187,959 research outputs found

    Parametrization and geometric analysis of coordination controllers for multi-agent systems

    Get PDF
    summary:In this paper, we address distributed control structures for multi-agent systems with linear controlled agent dynamics. We consider the parametrization and related geometric structures of the coordination controllers for multi-agent systems with fixed topologies. Necessary and sufficient conditions to characterize stabilizing consensus controllers are obtained. Then we consider the consensus for the multi-agent systems with switching interaction topologies based on control parametrization

    Differential Inequalities in Multi-Agent Coordination and Opinion Dynamics Modeling

    Get PDF
    Distributed algorithms of multi-agent coordination have attracted substantial attention from the research community; the simplest and most thoroughly studied of them are consensus protocols in the form of differential or difference equations over general time-varying weighted graphs. These graphs are usually characterized algebraically by their associated Laplacian matrices. Network algorithms with similar algebraic graph theoretic structures, called being of Laplacian-type in this paper, also arise in other related multi-agent control problems, such as aggregation and containment control, target surrounding, distributed optimization and modeling of opinion evolution in social groups. In spite of their similarities, each of such algorithms has often been studied using separate mathematical techniques. In this paper, a novel approach is offered, allowing a unified and elegant way to examine many Laplacian-type algorithms for multi-agent coordination. This approach is based on the analysis of some differential or difference inequalities that have to be satisfied by the some "outputs" of the agents (e.g. the distances to the desired set in aggregation problems). Although such inequalities may have many unbounded solutions, under natural graphic connectivity conditions all their bounded solutions converge (and even reach consensus), entailing the convergence of the corresponding distributed algorithms. In the theory of differential equations the absence of bounded non-convergent solutions is referred to as the equation's dichotomy. In this paper, we establish the dichotomy criteria of Laplacian-type differential and difference inequalities and show that these criteria enable one to extend a number of recent results, concerned with Laplacian-type algorithms for multi-agent coordination and modeling opinion formation in social groups.Comment: accepted to Automatic

    CONTROL AND ESTIMATION ALGORITHMS FOR MULTIPLE-AGENT SYSTEMS

    Get PDF
    Tese arquivada ao abrigo da Portaria nº 227/2017 de 25 de julhoIn this thesis we study crucial problems within complex, large scale, networked control systems and mobile sensor networks. The ¯rst one is the problem of decomposition of a large-scale system into several interconnected subsystems, based on the imposed information structure constraints. After associating an intelligent agent with each subsystem, we face with a problem of formulating their local estimation and control laws and designing inter-agent communication strategies which ensure stability, desired performance, scalability and robustness of the overall system. Another problem addressed in this thesis, which is critical in mobile sensor networks paradigm, is the problem of searching positions for mobile nodes in order to achieve optimal overall sensing capabilities. Novel, overlapping decentralized state and parameter estimation schemes based on the consensus strategy have been proposed, in both continuous-time and discrete-time. The algorithms are proposed in the form of a multi-agent network based on a combination of local estimators and a dynamic consensus strategy, assuming possible intermittent observations and communication faults. Under general conditions concerning the agent resources and the network topology, conditions are derived for the stability and convergence of the algorithms. For the state estimation schemes, a strategy based on minimization of the steady-state mean-square estimation error is proposed for selection of the consensus gains; these gains can also be adjusted by local adaptation schemes. It is also demonstrated that there exists a connection between the network complexity and e±ciency of denoising, i.e., of suppression of the measurement noise in°uence. Several numerical examples serve to illustrate characteristic properties of the proposed algorithm and to demonstrate its applicability to real problems. Furthermore, several structures and algorithms for multi-agent control based on a dynamic consensus strategy have been proposed. Two novel classes of structured, overlapping decentralized control algorithms are presented. For the ¯rst class, an agreement between the agents is implemented at the level of control inputs, while the second class is based on the agreement at the state estimation level. The proposed control algorithms have been illustrated by several examples. Also, the second class of the proposed consensus based control scheme has been applied to decentralized overlapping tracking control of planar formations of UAVs. A comparison is given with the proposed novel design methodology based on the expansion/contraction paradigm and the inclusion principle. Motivated by the applications to the optimal mobile sensor positioning within mobile sensor networks, the perturbation-based extremum seeking algorithm has been modifed and extended. It has been assumed that the integrator gain and the perturbation amplitude are time varying (decreasing in time with a proper rate) and that the output is corrupted with measurement noise. The proposed basic, one dimensional, algorithm has been extended to two dimensional, hybrid schemes and directly applied to the planar optimal mobile sensor positioning, where the vehicles can be modeled as velocity actuated point masses, force actuated point masses, or nonholonomic unicycles. The convergence of all the proposed algorithms, with probability one and in the mean square sense, has been proved. Also, the problem of target assignment in multi-agent systems using multi-variable extremum seeking algorithm has been addressed. An algorithm which e®ectively solves the problem has been proposed, based on the local extremum seeking of the specially designed global utility functions which capture the dependance among di®erent, possibly con°icting objectives of the agents. It has been demonstrated how the utility function parameters and agents' initial conditions impact the trajectories and destinations of the agents. All the proposed extremum seeking based algorithms have been illustrated with several simulations

    Synthesis of Formation Control Systems for Multi-Agent Systems under Control Gain Perturbations

    Get PDF
    This paper proposed a linear matrix inequality (LMI)-based design method of non-fragile guaranteed cost controllers for multi-agent systems (MASs) with leader-follower structures. In the guaranteed cost control approach, the resultant controller guarantees an upper bound on the given cost function together with asymptotical stability for the closed-loop system. The proposed non-fragile guaranteed cost control system can achieve consensus for MASs despite control gain perturbations. The goal is to develop an LMI-based sufficient condition for the existence of the proposed non-fragile guaranteed cost controller.  Moreover, a design problem of an optimal non-fragile guaranteed cost controller showe that minimizing an upper bound on the given quadratic cost function can be reduced to constrain a convex optimization problem. Finally, numerical examples were given to illustrate the effectiveness of the proposed non-fragile controller for MASs

    Recurrent averaging inequalities in multi-agent control and social dynamics modeling

    Get PDF
    Many multi-agent control algorithms and dynamic agent-based models arising in natural and social sciences are based on the principle of iterative averaging. Each agent is associated to a value of interest, which may represent, for instance, the opinion of an individual in a social group, the velocity vector of a mobile robot in a flock, or the measurement of a sensor within a sensor network. This value is updated, at each iteration, to a weighted average of itself and of the values of the adjacent agents. It is well known that, under natural assumptions on the network's graph connectivity, this local averaging procedure eventually leads to global consensus, or synchronization of the values at all nodes. Applications of iterative averaging include, but are not limited to, algorithms for distributed optimization, for solution of linear and nonlinear equations, for multi-robot coordination and for opinion formation in social groups. Although these algorithms have similar structures, the mathematical techniques used for their analysis are diverse, and conditions for their convergence and differ from case to case. In this paper, we review many of these algorithms and we show that their properties can be analyzed in a unified way by using a novel tool based on recurrent averaging inequalities (RAIs). We develop a theory of RAIs and apply it to the analysis of several important multi-agent algorithms recently proposed in the literature

    Recurrent Averaging Inequalities in Multi-Agent Control and Social Dynamics Modeling

    Full text link
    Many multi-agent control algorithms and dynamic agent-based models arising in natural and social sciences are based on the principle of iterative averaging. Each agent is associated to a value of interest, which may represent, for instance, the opinion of an individual in a social group, the velocity vector of a mobile robot in a flock, or the measurement of a sensor within a sensor network. This value is updated, at each iteration, to a weighted average of itself and of the values of the adjacent agents. It is well known that, under natural assumptions on the network's graph connectivity, this local averaging procedure eventually leads to global consensus, or synchronization of the values at all nodes. Applications of iterative averaging include, but are not limited to, algorithms for distributed optimization, for solution of linear and nonlinear equations, for multi-robot coordination and for opinion formation in social groups. Although these algorithms have similar structures, the mathematical techniques used for their analysis are diverse, and conditions for their convergence and differ from case to case. In this paper, we review many of these algorithms and we show that their properties can be analyzed in a unified way by using a novel tool based on recurrent averaging inequalities (RAIs). We develop a theory of RAIs and apply it to the analysis of several important multi-agent algorithms recently proposed in the literature

    Control law and state estimators design for multi-agent system with reduction of communications by event-triggered approach

    Get PDF
    A large amount of research work has been recently dedicated to the study of Multi-Agent System and cooperative control. Applications to mobile robots, like unmanned air vehicles (UAVs), satellites, or aircraft have been tackled to insure complex mission such as exploration or surveillance. However, cooperative tasking requires communication between agents, and for a large number of agents, the number of communication exchanges may lead to network saturation, increased delays or loss of transferred packets, from the interest in reducing them. In event-triggered strategy, a communication is broadcast when a condition, based on chosen parameters and some threshold, is fulfilled. The main difficulty consists in determining the communication triggering condition (CTC) that will ensure the completion of the task assigned to the MAS. In a distributed strategy, each agent maintains an estimate value of others agents state to replace missing information due to limited communication. This thesis focuses on the development of distributed control laws and estimators for multi-agent system to limit the number of communication by using event-triggered strategy in the presence of perturbation with two main topics, i.e. consensus and formation control. The first part addresses the problem of distributed event-triggered communications for consensus of a multi-agent system with both general linear dynamics and state perturbations. To decrease the amount of required communications, an accurate estimator of the agent states is introduced, coupled with an estimator of the estimation error, and adaptation of communication protocol. By taking into account the control input of the agents, the proposed estimator allows to obtain a consensus with fewer communications than those obtained by a reference method. The second part proposes a strategy to reduce the number of communications for displacement-based formation control while following a desired reference trajectory. Agent dynamics are described by Euler-Lagrange models with perturbations and uncertainties on the model parameters. Several estimator structures are proposed to rebuilt missing information. The proposed distributed communication triggering condition accounts for inter-agent displacements and the relative discrepancy between actual and estimated agent states. A single a priori trajectory has to be evaluated to follow the desired path. Effect of state perturbations on the formation and on the communications are analyzed. Finally, the proposed methods have been adapted to consider packet dropouts and communication delays. For both type

    Consensus via Adaptive Gain Controllers Considering Relative Distances for Multi-Agent Systems

    Get PDF
    In this paper, for multi-agent systems (MASs) with leader-follower structures, we present a linear matrix inequality (LMI)-based design method of an adaptive gain controller considering relative distances between agents. The proposed adaptive gain controller consists of fixed gains and variable ones tuned by time-varying adjustable parameters. The objective of this paper is to derive enough conditions for the existence of the proposed adaptive gain controller which achieves consensus for each agent. The advantages of the proposed adaptive gain controller are as follows; The proposed controller can be obtained by solving LMI, and the proposed control system can achieve consensus and formation control, even if uncertainties are included in the information for relative distances. In this paper, we show that the design problem of the proposed adaptive gain controller can be reduced to the solvability of LMI. Finally, simple numerical examples are included to illustrate the effectiveness of the proposed adaptive gain controller for MASs
    corecore