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Second-order consensus of multi-agent systems with delayed nonlinear dynamics
and intermittent measurements
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Abstract

This paper investigates second-order consensus of multi-agent systems with delayed nonlinear dynamics and switch-
ing topologies. Each agent is assumed to obtain the measurements of relative states between its own and the neighbors
only at a sequence of disconnected time intervals. A novel intermittent consensus protocol is proposed to guarantee
the states of agents with time-varying velocities to reach second-order consensus under a fixed strongly connected
and balanced network topology. The results are then extended to second-order consensus in multi-agent systems with
switching topologies, where each possible communication topology is strongly connected and balanced. By virtue of
the Lyapunov control approach, it is shown that consensus can be reached if the general algebraic connectivity and
communication time duration are larger than their corresponding threshold values respectively. Finally, simulation
examples are provided to verify the theoretical analysis and effectiveness of the new protocol.

Keywords: Multi-agent system, second-order consensus, intermittent measurement, delayed nonlinear dynamics.

1. Introduction

Recently, cooperative control has received considerable attention for its wide applications in multi-agents systems,
where typical examples include state-consensus seeking of multiple mobile vehicles [1, 2, 3], design of distributed
sensor networks [4], and control of flocking and rendezvous in natural as well as social systems [5, 6, 7]. Among the
numerous research topics in cooperative control, consensus problem received particular interests [8, 9, 10], which can
be generally described as how to design an appropriate protocol based on local information under some communica-
tion topology to ensure the multiple agents to reach an agreement on certain quantities of interest.

In Ref. [5], Vicsek et al. introduced an interesting discrete-time model of mobile agents, where each agent’s
motion is updated according to a local rule based on its own state as well as the states of its neighbors. Some theoretical
analysis of the consensus problem on the linearized Vicsek’s mode was provided in Ref. [8]. Then, in Ref. [9], a
general framework of the consensus problem for networks of dynamic agents with a fixed or switching topology and
communication time-delays was established. The consensus conditions derived in Ref. [9] were further relaxed in Ref.
[10]. In addition, consensus over a random communication topology [11, 12], asynchronous consensus [13, 14, 15],
high-dimensional consensus [16], consensus problems with nonlinear protocols [17, 18] and communication noises
[19, 20], have been investigated. Note that most of the above-mentioned works are concerned with the first-order
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consensus problem, where each agent is governed by first-order dynamics. In reality, however, a large class of multi-
agent systems are modeled by second-order dynamics [21], [22], [23] [24], [25], [26]. In Ref. [21], the second-order
consensus problem with zero initial and finial consensus velocities under undirected communication topology was
investigated. Taking into account the general case where information flows may be unidirectional due to sensors with
limited sensing ranges or multi-agents with directed communication links, a new kind of second-order consensus
problems under directed communication topologies was discussed in Refs. [22, 23]. Some sufficient conditions
were obtained for achieving second-order consensus, and it was shown that the communication topology having a
spanning tree is not a sufficient condition for reaching second-order consensus, which is different in kind from the
first-order consensus problems [22, 23, 24]. Then, in Refs. [27, 28, 29], some necessary and sufficient conditions
for second-order consensus in directed networks were derived. Concerning that transmission time-delay is a key
factor influencing the stability of consensus in linear multi-agent systems, a necessary and sufficient condition was
obtained in Ref. [29] for second-order consensus in networked multi-agent systems with transmission delays. In
contrast to the aforementioned second-order consensus algorithms [21, 22, 24, 27, 28], where the consensus velocity
is a constant, a consensus algorithm in coupled second-order linear harmonic oscillators with asymptotic periodic
velocity and directed communication topology was considered in Ref. [30]. The dynamical model studied in Ref.
[30] in essence is a second-order multi-agent system with linear intrinsic dynamics. A more general case is that each
agent has nonlinear dynamics [31, 32, 33, 34, 35, 36]. From this perspective, Yu et al. investigated the second-order
consensus problem in multi-agent systems with nonlinear dynamics and directed topologies in Ref. [37], where by
using tools from the algebraic graph theory and Lyapunov control approach, some sufficient conditions were derived
for reaching second-order consensus with time-varying consensus velocities.

It should be noticed that most of the aforementioned works on second-order consensus problems in multi-agent
systems, it was assumed that information is transmitted continuously among multi-agents. However, this may not be
the case in reality due to technological limitations or external disturbances. For example, in some cases, agents can
only obtain the measurements of states of its neighbors intermittently due to the limited sensing abilities. To deal with
this challenging situation, a novel intermittent consensus protocol is proposed in this paper to guarantee second-order
consensus. On the other hand, in order to analyze the second-order consensus problem in multi-agent systems within
a general framework, delayed nonlinear dynamics are introduced into the model of each agent in this paper. By virtue
of the Lyapunov control approach, some sufficient conditions are derived for reaching second-order consensus with
time-varying agent velocities.

The rest of the paper is organized as follows. In Section 2, some preliminaries in algebraic graph theory and the
model formulation are given. In Section 3, second-order consensus problems with delayed nonlinear dynamics and
intermittent measurements under fixed and switching strongly connected and balanced communication topologies are
investigated, respectively. In Section 4, simulation examples are provided to verify the theoretical results. Conclusions
are finally drawn in Section 5.

The following notations are used throughout the paper. Let R and N be the sets of real and natural numbers,
respectively. RN is the N-dimensional real vector space and ∥ · ∥ denotes the Euclidian norm. RN×N is N × N real
matrix space. Let IN (ON) be the N−dimensional identity (zero) matrix, and 1N (0N) be the N−dimensional column
vector with each entry being 1 (0). Suppose that matrix M ∈ RN×N has real eigenvalues, with λi(M) being the ith
smallest eigenvalue (1 ≤ i ≤ N). Notation ⊗ represents the Kronecker product. Furthermore, a column vector x ∈ RN

is said to be positive if every entry xi > 0 (1 ≤ i ≤ N).
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2. Preliminaries

In this section, some preliminaries in algebraic graph theory and model formulation for second-order consensus
in multi-agent systems with delayed nonlinear dynamics and intermittent measurements are introduced.

2.1. Algebraic graph theory

LetG(V,E,A) be a directed graph with the set of nodesV = {v1, v2, · · · , vN}, the set of directed edges E ⊆ V×V,
and a weighted adjacency matrix A = [ai j]N×N with non-negative adjacency elements ai j. An edge ei j in graph G is
denoted by the ordered pair of nodes (v j, vi), where v j and vi are called the parent and child nodes, respectively, and
ei j ∈ E if and only if ai j > 0. Furthermore, self-loops are not allowed, i.e., aii = 0 for all i = 1, 2, · · ·N. For simplicity,
denote G(V,E,A) by G(A) if no confusion will arise.

A directed path from node vi to v j is a finite ordered sequence of edges, (vi, vk1 ), (vk1 , vk2 ), · · · , (vkl , v j), with
distinct nodes vkm , m = 1, 2, · · · , l. A directed graph is called strongly connected if and only if there is a directed path
between any pair of distinct nodes. Moreover, a directed graph G(A) is called balanced if∑

j

ai j =
∑

j

a ji, ∀ i = 1, 2, · · · ,N. (1)

The Laplacian matrix L = [li j]N×N of G(A) is defined as

li j =


− ai j, i , j,

N∑
k=1,k,i

aik, i = j.
(2)

For a directed graph, the Laplacian matrix L has the following properties.
Lemma 1: ([10]) Suppose that a directed graph G(A) is strongly connected. Then, 0 is a simple eigenvalue of its

Laplacian matrix L, and all the other eigenvalues of L have positive real parts.
Lemma 2: ([9]) A directed graph G(A) is balanced if and only if 1N is the left eigenvector of its Laplacian matrix

L associated with zero eigenvalue, i.e. 1T
N L = 0.

For an undirected graph, its Laplacian matrix L is positive semi-definite. For a connected undirected graph, there
is one simple zero eigenvalue of L, and all the other eigenvalues of L are positive and real.

2.2. Formulation of the model

Consider a group of N agents indexed by 1, 2, · · · ,N. The commonly studied continuous-time second-order
protocol of the N agents is described as follows [23, 24, 26]:

ẋi(t) = vi(t)

v̇i(t) = −α
N∑

j=1

li jx j(t) − β
N∑

j=1

li jv j(t), i = 1, 2, · · · ,N,
(3)

where xi ∈ Rn and vi ∈ Rn are the position and velocity states of the ith agent, respectively, α and β represent the
coupling strengths, L = [li j]N×N is the Laplacian matrix of the fixed communication topology G(A). When the agents
reach second-order consensus, the velocities of all agents converge to

∑N
j=1 ξ jv j(0), which depends only on the initial

velocities of the agents, where ξ = (ξ1, · · · , ξN) is the nonnegative left eigenvector of L associated with the eigenvalue
0 satisfying ξT 1N = 1 [23, 24]. However, in most applications of multi-agent formations, the velocity of each agent

3



is generally evolving nonlinearly. Therefore, Yu et al. proposed the following second-order consensus protocol with
nonlinear dynamics [37]

ẋi(t) = vi(t)

v̇i(t) = f (xi(t), vi(t), t) − α
N∑

j=1

li jx j(t) − β
N∑

j=1

li jv j(t), i = 1, 2, · · · ,N,
(4)

where f : Rn × Rn × R+ → Rn is a continuously differentiable vector-valued function. In some cases, f can be
taken as f = −▽U(x, v), where U(x, v) is a potential function, thus the multi-agent system (4) includes many popular
swarming and flocking models [38], [39] as special cases.

Note that most of the existing protocols are implemented based on a common assumption that all information is
transmitted continuously among agents. However, in some real situations, agents may only communicate with their
neighbors over some disconnected time intervals due to the unreliability of communication channels, failure of phys-
ical devices, and limitations of sensing ranges, etc. Motivated by this observation and based on the above-mentioned
works [23, 24, 37], in this paper the following consensus protocol with time-delay and intermittent measurements is
considered:

ẋi(t) = vi(t)

v̇i(t) = f (xi(t − τ), vi(t − τ), xi(t), vi(t), t) − α
N∑

j=1

li jx j(t) − β
N∑

j=1

li jv j(t), t ∈ [kω, kω + δ],

v̇i(t) = f (xi(t − τ), vi(t − τ), xi(t), vi(t), t), t ∈ (kω + δ, (k + 1)ω), k ∈ N, i = 1, 2, · · · ,N

(5)

where f : Rn × Rn × Rn × Rn × R+ → Rn is a continuously differentiable vector-valued function representing the
intrinsic delayed nonlinear dynamics of agent i, τ > 0 is the time-delay constant, and the communication time duration
δ satisfies τ < δ ≤ ω. Furthermore, xi(t) = ϕi(t), vi(t) = ψi(t), for t ∈ [−τ, 0], i = 1, 2, · · · , and the initial functions ϕi

and ψi are continuous for t ∈ [−τ, 0].
Clearly, since

∑N
j=1 li j = 0, if consensus can be achieved, it is natural to require a solution s(t) = (sT

1 (t), sT
2 (t))T ∈

R2n of the system (5) be a possible trajectory of an isolated node satisfying ṡ1(t) = s2(t),

ṡ2(t) = f (s1(t − τ), s2(t − τ), s1(t), s2(t), t).
(6)

Here, s(t) may be an isolated equilibrium point, a periodic orbit, or even a chaotic orbit in applications.
Remark 1: If τ = 0 and δ = ω in system (5), that is, each agent can communicate with its neighbors all the time

and the node dynamics depend only on its current states, then system (5) becomes the system (3) studied in Ref. [37].
Lemma 3: (Schur complement [40]) The following linear matrix inequality (LMI),

S =

 S 11 S 12

S 21 S 22

 > 0,

where S 11 = S T
11, S 12 = S T

21, S 22 = S T
22, is equivalent to one of the following conditions:

(i) S 11 > 0, S 22 − S 21S −1
11 S 12 > 0;

(ii) S 22 > 0, S 11 − S 12S −1
22 S 21 > 0.

Lemma 4: (Halanay Inequality [41]) Suppose that the non-negative function y(t), t ∈ [−τ,+∞), satisfies

dy(t)
dt
≤ −c1y(t) + c2y(t − τ), t ≥ 0,
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where constants c1 > c2 > 0. Then,
y(t) ≤ |y(0)|τe−rt, t ≥ 0,

where |y(0)|τ = max
−τ≤s≤0

y(s) and r is the unique solution of

−r = −c1 + c2erτ.

Lemma 5: [42] Suppose that the non-negative function y(t), t ∈ [−τ,∞), satisfies

dy(t)
dt
≤ c1y(t) + c2y(t − τ), t ≥ 0,

where c1, c2 are positive constants. Then,

y(t) ≤ |y(0)|τe(c1+c2)t, t ≥ 0,

where |y(0)|τ = max
−τ≤s≤0

y(s).

3. Main Results

In this section, second-order consensus problems in strongly connected and balanced networks with time-delayed
nonlinear dynamics and intermittent measurements are investigated.

Assumption 1: There exist nonnegative constants ρi, i ∈ {1, 2, 3, 4}, such that

∥ f (x1, x2, x3, x4, t) − f (y1, y2, y3, y4, t)∥ ≤
4∑

i=1

ρi∥xi − yi∥,

∀xi, yi ∈ Rn, i ∈ {1, 2, 3, 4}, t ≥ 0.
Let x̃i(t) = xi(t) − 1

N
∑N

j=1 x j(t) and ṽi(t) = vi(t) − 1
N

∑N
j=1 v j(t). One has the following error dynamical system:

˙̃xi(t) = ṽi(t),

˙̃vi(t) = f (xi(t − τ), vi(t − τ), xi(t), vi(t), t) −
1
N

N∑
j=1

f (x j(t − τ), v j(t − τ), x j(t), v j(t), t)

− α
N∑

j=1

li j x̃ j(t) − β
N∑

j=1

li jṽ j(t), kω ≤ t ≤ kω + δ,

˙̃vi(t) = f (xi(t − τ), vi(t − τ), xi(t), vi(t), t) −
1
N

N∑
j=1

f (x j(t − τ), v j(t − τ), x j(t), v j(t), t),

kω + δ < t < (k + 1)ω, i = 1, · · · ,N, k = 0, 1, · · · .

(7)

Let x̃(t) = (x̃T
1 (t), · · · , x̃T

N(t))T , ṽ(t) = (ṽT
1 (t), · · · , ṽT

N(t))T , f (x(t − τ), v(t − τ), x(t), v(t), t) = ( f T (x1(t − τ), v1(t −
τ), x1(t), v1(t), t), · · · , f T (xN(t − τ), vN(t − τ), xN(t), vN(t), t))T and ỹ(t) = (x̃T (t), ṽT (t))T . Then, system (7) can be
written as  ˙̃y(t) = F(x(t − τ), v(t − τ), x(t), v(t), t) + (B1 ⊗ In)ỹ(t), t ∈ [kω, kω + δ],

˙̃y(t) = F(x(t − τ), v(t − τ), x(t), v(t), t) + (B2 ⊗ In)ỹ(t), t ∈ (kω + δ, (k + 1)ω),
(8)
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where F(x(t−τ), v(t−τ), x(t), v(t), t) =

 0Nn[
(IN − 1

N 1N×N) ⊗ In

]
f (x(t − τ), v(t − τ), x(t), v(t), t)

, B1 =

 ON IN

−αL −βL

,
B2 =

 ON IN

ON ON

.
Theorem 1. Suppose that the communication topologyG(A) is strongly connected and balanced, and Assumption

1 holds. Then, second-order consensus in system (5) is achieved if the following conditions hold:
(i) λ2(L + LT ) > α

β2 ,
(ii) λ1(R1) > c0λ2(P1)

λ1(Q) ,
(iii) δ > rτ+(γ3+γ4)ω

r+γ3+γ4
,

where R1 =


(
αλ2(L + LT ) − ρ1 − ρ2 − 2ρ3

)
α − (βρ3 + αρ4)

− (βρ3 + αρ4) β2λ2(L + LT ) − (ρ1 + ρ2 + 2ρ4)β − 2α

, P1 =

 αβλN(L + LT ) α

α β

,
Q =

 αβλ2(L + LT ) α

α β

, c0 = (α + β) max{ρ1, ρ2}, r is the unique positive solution of −r = −γ1 + γ2erτ, γ1 =

λ1(R1)
λ2(P1) , γ2 =

c0
λ1(Q) , γ3 =

c1+c2+
√

(c1−c2)2+c3

λ1(Q) , γ4 =
(α+β)ρ0
λ1(Q) , c1 =

(ρ1+ρ2+2ρ3)α
2 , c2 =

(ρ1+ρ2+2ρ4)β
2 , and c3 = (βρ3+αρ4+1)2.

Proof: Construct the following Lyapunov function candidate

V(t) =
1
2

ỹT (t)(P ⊗ In)ỹ(t), (9)

where P =

 αβ(L + LT ) αIN

αIN βIN

. It will be shown that V(t) is a valid Lyapunov function for analyzing the error

dynamics described by system (8). According to the Courant-Fischer theorem [43], one has

V(t) =
αβ

2
x̃T (t)

(
(L + LT ) ⊗ In

)
x̃(t) + αx̃T (t)ṽ(t) +

β

2
ṽT (t)ṽ(t)

≥ 1
2

ỹT (t)(Q ⊗ INn)ỹ(t),

where Q =

 αβλ2(L + LT ) α

α β

. By Lemma 3, Q > 0 is equivalent to both β > 0 and λ2(L + LT ) > α
β2 . From

condition (i), one obtains Q > 0, V(t) ≥ 0 and V(t) = 0 if and only if ỹ(t) = 02Nn.
Let x̄(t − τ) = 1

N
∑N

j=1 x j(t − τ), v̄(t − τ) = 1
N

∑N
j=1 v j(t − τ), x̄(t) = 1

N
∑N

j=1 x j(t), and v̄(t) = 1
N

∑N
j=1 v j(t). For

t ∈ [kω, kω + δ], k ∈ N, taking the time derivative of V(t) along the trajectories of (8) gives

V̇(t) = ỹT (t)(P ⊗ In)[F(x(t − τ), v(t − τ), x(t), v(t), t) + (B1 ⊗ In)ỹ(t)]

= αx̃T
[(

IN −
1
N

1N×N

)
⊗ In

]
f (x(t − τ), v(t − τ), x(t), v(t), t) + βṽT

[(
IN −

1
N

1N×N

)
⊗ In

]
f (x(t − τ), v(t − τ), x(t), v(t), t)

+
1
2

ỹT (t)
[(

PB1 + BT
1 P

)
⊗ In

]
ỹ(t)

=
[
αx̃T (t) + βṽT (t)

] [
f (x(t − τ), v(t − τ), x(t), v(t), t) − 1N ⊗ f (x̄(t − τ), v̄(t − τ), x̄(t), v̄(t), t)

]
−

[
αx̃T (t) + βṽT (t)

] (( 1
N

1N×N

)
⊗ In

)
f (x(t − τ), v(t − τ), x(t), v(t), t)

+
[
αx̃T (t) + βṽT (t)

] [
1N ⊗ f (x̄(t − τ), v̄(t − τ), x̄(t), v̄(t), t)

]
+

1
2

ỹT (t)

 −α2(L + LT ) ON

ON −β2(L + LT ) + 2αIN

 ⊗ In

 ỹ(t) (10)
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Since x̃(t) = [(IN − 1
N 1N×N) ⊗ In]x(t) and ṽ(t) = [(IN − 1

N 1N×N) ⊗ In]v(t), one gets

x̃T (t)
[
1N ⊗ f (x̄(t − τ), v̄(t − τ), x̄(t), v̄(t), t)

]
= 0,

ṽT (t)
[
1N ⊗ f (x̄(t − τ), v̄(t − τ), x̄(t), v̄(t), t)

]
= 0,

(11)

and

x̃T (t)
[(

1
N

1N×N

)
⊗ In

]
f (x(t − τ), v(t − τ), x(t), v(t), t) = 0,

ṽT (t)
[(

1
N

1N×N

)
⊗ In

]
f (x(t − τ), v(t − τ), x(t), v(t), t) = 0.

(12)

Combining (10)-(12), one obtains

V̇(t) =
[
αx̃T (t) + βṽT (t)

] [
f (x(t − τ), v(t − τ), x(t), v(t), t) − 1N ⊗ f (x̄(t − τ), v̄(t − τ), x̄(t), v̄(t), t)

]
+ỹT (t)

 −α2

2 (L + LT ) ON

ON − β
2

2 (L + LT ) + αIN

 ⊗ In

 ỹ(t). (13)

By Assumption 1, one gets

αx̃T (t)
[
f (x(t − τ), v(t − τ), x(t), v(t), t) − 1N ⊗ f (x̄(t − τ), v̄(t − τ), x̄(t), v̄(t), t)

]
= α

N∑
i=1

(xi(t) − x̄(t))T [
f (xi(t − τ), vi(t − τ), xi(t), vi(t), t) − f (x̄(t − τ), v̄(t − τ), x̄(t), v̄(t), t)

]
≤ α

N∑
i=1

∥x̃i(t)∥ (ρ1∥x̃i(t − τ)∥ + ρ2∥ṽi(t − τ)∥ + ρ3∥x̃i(t)∥ + ρ4∥ṽi(t)∥)

≤ (
ρ1 + ρ2

2
+ ρ3)

N∑
i=1

∥x̃i(t)∥2 +
ρ1

2

N∑
i=1

∥x̃i(t − τ)∥2 + ρ2

2

N∑
i=1

∥ṽi(t − τ)∥2 + ρ4

N∑
i=1

∥x̃i(t)∥∥ṽi(t)∥, (14)

and

βṽT (t)
[
f (x(t − τ), v(t − τ), x(t), v(t), t) − 1N ⊗ f (x̄(t − τ), v̄(t − τ), x̄(t), v̄(t), t)

]
= β

N∑
i=1

(vi(t) − v̄(t))T [
f (xi(t − τ), vi(t − τ), xi(t), vi(t), t) − f (x̄(t − τ), v̄(t − τ), x̄(t), v̄(t), t)

]
≤ β

N∑
i=1

∥ṽi(t)∥ (ρ1∥x̃i(t − τ)∥ + ρ2∥ṽi(t − τ)∥ + ρ3∥x̃i(t)∥ + ρ4∥ṽi(t)∥)

≤ β

ρ1

2

N∑
i=1

∥x̃i(t − τ)∥2 +
(
ρ1 + ρ2

2
+ ρ4

) N∑
i=1

∥ṽi(t)∥2 +
ρ2

2

N∑
i=1

∥ṽi(t − τ)∥2 + ρ3

N∑
i=1

∥x̃i(t)∥∥ṽi(t)∥
 . (15)
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Combining (13)-(15) gives

V̇(t) ≤ (ρ1 + ρ2 + 2ρ3)α
2

N∑
i=1

∥x̃i(t)∥2 +
(α + β)ρ1

2

N∑
i=1

∥x̃i(t − τ)∥2 + (ρ1 + ρ2 + 2ρ4)β
2

N∑
i=1

∥ṽi(t)∥2

+
(α + β)ρ2

2

N∑
i=1

∥ṽi(t − τ)∥2 + (βρ3 + αρ4)
N∑

i=1

∥x̃i(t)∥∥ṽi(t)∥

+ ỹT (t)

 −α2

2 (L + LT ) ON

ON − β
2

2 (L + LT ) + αIN

 ⊗ In

 ỹ(t)

≤

(
ρ1 + ρ2 + 2ρ3 − αλ2(L + LT )

)
α

2

N∑
i=1

∥x̃i(t)∥2 + (βρ3 + αρ4)
N∑

i=1

∥x̃i(t)∥∥ṽi(t)∥

+
(ρ1 + ρ2 + 2ρ4)β + 2α − β2λ2(L + LT )

2

N∑
i=1

∥ṽi(t)∥2 +
(α + β)ρ1

2

N∑
i=1

∥x̃i(t − τ)∥2

+
(α + β)ρ2

2

N∑
i=1

∥ṽi(t − τ)∥2

=
1
2

(
−∥ỹ(t)∥T (R1 ⊗ IN) ∥ỹ(t)∥ + ∥ỹ(t − τ)∥T (S 1 ⊗ IN) ∥ỹ(t − τ)∥

)
, (16)

where R1 =


(
αλ2(L + LT ) − ρ1 − ρ2 − 2ρ3

)
α − (βρ3 + αρ4)

− (βρ3 + αρ4) β2λ2(L + LT ) − (ρ1 + ρ2 + 2ρ4)β − 2α

, S 1 =

 (α + β)ρ1 0
0 (α + β)ρ2

,
∥x̃(t)∥ = (∥x̃1(t)∥, · · · , ∥x̃N(t)∥)T , ∥ṽ(t)∥ = (∥ṽ1(t)∥, · · · , ∥ṽN(t)∥)T , ∥ỹ(t)∥ = (∥x̃(t)∥T , ∥ṽ(t)∥T )T , ∥ỹ(t − τ)∥ = (∥x̃(t −
τ)∥T , ∥ṽ(t − τ)∥T )T . On the other hand, one has

V(t) =
1
2

ỹT (t) (P ⊗ In) ỹ(t),

=
αβ

2
x̃T (t)

(
(L + LT ) ⊗ In

)
x̃(t) + αx̃T (t)ṽ(t) +

β

2
ṽT (t)ṽ(t)

≤ 1
2

ỹT (t) (P1 ⊗ INn) ỹ(t), (17)

where P1 =

 αβλN(L + LT ) a

a β

. Thus, according to Eq. (16) and the following facts:

V(t) ≤ 1
2
λ2(P1)ỹT (t)ỹ(t),

V(t − τ) ≥ 1
2
λ1(Q)ỹT (t − τ)ỹ(t − τ),

∥ỹ(t)∥T R1∥ỹ(t)∥ ≥ λ1(R1)ỹT (t)ỹ(t),

∥ỹ(t − τ)∥T S 1∥ỹ(t − τ)∥ ≤ λ2(S 1)ỹT (t − τ)ỹ(t − τ),

one obtains

V̇(t) ≤ −γ1V(t) + γ2V(t − τ), (18)

where γ1 =
λ1(R1)
λ2(P1) , γ2 =

c0
λ1(Q) , and c0 = (α + β) max{ρ1, ρ2}.
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For kω + δ < t < (k + 1)ω, k ∈ N, taking the time derivative of V(t) along the trajectories of (8) gives

V̇(t) = ỹT (t)(P ⊗ In)[F(x(t − τ), v(t − τ), x(t), v(t), t) + (B2 ⊗ In)ỹ(t)] (19)

= αx̃T
[(

IN −
1
N

1N×N

)
⊗ In

]
f (x(t − τ), v(t − τ), x(t), v(t), t) + βṽT

[(
IN −

1
N

1N×N

)
⊗ In

]
f (x(t − τ), v(t − τ), x(t), v(t), t) + ỹT (t) [(B2 ⊗ In)] ỹ(t).

Similar to the previous analysis, one obtains

V̇(t) ≤ (ρ1 + ρ2 + 2ρ3)α
2

N∑
i=1

∥x̃i(t)∥2 +
(α + β)ρ1

2

N∑
i=1

∥x̃i(t − τ)∥2 + (ρ1 + ρ2 + 2ρ4)β
2

N∑
i=1

∥ṽi(t)∥2

+
(α + β)ρ2

2

N∑
i=1

∥ṽi(t − τ)∥2 + (βρ3 + αρ4)
N∑

i=1

∥x̃i(t)∥∥ṽi(t)∥ + ỹT (t)

 ON IN

ON ON

 ⊗ In

 ỹ(t)

=
1
2

(
∥ỹ(t)∥T (R2 ⊗ IN) ∥ỹ(t)∥ + ∥ỹ(t − τ)∥T (S 2 ⊗ IN) ∥ỹ(t − τ)∥

)
, (20)

where R2 =

 (ρ1 + ρ2 + 2ρ3)α βρ3 + αρ4 + 1
βρ3 + αρ4 + 1 (ρ1 + ρ2 + 2ρ4)β

, S 2 =

 (α + β)ρ1 0
0 (α + β)ρ2

. It then follows that

V̇(t) ≤ λ2(R2)
λ1(Q)

V(t) +
λ2(S 2)
λ1(Q)

V(t − τ)

≤ γ3V(t) + γ4V(t − τ), (21)

where γ3 =
c1+c2+

√
(c1−c2)2+c3

λ1(Q) , γ4 =
c0

λ1(Q) , c1 =
(ρ1+ρ2+2ρ3)α

2 , c2 =
(ρ1+ρ2+2ρ4)β

2 , c3 = (βρ3 + αρ4 + 1)2, c0 = (α +
β) max{ρ1, ρ2}.

Based on the above analysis and according to Lemma 4, one obtains

V(t) ≤ |V(0)|τe−rt, 0 ≤ t ≤ δ, (22)

where r is the unique positive solution of −r = −γ1 + γ2erτ, |V(0)|τ = max
−τ≤s≤0

V(s). For δ < t < ω, by using Lemma 5,
one obtains

V(t) ≤ |V(δ)|τe(γ3+γ4)t. (23)

Then, according to (22), one has

|V(δ)|τ = max
δ−τ≤t≤δ

V(t) ≤ |V(0)|τe−r(δ−τ). (24)

Combining (23) and (24) yields

V(t) ≤ |V(δ)|τe(γ3+γ4)(t−δ) ≤ |V(0)|τe−r(δ−τ)+(γ3+γ4)(t−δ), δ < t < ω. (25)

As V(t) is a continuous function of t, one has

V(ω) = lim
t→ω−

V(t) ≤ |V(0)|τe−r(δ−τ)+(γ3+γ4)(ω−δ). (26)

Then,

|V(ω)|τ = max
ω−τ≤t≤ω

V(t)

≤ |V(δ)|τe(γ3+γ4)(ω−δ)

≤ |V(0)|τe−r(δ−τ)+(γ3+γ4)(ω−δ) = |V(0)|τe−∆, (27)
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where ∆ = r(δ − τ) − (γ3 + γ4)(ω − δ) > 0. For any positive integer k, one has

|V(kω)|τ ≤ |V(0)|τe−k∆. (28)

For arbitrary t > 0, there exists a non-negative integer k, such that kω < t ≤ (k + 1)ω. When t ∈ (kω, kω + δ], one
obtains

V(t) ≤ |V(kω)|τe−r(t−kω)

≤ |V(0)|τe−k∆−r(t−kω)

≤ |V(0)|τe−k∆

≤ |V(0)|τe∆e−(
∆
ω )t. (29)

When t ∈ (kω + δ, (k + 1)ω], one has

V(t) ≤ |V(kω + δ)|τe(γ3+γ4)(t−kω−δ)

≤ |V(0)|τe−k∆−rδe(γ3+γ4)(ω−δ)

≤ |V(0)|τe(γ3+γ4)(ω−δ)−rδ+∆e−(
∆
ω )t

= |V(0)|τe−rτe−(
∆
ω )t. (30)

Combining (29)-(30) gives

V(t) ≤ K0e−(
∆
ω )t, for all t > 0, (31)

where K0 = e∆|V(0)|τ, which indicates that the states of agents exponentially converge to consensus. This completes
the proof.

Corollary 1. Suppose that the communication topology G(A) is a strongly connected and balanced network, and
Assumption 1 holds. Then, second-order consensus in system (5) is achieved if the following conditions hold:

(i) β > α,

(ii) λ2(L + LT ) > max
{
α−1, ϱ1, ϱ2

}
,

(iii) δ > rτ+(γ3+γ4)ω
r+γ3+γ4

,

where ϱ1 =
α(ρ1+ρ2+2ρ3)+βρ3+αρ4

α2 +
max{ρ1,ρ2}(α+β)(βλN (L+LT )+1)

α(β−α) , ϱ2 =
β(ρ1+ρ2+2ρ4)+2α

β2 +
max{ρ1,ρ2}(α+β)[αβλN (L+LT )+α]

β2(β−α) , r is the

unique positive solution of −r = −γ1 + γ2erτ, γ1 =
min{κ1,κ2}

αβλN (L+LT )+α , γ2 =
(α+β) max{ρ1,ρ2}

β−α , γ3 =
c1+c2+

√
(c1−c2)2+c3

β−α ,
γ4 =

(α+β) max{ρ1,ρ2}
β−α , κ1 = β

2λ2(L + LT ) − β(ρ1 + ρ2 + 2ρ3) − (βρ3 + αρ4), κ2 = α
2λ2(L + LT ) − α(ρ1 + ρ2 + 2ρ4) − 2α,

c1 =
(ρ1+ρ2+2ρ3)α

2 , c2 =
(ρ1+ρ2+2ρ4)β

2 , and c3 = (βρ3 + αρ4 + 1)2.
Proof: Construct the same Lyapunov function candidate V(t) as that in the proof of Theorem 1. By the Geršgorin

disk theorem [43] and conditions (i) and (ii), the Corollary can be proved by following the proof of Theorem 1.
Remark 2. In Ref. [37], the concept of general algebraic connectivity a(L) is introduced to describe the second-

order multi-agent system’s ability to reach consensus. By Definition 6 in Ref. [37], one has a(L) = λ2(L+LT )
2 for a

strongly connected and balanced G(A), where L is the Laplacian matrix of the graph. Suppose that β > α. Then,
from the Corollary 1, the second-order consensus can be achieved if the general algebraic connectivity a(L) and the
communication time duration δ are larger than their corresponding threshold values, respectively.

In practice, the communication topology among agents may not be fixed because of the restrictions of physical
equipments or the signal interference. Therefore, it is more reasonable to assume that the communication topology
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is dynamically switching. Let G = {G(A1), · · · ,G(Aπ)} be a set of possible topologies. For convenience, introduce a
switching signal σ : [0,∞) → Π, where Π = {1, · · · , π}. Denote by Lσ(t) the Laplacian matrix of G(Aσ(t)). Then, the
following theorem and corollary can be obtained, for which the proofs are straight forward therefore omitted.

Theorem 2. Suppose that the communication topology G(Aσ(t)) is kept strongly connected and balanced through-
out the process and, moreover, Assumption 1 holds. Then, second-order consensus in system (5) is achieved if the
following conditions hold:

(i) λ2(Li + LT
i ) > α2

β
,

(ii) λ1(Ri
1) > c0λ2(Pi

1)
λ1(Qi) ,

(iii) δ > riτ+(γi
3+γ

i
4)ω

ri+γi
3+γ

i
4

,

where Ri
1 =


(
αλ2(Li + LT

i ) − ρ1 − ρ2 − 2ρ3

)
α − (βρ3 + αρ4)

− (βρ3 + αρ4) β2λ2(Li + LT
i ) − (ρ1 + ρ2 + 2ρ4)β − 2α

, Pi
1 =

 αβλmax(Li + LT
i ) α

α β

,
Qi =

 αβλ2(Li + LT
i ) α

α β

, c0 = (α + β) max{ρ1, ρ2}, and ri is the unique positive solution of −ri = −γi
1 + γ

i
2eriτ,

γi
1 =

λ1(Ri
1)

λ2(Pi
1) , γ2 =

c0
λ1(Qi) , γ

i
3 =

c1+c2+
√

(c1−c2)2+c3

λ1(Qi) , γi
4 =

c0
λ1(Qi) , c1 =

(ρ1+ρ2+2ρ3)α
2 , c2 =

(ρ1+ρ2+2ρ4)β
2 , c3 = (βρ3 + αρ4 +

1)2, i ∈ Π.
Corollary 2. Suppose that the communication topology G(Aσ(t)) is kept strongly connected and balanced through-

out the process and, moreover, Assumption 1 holds. Then, second-order consensus in system (5) is achieved if the
following conditions hold:

(i) β > α,

(ii) mini∈Π λ2(Li + LT
i ) > max

{
α−1, ϱ0

}
,

(iii) δ > r̄τ+(γ̄3+γ̄4)ω
r̄+γ̄3+γ̄4

,

where ϱ0 = max
i∈Π

{
ϱi

1, ϱ
i
2

}
, ϱi

1 =
α(ρ1+ρ2+2ρ3)+βρ3+αρ4

α2 +
ρ0(α+β)(βλN (Li+LT

i )+1)
α(β−α) , ϱi

2 =
β(ρ1+ρ2+2ρ4)+2α

β2 +
ρ0(α+β)[αβλN (Li+LT

i )+α]
β2(β−α) ,

r̄ is the unique positive solution of −r̄ = −γ̄1 + γ̄2er̄τ, γ̄1 =
κmin

αβλN (L+LT )+α , γ̄2 =
(α+β) max{ρ1,ρ2}

β−α , γ̄3 =
c1+c2+

√
(c1−c2)2+c3

β−α ,
γ̄4 =

(α+β) max{ρ1,ρ2}
β−α , κmin = min

i∈Π
{κi

1, κ
i
2}, κi

1 = β
2λ2(Li + LT

i ) − β(ρ1 + ρ2 + 2ρ3) − (βρ3 + αρ4), κi
2 = α

2λ2(Li + LT
i ) −

α(ρ1 + ρ2 + 2ρ4) − 2α, c1 =
(ρ1+ρ2+2ρ3)α

2 , c2 =
(ρ1+ρ2+2ρ4)β

2 , c3 = (βρ3 + αρ4 + 1)2, i ∈ Π.

4. A Simulation Example

In this section, a simulation example is provided to verify the theoretical analysis.
Consider the second-order consensus protocol with time-delayed nonlinear velocities in system (5), where the

communication topology is shown in Fig. 1 with weighting on the edges. The time-delayed nonlinear function f is
described by time-delayed Chua’s circuit [44]:

f (xi(t − τ), vi(t − τ), xi(t), vi(t), t) =


µ (−vi1 + vi2 − l(vi1))

vi1 − vi2 + vi3

−ςvi2 − ϵsin(σvi1(t − τ))

 , i = 1, · · · , 4, (32)

where l(vi1) = bvi1 + 0.5(a − b)(|vi1 + 1| − |vi1 − 1|), xi = [xi1, xi2, xi3]T , vi = [vi1, vi2, vi3]T . The isolated system
(32) is chaotic when µ = 10, ς = 18, ϵ = 0.02, σ = 0.02, τ = 0.01, a = −4/3 and b = −3/4, as shown in
Fig. 1 with initial conditions vi(t) = [0.016, 0.018,−0.015]T , t ∈ [−τ, 0]. In view of Assumption 1, one obtains
ρ1 = 0, ρ2 = 0.0004, ρ3 = 0, ρ4 = 4.3871. Let α = 11.5, β = 12, δ = 0.485, and ω = 0.5. From Fig. 2,
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it is easy to see that the communication topology G(A) is strongly connected and balanced. By Theorem 1, one
has λ2(L + LT ) = 12 > α2

β
= 11.0208, λ1(R1) = 1555.7 > c0λ2(P1)

λ1(Q) = 3.0473, and δ = 0.485 > rτ+(γ3+γ4)ω
r+γ3+γ4

=

0.4845. Therefore, second-order consensus can be achieved in multi-agent system (5). The position and velocity
states of all agents are shown in Fig. 2, with initial conditions x1(t) = [0.25,−0.13, 0.04]T , x2(t) = [2, 1.5, 2.5]T ,

x3(t) = [−1,−1.5,−2.5]T , x4(t) = [−2,−0.8, 0.3]T , v1(t) = [3.016, 2.018, 0.085]T , v2(t) = [2.016, 3.018, 1.085]T ,

v3(t) = [−1.085,−1.282, 1.285]T , v4(t) = [−2.085,−0.582,−0.015]T , for t ∈ [−τ, 0]. Simulation results shown in
Figs. (3) and (4) verify the theoretical analysis very well.
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Figure 1: Chaotic trajectory of the model (32).
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Figure 2: Communication topology G(A).

5. Conclusions

In this paper, a novel second-order intermittent consensus protocol for multi-agent systems with time-delayed
nonlinear dynamics and switching communication topologies has been introduced and studied. It has been shown that
second-order consensus can be reached if the communication time duration and the general algebraic connectivity
are larger than their corresponding thresholds, respectively. Future work will be focused on the consensus behaviors
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Figure 3: Consensus of state trajectories of multiple agents.
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Figure 4: Consensus of velocity trajectories of multiple agents.

of more complicated and practical models, such as second-order multi-agent systems with nonlinear dynamics and
transmission delays, higher-order multi-agent systems with nonlinear dynamics, and so on.
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