly in |j| < HT due to
ergodicity of εt, since 〈εt, εt〉 = Ω̇ → Ω a.s. Lemma B.3 uses ergodicity, strict stationarity and
equation (5.3.7) of Hannan and Deistler (1988) and hence also continues to hold. Lemma B.4
uses only 〈ỹt−j , εt〉 = O(QT ) which holds under the current assumptions and hence the proof
holds unchanged.
Appendix A of Bauer (2000) describes the properties of the CCA estimate under the assump-
tions on f and p given in this paper. Lemma A.1 is implied by Theorem 1 as has been noted
above. The proof of Lemma A.2. holds unchanged, since in no place γ̂j − γj is used, but only
γ̂j = O(1). Lemma A.3. holds for the calculated backward system using Ω0, the true innova-
tion variance, rather than an estimate thereof. If the backward system is calculated at Ω̇ the
error bound on the backward system calculated on the basis of the estimated forward system
cannot be showed with the tools provided above. Fortunately, this is not needed in the proof
of the main result of Bauer (2000), see below for details. Lemma A.4 again holds unchanged,
since it uses analogous arguments to Lemma A.2. Therefore all preliminary lemmas remain
to hold under the less restrictive assumptions 1 (with the exception of the replacement of γj

by γ̇j for the uniform convergence argument).
In the main text of Bauer (2000) it is straightforward to verify that the arguments hold
unchanged up to Lemma 5.1 given the fact that all preliminary lemmae hold with the ap-
propriate changes indicated above. In Lemma 5.1 a matrix Zf appears, which uses the true
covariance sequence in its definition. We can introduce a matrix Żf converging to Ż∞ such
that the result given in the lemma still holds (a.s.): Here Żf is defined from the equation

Ξ̇−1
f Of = (Γ̇+

f )−1Of + (Γ̇+
f )−1Of (Σ̇−1

x −O′f (Γ̇+
f )−1Of )−1O′f (Γ̇+

f )−1Of = (Γ̇+
f )−1Of Żf
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where all quantities correspond to the estimated system (Â, K̂, Ĉ) and Ω̇ = 〈εt, εt〉 as the
innovation variance. This follows since in the derivation of the results for Zf the only as-
sumption on the true covariance Ω used is the positive definiteness which also holds for Ω̇
a.s. for T large enough due to consistency. Note that Ω̂(θ̂CCA) in Bauer (2000) is equal to
〈ε̂t, ε̂t〉 = 〈εt, εt〉+o(T−1/2) as follows from (7). This result is used in the proof of Lemma 5.2,
where Z∞Kb

f (θ̂CCA) now has to be replaced by Ż∞K̇b
f (θ̂CCA) using K̇b∞(θ̂CCA) = O′∞(Γ̇+∞)−1.

For definitions see Bauer (2000). The evaluations to show that the lemma holds with these
replacements are identical to the ones given in Bauer (2000) and hence omitted.
The paragraph below Lemma 5.2 discusses the replacement of K̇b

f (θ̂CCA) by Ôf
′
(Γ̂+

f )−1. The
discussion remains true since at no point the true covariance or conditional homosekdasticity
is used.
Lemma 5.3 does not use conditional homoskedasticity and hence its conclusions remain true
under the current set of assumptions. In Lemma 5.4. the error bound 〈x̂t, ỹt−p−1〉 = o(T−ε)
is derived using the uniform convergence of sample covariances in combination with the
fact Extỹ

′
t−p−1 = o(T−ε) for suitable ε > 0. This bound is derived from xt = Apxt−p +∑p−1

j=0 AjKεt−j where Ap = o(T−ε) for p obeying the lower bound. Therefore replacing the
true covariances with the dotted quantities leaves the error bound unchanged. Note that

K̇b
f (θ̂CCA) = Ôf

′
(Γ̂+

f )−1 + O(QT ) = Kb
f (θ̂b

CCA) + O(QT )

where the first equality has been stated above. The second equality is the backward analogue
to K̂p−Kp(θ̂CCA) = O(QT ) according to Lemma 5.1 and the proof of Lemma A.1. Here θ̂b

CCA

denotes a parameter vector corresponding to the estimated backward system (see Bauer, 2000,
for a definition). Then the proof of Lemma 5.4. follows from

(K̇b
f (θ̂CCA)−Kb

f (θ̂b
CCA))(Ôf −Of (θ̂CCA)) = O(Q2

T p) = o(T−1/2)

using the error bound on K̇b
f (θ̂CCA)−Kb

f (θ̂b
CCA) derived above, Ôf −Of (θ̂CCA) = O(QT ) by

Lemma 5.1. and the expression of Ôf − Of given in the proof of Theorem 1 above in order
to apply Lemma 1. This finishes the proof for derivatives with respect to entries in K.
Corresponding to the derivation concerning derivatives with respect to entries in A the same
reasoning holds as the previously established lemmae are used with the indicated changes
(i.e. exchanging Ω for Ω̇ in the formulations where needed). For derivatives with respect to
entries in C the proof of Lemma 5.5 follows the same lines as before, where in each occurring
covariance matrix Ω̇ is used in place of Ω. This concludes the proof of the Theorem. ¤

A.4 Proof of Theorem 4

The main argument in the proof of Theorem 3 in Bauer (2001) is ‖X̂f,p−X0‖2 = O(QT
√

fp),
where X̂f,p = Ŵ+

f β̂〈Y −
t,p, Y

−
t,p〉1/2 and X0 denotes the same quantity corresponding to the

true covariances. By replacing true covariances with the corresponding dotted quantities, i.e.
using Ẋ0 = W+

f OfKp(Γ̇−p )1/2 the same result holds in the present framework from noting that

Ŵ+
f −W+

f = O(QT ) according to assumptions 2, β̂ − OfKp = O(QT ) as shown above and
〈Y −

t,p, Y
−
t,p〉 − Γ̇−p = O(QT ) due to the uniform convergence of the covariance estimates. Here

also the fact that the difference of the square root of two positive definite matrices is of the
same order of magnitude as the difference in the matrices themselves (for small deviations)
as is showed e.g. in Bauer (1998). Note that the rank of Ẋ0 does not depend on the noise
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covariance matrix Ω̇ but only on the rationality of k(z). This is the only change in the proof
of the theorem as compared to Theorem 3 of (Bauer, 2001). Therefore we refer to the original
article for details. ¤.

A.5 Proof of Theorem 5

Deal first with the case D̂ = D where the effects of Tt are assumed to be known. The
estimation of D will be dealt with later. In order to simplify notation let Et = vech[εtε

′
t]

and Êt = vech[ε̂tε̂
′
t] where ε̂t here denotes the estimates of the innovations sequence based

on the Kalman filter corresponding to the subspace estimate θ̂ using zero initial conditions.
Further let Et,p = vech[εt−1ε

′
t−1, . . . , εt−pε

′
t−p] and again analogously Êt,p is defined. Here

’vech’ denotes the vector of the stacked lower triangular part of a matrix or the vector of
the stacked lower triangular parts of a set of matrices. Let xt = [1, E′

t,p]
′, x̂t = [1, Ê′

t,p]
′ and

β ∈ R[s(s+1)/2]×[ps(s+1)/2+1]. Then the two estimation equations can be written as

Et = βxt + ut, Êt = βx̂t + ût

The IV estimates of β based on the two data sets hence are given as

β̂IV = 〈Et, zt〉Ŵ 〈zt, xt〉
(
〈xt, zt〉Ŵ 〈zt, xt〉

)−1

β̃IV = 〈Êt, zt〉Ŵ 〈zt, x̂t〉
(
〈x̂t, zt〉Ŵ 〈zt, x̂t〉

)−1
.

A typical choice for Ŵ would be Ŵ = 〈zt, zt〉−1 which in a conditionally homoskedastic
framework corresponds to the optimal choice. In the theorem this weighting is assumed to
be chosen. The proof below will show that more general weightings could be used. Note that
〈zt, zt〉 → Eztz

′
t > 0, 〈xt, zt〉 → Extz

′
t, 〈Et, zt〉 → EEtz

′
t due to ergodicity, stationarity and

finite moments. Furthermore

√
Tvec(β̂IV − β) = (ΣXZ ⊗ I)

1√
T

T∑

t=1

zt ⊗ ut + oP (1)

for Ŵ = 〈zt, zt〉 where ΣXZ =
(
Extz

′
t(Eztz

′
t)
−1Eztx

′
t

)−1 Extz
′
t(Eztz

′
t)
−1. Note that for ut =

Et − βxt the process zt ⊗ ut is a strictly stationary ergodic square integrable martingale
difference such that T−1

∑T
t=1 ztz

′
t⊗utu

′
t → Eztz

′
t⊗utu

′
t (again due to ergodicity and existence

of the expectation in the limit). Therefore
√

T
−1 ∑T

t=1 zt ⊗ ut converges in distribution to
a Gaussian limit (see e.g. Davidson, 1994, Theorem 24.3). Furthermore the variance of the
limiting Gaussian variable of

√
Tvec(β̂IV − β) is equal to

[ΣXZ ⊗ I]E
(
ztz

′
t ⊗ utu

′
t

) [
Σ′XZ ⊗ I

]

It is straightforward to verify that sufficient conditions for the equivalence of the asymptotic
properties of β̂IV and β̃IV are (

p→ denoting convergence in probability)

√
T 〈Et − Êt, zt〉 p→ 0,

√
T 〈xt − x̂t, zt〉 p→ 0.

Both xt− x̂t and Et−Êt involve expressions composed of entries of lagged values of εtε
′
t− ε̂tε̂

′
t.

Note that
ε̂t − εt = ε̂t(θ̂)− ε̂t(θ0) + o(ρt) = ∂ε̂t(θ̄)(θ̂ − θ0) + o(ρt)
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using a mean value expansion (∂ denoting partial derivative with respect to the entries in θ)
where the o(ρt) term corresponds to neglecting the initial state and 0 < ρ0 < ρ < 1. As usual
θ̄ denotes a value on the line segment between θ0 and θ̂. Here ε̂t(θ) denotes the innovations
estimated based on the Kalman filter corresponding to the parameter vector θ assuming initial
state x1 = 0. Since ε̂t(θ) = yt−DTt−C(θ)xt(θ) it follows that ∂ε̂t(θ) is Ft−1 measurable and
hence E{εt∂iε̂t(θ)′ | Ft−1} = 0 for all i, where ∂i denotes partial derivative with respect to
the i-th component of θ. This conditional uncorrelatedness is the reason for the equivalence
of the asymptotic distributions: Since zt is assumed to be Ft−p−1 measurable the statement
above implies that E{εt−j∂iε̂t−j(θ)′zt,r|Ft−p−1} = 0, j = 0, 1, . . . , p for each coordinate zt,r of
zt and hence the instruments are uncorrelated with the highest order term in the estimation
error Êt − Et and Êt,p − Et,p. Note that

√
T (θ̂ − θ0) converges in distribution according to

Theorem 2.
In the following we will only deal with the scalar case. The multivariate case is only no-
tationally more complex. The main arguments are identical. Hence consider (using εt =
o(t1/2), ∂ε̂t(θ̄) = o(t1/2) due to convergence of sample second moments)

ε̂2
t − ε2

t = (ε̂t − εt)(ε̂t + εt) = 2εt(ε̂t − εt) + (ε̂t − εt)2

= 2εt∂ε̂t(θ̄)(θ̂ − θ0) + ∂ε̂t(θ̄)(θ̂ − θ0)(θ̂ − θ0)′∂ε̂t(θ̄)′ + o(ρtt1/2)

implying

√
T 〈Êt − Et, zt〉 =

1√
T

T∑

t=1

(
2εt∂ε̂t(θ̄)(θ̂ − θ0) + ∂ε̂t(θ̄)(θ̂ − θ0)(θ̂ − θ0)′∂ε̂t(θ̄)′

)
z′t + o(1)

=
1
T

T∑

t=1

2εtz
′
t∂ε̂t(θ̄)

(√
T (θ̂ − θ0)

)
+
√

T (θ̂ − θ0)′∂ε̂t(θ̄)′∂ε̂t(θ̄)(θ̂ − θ0)z′t + o(1)

where the o(1) term is due to neglecting initial effects which follows from standard arguments.
Hence 〈εt∂ε̂t(θ̄)′, zt〉 = oP (1) and 〈∂ε̂t(θ̄)′, ∂ε̂t(θ̄)′zt,i〉 = OP (1) (here zt,i denotes the i-th co-
ordinate of zt) are sufficient conditions for

√
T 〈Et − Êt, zt〉 → 0 in probability.

Consider the term 〈εt∂ε̂t(θ̄)′, zt〉 = T−1
∑T

t=1 εt∂ε̂t(θ̄)′z′t first. Note that εt∂iε̂t(θ̄)′z′t is un-
correlated to εs∂j ε̂s(θ̄)′z′s for s 6= t and each pair i, j which can be seen conditioning on
Fmax(s,t)−1. Further the variance of each term is bounded uniformly in θ̄ in a compact
neighborhood of θ0 which can be seen as follows: Note that ∂ε̂t(θ̄)′ = Θt(θ̄)Y −

t,t−1 where
Θt(θ̄) = [Θt,i(θ̄)]i=1,...,t−1,Θt,i(θ̄) ∈ R2ns×s. For θ in a compact neighborhood of θ0 we ob-
tain ‖Θt,i(θ)‖ ≤ Cρi for some ρ0 < ρ < 1. This follows from the fact that the steady state
Kalman filter has the state space representation (A(θ)−K(θ)C(θ), K(θ),−C(θ)). It is then
easy to see that also the derivative has a state space representation with stable A-matrix.
Then consistency for θ̂ shows that θ̄ enters the compact neighborhood a.s. A uniform bound
on the variance of ∂εt(θ) is then easily obtained from ‖Γ−∞‖∞ < ∞ (see Lemma 2). It is then
simple to show that E(〈εt∂iε̂t(θ̄)′, zt〉)′(〈εt∂iε̂t(θ̄)′, zt〉) → 0 for each i implying in probability
convergence of 〈εt∂ε̂t(θ̄)′, zt〉.
Next consider 〈∂ε̂t(θ̄)′, ∂ε̂t(θ̄)′zt,i〉. Note that due to the norm bound on zt it follows that
|zt,i| < C for some constant C < ∞. Hence

−〈∂ε̂t(θ̄)′, ∂ε̂t(θ̄)′〉C ≤ 〈∂ε̂t(θ̄)′, ∂ε̂t(θ̄)′zt,i〉 ≤ 〈∂ε̂t(θ̄)′, ∂ε̂t(θ̄)′〉C
in the sense that the difference is a positive definite matrix. The convergence and boundedness
of this term follows from Theorem 2.1. of Findley et al. (2001). Here the uniform bounds on
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the norm of Θt,j and their exponential decrease derived above provide the main argument.
The result

√
T 〈xt−x̂t, zt〉 → 0 in probability can be showed analogously noting that the entries

of xt−x̂t are in the scalar case (except for the first component) equal to ε̂2
t−i−ε2

t−i, i = 1, . . . , p.
Combining these two results leads to the proof of the theorem for the case D̂ = D. In the
case that D is estimated prior to applying CCA the arguments change slightly. In that case the
estimation error ε̂t − εt contains the additional term (D̂ −D)Tt. Since (Tt)t∈Z is assumed to
be independent of (εt)t∈Z it follows from ergodicity that 〈εtTt, zt〉 → 0 and 〈Tt, Ttzt,i〉 = O(1)
follows as above from the boundedness of zt.
It remains to examine the estimation of the asymptotic variance matrix: The unfeasible
estimator based on the knowledge of εt equals

[
Σ̂XZ ⊗ I

]

 1

T

T∑

t=p+1

(
ztz

′
t ⊗ ûtû

′
t

)



[
Σ̂′XZ ⊗ I

]

where Σ̂XZ =
(〈xt, zt〉〈zt, zt〉−1〈zt, xt〉

)−1 〈xt, zt〉〈zt, zt〉−1 and ût = Et − β̂IV xt denotes the
residuals. Now 〈zt, zt〉 → Eztz

′
t due to ergodicity and the existence of the moments. Similarily

〈zt, xt〉 → Eztx
′
t follows. Hence the assumptions on the rank of Extz

′
t implies that Σ̂XZ →

ΣXZ . Ergodicity together with the finiteness of the expectation ensures that T−1
∑T

t=p+1 ztz
′
t⊗

xtx
′
t → Eztz

′
t ⊗ xtx

′
t and T−1

∑T
t=p+1 ztz

′
t ⊗ EtE

′
t → Eztz

′
t ⊗ EtE

′
t. Since ut = Et − βxt is

a linear combination of Et and xt also T−1
∑T

t=p+1 ztz
′
t ⊗ utu

′
t → Eztz

′
t ⊗ utu

′
t follows. Note

that utu
′
t contains fourth powers of εt. Replacing ut by its estimates ût = Et − β̂IV xt does

not change the limit due to consistency of β̂IV as is straightforward to show.
The corresponding feasible estimator using Êt and x̂t is of the form

[
Σ̃XZ ⊗ I

]

 1

T

T∑

t=p+1

(
ztz

′
t ⊗ ũtũ

′
t

)



[
Σ̃′XZ ⊗ I

]

where Σ̃XZ =
(〈x̂t, zt〉〈zt, zt〉−1〈zt, x̂t〉

)−1 〈x̂t, zt〉〈zt, zt〉−1 and ũt = Êt − β̃IV x̂t denotes the
residuals. Since it has been showed above that

√
T 〈x̂t − xt, zt〉 → 0 in probability it follows

that 〈x̂t, zt〉 → Extz
′
t in probability and therefore Σ̃XZ → ΣXZ . The arguments to show that

T−1
∑T

t=p+1 ztz
′
t ⊗ ũtũ

′
t → Eztz

′
t ⊗ utu

′
t are identical to the proof given above: Note that

ũt − ut = Êt − β̃IV x̂t − Et + βxt = Êt − Et − (β̃IV − βIV )x̂t − β(x̂t − xt).

Hence using the mean value expansion for Êt − Et discussed above e.g. T−1
∑T

t=p+1 ztz
′
t ⊗

ut(Êt − Et)′ → 0 can be showed analogously to
√

T 〈x̂t − xt, zt〉 p→ 0, the evaluations now
being simpler since normalization is by T−1 rather than only 1/

√
T . The same arguments

also apply for the remaining terms. This concludes the proof of the Theorem. ¤
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