3 research outputs found

    Affective Umbrella – A Wearable System to Visualize Heart and Electrodermal Activity, towards Emotion Regulation through Somaesthetic Appreciation

    Get PDF
    In this paper, we introduce Affective Umbrella, a novel system to record, analyze and visualize physiological data in real time via an umbrella handle. We implement a biofeedback loop design in the system that triggers visualization changes to reflect and regulate emotions through somaesthetic appreciation. We report the methodology, processes, and results of data reliability and visual feedback impact on emotions. We evaluated the system using a real-life user study (n=21) in rainy weather at night. The statistical results demonstrate the potential of applying the visualization of biofeedback to regulate emotional arousal with a significantly higher (p=.0022) score, a lower (p=.0277) dominance than baseline from self-reported SAM Scale, and physiological arousal, which was shown to be significantly increased (p<.0001) with biofeedback in terms of pNN50 and a significant difference in terms of RMSSD. There was no significant difference in terms of emotional valence changes from SAM scale. Furthermore, we compared the difference between two biofeedback patterns (mirror and inversion). The mirror effect was with a significantly higher emotional arousal than the inversion effect (p=.0277) from SAM results and was with a significantly lower RMSSD performance than the inversion effect (p<.0001). This work demonstrates the potential for capturing physiological data using an umbrella handle and using this data to influence a user’s emotional state via lighting effects

    ΠœΠ΅Ρ‚ΠΎΠ΄Π΅ Π·Π° ΠΎΡ†Π΅Π½Ρƒ Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΈΡ‡Π½Π΅ активности Π³Π»Π°Ρ‚ΠΊΠΈΡ… ΠΌΠΈΡˆΠΈΡ›Π°

    Get PDF
    Recording of the smooth stomach muscles' electrical activity can be performed by means of Electrogastrography (EGG), a non-invasive technique for acquisition that can provide valuable information regarding the functionality of the gut. While this method had been introduced for over nine decades, it still did not reach its full potential. The main reason for this is the lack of standardization that subsequently led to the limited reproducibility and comparability between different investigations. Additionally, variability between many proposed recording approaches could make EGG unappealing for broader application. The aim was to provide an evaluation of a simplified recording protocol that could be obtained by using only one bipolar channel for a relatively short duration (20 minutes) in a static environment with limited subject movements. Insights into the most suitable surface electrode placement for EGG recording was also presented. Subsequently, different processing methods, including Fractional Order Calculus and Video-based approach for the cancelation of motion artifacts – one of the main pitfalls in the EGG technique, was examined. For EGG, it is common to apply long-term protocols in a static environment. Our second goal was to introduce and investigate the opposite approach – short-term recording in a dynamic environment. Research in the field of EGG-based assessment of gut activity in relation to motion sickness symptoms induced by Virtual Reality and Driving Simulation was performed. Furthermore, three novel features for the description of EGG signal (Root Mean Square, Median Frequency, and Crest Factor) were proposed and its applicability for the assessment of gastric response during virtual and simulated experiences was evaluated. In conclusion, in a static environment, the EGG protocol can be simplified, and its duration can be reduced. In contrast, in a dynamic environment, it is possible to acquire a reliable EGG signal with appropriate recommendations stated in this Doctoral dissertation. With the application of novel processing techniques and features, EGG could be a useful tool for the assessment of cybersickness and simulator sickness.БнимањС Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΈΡ‡Π½Π΅ активности Π³Π»Π°Ρ‚ΠΊΠΈΡ… ΠΌΠΈΡˆΠΈΡ›Π° ΠΆΠ΅Π»ΡƒΡ†Π° ΠΌΠΎΠΆΠ΅ сС Ρ€Π΅Π°Π»ΠΈΠ·ΠΎΠ²Π°Ρ‚ΠΈ ΡƒΠΏΠΎΡ‚Ρ€Π΅Π±ΠΎΠΌ Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ³Π°ΡΡ‚Ρ€ΠΎΠ³Ρ€Π°Ρ„ΠΈΡ˜Π΅ (Π•Π“Π“), Π½Π΅ΠΈΠ½Π²Π°Π·ΠΈΠ²Π½Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Π΅ која ΠΏΡ€ΡƒΠΆΠ° Π·Π½Π°Ρ‡Π°Ρ˜Π½Π΅ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΡ˜Π΅ Π²Π΅Π·Π°Π½Π΅ Π·Π° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½ΠΈΡΠ°ΡšΠ΅ ΠΎΡ€Π³Π°Π½Π° Π·Π° Π²Π°Ρ€Π΅ΡšΠ΅. Упркост Ρ‡ΠΈΡšΠ΅Π½ΠΈΡ†ΠΈ Π΄Π° јС ΠΎΡ‚ΠΊΡ€ΠΈΠ²Π΅Π½Π° ΠΏΡ€Π΅ вишС ΠΎΠ΄ Π΄Π΅Π²Π΅Ρ‚ Π΄Π΅Ρ†Π΅Π½ΠΈΡ˜Π°, ΠΎΠ²Π° Ρ‚Π΅Ρ…Π½ΠΈΠΊΠ° још ΡƒΠ²Π΅ΠΊ нијС остварила свој ΠΏΡƒΠ½ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΡ˜Π°Π». Основни Ρ€Π°Π·Π»ΠΎΠ³ Π·Π° Ρ‚ΠΎ јС нСдостатак ΡΡ‚Π°Π½Π΄Π°Ρ€Π΄ΠΈΠ·Π°Ρ†ΠΈΡ˜Π΅ који условљава ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅ΡšΠ° Ρƒ смислу поновљивости ΠΈ упорСдивости ΠΈΠ·ΠΌΠ΅Ρ’Ρƒ Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚ΠΈΡ… ΠΈΡΡ‚Ρ€Π°ΠΆΠΈΠ²Π°ΡšΠ°. Π”ΠΎΠ΄Π°Ρ‚Π½ΠΎ, Π²Π°Ρ€ΠΈΡ˜Π°Π±ΠΈΠ»Π½ΠΎΡΡ‚ која јС присутна Ρƒ ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚ΠΈΡ… ΠΏΡ€Π΅ΠΏΠΎΡ€ΡƒΡ‡Π΅Π½ΠΈΡ… поступака снимања, ΠΌΠΎΠΆΠ΅ ΡΠΌΠ°ΡšΠΈΡ‚ΠΈ интСрСс Π·Π° ΡƒΠΏΠΎΡ‚Ρ€Π΅Π±Ρƒ Π•Π“Π“-Π° ΠΊΠΎΠ΄ ΡˆΠΈΡ€ΠΎΠΊΠΎΠ³ опсСга ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΡ˜Π°Π»Π½ΠΈΡ… корисника. Наш Ρ†ΠΈΡ™ јС Π±ΠΈΠΎ Π΄Π° ΠΏΡ€ΡƒΠΆΠΈΠΌΠΎ Π΅Π²Π°Π»ΡƒΠ°Ρ†ΠΈΡ˜Ρƒ ΠΏΠΎΡ˜Π΅Π΄Π½ΠΎΡΡ‚Π°Π²Ρ™Π΅Π½Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Π΅ ΠΌΠ΅Ρ€Π΅ΡšΠ° Ρ‚Ρ˜. ΠΏΡ€ΠΎΡ‚ΠΎΠΊΠΎΠ»Π° који ΡƒΠΊΡ™ΡƒΡ‡ΡƒΡ˜Π΅ само јСдан ΠΊΠ°Π½Π°Π» Ρ‚ΠΎΠΊΠΎΠΌ Ρ€Π΅Π»Π°Ρ‚ΠΈΠ²Π½ΠΎ ΠΊΡ€Π°Ρ‚ΠΊΠΎΠ³ врСмСнског ΠΏΠ΅Ρ€ΠΈΠΎΠ΄Π° (20 ΠΌΠΈΠ½ΡƒΡ‚Π°) Ρƒ статичким условима са ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½ΠΈΠΌ ΠΊΡ€Π΅Ρ‚Π°ΡšΠ΅ΠΌ ΡΡƒΠ±Ρ˜Π΅ΠΊΡ‚Π° Ρ‚Ρ˜. Ρƒ ΠΌΠΈΡ€ΠΎΠ²Π°ΡšΡƒ. Π’Π°ΠΊΠΎΡ’Π΅, ΠΏΡ€ΠΈΠΊΠ°Π·Π°Π»ΠΈ смо нашС ставовС Ρƒ Π²Π΅Π·ΠΈ Π½Π°Ρ˜ΠΏΡ€ΠΈΠΊΠ»Π°Π΄Π½ΠΈΡ˜Π΅ ΠΏΠΎΠ·ΠΈΡ†ΠΈΡ˜Π΅ ΠΏΠΎΠ²Ρ€ΡˆΠΈΠ½ΡΠΊΠΈΡ… Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ΄Π° Π·Π° Π•Π“Π“ снимањС. ΠŸΡ€Π΅Π·Π΅Π½Ρ‚ΠΎΠ²Π°Π»ΠΈ смо ΠΈ Ρ€Π΅Π·ΡƒΠ»Ρ‚Π°Ρ‚Π΅ ΠΈΡΠΏΠΈΡ‚ΠΈΠ²Π°ΡšΠ° ΠΌΠ΅Ρ‚ΠΎΠ΄Π°, Π½Π° Π±Π°Π·ΠΈ ΠΎΠ±Ρ€Π°Π΄Π΅ Π²ΠΈΠ΄Π΅ΠΎ снимка ΠΊΠ°ΠΎ ΠΈ Ρ„Ρ€Π°ΠΊΡ†ΠΈΠΎΠ½ΠΎΠ³ Π΄ΠΈΡ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ˜Π°Π»Π½ΠΎΠ³ Ρ€Π°Ρ‡ΡƒΠ½Π°, Π·Π° ΠΎΡ‚ΠΊΠ»Π°ΡšΠ°ΡšΠ΅ Π°Ρ€Ρ‚Π΅Ρ„Π°ΠΊΠ°Ρ‚Π° ΠΏΠΎΠΌΠ΅Ρ€Π°Ρ˜Π° – јСдног ΠΎΠ΄ Π½Π°Ρ˜Π²Π΅Ρ›ΠΈΡ… ΠΈΠ·Π°Π·ΠΎΠ²Π° са којима јС суочСна Π•Π“Π“ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°. Π—Π° Π•Π“Π“ јС ΡƒΠΎΠ±ΠΈΡ‡Π°Ρ˜Π΅Π½ΠΎ Π΄Π° сС користС Π΄ΡƒΠ³ΠΎΡ‚Ρ€Π°Ρ˜Π½ΠΈ ΠΏΡ€ΠΎΡ‚ΠΎΠΊΠΎΠ»ΠΈ Ρƒ статичким условима. Наш Π΄Ρ€ΡƒΠ³ΠΈ Ρ†ΠΈΡ™ Π±ΠΈΠΎ јС Π΄Π° прСдставимо ΠΈ ΠΎΡ†Π΅Π½ΠΈΠΌΠΎ употрСбљивост супротног приступа – ΠΊΡ€Π°Ρ‚ΠΊΠΎΡ‚Ρ€Π°Ρ˜Π½ΠΈΡ… снимања Ρƒ Π΄ΠΈΠ½Π°ΠΌΠΈΡ‡ΠΊΠΈΠΌ условима. Π Π΅Π°Π»ΠΈΠ·ΠΎΠ²Π°Π»ΠΈ смо ΠΈΡΡ‚Ρ€Π°ΠΆΠΈΠ²Π°ΡšΠ΅ Π½Π° ΠΏΠΎΡ™Ρƒ ΠΎΡ†Π΅Π½Π΅ активности ΠΆΠ΅Π»ΡƒΡ†Π° Ρ‚ΠΎΠΊΠΎΠΌ појавС симптома ΠΌΡƒΡ‡Π½ΠΈΠ½Π΅ ΠΈΠ·Π°Π·Π²Π°Π½Π΅ Π²ΠΈΡ€Ρ‚ΡƒΠ΅Π»Π½ΠΎΠΌ Ρ€Π΅Π°Π»Π½ΠΎΡˆΡ›Ρƒ ΠΈ ΡΠΈΠΌΡƒΠ»Π°Ρ†ΠΈΡ˜ΠΎΠΌ воТњС. Π—Π° ΠΏΠΎΡ‚Ρ€Π΅Π±Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Π΅ Π·Π° ΠΎΡ†Π΅Π½Ρƒ Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΈΡ‡Π½Π΅ активности ΠΆΠ΅Π»ΡƒΡ†Π°, ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠΈΠ»ΠΈ смо Ρ‚Ρ€ΠΈ Π½ΠΎΠ²Π° ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π° Π·Π° ΠΊΠ²Π°Π½Ρ‚ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡ˜Ρƒ Π•Π“Π“ сигнала (Π΅Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½Ρƒ врСдност Π°ΠΌΠΏΠ»ΠΈΡ‚ΡƒΠ΄Π΅, ΠΌΠ΅Π΄ΠΈΡ˜Π°Π½Ρƒ ΠΈ крСст Ρ„Π°ΠΊΡ‚ΠΎΡ€) ΠΈ ΠΈΠ·Π²Ρ€ΡˆΠΈΠ»ΠΈ ΠΏΡ€ΠΎΡ†Π΅Π½Ρƒ ΡšΠΈΡ…ΠΎΠ²Π΅ прикладности Π·Π° ΠΎΡ†Π΅Π½Ρƒ гастроинтСстиналног Ρ‚Ρ€Π°ΠΊΡ‚Π° Ρ‚ΠΎΠΊΠΎΠΌ ΠΊΠΎΡ€ΠΈΡˆΡ›Π΅ΡšΠ° Π²ΠΈΡ€Ρ‚ΡƒΠ΅Π»Π½Π΅ рСалности ΠΈ симулатора воТњС. Π—Π°ΠΊΡ™ΡƒΡ‡Π°ΠΊ јС Π΄Π° Π•Π“Π“ ΠΏΡ€ΠΎΡ‚ΠΎΠΊΠΎΠ» Ρƒ статичким условима ΠΌΠΎΠΆΠ΅ Π±ΠΈΡ‚ΠΈ ΡƒΠΏΡ€ΠΎΡˆΡ›Π΅Π½ ΠΈ њСгово Ρ‚Ρ€Π°Ρ˜Π°ΡšΠ΅ ΠΌΠΎΠΆΠ΅ Π±ΠΈΡ‚ΠΈ Ρ€Π΅Π΄ΡƒΠΊΠΎΠ²Π°Π½ΠΎ, Π΄ΠΎΠΊ јС Ρƒ Π΄ΠΈΠ½Π°ΠΌΠΈΡ‡ΠΊΠΈΠΌ условима ΠΌΠΎΠ³ΡƒΡ›Π΅ снимити ΠΎΠ΄Π³ΠΎΠ²Π°Ρ€Π°Ρ˜ΡƒΡ›ΠΈ Π•Π“Π“ сигнал, Π°Π»ΠΈ ΡƒΠ· ΠΏΡ€Π°Ρ›Π΅ΡšΠ΅ ΠΏΡ€Π΅ΠΏΠΎΡ€ΡƒΠΊΠ° Π½Π°Π²Π΅Π΄Π΅Π½ΠΈΡ… Ρƒ овој Ρ‚Π΅Π·ΠΈ. Π£ΠΏΠΎΡ‚Ρ€Π΅Π±ΠΎΠΌ Π½ΠΎΠ²ΠΈΡ… Ρ‚Π΅Ρ…Π½ΠΈΠΊΠ° Π·Π° ΠΏΡ€ΠΎΡ†Π΅ΡΠΈΡ€Π°ΡšΠ΅ сигнала ΠΈ ΠΏΡ€ΠΎΡ€Π°Ρ‡ΡƒΠ½ ΠΎΠ΄Π³ΠΎΠ²Π°Ρ€Π°Ρ˜ΡƒΡ›ΠΈΡ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Π°Ρ€Π°, Π•Π“Π“ ΠΌΠΎΠΆΠ΅ Π±ΠΈΡ‚ΠΈ корисна Ρ‚Π΅Ρ…Π½ΠΈΠΊΠ° Π·Π° ΠΎΡ†Π΅Π½Ρƒ ΠΌΡƒΡ‡Π½ΠΈΠ½Π΅ ΠΈΠ·Π°Π·Π²Π°Π½Π΅ ΠΊΠΎΡ€ΠΈΡˆΡ›Π΅ΡšΠ΅ΠΌ симулатора ΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π° Π²ΠΈΡ€Ρ‚ΡƒΠ΅Π»Π½Π΅ рСалност

    Considering Gut Biofeedback for Emotion Regulation

    Get PDF
    International audienceRecent research in the enteric nervous system, sometimes called the second brain, has revealed potential of the digestive system in predicting emotion. Even though people regularly experience changes in their gastrointestinal (GI) tract which influence their mood and behavior multiple times per day, robust measurements and wearable devices are not quite developed for such phenomena. However, other manifestations of the autonomic nervous system such as electrodermal activity, heart rate, and facial muscle movement have been extensively used as measures of emotions or in biofeedback applications, while neglecting the gut. We expose electrogastrography (EGG), i.e., recordings of the myoelectric activity of the GI tract, as a possible measure for inferring human emotions. In this paper, we also wish to bring into light some fundamental questions about emotions, which are often taken for granted in the field of Human Computer Interaction, but are still a great debate in the fields of cognitive neuroscience and psychology
    corecore