1,038 research outputs found

    Effects of Delay on the Functionality of Large-scale Networks

    Get PDF
    Networked systems are common across engineering and the physical sciences. Examples include the Internet, coordinated motion of multi-agent systems, synchronization phenomena in nature etc. Their robust functionality is important to ensure smooth operation in the presence of uncertainty and unmodelled dynamics. Many such networked systems can be viewed under a unified optimization framework and several approaches to assess their nominal behaviour have been developed. In this paper, we consider what effect multiple, non-commensurate (heterogeneous) communication delays can have on the functionality of large-scale networked systems with nonlinear dynamics. We show that for some networked systems, the structure of the delayed dynamics allows functionality to be retained for arbitrary communication delays, even for switching topologies under certain connectivity conditions; whereas in other cases the loop gains have to be compensated for by the delay size, in order to render functionality delay-independent for arbitrary network sizes. Consensus reaching in multi-agent systems and stability of network congestion control for the Internet are used as examples. The differences and similarities of the two cases are explained in detail, and the application of the methodology to other technological and physical networks is discussed

    Dynamic Quantized Consensus of General Linear Multi-agent Systems under Denial-of-Service Attacks

    Get PDF
    In this paper, we study multi-agent consensus problems under Denial-of-Service (DoS) attacks with data rate constraints. We first consider the leaderless consensus problem and after that we briefly present the analysis of leader-follower consensus. The dynamics of the agents take general forms modeled as homogeneous linear time-invariant systems. In our analysis, we derive lower bounds on the data rate for the multi-agent systems to achieve leaderless and leader-follower consensus in the presence of DoS attacks, under which the issue of overflow of quantizer is prevented. The main contribution of the paper is the characterization of the trade-off between the tolerable DoS attack levels for leaderless and leader-follower consensus and the required data rates for the quantizers during the communication attempts among the agents. To mitigate the influence of DoS attacks, we employ dynamic quantization with zooming-in and zooming-out capabilities for avoiding quantizer saturation

    Consensus of second-order multi-agent systems with delayed nonlinear dynamics and intermittent communications

    Get PDF
    This article investigates the second-order consensus problem of multi-agent systems with inherent delayed nonlinear dynamics and intermittent communications. Each agent is assumed to obtain the measurements of relative states between its own and the neighbours' only at a sequence of disconnected time intervals. A new kind of protocol based only on the intermittent measurements of neighbouring agents is proposed to guarantee the states of agents to reach second-order consensus under a fixed strongly connected and balanced topology. By constructing a common Lyapunov function, it is shown that consensus can be reached if the general algebraic connectivity and communication time duration are larger than their corresponding threshold values, respectively. Finally, simulation examples are provided to verify the effectiveness of the theoretical analysis

    An Overview of Recent Progress in the Study of Distributed Multi-agent Coordination

    Get PDF
    This article reviews some main results and progress in distributed multi-agent coordination, focusing on papers published in major control systems and robotics journals since 2006. Distributed coordination of multiple vehicles, including unmanned aerial vehicles, unmanned ground vehicles and unmanned underwater vehicles, has been a very active research subject studied extensively by the systems and control community. The recent results in this area are categorized into several directions, such as consensus, formation control, optimization, task assignment, and estimation. After the review, a short discussion section is included to summarize the existing research and to propose several promising research directions along with some open problems that are deemed important for further investigations

    Cooperative Strategies for Management of Power Quality Problems in Voltage-Source Converter-based Microgrids

    Get PDF
    The development of cooperative control strategies for microgrids has become an area of increasing research interest in recent years, often a result of advances in other areas of control theory such as multi-agent systems and enabled by emerging wireless communications technology, machine learning techniques, and power electronics. While some possible applications of the cooperative control theory to microgrids have been described in the research literature, a comprehensive survey of this approach with respect to its limitations and wide-ranging potential applications has not yet been provided. In this regard, an important area of research into microgrids is developing intelligent cooperative operating strategies within and between microgrids which implement and allocate tasks at the local level, and do not rely on centralized command and control structures. Multi-agent techniques are one focus of this research, but have not been applied to the full range of power quality problems in microgrids. The ability for microgrid control systems to manage harmonics, unbalance, flicker, and black start capability are some examples of applications yet to be fully exploited. During islanded operation, the normal buffer against disturbances and power imbalances provided by the main grid coupling is removed, this together with the reduced inertia of the microgrid (MG), makes power quality (PQ) management a critical control function. This research will investigate new cooperative control techniques for solving power quality problems in voltage source converter (VSC)-based AC microgrids. A set of specific power quality problems have been selected for the application focus, based on a survey of relevant published literature, international standards, and electricity utility regulations. The control problems which will be addressed are voltage regulation, unbalance load sharing, and flicker mitigation. The thesis introduces novel approaches based on multi-agent consensus problems and differential games. It was decided to exclude the management of harmonics, which is a more challenging issue, and is the focus of future research. Rather than using model-based engineering design for optimization of controller parameters, the thesis describes a novel technique for controller synthesis using off-policy reinforcement learning. The thesis also addresses the topic of communication and control system co-design. In this regard, stability of secondary voltage control considering communication time-delays will be addressed, while a performance-oriented approach to rate allocation using a novel solution method is described based on convex optimization

    Design and implementation of predictive control for networked multi-process systems

    Get PDF
    This thesis is concerned with the design and application of the prediction method in the NMAS (networked multi-agent system) external consensus problem. The prediction method has been popular in networked single agent systems due to its capability of actively compensating for network-related constraints. This characteristic has motivated researchers to apply the prediction method to closed-loop multi-process controls over network systems. This thesis conducts an in-depth analysis of the suitability of the prediction method for the control of NMAS. In the external consensus problem, NMAS agents must achieve a common output (e.g. water level) that corresponds to the designed consensus protocol. The output is determined by the external reference input, which is provided to only one agent in the NMAS. This agreement is achieved through data exchanges between agents over network communications. In the presence of a network, the existence of network delay and data loss is inevitable. The main challenge in this thesis is thus to design an external consensus protocol with an efficient capability for network constraints compensation. The main contribution of this thesis is the enhancement of the prediction algorithm’s capability in NMAS applications. The external consensus protocol is presented for heterogeneous NMAS with four types of network constraints by utilising the developed prediction algorithm. The considered network constraints are constant network delay, asymmetric constant network delay, bounded random network delay, and large consecutive data losses. In the first case, this thesis presents the designed algorithm, which is able to compensate for uniform constant network delay in linear heterogeneous NMAS. The result is accompanied by stability criteria of the whole NMAS, an optimal coupling gains selection analysis, and empirical data from the experimental results. ‘Uniform network delay’ in this context refers to a situation in which the agent experiences a delay in accessing its own information, which is identical to the delay in data transfer from its neighbouring agent(s) in the network In the second case, this thesis presents an extension of the designed algorithm in the previous chapter, with the enhanced capability of compensating for asymmetric constant network delay in the NMAS. In contrast with the first case—which required the same prediction length as each neighbouring agent, subject to the same values of constant network delay—this case imposed varied constant network delays between agents, which required multi-prediction lengths for each agent. Thus, to simplify the computation, we selected a single prediction length for all agents and determined the possible maximum value of the constant network delay that existed in the NMAS. We tested the designed control algorithm on three heterogeneous pilotscale test rig setups. In the third case, we present a further enhancement of the designed control algorithm, which includes the capability of compensating for bounded random network delay in the NMAS. We achieve this by adding delay measurement signal generator within each agent control system. In this work, the network delay is considered to be half of the measured total delay in the network loop, which can be measured using a ramp signal. This method assumes that the duration for each agent to receive data from its neighbouring agent is equal to the time for the agent’s own transmitted data to be received by its neighbouring agent(s). In the final case, we propose a novel strategy for combining the predictive control with a new gain error ratio (GER) formula. This strategy is not only capable of compensating for a large number of consecutive data losses (CDLs) in the external consensus problem; it can also compensate for network constraints without affecting the consensus convergence time of the whole system. Thus, this strategy is not only able to solve the external consensus problem but is also robust to the number of CDL occurrences in NMAS. In each case, the designed control algorithm is compared with a Proportional-Integral (PI) controller. The evaluation of the NMAS output performance is conducted for each by simulations, analytical calculations, and practical experiments. In this thesis, the research work is accomplished through the integration of basic blocks and a bespoke Networked Control toolbox in MATLAB Simulink, together with NetController hardware

    Distributed synchronization algorithms for wireless sensor networks

    Get PDF
    The ability to distribute time and frequency among a large population of interacting agents is of interest for diverse disciplines, inasmuch as it enables to carry out complex cooperative tasks. In a wireless sensor network (WSN), time/frequency synchronization allows the implementation of distributed signal processing and coding techniques, and the realization of coordinated access to the shared wireless medium. Large multi-hop WSN\u27s constitute a new regime for network synchronization, as they call for the development of scalable, fully distributed synchronization algorithms. While most of previous research focused on synchronization at the application layer, this thesis considers synchronization at the lowest layers of the communication protocol stack of a WSN, namely the physical and the medium access control (MAC) layer. At the physical layer, the focus is on the compensation of carrier frequency offsets (CFO), while time synchronization is studied for application at the MAC layer. In both cases, the problem of realizing network-wide synchronization is approached by employing distributed clock control algorithms based on the classical concept of coupled phase and frequency locked loops (PLL and FLL). The analysis takes into account communication, signaling and energy consumption constraints arising in the novel context of multi-hop WSN\u27s. In particular, the robustness of the algorithms is checked against packet collision events, infrequent sync updates, and errors introduced by different noise sources, such as transmission delays and clock frequency instabilities. By observing that WSN\u27s allow for greater flexibility in the design of the synchronization network architecture, this work examines also the relative merits of both peer-to-peer (mutually coupled - MC) and hierarchical (master-slave - MS) architectures. With both MC and MS architectures, synchronization accuracy degrades smoothly with the network size, provided that loop parameters are conveniently chosen. In particular, MS topologies guarantee faster synchronization, but they are hindered by higher noise accumulation, while MC topologies allow for an almost uniform error distribution at the price of much slower convergence. For all the considered cases, synchronization algorithms based on adaptive PLL and FLL designs are shown to provide robust and scalable network-wide time and frequency distribution in a WSN

    Event-triggered pinning control of switching networks

    Get PDF
    This paper investigates event-triggered pinning control for the synchronization of complex networks of nonlinear dynamical systems. We consider networks described by time-varying weighted graphs and featuring generic linear interaction protocols. Sufficient conditions for the absence of Zeno behavior are derived and exponential convergence of a global normed error function is proven. Static networks are considered as a special case, wherein the existence of a lower bound for interevent times is also proven. Numerical examples demonstrate the effectiveness of the proposed control strategy
    corecore