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Dynamic Quantized Consensus of General
Linear Multiagent Systems Under

Denial-of-Service Attacks
Shuai Feng and Hideaki Ishii , Fellow, IEEE

Abstract—In this article, we study multiagent consensus
problems under Denial-of-Service (DoS) attacks with data
rate constraints. We first consider the leaderless consen-
sus problem and after that we briefly present the analysis
of leader–follower consensus. The dynamics of the agents
take general forms modeled as homogeneous linear time-
invariant systems. In our analysis, we derive lower bounds
on the data rate for the multiagent systems to achieve lead-
erless and leader–follower consensus in the presence of
DoS attacks, under which the issue of overflow of quantizer
is prevented. The main contribution of the article is the
characterization of the tradeoff between the tolerable DoS
attack levels for leaderless and leader–follower consensus
and the required data rates for the quantizers during the
communication attempts among the agents. To mitigate the
influence of DoS attacks, we employ dynamic quantization
with zooming-in and zooming-out capabilities for avoiding
quantizer saturation.

Index Terms—Consensus, Denial-of-Service, multiagent
systems, packet losses, quantized control.

I. INTRODUCTION

IN THE last two decades, the control of multiagent systems
has attracted substantial attention due to the progress of

technologies in communication and computation areas. Some
of the key applications can be found in formation control,
control of large-scale systems, and distributed sensor net-
works [1]. In particular, these days, a closed-loop control sys-
tem integrates sensors, computers, and communication devices,
which complies with the concept of cyber-physical systems
(CPSs). While the industry notably benefits from the tech-
nology bloom in CPSs, a challenging situation also emerges
along with the benefits due to malicious cyber attacks on
CPSs [2]–[5], in the form of, e.g., deceptive attacks and
Denial-of-Service (DoS).
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This article specifically deals with DoS attacks, which induce
packet drops maliciously and hence corrupt the availability of
data. The communication failures induced by DoS can exhibit
a temporal profile quite different from those caused by genuine
packet losses due to network congestion; particularly, packet
dropouts resulting from malicious DoS need not follow a given
class of probability distributions [6] and, therefore, the analysis
techniques relying on probabilistic arguments may not be ap-
plicable. This poses new challenges in theoretical analysis and
controller design.

In this article, our focus is on the effects of DoS attacks on
multiagent systems. Recently, systems under such attacks have
been studied from a control-theoretic viewpoint [7]–[16]. In [7],
a framework is introduced where DoS attacks are characterized
by their levels of frequency and duration. There, they derived an
explicit characterization of DoS frequency and duration under
which stability can be preserved through state-feedback control.
For multiagent systems under DoS, there are some recent results
for consensus problems with infinite data-rate communication.
For example, [13] presents theoretical as well as comprehensive
simulation studies for continuous-time system consensus under
DoS attacks with the utilization of event-triggered control.

Wireless communication appeals to industry due to its
advantages, such as transmission over long distances and lower
costs for large-scale implementation. However, the transmitted
signals are subject to analog-digital conversion and hence
quantization. Real-time data exchanged within networked
control systems may suffer from data rate constraints and hence
the quantization effects on signals need to be taken into account
at the design stage.

Static and dynamic quantizations have been proposed for
various control problems. Centralized control systems under
quantized communication have been extensively studied in the
last two decades, for example, by the seminal articles [17],
[18]. The results in such works show that an insufficient bit
rate in the communication channel influences the stability of a
networked control system. Reference [9] extended these results
to the case with DoS attacks by utilizing zooming-in and out
dynamic quantization for centralized systems. In this article, we
address issues arising from constraints on the data rate that can
occur in multiagent systems.

In addition to centralized systems, quantized consensus prob-
lems of multiagent systems have been broadly studied in the last
decade [19]–[22] and some of them take data rate constraints
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into consideration. Indeed, the issue of data rate in networked
control of multiagent systems will become relevant especially if
the agents try to reach consensus on multiple variables and the
volume of data communicated among agents is large. Reducing
the data size for each variable is one way to make the system
robust to changes in the available data rate, e.g., in wireless
communication. In [21], the authors consider the zooming-in
only quantized controller with a finite data rate. However, such
a controller may not be feasible in the context of DoS since
the quantizer would have overflow problems under DoS, due to
state divergence. This is one of the central problems caused by
considering data rate/quantization when investigating a resilient
control problem. In order to mitigate the influence of DoS attacks
and to ensure that a channel with a finite data rate is still
feasible, in this article, we design a quantized controller with
both zooming-in and zooming-out capabilities. We will show that
in the absence of DoS attacks, our result in the part of leaderless
consensus is consistent with the one in [21].

In light of the existing literature mentioned above and the
comparisons, we summarize the contributions of this article.
Our work addresses the joint effects of DoS attacks and data
rate constraints for both the leaderless and leader–follower con-
sensus problems as follows.

1) We explicitly demonstrate the tradeoffs between the re-
silience against DoS and the necessary data rate in com-
munication. That is, we find a data-rate dependent bound
of DoS frequency and duration under which consensus
can be achieved. Such tradeoffs can provide useful in-
formation for the allocation of communication resources,
e.g., to ensure that the multiagent systems can realize the
global objective of consensus under DoS, how much data
rate must be allocated to the channel; and to improve the
resilience, how much additional data rate must be ensured
and so on.

2) We develop the zooming-in and zooming-out dynamic
quantization for the case of multiagent systems. Specif-
ically, we provide the sufficient number of quantization
levels and the resulting bit rate, and particularly introduce
the computation of zooming-out factor counteracting
packet dropouts. They together ensure that the encoding–
decoding systems are free of overflow under DoS-induced
packet losses.

We now make more specific comparisons with existing works.
As mentioned above, [13] considers consensus under DoS at-
tacks with infinite data rates for communication. There, the suf-
ficient condition on DoS attacks for reaching consensus mainly
depends on the properties of the multiagent systems (e.g., the
system matrix A and consensus rate during DoS-free periods).
In contrast, our article incorporates the constraints on data rate
and develops encoding and decoding systems functioning even
in the presence of DoS. In this case, the system resilience also
depends on data rate.

The computation of zooming-out factor for multiagent sys-
tems is one of the key technical challenges in this article. This
issue arises due to the lack of “global state information” to the
agents (when the network forms a noncomplete graph). For the
centralized system case in [9], such information is in fact useful

in the zooming-in and out dynamic quantization applied there. In
the case of multiagent systems, the encoding–decoding system
of a single agent cannot have the information about its neighbors’
states and also control inputs under DoS (since control inputs of
its neighbors also depend on their own neighbors). This lack
of information induces considerable technical difficulties for
tracking the states of neighbors and, hence, for the design of
the zooming-out factor.

The rest of this article is organized as follows. In Section II,
we introduce the framework consisting of multiagent systems
and the class of DoS attacks. Section III presents the results of
leaderless consensus, which includes the controller architecture
with the zooming-in and zooming-out dynamic quantization
mechanism, sufficient conditions for data rates, and DoS bounds
under which consensus can be achieved. Section IV briefly
presents an extension of the results to the leader–follower con-
sensus problem. A numerical example is presented in Section V.
Finally, Section VI concludes this article.

This article mainly focuses on the case of leaderless
consensus, which provides the theoretical foundations for
the part of leader–follower consensus. Preliminary results
for quantized leaderless and leader–follower consensus un-
der DoS can be found in our conference articles in [23]
and [24], respectively. Compared with them, this article
provides full proofs of the results, more discussions, and
comparisons.

Notation. We denote by R the set of reals. Given b ∈ R,
R≥b and R>b denote the sets of reals no smaller than b and
reals greater than b, respectively; R≤b and R<b represent the
sets of reals no larger than b and reals smaller than b, respec-
tively; Z denotes the set of integers. For any c ∈ Z, we denote
Z≥c := {c, c+ 1, · · · }. Let �v� be the floor function such that
�v� = max{o ∈ Z|o ≤ v}. Given a vector y and a matrix Γ,
let ‖y‖ and ‖y‖∞ denote the 2- and ∞- norms of vector y,
respectively, and ‖Γ‖ and ‖Γ‖∞ represent the corresponding
induced norms of matrix Γ. ρ(Γ) denotes the spectral radius of
Γ. Given an interval I, |I| denotes its length. The Kronecker
product is denoted by ⊗. Let 0 and 1 denote the column
vectors with compatible dimensions, having all 0 and 1 elements,
respectively.

II. FRAMEWORK: MULTIAGENT SYSTEMS AND DOS

A. Communication Graph

We let graph G = (V, E) denote the communication topology
between agents, where V = {1, 2, . . . , N} denotes the set of
agents and E ⊆ V × V denotes the set of edges. Let Ni denote
the set of the neighbors of agent i, where i = 1, . . . , N . In this
article, we assume that the graph G is undirected and connected,
i.e., if j ∈ Ni, then i ∈ Nj . Let AG = [aij ] ∈ RN×N denote the
adjacency matrix of the graph G, where aij > 0 if and only if
j ∈ Ni and aii = 0. Define the Laplacian matrix LG = [lij ] ∈
RN×N , in which lii =

∑N
j=1 aij and lij = −aij if i �= j. Let λi

(i = 1, . . . , N ) denote the eigenvalues of LG and, in particular,
we have λ1 = 0 due to the graph being connected.
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B. System Description

The agents with interacting over the network G are expressed
as homogeneous general linear multiagent systems. For each
i = 1, 2, . . . , N , agent i is given as a sampled-data system with
sampling period Δ ∈ R>0 in the form of

xi(kΔ) = Axi((k − 1)Δ) +Bui((k − 1)Δ) (1)

where k ∈ Z≥1, A ∈ Rn×n and B ∈ Rn×w. It is assumed that
(A,B) is stabilizable. xi(kΔ) ∈ Rn denotes the state of agent
i with xi(0) ∈ Rn as the initial condition. We assume that an
upper bound is known, i.e., ‖xi(0)‖∞ ≤ Cx0

∈ R>0. Note that
Cx0

can be an arbitrarily large real as long as it satisfies this
bound. This is for preventing the overflow of state quantization
for the initial condition. Let ui((k − 1)Δ) ∈ Rw denote its
control input, whose computation will be given later.

We assume that the communication channel among the agents
is bandwidth limited and subject to DoS, where transmission
attempts take place periodically at time kΔ with k ∈ Z≥1.
Moreover, we assume that the transmission is acknowledgment
based and free of delay. This implies that the decoders send ac-
knowledgments to the encoders immediately when they receive
encoded signals successfully. If some acknowledgments are not
received by the encoders, it implies that due to the presence of
DoS, the decoders did not receive any data and hence they do
not send acknowledgments.

Agent i = 1, 2, . . . , N can only exchange information with
its neighbor agents j ∈ Ni. Due to the constraints of network
bandwidth, signals are encoded with a limited number of bits.
In the presence of DoS, transmission attempts may fail. For the
ease of notation, we let sr represent the instants of successful
transmissions. Note that s0 ∈ R≥Δ is the instant when the first
successful transmission occurs. Also, we let s−1 denote the time
instant 0.

Uniform quantizer. The limitation of bandwidth implies that
transmitted signals are subject to quantization. Let χ ∈ R be
the original scalar value before quantization and qR(·) be the
quantization function for scalar input values as

qR(χ) =

⎧⎪⎪⎨⎪⎪⎩
0 −σ < χ < σ
2zσ (2z − 1)σ ≤ χ < (2z + 1)σ
2Rσ χ ≥ (2R+ 1)σ
−qR(−χ) χ ≤ −σ

(2)

where R ∈ Z>0 is to be designed and z = 1, 2, . . . , R, and
σ ∈ R>0. If the quantizer is unsaturated such that |χ| ≤ (2R+
1)σ, then the error induced by quantization satisfies

|χ− qR(χ)| ≤ σ, if |χ| ≤ (2R+ 1)σ. (3)

Observe that the quantizer has 2R+ 1 levels and is determined
by two parameters σ and R, which determine the density
and quantization range of the quantizer, respectively. More-
over, we define the vector version of the quantization func-
tion as QR(β) = [ qR(β1) qR(β2) · · · qR(βf ) ]

T ∈ Rf , where
β = [β1 β2 · · ·βf ]

T ∈ Rf with f ∈ Z≥1.
To design safe control systems, we must make assumptions

regarding the DoS attacks that we expect the systems with
sufficient safety margins. If the attackers are more capable than

the assumed attack level, it would clearly be hard to guarantee
consensus. This will, however, be true for any model. In the
next section, we introduce a deterministic model characterizing
DoS attacks. This allows us to consider the worst-case attacks,
without assuming any probability distributions for launching
attacks as in the random packet loss model commonly studied
in the networked control literature.

C. Time-Constrained DoS

In this article, we refer to DoS as the event for which all the
encoded signals cannot be received by the decoders and it affects
all the agents. We consider a general DoS model that describes
the attacker’s action by the frequency of DoS attacks and their
duration. Let {hq}q∈Z0

with h0 ≥ Δ denote the sequence of
DoS off/on transitions, that is, the time instants at which DoS
exhibits a transition from zero (transmissions are successful) to
one (transmissions are not successful). Hence, Hq := {hq} ∪
[hq, hq + τq[ represents the qth DoS time-interval, of a length
τq ∈ R≥0, over which the network is in DoS status. If τq = 0,
then Hq takes the form of a single pulse at hq . Given τ, t ∈
R≥0 with t ≥ τ , let n(τ, t) denote the number of DoS off/on
transitions over [τ, t], and let Ξ(τ, t) :=

⋃
q∈Z0

Hq ∩ [τ, t] be
the subset of [τ, t] where the network is in DoS status.

Assumption 1: (DoS frequency). There exist constants η ∈
R≥0 and τD ∈ R>0 such that

n(τ, t) ≤ η +
t− τ

τD
(4)

for all τ, t ∈ R>0 with t ≥ τ . �
Assumption 2: (DoS duration). There exist constants κ ∈

R≥0 and T ∈ R>1 such that

|Ξ(τ, t)| ≤ κ+
t− τ

T
(5)

for all τ, t ∈ R>0 with t ≥ τ . �
Remark 1: Assumptions 1 and 2 do only constrain a given

DoS signal in terms of its average frequency and duration.
Following [25], τD can be defined as the average dwell-time
between consecutive DoS off/on transitions, while η is the
chattering bound. Assumption 2 expresses a similar requirement
with respect to the duration of DoS. It expresses the property that,
on the average, the total duration over which communication
is interrupted does not exceed a certain fraction of time, as
specified by 1/T . Like η, the constant κ plays the role of a
regularization term. It is needed because during a DoS interval,
one has |Ξ(hq, hq + τq)| = τq > τq/T . Thus, κ serves to make
(5) consistent. Conditions τD > 0 and T > 1 imply that DoS
cannot occur at an infinitely fast rate or be always active. �

The next lemmas relate DoS parameters and the number of
unsuccessful and successful transmissions, respectively.

Lemma 1: Consider a periodic transmission with sampling
interval Δ along with DoS attacks under Assumptions 1 and
2. If 1/T +Δ/τD < 1, then, mr ∈ Z≥0, representing the num-
ber of unsuccessful transmissions between sr−1 and sr with
r = 0, 1, · · · , satisfies

mr = (sr − sr−1)/Δ− 1

Authorized licensed use limited to: University of Groningen. Downloaded on September 23,2022 at 09:14:07 UTC from IEEE Xplore.  Restrictions apply. 
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≤ M =

⌊
(κ+ ηΔ) (1− 1/T −Δ/τD)−1

Δ

⌋
. (6)

Proof. This lemma can be easily derived from Lemma 1 in [11]
and we refer the readers to the full proof there. �

For the ease of notation, we let m represent mr in the subse-
quent sections.

Lemma 2: Consider the DoS attacks characterized by As-
sumptions 1 and 2 and the network sampling period Δ. If
1/T +Δ/τD < 1, then TS(Δ, kΔ), denoting the number of
successful transmissions within the interval [Δ, kΔ], satisfies

TS(Δ, kΔ) ≥ (1− 1/T −Δ/τD) k − (κ+ ηΔ)/Δ. (7)

Proof. This lemma can be easily derived from Lemma 3 in [9]
and we refer the readers to that article. �

Remark 2: If the network is free of DoS attacks (T = τD=∞
and κ = η = 0), then m = M = 0 and TS(Δ, kΔ) = k, i.e.,
there is no failure in transmissions between sr−1 and sr for
every r, and every transmission attempt will be successful, re-
spectively. Therefore, they reduce to nominal standard periodic
transmissions. �

III. LEADERLESS QUANTIZED CONSENSUS UNDER DOS

The objective of this section is to design a quantized controller,
possibly dynamic, in such a way that a finite-level quantizer is not
overflowed and the multiagent system (1) can tolerate as many
DoS attacks as possible for reaching consensus. Specifically, we
introduce the average of the states x(kΔ) = 1

N

∑N
i=1 xi(kΔ) ∈

Rn and consensus among the agents is defined by

lim
k→∞

‖xi(kΔ)− x(kΔ)‖∞ = 0, i = 1, 2, . . . , N. (8)

For the ease of illustration, in the rest of the article we simply let
k represent kΔ, e.g., xi(k) represents xi(kΔ). We are interested
in some A having at least one eigenvalue on or outside the unit
circle. Otherwise, the multiagent system in (1) can achieve state
consensus by setting ui(k) = 0 for all k.

A. Control Architecture for Leaderless Consensus

For each agent i, the control input ui(k) is expressed as
a function of the relative states available locally at time k.
Specifically, it is given by

ui(k) = K

N∑
j=1

aij(x̂
i
j(k)− x̂i

i(k)), k = 0, 1, . . . (9)

where x̂i
j(k) ∈ Rn denotes the estimation of the state of agent

j by agent i, whose computation will be given later. We assume
that there exists a feedback gainK ∈ Rw×n such that the spectral
radius of

J(1) = diag(A− λ2BK, . . . , A− λNBK) (10)

satisfies ρ(J(1)) < 1. This is a standard condition for consensus
when no DoS is present [21], [26].

In (9), the estimate of the state of agent j by agent i equals
the one estimated by agent l such that x̂i

j(k) = x̂l
j(k) = x̂j

j(k)

with i, l ∈ Nj . Thus, we omit the superscripts and let

ui(k) = K

N∑
j=1

aij(x̂j(k)− x̂i(k)), k = 0, 1, . . . . (11)

Agent i estimates the states of its neighbors based on the infor-
mation available from communication. Also, to stay consistent
with the neighbors, it will compute the estimate of its own. These
estimated states will be computed at each time k = 1, 2, . . . as

x̂j(k) =

{
Ax̂j(k − 1) + θ(k − 1)Q̂j(k) if k /∈ Hq

Ax̂j(k − 1) if k ∈ Hq
(12)

where j ∈ {i} ∪ Ni and the initial estimates will be set as
x̂j(0) = 0. The scaling parameter θ(k) ∈ R>0 in (12) is updated
as

θ(k) =

{
γ1θ(k − 1) if k /∈ Hq

γ2θ(k − 1) if k ∈ Hq
k = 1, 2, . . . (13)

with θ(0) = θ0 ∈ R>0, where 0 < γ1 < 1 andγ2 > 0. The scal-
ing parameter θ(k) mentioned above is used in the quantization
Q̂j(k) given by

Q̂j(k) = QR

(
xj(k)−Ax̂j(k − 1)

θ(k − 1)

)
, k = 1, 2, . . . (14)

for preventing quantizer overflow. By adjusting the size of θ(k)
dynamically, the state will be kept within the bounded quan-

tization range without saturation, i.e.,
xj(k)−Ax̂j(k − 1)

θ(k − 1)
in

QR(·) is upper bounded by some certain values. The parameters
γ1 and γ2 in (13) are for zooming in and out such that the
quantization scaling parameter θ(k) changes dynamically to
mitigate the influence of DoS. Under DoS attacks, the dis-
crepancies between the states of the multiagent systems may
diverge. Therefore, the quantizers must zoom out and increase
their ranges so that the states can be measured properly. If
the transmissions succeed, the quantizers zoom in and θ(k)
decreases by using γ1. The design of γ1, γ2, and θ0 will be
specified later.

Observe that the controller state is updated locally at each
agent by checking the presence of DoS attacks over time. It
is clear that each agent has access to the knowledge of DoS
attacks in real time from not receiving data from the neighbors
at the scheduled periodic transmission instants. One sees that the
estimator (12) switches the estimation strategy adaptively to the
information if Q̂j(k) is available to the controller (k /∈ Hq) or
not (k ∈ Hq). In particular, if Q̂j(k) is lost, then set Q̂j(k) = 0.
The “to zero” strategy is commonly used in networked control
problems with information loss. Note that the calculation of
Q̂j(k) (at the encoder) is dependent on θ(k − 1) that needs the
past information of k − 1 /∈ Hq or k − 1 ∈ Hq , instead of the
corresponding information for k.

The overall estimation and update processes are summarized
as follows. The state xj(k) is quantized into Q̂j(k) as in (14)
by the encoder and agent j attempts to send it to the decoders of
its neighbors. If the transmission attempt succeeds and Q̂j(k)
is received, the decoders estimate xj(k) by the first equation in
(12) and the scaling parameter θ(k) in the encoders and decoders
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zooms in by the first equation in (13). If the transmission
attempt fails, the information of xj(k) cannot be acquired by the
decoders since Q̂j(k) is corrupted by DoS. Then, the decoders
estimate xj(k) by the second equation in (12) and the scaling
parameter θ(k) in the encoders and decoders zooms out as in
the second equation in (13).

Note that in the control input (11), we use x̂i(k) to compute
ui(k) instead of xi(k). Due to space limitation, we omit the
details of the rationales and refer the readers to the discussion
regarding (52) in [21] and the references therein.

Let x̂(k) = [x̂T
1 (k) x̂

T
2 (k) . . . x̂

T
N (k)]T ∈ RnN and Q(k) =

[Q̂T
1 (k) Q̂

T
2 (k) · · · Q̂T

N (k)]T ∈ RnN . One can obtain the com-
pact form of (12) as

x̂(k) =

{
(IN ⊗A)x̂(k − 1) + θ(k − 1)Q(k) if k /∈ Hq

(IN ⊗A)x̂(k − 1) if k ∈ Hq

(15)

for k = 1, 2, . . .. Let ei(k) = xi(k)− x̂i(k) ∈ Rn denote the
estimation error and let e(k) = [eT1 (k) e

T
2 (k) . . . eTN (k)]T ∈

RnN and x(k) = [xT
1 (k) x

T
2 (k) . . . x

T
N (k)]T ∈ RnN . Then,

one obtains the compact form of the dynamics of the agents

x(k) = Gx(k − 1) + Le(k − 1) (16)

where

G = IN ⊗A− LG ⊗BK, L = LG ⊗BK. (17)

Recall the average of the states x(k) before (8). The
discrepancy between the state of agent i and x is de-
noted by δi(k) = xi(k)− x(k) ∈ Rn. By defining δ(k) =
[δT1 (k) δ

T
2 (k) . . . δTN (k)]T ∈ RnN , one has x(k) = δ(k) +

IN ⊗ x(k). By applying it to (16), one obtains

δ(k) = Gδ(k − 1) + Le(k − 1). (18)

It is clear that if ‖δ(k)‖∞ → 0 as k → ∞, consensus of the
multiagent system (1) is achieved as in (8). If ‖e(k)‖ = 0 or is
upper bounded by a certain value [21] for all k, it is obvious that
consensus can be achieved. Under DoS attacks, however, e(k)
may diverge and consequently consensus among the agents may
not be achieved.

B. Dynamics of the Multiagent Systems

In this section, we present the dynamics of the multiagent
system under quantization, in terms of e(k) with e(k − 1) and
δ(k − 1) for the two cases, i.e., in the absence and presence of
DoS attacks.

If the transmission succeeds such that k /∈ Hq for k =
1, 2, . . ., then according to (15), one has

e(k) = x(k)− x̂(k)

= x(k)− (IN ⊗A)x̂(k − 1)− θ(k − 1)Q(k)

= x(k)− (IN ⊗A)x̂(k − 1)

− θ(k − 1)QR

(
x(k)− (IN ⊗A)x̂(k − 1)

θ(k − 1)

)
. (19)

Note that

x(k)− (IN ⊗A)x̂(k − 1) = He(k − 1)− Lδ(k − 1) (20)

where

H = IN ⊗A+ LG ⊗BK. (21)

Then (19) can be rewritten as

e(k) = He(k − 1)− Lδ(k − 1)

− θ(k − 1)QR

(
He(k − 1)− Lδ(k − 1)

θ(k − 1)

)
. (22)

If the transmission fails such that k ∈ Hq for k = 1, 2, . . .,
then in view of (15), one has

e(k) = x(k)− x̂(k) = x(k)− (IN ⊗A)x̂(k − 1). (23)

Then, apply (20) to (23).
In the abovementioned case, we have presented the system

dynamics using e(k) and δ(k). To facilitate the analysis, we let

α(k) = δ(k)/θ(k) ξ(k) = e(k)/θ(k) (24)

where θ(k) is given in (13). Then, we formulate the system
dynamics in terms of α(k) and ξ(k).

If the transmission succeeds such that k /∈ Hq , in view of the
first case in (13), (18), and (22), one has

α(k) =
G

γ1
α(k − 1) +

L

γ1
ξ(k − 1) (25)

ξ(k) =
Hξ(k − 1)− Lα(k − 1)

γ1

− QR (Hξ(k − 1)− Lα(k − 1))

γ1
. (26)

It is easy to infer that if ‖Hξ(k − 1)− Lα(k − 1)‖∞ ≤ (2R+
1)σ, then by (3) one has ‖ξ(k)‖∞ ≤ σ/γ1.

If the transmission fails such that k ∈ Hq , then according to
the second case in (13), (18), and (23), one has

α(k) =
G

γ2
α(k − 1) +

L

γ2
ξ(k − 1) (27)

ξ(k) =
H

γ2
ξ(k − 1)− L

γ2
α(k − 1). (28)

Compared with (26), ξ(k) induced by (28) may not satisfy
‖ξ(k)‖∞ ≤ σ/γ1. In the event that ‖ξ(k)‖∞ > σ/γ1, there
is a possibility that ‖Hξ(k)− Lα(k)‖∞ > (2R+ 1)σ, which
demonstrates that quantizer overflow occurs.

We explain the intuition of the zooming-in and zooming-out
mechanism in the context of quantized control of multiagent
systems under transmission losses. In the dynamics of α(k)
and ξ(k) in (25) and (26) under successful transmissions, one
can see that γ1 appears in the denominators on the right-hand
sides. Similarly, in (27) and (28), γ2 appears in the case of
transmission failures. When DoS attacks occur, the systems are
in the open-loop status and thus α(k) and ξ(k) grow in general.
The parameter γ2 can be considered as a factor to compensate the
growth rate. To keep the growth of Hξ(k)− Lα(k) small, we
must find a sufficiently large γ2 since α(k) and ξ(k) are divided
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by γ2 during DoS (see the right-hand sides of (27) and (28)). As a
result, it is possible to keep ‖Hξ(k)− Lα(k)‖∞ ≤ (2R+ 1)σ
during DoS, which implies that quantizer overflow will not
occur.

While the idea of zooming-in and zooming-out is intuitive,
the computation of the parameters γ1 and γ2 is not straightfor-
ward in the context of quantized control of multiagent systems.
Compared with quantized control of centralized systems, e.g.,
in [9] and[27], one of the challenges in this article arises from the
constraint of distributed systems, where each agent knows only
a fraction of the global information. Due to this, the “decedent”
state estimation/prediction scheme as in the articles [9] and[27]
is very difficult to implement here and more importantly the
estimation error is also coupled with the state, e.g., ξ(k) depends
on α(k) in (28). By contrast, in quantized control of centralized
systems, this coupling problem between estimation error and
state does not arise.

In the following, with the control scheme introduced in (11)–
(13), we will show that quantizer overflow will not occur by
properly designing the scaling parameter θ(k) in (13) with γ1
and γ2, and then discuss the tradeoffs between resilience and
data rate.

C. Overflow-Free Quantizer and Leaderless Consensus

In this section, we will present the results for quantized lead-
erless consensus under DoS, showing the number of quantizer
levels such that it is not overflowed, and a sufficient condition
for consensus. Before presenting the results, we introduce some
preliminaries that will be used in the theorem.

Using the matrices G, L, and H in (17) and (21), respectively,
we define the matrices

A =

[
G L

−L H

]
, A(m) = A

m
=

[
A11(m) A12(m)
A21(m) A22(m)

]
(29)

where A11(m), A12(m), A21(m), and A22(m) are compatible
submatrices with dimensionsnN × nN inA(m) and the integer
m satisfies 0 ≤ m ≤ M as in Lemma 1. Then, we defineG(m+
1) and G(m+ 1) as

G(m+ 1) = (GA11(m) + LA21(m))/γm
2 (30)

G(m+ 1) = (U ⊗ In)
TG(m+ 1)(U ⊗ In) (31)

in which the unitary matrix U is given by

U = [1/
√
N φ2 . . . φN ] ∈ RN×N (32)

where φi ∈ RN with i = 2, 3, . . . , N satisfies φT
i LG = λiφ

T
i .

Let the matrixJ(m+ 1) ∈ Rn(N−1)×n(N−1) denote the remain-
ing parts of G(m+ 1) in (31) after deleting the top n rows and
the left n columns from G(m+ 1). Then, we define the set J
as

J = {J(1), . . . , J(m+ 1), . . . , J(M + 1)}. (33)

Note that J(m+ 1) is reduced to J(1) in (10) when m = 0,
which is independent of γ2. If 1 ≤ m ≤ M , then J(m+ 1) is
dependent on γ2. With the matricesA12(m) andA22(m) in (29),

and G and L in (17), we let

L(m+ 1) = (GA12(m) + LA22(m))/γm
2 (34)

and then compute

C0 = max
m=0,1,...,M

‖L(m+ 1)‖. (35)

With such C0, we further compute

C1 = max

{
2C2

√
Nn,

C0C2

√
Nnσ

(1− d)γ1

}
∈ R>0 (36)

where d = d0/γ1. Here, the parameters ρ(J(1)) < d0 < 1 and
C2 ≥ 1 in (36) exist and satisfy ‖J(1)p‖ ≤ C2d

p
0 with p ∈ Z≥1

[28]. The choices and discussions concerning γ1 and also γ2 will
be given in Lemma 3 and thereafter.

To facilitate the proof of Theorem 1, we introduce the lemma
below, whose proof is provided in the Appendix.

Lemma 3: Take γ1 and γ2 such that

d0 < γ1 < 1, max
m=1,...,M

‖J(m+ 1)‖ ≤ ρ(J(1))/C2 (37)

in which M from Lemma 1 and C2 ∈ R≥1 satisfies
‖J(1)p‖ ≤ C2d

p
0 with ρ(J(1)) < d0 < 1. Let θ0 ≥

Cx0
γ1/σ. If ‖ξ(sp)‖∞ ≤ σ/γ1 for p = 0, 1, . . . , r, then

‖[αT (sr) ξT (sr)]
T ‖ is upper-bounded as

‖[αT (sr) ξT (sr)]
T ‖ ≤ σ

√
C2

1 +Nn/γ1 (38)

where C1 is given in (36). �
After finding C2 and d0 for ‖J(1)p‖ ≤ C2d

p
0, one must first

choose a γ1 such that d0 < γ1 < 1. Recall that γ2 appears in
the denominators of J(2), . . . , J(M + 1) by (30). Then, one
selects a sufficiently large γ2 such that the second inequality in
(37) holds. Note that as long as C2 and d0 are determined, the
choices of γ1 and γ2 can be made independently.

Now, we are ready to present the results for quantized leader-
less consensus under DoS attacks.

Theorem 1: Consider the multiagent system (1) with control
inputs (11)–(13), where the agents exchange information via the
undirected graph G. The communication attempts are periodic
with sampling interval Δ. Suppose that the DoS attacks charac-
terized in Assumptions 1 and 2 satisfy 1/T +Δ/τD < 1. The
parameters γ1, γ2, and θ0 are chosen in accordance to Lemma
3. If R satisfies

2R+ 1 ≥ ‖[−L H]‖∞ζ

√
C2

1 +Nn

γ1
(39)

with C1 in (36), ζ = maxm=0,1,...,M ‖(A/γ2)
m‖, A in (29) and

M in Lemma 1, then, the following hold:
1) the quantizer (2) is not overflowed, and
2) if in addition the DoS attacks satisfy

1

T
+

Δ

τD
<

− ln γ1
ln γ2 − ln γ1

(40)

then, consensus of xi(kΔ) is achieved as in (8).
Proof. Recall that sr represents a successful transmission

instant.
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1) The unsaturation of the quantizer is proved by induction.
More specifically we show that if the quantizer is not over-
flowed such that ‖ξ(sp)‖∞ ≤ σ/γ1 for p = −1, 0, . . . , r, then,
the quantizer will not saturate at the transmission attempts within
the interval ]sr, sr+1] and hence ‖ξ(sr+1)‖∞ ≤ σ/γ1.

a) If sr+1 = sr +Δ, in view of (26), it is easy to verify that the
quantizerQ(sr+1) = QR(Hξ(sr)− Lα(sr)) is not overflowed
in the sense that∥∥∥[−L H ]

[
αT (sr) ξ

T (sr)
]T∥∥∥

∞
≤ (2R+ 1)σ (41)

where the norm of [αT (sr) ξ
T (sr)]

T is given in Lemma 3. This
implies ‖ξ(sr+1)‖∞ ≤ σ/γ1.

b) If sr+1 > sr +Δ, it means that the transmissions before
sr+1 at the instants sr +Δ, sr + 2Δ, . . . , sr +mΔ fail, where
m ≤ M . We verify that the quantizer is also free of overflow at
the instants sr +Δ, sr + 2Δ, . . . , sr +mΔ and sr+1 since∥∥∥[−L H ]

[
αT (sr +mΔ) ξT (sr +mΔ)

]T∥∥∥
∞

≤ ‖[−L H ]‖∞
∥∥A(m)/γm

2

∥∥ ∥∥∥[αT (sr) ξ
T (sr)
]T∥∥∥

≤ (2R+ 1)σ, 0 ≤ m ≤ M. (42)

This implies ‖ξ(sr+1)‖∞ ≤ σ/γ1. In view of a) and b), by
induction, we conclude that the quantizer satisfying (39) is not
overflowed for all the transmissions in the interval ]sr, sr+1]
(r = −1, 0, · · · ) and hence for all the transmissions.

2) Now we show leaderless consensus in the states. If the
quantizer is not saturated, then one has

‖α(sr +mΔ)‖∞ ≤ ‖[αT (sr +mΔ) ξT (sr +mΔ)]T ‖
≤ ∥∥A(m)/γm

2

∥∥ ∥∥[αT (sr) ξT (sr)]
T
∥∥

≤ σ
∥∥A(m)/γm

2

∥∥√C2
1 +Nn/γ1 (43)

for 1 ≤ m ≤ M , where the third inequality is obtained from
(38). Incorporating the scenario of m = 0, we have ‖α(k)‖∞ ≤
σζ
√
C2

1 +Nn/γ1 where ζ = maxm=0,1,...,M ‖(A/γ2)
m‖. Re-

call the definition of TS(Δ, kΔ) in Lemma 2 and let
TU (Δ, kΔ) denote the number of unsuccessful transmis-
sions in the interval [Δ, kΔ]. In view of δ(k) = θ(k)α(k) =

γ
TS(Δ,kΔ)
1 γ

TU (Δ,kΔ)
2 θ0α(k), one has

‖δ(k)‖∞ ≤ C3γ
kθ0‖α(k)‖∞ ≤ C3γ

kθ0ζ
√

C2
1 +Nnσ/γ1

where C3 = (γ2/γ1)
(κ+ηΔ)/Δ and

γ = γ
1− 1

T − Δ
τD

1 γ
1
T + Δ

τD
2 < 1 (44)

by (40). Thus, we have ‖δ(k)‖∞ → 0 when k → ∞, which
implies that leaderless consensus is achieved. �

Remark 3: As mentioned earlier, the theorem characterizes
the tradeoff between resilience of the agent system to DoS
attacks and the necessary data rate in communication. This can
be seen from the roles that the parameters γ1 and γ2 play in our
design. They determine the update of the scaling parameter θ(k)
depending on the presence of DoS attacks. For improving the
robustness, it helps to use small γ1 and γ2 in (37), which will

enlarge the class of tolerable DoS attacks as seen in (40). On the
other hand, a small γ1 (γ1 → d0) will result in large data rate.
We can confirm this in the lower bound for 2R+ 1 in (39) and
also the definition of C1 in (36). Intuitively, this tradeoff has a
clear implication: higher resilience needs more data rate. �

Remark 4: Another aspect of γ1 and γ2 is that keeping them
small helps the convergence rate for arriving at consensus. This
can be checked as follows: small γ1 and γ2 help the convergence
rate of θ(k). Then, from (24), this can result in a fast convergence
rate of δ(k) and hence the state consensus. Though the analysis
methods in our article and [13] are different, they have some
common points. For example, it is good to have fast consensus
rate by controller design during DoS-free periods. In our article,
this can be realized by tuningK and enlarging data rates. In [13],
this can be realized by tuning the solution to algebraic Riccati
equation. �

Note that from the iteration (25) and the discussion after (18),
when DoS is absent, the iteration of α(k) depends on J(1)/γ1,
which is similar to the result achieved in [21]. In this article, we
extend this to the case when 0 ≤ m ≤ M consecutive packet
dropouts can occur, where the condition is written in terms of
J(m+ 1)/γ1 with J(m+ 1) in (37). The data rate result given
by (39) can be conservative than the corresponding one in [21].
This is due to the worst-case type of analysis when considering
uncertain DoS attacks, e.g., the use of max in C0 in (35) and
ζ in (39). At last, the parameter C2 in (37) can also make γ2
conservative. The purpose of letting C2 be in the denominator
in (37) is for compensating the “jumps” in the switched system
from one mode to the others (DoS modes and non-DoS mode).

It is clear from our results that a control designer may not need
the exact knowledge of the real-time DoS parameters. He/she
only needs to assume that DoS attacks satisfy the condition
1/T +Δ/τD < 1, under which Lemmas 1 and 2 hold. At or
above the threshold 1 (i.e., 1/T +Δ/τD ≥ 1), τD and T can
give rise to DoS signals that destroy consensus, no matter what
the controller is, e.g., T = 1 (DoS attacks are present for 100%
of total time) and/or τD = Δ (DoS attacks can coincide with
all transmission instants). Furthermore, a designer may estimate
the DoS parameters (η, τD, κ, and T ) from past experience and
may also add safety margins to the parameters to ensure more
robustness in the design.

IV. LEADER–FOLLOWER CONSENSUS UNDER DOS

In this section, we will discuss leader–follower consensus
under DoS attacks. The dynamics of the followers is taken as
(1). Let 0 be the index for the leader. The dynamics of the leader
is given as an autonomous system such that

x0(kΔ) = Ax0((k − 1)Δ), k ∈ Z≥1 (45)

where x0(k) ∈ Rn is the state of the leader, and A and Δ are the
same as in (1). Similarly to the scenario of leaderless consensus,
we assume that an upper bound on the initial state of the leader is
known as ‖x0(0)‖∞ ≤ C̃x0

. For the ease of analysis, we assume
that C̃x0

≤ Cx0
. We say that the leader–follower consensus is
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achieved if

lim
k→∞

‖xi(kΔ)− x0(kΔ)‖∞ = 0, i = 1, 2, . . . , N. (46)

Communication topology: In this section, the communication
topology among the followers is represented by an undirected
and connected graph G as in Section II-A, whose Laplacian
matrix is denoted by LG . We also assume that only a fraction of
the followers can receive the information from the leader. Let
ai0 represent the leader–follower interaction, i.e., if agent i can
directly receive the information from the leader, then ai0 > 0,
and otherwise ai0 = 0. Moreover, we let the diagonal matrix be
D = diag(a10, a20, . . . , aN0) ∈ RN×N . For simplicity, we let k
represent kΔ in the following analysis.

A. Framework of Leader–Follower Control

For achieving the leader–follower consensus as in (46), we let
the control input to the follower agent i ∈ V in (1) as

ui(k) = K

N∑
j=1

aij(x̂j(k)− x̂i(k)) +Kai0(x̂0(k)− x̂i(k))

(47)

where x̂j(k) denotes the estimate of xj(k) obtained by (12)
and (14) for j ∈ {i} ∪ Ni. Besides, x̂0(k) denotes the esti-
mation of x0(k) and is also estimated as in (12) and (14).
The zooming-in and zooming-out quantization mechanism is
still valid for leader–follower consensus control. The scaling
parameter θ(k) is in the form as in (13). The zooming-in
and zooming-out parameters γ1 and γ2 for leader–follower
consensus will be given later in this section. Here, we as-
sume that there exists a feedback gain K ∈ Rw×n for leader–
follower consensus such that the spectral radius of A−
λ̃iBK (i = 1, 2, . . . , N ) are smaller than 1, where λ̃i denote
the eigenvalues of LG +D. We let δ̃i(k) = xi(k)− x0(k)
and ei(k) = xi(k)− x̂i(k). Moreover, let e0(k) = x0(k)−
x̂0(k). Let the vectors be δ̃(k) = [δ̃T1 (k) δ̃T2 (k) . . . δ̃TN (k)]T

and e(k) = [eT1 (k) eT2 (k) . . . eTN (k)]T . Then, we obtain the
compact form

δ̃(k) = Πδ̃(k − 1) + Σe(k − 1)− Φ(1N ⊗ e0(k − 1)) (48)

where the matrices are given by Π = IN ⊗A− (LG +D)⊗
BK, Σ = (LG +D)⊗BK, and Φ = D ⊗BK. Note that the
eigenvalues of Π equal to those of A− λ̃iBK with spectral
radius ρ(A− λ̃iBK) < 1 (i = 1, 2, . . . , N ). If the dynamics
of δ̃(k) is stable as ‖δ̃(k)‖∞ → 0 (k → ∞), then, the leader–
follower consensus is achieved as in (46).

B. System Dynamics of Leader–Follower Consensus
Under DoS

In light of (48), one sees that the convergence of δ̃(k) depends
on e(k) and e0(k). We first analyze e0(k), whose dynamics
follows

e0(k) =

{
Ae0(k − 1)− θ(k − 1)QR

(
Ae0(k−1)
θ(k−1)

)
k /∈ Hq

Ae0(k − 1) k ∈ Hq.

(49)

It is clear that the dynamics of e0(k) depends on only e0(k − 1),
which is different from that in leaderless consensus, where the
dynamics of ei(k) depends on ei(k − 1), ej(k − 1), δi(k − 1),
and δj(k − 1) (j ∈ Ni). This is because the leader agent does
not receive information from its neighbors and hence its state is
decoupled from those of the followers. On the other hand, the
phenomenon that the estimation errors of followers’ states are
still coupled as occurred in the leaderless consensus problem.
As we will see later, the estimation errors of followers’ states
are also coupled with e0(k).

Now we discuss the evolution of e(k). In the scenario of
leader–follower consensus, (19) and (23) still hold. However,
the item x(k)− (IN ⊗A)x̂(k − 1) is different from the one in
(20), and now it is in the form of

x(k)− (IN ⊗A)x̂(k − 1)

= Ωe(k − 1)− Σδ̃(k − 1)− Φ(1N ⊗ e0(k − 1)) (50)

where Ω = IN ⊗A+ (LG +D)⊗BK. Substituting (50) into
(19) and (23), respectively, one can obtain the dynamics of e(k)
in the absence and presence of DoS attacks in the scenario of
leader–follower consensus. Due to space limitation, we omit
presenting them. Define three vectors β(k), ε(k), and ε0(k) ∈
RnN

β(k) =
δ̃(k)

θ(k)
, ε(k) =

e(k)

θ(k)
, ε0(k) =

1N ⊗ e0(k)

θ(k)
. (51)

Then, we obtain the dynamics of these variables for the two
cases, i.e., successful and failed transmissions.

If the transmission succeeds such that k /∈ Hq , we have

β(k) =
Π

γ1
β(k − 1) +

Σ

γ1
ε(k − 1)− Φ

γ1
ε0(k − 1) (52)

ε(k) =
Ω

γ1
ε(k − 1)− Σ

γ1
β(k − 1)− Φ

γ1
ε0(k − 1)

− 1

γ1
QR (Ωε(k − 1)− Σβ(k − 1)− Φε0(k − 1))

(53)

ε0(k) =
IN ⊗A

γ1
ε0(k − 1)− 1

γ1
QR((IN ⊗A)ε0(k − 1)).

(54)

If the transmission fails such that k ∈ Hq , we have

β(k) =
Π

γ2
β(k − 1) +

Σ

γ2
ε(k − 1)− Φ

γ2
ε0(k − 1) (55)

ε(k) =
Ω

γ2
ε(k − 1)− Σ

γ2
β(k − 1)− Φ

γ2
ε0(k − 1) (56)

ε0(k) =
IN ⊗A

γ2
ε0(k − 1). (57)

Comparing the expressions of QR(·) in (26) and (53), one
sees that the dynamics of ε(k) (transformed estimation er-
ror of follower state) also depends on ε0(k) (transformed
estimation error of leader state). By contrast, in the leader-
less consensus problem, this does not occur. Therefore, the
leader state also needs to be properly quantized. This is
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one of the major differences of leader–follower consensus
from the leaderless one. By (53) and (54), it is easy to in-
fer that if ‖Ωε(k − 1)− Σβ(k − 1)− Φε0(k − 1)‖∞ ≤ (2R+
1)σ and ‖(IN ⊗A)ε0(k − 1)‖∞ ≤ (2R+ 1)σ, then by (3) one
has ‖ε(k)‖∞ ≤ σ/γ1 and ‖ε0(k)‖∞ ≤ σ/γ1, respectively. This
means that if the transmissions succeed at k, ε(k) and ε0(k) can
be reset.

By (56), it is possible that ‖ε(k)‖∞ ≤ σ/γ1 does not hold
during DoS, since ε(k) cannot be reset as in (53). Similar to
the case in the leaderless consensus problem, here in the event
that ‖ε(k)‖∞ > σ/γ1, there is also a possibility that ‖Ωε(k)−
Σβ(k)− Φε0(k)‖∞ > (2R+ 1)σ, which demonstrates that the
quantizer overflow for the follower state occurs. Moreover, in
view of (54) and (57), the overflow problem can also happen to
the quantization of leader state during DoS. In the following,
with the control scheme introduced in (47), we will show that
quantizer overflow for both leader and follower states will not
occur if one properly designs the scaling parameter θ(k) in
(13). Then, we will discuss the tradeoffs between resilience and
data rate.

C. Result for Leader–Follower Consensus

To facilitate the subsequent analysis of leader–follower con-
sensus, we introduce some preliminaries.

In view of the matrices Π, Σ, Φ, and Ω in (48) and (50),
respectively, we define the matrices

Ã =

⎡⎣ Π Σ −Φ
−Σ Ω −Φ
0 0 IN ⊗A

⎤⎦ and (58)

Ã(m) = Ãm =

⎡⎣ Ã11(m) Ã12(m) Ã13(m)

Ã21(m) Ã22(m) Ã23(m)
0 0 IN ⊗Am

⎤⎦ (59)

where Ã11(m), Ã12(m), Ã13(m), Ã21(m), Ã22(m), and
Ã23(m) are compatible submatrices of Ã(m) and the integer m
satisfies 0 ≤ m ≤ M as in Lemma 1. Then, we define P (m+

1) = (ΠÃ11(m) + ΣÃ21(m))/γm
2 ,S(m+ 1) = (ΠÃ12(m) +

ΣÃ22(m))/γm
2 and Z(m+ 1) = (ΠÃ13(m) + ΣÃ23(m)−

Φ(IN ⊗Am))/γm
2 . Let C̃0 = maxm=0,...,M ‖S(m+ 1)‖ and

C̃1 = maxm=0,1,...,M ‖Z(m+ 1)‖. There exists a unitary ma-
trix Ψ̃ such that Ψ̃−1(LG +D)Ψ̃ is an upper-triangular matrix
whose diagonals are λ̃i (i = 1, 2, . . . , N ), which are the eigen-
values of LG +D [28]. With the Ψ̃, we define the matrices

P̃ (m+ 1) = (Ψ̃⊗ In)
TP (m+ 1)(Ψ̃⊗ In). (60)

Then, we define the set of matrices P as

P = {P̃ (1), . . . , P̃ (m+ 1), . . . , P̃ (M + 1)} (61)

where in particular we have

P̃ (1) =

⎡⎢⎢⎢⎣
A− λ̃1BK � � �

0 A− λ̃2BK � �

0 0
. . .

...
0 0 0 A− λ̃NBK

⎤⎥⎥⎥⎦ (62)

with � presenting compatible matrices. Finally, we let

C̃3 = max

{
2C̃4

√
Nn,

C̃2C̃4

√
Nn

(1− d̃)γ1

}
(63)

where C̃2 = C̃0 + C̃1 and d̃ = d̃0/γ1. The parameters
ρ(P̃ (1)) < d̃0 < 1 and C̃4 ≥ 1 exist and satisfy ‖P̃ (1)p‖ ≤
C̃4d̃

p
0 with p ∈ Z≥1.

To facilitate the proof, we first present the following lemma
whose proof is provided in [29] due to space limitation.

Lemma 4: Take γ1 and γ2 such that

d̃0 < γ1 < 1, max
m=1,...,M

‖P̃ (m+ 1)‖ ≤ ρ(P̃ (1))/C̃4 (64)

in which M in Lemma 1, and C̃4 ≥ 1 satisfying
‖P̃ (1)p‖ ≤ C̃4d̃

p
0 with ρ(P̃ (1)) < d̃0 < 1. Let θ0 ≥ Cx0

γ1/σ.
If ‖ε(sp)‖∞ ≤ σ/γ1 and ‖ε0(sp)‖∞ ≤ σ/γ1 for p = 0, . . . , r,
then ‖[βT (sr) εT (sr) εT0 (sr)]

T ‖ is upper-bounded as

‖[βT (sr) εT (sr) εT0 (sr)]
T ‖ ≤ σ

√
C̃2

3 + 2Nn/γ1 (65)

with C̃3 in (63). �
Now, we are ready to present the leader–follower results.
Theorem 2: Consider the multiagent system (1) as the fol-

lower agent with control action (47), (12)–(13). The leader
agent is given in (45). The communication attempts are periodic
with sampling interval Δ. Suppose that the DoS attacks in
Assumptions 1 and 2 satisfy 1/T +Δ/τD < 1. Let θ0, γ1, and
γ2 be chosen as in Lemma 4. If R satisfies

2R+ 1 ≥ ζ̃‖[−Σ Ω − Φ]‖∞
√

C̃2
3 + 2Nn/γ1 (66)

with bounded reals ζ̃ = max{ζ̃1, ζ̃2}given in the proof and C̃3 ∈
R>0 in (63), then the following hold:

1) the quantizer (2) is not overflowed, and
2) if in addition the DoS attacks satisfy (40), then the leader–

follower consensus as in (46) is achieved.
Proof. 1) The unsaturation of the quantizer is proved by in-

duction. Specifically, if the quantizer is not overflowed such that
‖ε(sp)‖∞ ≤ σ/γ1 and‖ε0(sp)‖∞ ≤ σ/γ1 forp = −1, 0, . . . , r,
then the quantizer will not saturate at the transmission at-
tempts within ]sr, sr+1], which implies ‖ε(sr+1)‖∞ ≤ σ/γ1
and ‖ε0(sr+1)‖∞ ≤ σ/γ1.

a) If sr+1 = sr +Δ, in view of (53), it is easy to verify that
the quantizer QR(Ωε(sr)− Σβ(sr)− Φε0(sr)) of the follower
agents is not overflowed in the sense that

‖[−Σ Ω − Φ] [βT (sr) εT (sr) εT0 (sr)]
T ‖∞ ≤ (2R+ 1)σ

by applying the bound in (65) of Lemma 4. This implies
‖ε(sr+1)‖∞ ≤ σ/γ1 in view of (53). It is clear that ‖A‖∞ ≤
‖[−Σ Ω Φ]‖∞ and ‖ε0(sr)‖∞ ≤ σ/γ1. Thus, in view of
(54), QR((IN ⊗A)ε0(sr)) for the leader state is not saturated
because

‖(IN ⊗A)ε0(sr)‖∞ ≤ ‖A‖∞σ/γ1

≤ ‖[−Σ Ω − Φ]‖∞σ/γ1 ≤ (2R+ 1)σ.

b) If sr+1 > sr +Δ, it means that the transmissions at sr +
Δ, sr + 2Δ, . . . , sr +mΔ fail, where m ≤ M . We verify that
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the quantizers for the follower states are also free of overflow at
those instants as well as sr+1 since∥∥∥∥∥∥[−Σ Ω − Φ]

⎡⎣ β(sr +mΔ)
ε(sr +mΔ)
ε0(sr +mΔ)

⎤⎦∥∥∥∥∥∥
∞

≤
∥∥∥[−Σ Ω − Φ]

(
Ã/γ2

)m
[βT (sr) εT (sr) εT0 (sr)]

T
∥∥∥
∞

≤ ζ̃1‖[−Σ Ω − Φ]‖∞σ

√
C̃2

3 + 2Nn/γ1 ≤ (2R+ 1)σ

where ζ̃1 = maxm=0,...,M ‖(Ã/γ2)
m‖. Similarly, we can also

verify the unsaturation of the quantizer for the leader state in the
sense that

‖(IN ⊗A)ε0(sr +mΔ)‖∞
≤ ‖(IN ⊗A) (IN ⊗A/γ2)

m ε0(sr)‖∞
≤ ζ̃2‖A‖∞σ/γ1 ≤ (2R+ 1)σ (67)

where ζ̃2 = maxm=0,...,M ‖(A/γ2)m‖. In view of a) and b)
mentioned above, by induction, we conclude that the quantizer
satisfying (66) is not overflowed for all transmissions in the
scenario of leader–follower consensus.

2) Following the calculation similar to that after (43) in the
proof of Theorem 1, one can obtain that ‖β(k)‖∞ is upper-
bounded. When (40) is satisfied, one has θ(k) → 0 and hence
‖δ̃(k)‖∞ → 0 with k → ∞, which implies that the leader–
follower consensus in (46) is achieved. �

Similar to the leaderless consensus scenario, it is good to have
small γ1 that results in large data rate, and small γ2 for improving
the robustness. Here, for the ease of analysis, we have taken the
quantizers for the leader and followers to be identical. If one
deploys nonidentical quantizers, then there might be another
tradeoff in terms of data rates. By increasing the data rate for
the leader quantization, more accurate estimation of x0(k) is
possible. In turn, we may be able to reduce the data rate among
the followers. By doing so, if the number of the follower agents
is not that small, we expect that the overall communication load
can be reduced while in contrast the resilience of the systems
is not affected. For leader–follower consensus, Remark 4 still
holds, i.e., it is good to keep γ1 and γ2 small, and have a fast
consensus speed for DoS-free periods. For more details, we refer
the readers to Remark 4 in this article and Section IV in [13].

V. NUMERICAL EXAMPLE

In this section, we conduct simulations to verify our results.
We consider eight agents in the leaderless consensus and also
eight follower agents in the leader–follower consensus (i.e.,N =
8 in both cases). Each agent has four states withA ∈ R4×4 given
below, whose spectral radius is ρ(A) = 1.1025. The sampling
period is given by Δ = 0.1 s.

A =

⎡⎢⎢⎣
1.1052 0.1105 −0.1 0

0 1.1052 0 0
0.1 0 0.25 0.1
0.1 0.3 0 0.2

⎤⎥⎥⎦

B =

⎡⎢⎢⎣
0.1052 0.0053

0 0.1052
0 0
0 0

⎤⎥⎥⎦ ,
K1 =

[
3 0 0 0
0 3 0 0

]
K2 =

[
2.9 0 0 0
0 2.9 0 0

]
.

For leaderless consensus, the eight agents exchange data
through an undirected and connected communication graph G.
For leader–follower consensus, the communication topology
among the followers is the same as the one in the leaderless
consensus, that isG. The leader agent has interactions with some
of the follower agents, which is specified by the matrix D. The
matrices LG ∈ R8×8 and D ∈ R8×8 are given by

LG =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 −1 −1 0 0 0 0 −1
−1 4 −1 −1 −1 0 0 0
−1 −1 3 −1 0 0 0 0
0 −1 −1 3 −1 0 0 0
0 −1 0 −1 4 −1 −1 0
0 0 0 0 −1 3 −1 −1
0 0 0 0 −1 −1 3 −1

−1 0 0 0 0 −1 −1 3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(68)

and D = diag(1, 1, 0, 0, 1, 0, 0, 2). With such LG and D, we se-
lect the state-feedback gainsK1 for leaderless consensus andK2

for leader–follower consensus, which can be found previously.
For leaderless consensus, since ρ(J(1)) = 0.77, by Theorem

1, we choose d0 = 0.785, C2 = 1.7977, and γ1 = 0.8, and
γ2 = 6.7244. With such parameters, the number of quantization
levels should satisfy 2R+ 1 ≥ 10222, which can be encoded by
14 bits, and the sufficient DoS-bound condition for consensus is
1/T +Δ/τD < 0.1048. For leader–follower consensus, since
ρ(P̃ (1)) = 0.9485, according to Theorem 2, we choose d̃0 =
0.96, C̃4 = 2.2247, γ1 = 0.965, and γ2 = 7.96. The number of
quantization levels must satisfy 2R+ 1 ≥ 15150 and can be en-
coded by 14 bits. The theoretical DoS-bound sufficient condition
for leader–follower consensus is 1/T +Δ/τD < 0.0169.

The time responses of ‖δi(k)‖∞ and θ(k) for leaderless
consensus, and those of ‖δ̃i(k)‖∞ and θ(k) for leader–follower
consensus are shown in Figs. 1 and 2, respectively, in which
the DoS attacks are generated randomly. In Fig. 1 over the
time horizon 12 s, the DoS signal yields |Ξ(0, 12)| = 0.9 s and
n(0, 12) = 8. This corresponds to averaged values of τD ≈ 1.5,
T ≈ 13.33, and 1/T +Δ/τD ≈ 0.1417 for the case of lead-
erless consensus. Similarly, in Fig. 2, the DoS signal yields
|Ξ(0, 25)| = 0.4 s and n(0, 12) = 4. This corresponds to aver-
aged values of τD ≈ 6.25,T ≈ 62.5, and1/T +Δ/τD ≈ 0.032
for the case of leader–follower consensus. Though the theoreti-
cal bounds regarding 1/T +Δ/τD are violated, by the first plots
in Figs. 1 and 2, respectively, one can see that both ‖δi(k)‖∞ and
‖δ̃i(k)‖∞ converge to zero. This implies that both the leaderless
and leader–follower consensus are still successfully achieved.

The developed dynamic quantization with zooming-in and out
capabilities can be clearly seen from the second plots in Figs. 1
and 2. One can see that θ(k) increases when transmissions fail
due to the presence of DoS, and decreases during the DoS-free
periods. Meanwhile in the leaderless consensus simulation, the
actual quantization output (i.e., QR(·)) ranges from −6 to 6
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Fig. 1. Top: Time response of ‖δi(k)‖∞ in leaderless consensus;
Bottom: Time response of θ(k) in leaderless consensus.

Fig. 2. Top: Time response of ‖δ̃i(k)‖∞ in leader–follower consensus.
Bottom: Time response of θ(k) in leader–follower consensus.

during the simulation. This amounts to the number of quanti-
zation levels 13, which is much smaller than the corresponding
theoretical value 10222. In the leader–follower consensus sim-
ulation, the actual followers’ quantizer output ranges only from
−8 to 6 (15 quantization levels), and the quantization for the
leader state takes only the values −1, 0, and 1 (3 quantization
levels). This is also much smaller than the obtained theoretical
value 15150.

VI. CONCLUSION

In this article, we presented results for the leaderless
and leader–follower consensus problems of linear multiagent
systems with general dynamics under network data rate lim-
itation and malicious DoS attacks. The design of quantized

controller and the characterization of DoS attacks for con-
sensus were given. In particular, we provided a feasible way
of designing dynamic quantized control with zooming-in and
zooming-out capabilities for the multiagent systems with gen-
eral dynamics, and such dynamic quantization makes finite data
rate control possible without quantizer overflow under malicious
DoS attacks. We also characterized the bound of DoS attacks
under which consensus of the multiagent systems can be guar-
anteed. Discussions were given on the tradeoffs between bit rates
and robustness against DoS.

The results in this article can be extended in several directions.
One can consider to relax the assumption on the global knowl-
edge about the communication topology by referring to [30]
and [15] and also consider the case of digraph by referring
to [31]. It is also worthwhile considering the case of transmission
delays [32].

APPENDIX

Proof of Lemma 3. In view of the dynamics of α in (27) and
ξ in (28), it is easy to obtain such a form[

α(k +m)
ξ(k +m)

]
=

A(m)

γm
2

[
α(k)
ξ(k)

]
(69)

where 0 ≤ m ≤ M (in Lemma 1) denotes the number of con-
secutive unsuccessful transmissions after k and A(m) is given
in (29). If k +m+ 1 is an instant of successful transmission, in
view of (25) and (69), one has

α(k +m+ 1) = ([G L ] /γ1)[α
T (k +m) ξT (k +m)]T

= ([G L ] /γ1)(A(m)/γm
2 )[αT (k) ξT (k)]T

=
G(m+ 1)

γ1
α(k) +

L(m+ 1)

γ1
ξ(k) (70)

with G(m+ 1) and L(m+ 1) in (30) and (34), respectively.
It is worth mentioning that (70) is a general form to incorporate

the scenarios of successful and unsuccessful transmissions. If
m = 0, then in view of (29), A11(m) and A22(m) become
identity matrices and A12(m) and A21(m) are matrices with
all zero entries. That is, m = 0 indicates zero unsuccessful
transmission between k and k + 1, and hence (70) is reduced
to (25) as a nominal update situation.

Recall the unitary matrix U in (32), where one
has UTLGU = diag(0, λ2, . . . , λN ). It is easy to ver-
ify that (U ⊗ In)

T (IN ⊗A− LG ⊗BK)(U ⊗ In) =
diag(A,A− λ2BK, . . . , A− λNBK). With such U , we
let α(k) := (U ⊗ In)

Tα(k) = [αT
1 (k) α

T
2 (k)]

T and let
ξ(k,m+ 1) depending on k and m+ 1 be ξ(k,m+ 1) :=

(U ⊗ In)
TL(m+ 1)ξ(k) = [ξ

T
1 (k,m+ 1) ξ

T
2 (k,m+ 1)]T ,

where α1(k) and ξ1(k,m+ 1) represent vectors of the first n
elements of α(k) and ξ(k,m+ 1), respectively. One can verify
that α1(k) = 0 for all k. Equation (70) can be transformed to

α(k +m+ 1) =
G(m+ 1)

γ1
α(k) +

(U ⊗ In)
TL(m+ 1)

γ1
ξ(k)

=
G(m+ 1)

γ1
α(k) +

1

γ1
ξ(k,m+ 1) (71)
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where G(m+ 1) is given in (31).
Recall that matrix J(m+ 1) ∈ Rn(N−1)×n(N−1) in (33) de-

notes the remaining parts of G(m+ 1) after deleting the first
n rows and columns from G(m+ 1), which is a block diag-
onal matrix [29]. Then, one can obtain the following equa-

tion from (71) such that α2(k +m+ 1) =
J(m+ 1)

γ1
α2(k) +

1

γ1
ξ2(k,m+ 1). Recall that sr denotes the instant of successful

transmissions for r = 0, 1, . . ., and s−1 denotes k = 0. Thus,
we have sr = k +m+ 1, and sr−1 = k if k is a successful
transmission instant. Hence, one has

α2(sr) =
J(m+ 1)

γ1
α2(sr−1) +

1

γ1
ξ2(sr−1,m+ 1). (72)

For distinguishing J(m+ 1) in iteration steps, we let
Jr−1(mr−1 + 1) denote the J(m+ 1) in (72) used for
the iteration from sr−1 to sr with sr − sr−1 = (mr−1 +
1)Δ. To reduce notation burden, we further let Jr−1 rep-
resent Jr−1(mr−1 + 1). Then, (72) is written as α2(sr) =
Jr−1

γ1
α2(sr−1) +

1
γ1
ξ2(sr−1,m+ 1) for r = 0, 1, . . .. By itera-

tion, it is easy to obtain

α2(sr) =

r∏
p=0

Jp−1

γ1
α2(s−1) +

r−1∑
p=0

(
r−1∏
q=p

Jq
γ1

)
ξ2(sp−1,m+ 1)

γ1

+
ξ2(sr−1,m+ 1)

γ1
. (73)

In case the networked multiagent systems are not subject to DoS
attacks, thenJp−1 andJq in (73) are equal toJ(1), and there exist
C2 ≥ 1 and ρ(J(1)) < d0 < 1 such that ‖(J(1))p‖ ≤ C2d

p
0

(p = 1, 2, · · · ). This implies that ‖(J(1)/γ1)p‖ ≤ C2 d
p, where

γ1 > d0 and 0 < d = d0/γ1 < 1. Therefore, the type of calcu-
lation reduces to the one in [21].

Recall that we have selected γ2 in Lemma 3, which can make
‖J(m+ 1)‖ ≤ ρ(J(1))/C2 hold for m = 1, . . . ,M . By such
γ2, one has that the iteration of Jp−1/γ1 in (73) yields

‖
r∏

p=0

(Jp−1/γ1)‖ ≤
r∏

p=0

‖(Jp−1/γ1)‖ ≤ C2 d
r. (74)

Notice that C2 does not accumulate in the iteration because
the C2 caused by ‖(J(1)/γ1)p‖ ≤ C2 d

p (iteration in a DoS-
free interval) is canceled out by the C2 in ‖J(m+ 1)/γ1‖ ≤
ρ(J(1))/(γ1C2) < d0/(γ1C2) = d/C2 (m = 1, . . . ,M repre-
senting the number of iteration during a DoS interval). Similarly,
one can obtain the results for ‖∏r−1

q=p Jq/γ1‖.
By Lemma 3, we have selected d0 < γ1 < 1 and θ0 ≥

Cx0
γ1/σ. By such θ0, we have ‖α(0)‖ = ‖δ(0)‖/θ0 ≤√

Nn‖δ(0)‖∞/θ0 ≤ 2
√
NnCx0

/θ0 ≤ 2
√
Nnσ/γ1, where we

use the fact ‖δ(0)‖∞ ≤ 2Cx0
. By noting that ‖(U ⊗ In)

T ‖ = 1,
we have ‖α2(s−1)‖ that satisfies

‖α2(s−1)‖ = ‖α2(0)‖ ≤ ‖α(0)‖
≤ ‖(U ⊗ In)

T ‖‖α(0)‖ ≤ 2
√
Nnσ/γ1. (75)

Furthermore, one has ‖ξ(s−1)‖∞ = ‖ξ(0)‖∞ ≤ ‖(x̂(0)−
x(0))/θ0‖∞ = ‖x(0)/θ0‖∞ ≤ Cx0

/θ0 ≤ σ/γ1. By assump-
tion, we have ‖ξ(sp)‖∞ ≤ σ/γ1 for p = 0, 1, . . . , r. Incor-
porating ‖ξ(s−1)‖∞, overall one has ‖ξ(sp)‖∞ ≤ σ/γ1 for
p = −1, 0, . . . , r. Hence, we obtain

‖ξ2(sp,m+ 1)‖ ≤ ‖(U ⊗ In)
TL(m+ 1)‖‖ξ(sp)‖

= ‖L(m+ 1)‖‖ξ(sp)‖ ≤ C0

√
Nnσ/γ1

(76)

for p = −1, 0, . . ., where C0 is given by (35).
Substituting (74), (75), and (76) into (73), we have

‖α2(sr)‖ ≤ 2C2

√
Nn σ

γ1
dr + C0C2

√
Nnσ

(1−d)γ2
1

(1− dr) ≤ C1σ/γ1
for r = 0, 1, . . ., where C1 is as in (36). Incorporating (75),
it is obvious that ‖α(sr)‖ ≤ ‖((U ⊗ In)

T )−1‖‖α(sr)‖ =
‖α2(sr)‖ ≤ C1σ/γ1, r = −1, 0, . . . with the facts that
‖((U ⊗ In)

T )−1‖ = 1 and α1(k) = 0. Finally, one has

‖[αT (sr) ξT (sr)]
T ‖ =
√

‖α(sr)‖2 + ‖ξ(sr)‖2

≤ σ
√
C2

1 +Nn/γ1, r = −1, 0, . . .

where ‖ξ(sr)‖ ≤ √
Nn‖ξ(sr)‖∞ ≤ √

Nnσ/γ1. �

REFERENCES

[1] F. Bullo, Lectures on Network Systems. Seattle, WA, USA: Kindle Direct
Pub., 2019.

[2] P. Cheng, L. Shi, and B. Sinopoli, “Guest editorial: Special issue on secure
control of cyber-physical systems,” IEEE Trans. Control Netw. Syst., vol. 4,
no. 1, pp. 1–3, Mar. 2017.

[3] A. Teixeira, I. Shames, H. Sandberg, and K. H. Johansson, “A secure
control framework for resource-limited adversaries,” Automatica, vol. 51,
pp. 135–148, 2015.

[4] A. Y. Lu and G. H. Yang, “Secure state estimation for multiagent systems
with faulty and malicious agents,” IEEE Trans. Autom. Control, vol. 65,
no. 8, pp. 3471–3485, Aug. 2020.

[5] X. Wang, H. Ishii, L. Du, P. Cheng, and J. Chen, “Privacy-preserving
distributed machine learning via local randomization and ADMM pertur-
bation,” IEEE Trans. Signal Process., vol. 68, pp. 4226–4241, 2020.

[6] S. Amin, A. Càrdenas, and S. Sastry, “Safe and secure networked control
systems under denial-of-service attacks,” Hybrid Systems: Computation
and Control (Lecture Notes Computer Science Series). Berlin, Germany:
Springer, 2009, pp. 31–45.

[7] C. De Persis and P. Tesi, “Input-to-state stabilizing control under denial-
of-service,” IEEE Trans. Autom. Control, vol. 60, no. 11, pp. 2930–2944,
Nov. 2015.

[8] J. Qin, M. Li, L. Shi, and X. Yu, “Optimal denial-of-service attack
scheduling with energy constraint over packet-dropping networks,” IEEE
Trans. Autom. Control, vol. 63, no. 6, pp. 1648–1663, Jun. 2018.

[9] S. Feng, A. Cetinkaya, H. Ishii, P. Tesi, and C. De Persis, “Networked
control under DoS attacks: Tradeoffs between resilience and data rate,”
IEEE Trans. Autom. Control, vol. 66, no. 1, pp. 460–467, Jan. 2021.

[10] Y. Li, D. E. Quevedo, S. Dey, and L. Shi, “SINR-based DoS attack on
remote state estimation: A game-theoretic approach,” IEEE Trans. Control
Netw. Syst., vol. 4, no. 3, pp. 632–642, Sep. 2017.

[11] S. Feng and P. Tesi, “Resilient control under denial-of-service: Robust
design,” Automatica, vol. 79, pp. 42–51, 2017.

[12] D. Senejohnny, P. Tesi, and C. De Persis, “A jamming-resilient algorithm
for self-triggered network coordination,” IEEE Trans. Control Netw. Syst.,
vol. 5, no. 3, pp. 981–990, Sep. 2018.

[13] Z. Feng and G. Hu, “Secure cooperative event-triggered control of linear
multiagent systems under DoS attacks,” IEEE Trans. Control Syst. Tech-
nol., vol. 28, no. 3, pp. 741–752, May 2020.

[14] Z. Feng, G. Hu, and G. Wen, “Distributed consensus tracking for multi-
agent systems under two types of attacks,” Int. J. Robust Nonlinear Control,
vol. 26, no. 5, pp. 896–918, 2016.

Authorized licensed use limited to: University of Groningen. Downloaded on September 23,2022 at 09:14:07 UTC from IEEE Xplore.  Restrictions apply. 



574 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 9, NO. 2, JUNE 2022

[15] W. Xu, G. Hu, D. W. Ho, and Z. Feng, “Distributed secure cooperative
control under denial-of-service attacks from multiple adversaries,” IEEE
Trans. Cybern., vol. 50, no. 8, pp. 3458–3467, Aug. 2020.

[16] C. Deng and C. Wen, “Distributed resilient observer-based fault-tolerant
control for heterogeneous multiagent systems under actuator faults
and DoS attacks,” IEEE Trans. Control Netw. Syst., vol. 7, no. 3,
pp. 1308–1318, Sep. 2020.

[17] S. Tatikonda and S. Mitter, “Control under communication constraints,”
IEEE Trans. Autom. Control, vol. 49, no. 7, pp. 1056–1068, Jul. 2004.

[18] G. N. Nair and R. J. Evans, “Stabilizability of stochastic linear systems
with finite feedback data rates,” SIAM J. Control Optim., vol. 43, no. 2,
pp. 413–436, 2004.

[19] R. Carli, F. Fagnani, P. Frasca, and S. Zampieri, “Gossip consensus
algorithms via quantized communication,” Automatica, vol. 46, no. 1,
pp. 70–80, 2010.
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