56,928 research outputs found

    An Adaptive Casteship Mechanism for Developing Multi-Agent Systems

    Get PDF
    In this paper, we propose an adaptive casteship mechanism for modelling anddesigning adaptive Multi-Agent Systems (MAS). In our approach, caste is the modular unit andabstraction that specify agents’ behaviour. Adaptive behaviours of agents are captured as the change of castes during their lifecycles by executing ‘join’, ‘quit’, ‘activate’ and ‘deactivate’operations on castes. The formal semantics of caste operations are rigorously defined. The properties of agent’s adaptive behaviours are formally specified and proved. A graphicalnotation of caste transition diagrams and a number of rules for check consistency are designed. An example is also presented throughout the paper

    Metamodel-based model conformance and multiview consistency checking

    Get PDF
    Model-driven development, using languages such as UML and BON, often makes use of multiple diagrams (e.g., class and sequence diagrams) when modeling systems. These diagrams, presenting different views of a system of interest, may be inconsistent. A metamodel provides a unifying framework in which to ensure and check consistency, while at the same time providing the means to distinguish between valid and invalid models, that is, conformance. Two formal specifications of the metamodel for an object-oriented modeling language are presented, and it is shown how to use these specifications for model conformance and multiview consistency checking. Comparisons are made in terms of completeness and the level of automation each provide for checking multiview consistency and model conformance. The lessons learned from applying formal techniques to the problems of metamodeling, model conformance, and multiview consistency checking are summarized

    An Individual-based Probabilistic Model for Fish Stock Simulation

    Get PDF
    We define an individual-based probabilistic model of a sole (Solea solea) behaviour. The individual model is given in terms of an Extended Probabilistic Discrete Timed Automaton (EPDTA), a new formalism that is introduced in the paper and that is shown to be interpretable as a Markov decision process. A given EPDTA model can be probabilistically model-checked by giving a suitable translation into syntax accepted by existing model-checkers. In order to simulate the dynamics of a given population of soles in different environmental scenarios, an agent-based simulation environment is defined in which each agent implements the behaviour of the given EPDTA model. By varying the probabilities and the characteristic functions embedded in the EPDTA model it is possible to represent different scenarios and to tune the model itself by comparing the results of the simulations with real data about the sole stock in the North Adriatic sea, available from the recent project SoleMon. The simulator is presented and made available for its adaptation to other species.Comment: In Proceedings AMCA-POP 2010, arXiv:1008.314

    Modelling of security properties in Alloy

    Get PDF

    Distributed execution of bigraphical reactive systems

    Get PDF
    The bigraph embedding problem is crucial for many results and tools about bigraphs and bigraphical reactive systems (BRS). Current algorithms for computing bigraphical embeddings are centralized, i.e. designed to run locally with a complete view of the guest and host bigraphs. In order to deal with large bigraphs, and to parallelize reactions, we present a decentralized algorithm, which distributes both state and computation over several concurrent processes. This allows for distributed, parallel simulations where non-interfering reactions can be carried out concurrently; nevertheless, even in the worst case the complexity of this distributed algorithm is no worse than that of a centralized algorithm

    An overview of the VRS virtual platform

    Get PDF
    This paper provides an overview of the development of the virtual platform within the European Commission funded VRShips-ROPAX (VRS) project. This project is a major collaboration of approximately 40 industrial, regulatory, consultancy and academic partners with the objective of producing two novel platforms. A physical platform will be designed and produced representing a scale model of a novel ROPAX vessel with the following criteria: 2000 passengers; 400 cabins; 2000 nautical mile range, and a service speed of 38 knots. The aim of the virtual platform is to demonstrate that vessels may be designed to meet these criteria, which was not previously possible using individual tools and conventional design approaches. To achieve this objective requires the integration of design and simulation tools representing concept, embodiment, detail, production, and operation life-phases into the virtual platform, to enable distributed design activity to be undertaken. The main objectives for the development of the virtual platform are described, followed by the discussion of the techniques chosen to address the objectives, and finally a description of a use-case for the platform. Whilst the focus of the VRS virtual platform was to facilitate the design of ROPAX vessels, the components within the platform are entirely generic and may be applied to the distributed design of any type of vessel, or other complex made-to-order products
    corecore