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Abstract

In this thesis we study crucial problems within complex, large scale, networked control

systems and mobile sensor networks. The first one is the problem of decomposition of a

large-scale system into several interconnected subsystems, based on the imposed information

structure constraints. After associating an intelligent agent with each subsystem, we face

with a problem of formulating their local estimation and control laws and designing inter-

agent communication strategies which ensure stability, desired performance, scalability and

robustness of the overall system. Another problem addressed in this thesis, which is critical

in mobile sensor networks paradigm, is the problem of searching positions for mobile nodes

in order to achieve optimal overall sensing capabilities.

Novel, overlapping decentralized state and parameter estimation schemes based on the

consensus strategy have been proposed, in both continuous-time and discrete-time. The

algorithms are proposed in the form of a multi-agent network based on a combination of

local estimators and a dynamic consensus strategy, assuming possible intermittent observa-

tions and communication faults. Under general conditions concerning the agent resources

and the network topology, conditions are derived for the stability and convergence of the

algorithms. For the state estimation schemes, a strategy based on minimization of the

steady-state mean-square estimation error is proposed for selection of the consensus gains;

these gains can also be adjusted by local adaptation schemes. It is also demonstrated that

there exists a connection between the network complexity and efficiency of denoising, i.e.,

of suppression of the measurement noise influence. Several numerical examples serve to

illustrate characteristic properties of the proposed algorithm and to demonstrate its appli-

cability to real problems.
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Furthermore, several structures and algorithms for multi-agent control based on a dy-

namic consensus strategy have been proposed. Two novel classes of structured, overlapping

decentralized control algorithms are presented. For the first class, an agreement between

the agents is implemented at the level of control inputs, while the second class is based on

the agreement at the state estimation level. The proposed control algorithms have been

illustrated by several examples. Also, the second class of the proposed consensus based

control scheme has been applied to decentralized overlapping tracking control of planar

formations of UAVs. A comparison is given with the proposed novel design methodology

based on the expansion/contraction paradigm and the inclusion principle.

Motivated by the applications to the optimal mobile sensor positioning within mobile

sensor networks, the perturbation-based extremum seeking algorithm has been modified and

extended. It has been assumed that the integrator gain and the perturbation amplitude are

time varying (decreasing in time with a proper rate) and that the output is corrupted with

measurement noise. The proposed basic, one dimensional, algorithm has been extended to

two dimensional, hybrid schemes and directly applied to the planar optimal mobile sensor

positioning, where the vehicles can be modeled as velocity actuated point masses, force

actuated point masses, or nonholonomic unicycles. The convergence of all the proposed

algorithms, with probability one and in the mean square sense, has been proved. Also, the

problem of target assignment in multi-agent systems using multi-variable extremum seeking

algorithm has been addressed. An algorithm which effectively solves the problem has been

proposed, based on the local extremum seeking of the specially designed global utility

functions which capture the dependance among different, possibly conflicting objectives

of the agents. It has been demonstrated how the utility function parameters and agents’

initial conditions impact the trajectories and destinations of the agents. All the proposed

extremum seeking based algorithms have been illustrated with several simulations.
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Chapter 1

Introduction

Recent technological advances and integrated communications have critically influenced

standard control systems to evolve to, so called, networked control systems. These systems

are, in general, distributed, large scale, complex systems which comprise of sensors, actua-

tors, controllers and processes which may all operate in an asynchronous manner and are

all connected through some form of communication network. Applications are numerous,

such as space and terrestrial exploration, formations of robots, aircraft or automobiles, tele-

operation, remote diagnostics and troubleshooting, remote surgery, collaborations over the

Internet etc. (relevant survey is provided e.g., in [5]).

It is desirable to approach networked control systems related problems in a decentral-

ized way and treat them by decomposing a large scale complex system into many (possibly

overlapping) interconnected subsystems, where each subsystem has a decision maker (in-

telligent agent) associated with it. The decentralized approach is imposed naturally in the

networked control systems, having in mind that local agents, nowadays, can have great

processing power and can locally implement estimation, control and other calculations.

The agents usually coordinate and communicate only with a small subset of other agents.

This way, there is no need for sending large amount of data through the network, which

is usually prone to delays, losses, quantization effects, noise, etc. Other desirable proper-

ties of decentralized systems are their modularity, scalability, adaptability, flexibility and

robustness.

The case when the agents are mobile and their interconnections are time-varying can
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be considered in the context of mobile sensor networks. These networks typically consist of

a large number of mobile nodes deployed in the environment being sensed and controlled.

Recent technological advances will allow fabrication and commercialization of inexpensive

very small scale autonomous, potentially mobile electromechanical devices containing a wide

range of sensors. When grouped together, these sensors can offer access to a great quantity

of information about our environment, which can bring a revolution in the amount of control

an individual has over his environment, with numerous applications (e.g. [26],[5],[85]).

1.1 Literature Review

Decentralized or distributed state or parameter estimation is of fundamental importance for

large scale, complex, networked systems, representing one of the key factors for their proper

functioning in numerous contexts. Depending on the available resources, agents have access

to different measurements, different a priori information, such as system models and sensor

characteristics, and different inter-agent communication channels. A class of decentralized

estimators has been directly obtained starting from parallelization of the globally optimal

Kalman filter; typically, such estimators possess a fusion center which generates the global

estimates (e.g., see [8, 29, 116]). An insight into the basic principles and structures of

decentralized estimation can be found in e.g. [74, 75, 80, 103, 84, 112]. Also, different

aspects of decentralized, multi-agent control systems are covered by a vast literature within

the frameworks of computer science, artificial intelligence, network and system theory; for

some aspects of multi-agent control systems see e.g. [26, 17, 112, 71].

One of the general design methodologies for overlapping decentralized estimation and

control has been derived from the inclusion principle, using the expansion/contraction

paradigm, where a complex system is expanded, decomposed into subsystems, and con-

tracted back into the original system space after designing local estimators or controllers

for the extracted subsystems, e.g., [33, 35, 36, 80, 90].

Many deterministic and stochastic iterative algorithms naturally admit a distributed

parallel implementation, where a number of agents perform computations and exchange of

messages with a certain common goal. As early as in the 1980s, important results were
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obtained in the area of distributed asynchronous iterations in parallel computation and

distributed optimization (e.g. [105, 13, 107, 9, 15, 46]). The majority of the cited references

share a common general methodology: they all use some kind of agreement or dynamic

consensus strategy. The decentralized state estimation problem itself is deeply embedded in

this line of thought either implicitly, through the very definition of the consensus algorithms

(e.g., see [72]), or explicitly, where a dynamic consensus averaging strategy between multiple

agents is used to obtain the required estimates (e.g., see [56, 110, 111]).

One application of the mentioned methodologies that has received increasing interest

for conducting research is the analysis and control of formations of Unmanned Autonomous

Vehicles (UAVs). Recently, a number of important results in this area has been reported in

various publications (e.g., see [11, 23, 25, 39, 47, 101, 104, 68, 70, 82, 3, 112] and references

reported therein).

Within mobile sensor networks paradigm, the critical problem is the problem of searching

optimal sensing positions for mobile nodes, where the extremum seeking (ES) methodology

can be directly applied. Extremum seeking represents a nonmodel based method for adap-

tive control which deals with systems where the reference-to-output map is uncertain but is

known to have an extremum. In 1950s and 1960s this approach was popular as “extremum

control” or “self-organizing control” (see e.g. [41, 51, 52]). A significant contribution to this

field has been made in the last years by Krstić and his co-workers, who succeeded both to

clarify the main conceptual aspects of this methodology and to present interesting and use-

ful applications (see [7, 20, 42, 109, 40, 115, 114]). They presented stability analysis for the

extremum seeking systems with sinusoidal perturbations in both continuous and discrete-

time case using averaging and singular perturbations providing sufficient conditions for the

plant output to converge to a neighborhood of the extremum value. In [50] some stability

results have been presented for the case when the sinusoidal perturbation is replaced with a

stationary stochastic process. The problem of multi-target assignment, addressed in Section

4.7, based on designing global utility functions ([2, 1, 102]) involves the multi-variable ES

algorithm proposed and analyzed in [6].

There is a vast literature related to the problems of performance and stability limitations

of control/estimation over unreliable communication links/networks. It has been treated
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using several tools and models involving coding/decoding over band-limited channels, quan-

tization effects, delays, packet dropouts, etc. (for a relevant survey see e.g. [5])

1.2 Dissertation Outline and Contributions

The focus of this thesis is on two aspects of the mentioned problems: a) decomposing a

complex/large-scale system into (possibly overlapping) subsystems and formulating local

estimation and control laws, which, along with suitably defined inter-agent communication

schemes (possibly over wireless, sensor networks), ensure stability, acceptable performance

and robustness of the overall system; b) developing algorithms, suitable for mobile sen-

sor networks, for placement of mobile nodes to the positions which enable optimal sens-

ing/communication capabilities.

In Chapter 2 novel decentralized overlapping state and parameter estimation algorithms

are presented. In Section 2.1 a state estimation algorithm for complex systems, in both

continuous and discrete-time ([98], [97], [96]), is proposed on the basis of: 1) structured,

overlapping system decomposition; 2) implementation of local state estimators by intelli-

gent agents, according to their own sensing and computing resources; 3) application of a

consensus strategy providing the global state estimates to all the agents in the network. In

discrete-time case, lossy inter-agent communication network is assumed, i.e., intermittent

observations and communication faults are allowed. Stability of the proposed algorithms is

analyzed. A strategy aimed at obtaining the consensus gains on the basis of minimization of

the overall mean-square error is proposed. It is also shown, by using characteristic network

topologies, that asymptotic denoising, i.e., measurement noise elimination when the num-

ber of nodes is large, can be achieved in the case of the network connectivity increasing at

a sufficient rate with the number of nodes. A number of characteristic examples are given

within all the sections in order to illustrate the theoretically derived conclusions.

Section 2.2 is devoted to decentralized parameter estimation by consensus based stochas-

tic approximation ([94], [95]). The proposed algorithm is based on: (a) local recursive es-

timation schemes of stochastic approximation type which utilize local measurements; (b)

a consensus strategy aimed at improving reliability and noise immunity of the estimates.
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The asymptotic behavior of the algorithm is analyzed, including different choices of the

algorithm gains, different probabilities of getting local measurements and sending inter-

agent messages, network connectedness ensuring convergence, as well as important aspects

of consensus-based denoising.

Chapter 3 is devoted to the problem of overlapping decentralized control of complex

systems by using a multi-agent strategy, where the agents (subsystems) communicate in

order to achieve agreement upon a control action by using a dynamic consensus methodology

[86]. Several new control structures are proposed based on the agreement between the agents

upon the control variables. In the most general setting, it is assumed that each agent is

able to formulate its local feedback control law starting from the local information structure

constraints in the form of a general four-term dynamic output controller. The subsystem

inputs generated by the agents by means of the local controllers enter the consensus process

which generates the control signals to be applied to the system by some a priori specified

agents. In the general case, the consensus scheme, determining, in fact, the control law

for the whole system, is constructed on the basis of an aggregation of the local dynamic

controllers. It is shown how the proposed scheme can be adapted to either static local

output feedback controllers, or static local state feedback controllers. Also, an alternative

to this approach is proposed, based on the introduction of a dynamic consensus at the level

of state estimation introduced in Section 2.1. The control signal is obtained by applying the

known global LQ optimal state feedback gain to the locally available estimates. A number

of selected examples illustrate the applicability of all the proposed consensus based control

schemes. In Section 3.4 a novel design methodology for decentralized overlapping tracking

control of planar formations of UAVs based on the expansion/contraction paradigm [100] is

presented and compared with the proposed consensus based control scheme applied to the

formations control problem. The benefits of the consensus based scheme are verified having

in mind much better responses and tracking performance.

Motivated by the critical problem within mobile sensor networks paradigm of searching

optimal sensing positions, the extremum seeking algorithm with sinusoidal perturbation

is analyzed in Chapter 4. The standard discrete-time ES algorithm has been extended

and modified in the following way ([87], [89], [88]): a) the amplitudes of the sinusoidal

5



perturbation signals, as well as the gains of the integrator blocks, are time varying and tend

to zero at a pre-specified rate; b) the output of the system is corrupted with measurement

noise. In general, the first assumption opens up a possibility to obtain convergence of the

whole scheme to a unique extremum point and not to its neighborhood which depends on

the perturbation amplitude even in the deterministic context. The second assumption, i.e.,

the inclusion of the additive stochastic component in the extremum seeking loop, allows

important generalizations and applications of the extremum seeking methodology to a large

number of real adaptation problems in control and signal processing. Conditions for the local

convergence to the extremum point in the mean-square sense and with probability one are

derived. It is also shown how the extremum seeking scheme can be applied to noise source

localization problems and an adaptive state estimation problem where the observation noise

influence is minimized and, thus, can be used for the optimal positioning of mobile sensors.

Using a generalization of the methodology developed for the 1D case, the convergence to

the extremal points has been proved for the planar, hybrid ES algorithms, adopted for the

control of: a) velocity actuated vehicles; b) force actuated vehicles; c) nonholonomic vehicles

(unicycles). Section 4.7 is devoted to the problem of multi-target assignment in multi-agent

systems where the agents need to cover the minima of all the measured functions. An

algorithm based on designing a global utility function, which would capture the dependence

among different agents’ objectives, and finding it’s local extremum is proposed. It is shown

that the scheme can be considered as a multi-variable ES algorithm where the agents seek

the local extremum of the proposed global utility function (the closest one to the agents’

initial positions, taking into account parameters of the applied utility function). All the

proposed ES based schemes have been illustrated through several examples.

Finally, in Chapter 5 we review the results presented in this thesis and give some direc-

tions for the future research.
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Chapter 2

Consensus Based State and

Parameter Estimation

In this chapter consensus based state and parameter estimation algorithms are presented.

Section 2.1 is devoted to decentralized overlapping state estimation schemes while in Section

2.2 decentralized overlapping parameter estimation scheme based on stochastic approxima-

tion is presented.

2.1 Consensus Based Decentralized Overlapping State Esti-

mator in Lossy Network

In this section both continuous-time and discrete-time consensus based decentralized over-

lapping state estimation schemes are proposed. First, the main definitions of the problems,

together with the description of the proposed estimation algorithm are given. Formally

speaking, the algorithm is composed of a set of overlapping decentralized Kalman filters

put together within a multi-agent network by using a first-order dynamic consensus strat-

egy. Stability of the proposed schemes is discussed. It is proved that it is possible to find,

under general conditions concerning the local estimators and the network topology, such a

consensus scheme which ensures asymptotic stability of the whole estimator. A strategy

aimed at obtaining the gains of the consensus scheme by minimizing the total mean-square
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estimation error with respect to the unknown consensus gains is also described. The problem

of denoising of the obtained estimates with respect to the measurement noise is presented,

with an emphasis on the connection between the suppression of the measurement noise

influence and complexity of the multi-agent network.

2.1.1 Continuous-Time Case

Let us first consider the continuous-time case, where we assume that the inter-agent network

is perfect (without any losses) and that the local measurements are not interrupted.

2.1.1.1 Problem and Algorithm Definition

We represent a continuous-time large scale linear stochastic system in standard form

S : ẋ = Ax + Γe,

y = Cx + v, (2.1)

where x = (x1, . . . , xn)T , y = (y1, . . . , yp)T , e = (e1, . . . , em)T and v = (v1, . . . , vp)T are

its state, output, input and measurement noise vectors, respectively, while A, Γ and C are

constant n×n, n×m and p×n matrices, respectively. It is assumed that e and v are mutually

independent white zero-mean stochastic processes with covariances E{e(t)e(τ)T } = Qδ(t−
τ) and E{v(t)v(τ)T } = Rδ(t− τ), respectively.

We will consider the problem of decentralized estimation in which N autonomous agents

have the goal to generate their estimates ξi of the state x of S, i = 1, . . . , N , on the basis

of: (1) locally available measurements; (2) specific a priori knowledge they possess about

the system; and (3) real-time communication between the agents.

Formally, we assume that the i-th agent has a possibility to observe the pi-dimensional

vector y(i) = (yli1
, . . . , ylipi

)T , composed of the components of y with indices specified by the

agent’s output index set Iy
i = {li1, . . . , lipi

}, li1, . . . , l
i
pi
∈ {1, . . . p}, li1 < . . . < lipi

, pi ≤ p.

According to (2.1), y(i) = C(i)x(i) + v(i), where x(i) is an ni-dimensional vector composed of

the components of x selected by the agent’s state index set Ix
i = {ji

1, . . . , j
i
ni
}, ji

1, . . . , j
i
ni
∈

{1, . . . n}, ji
1 < . . . < ji

ni
, ni ≤ n, C(i) is a constant pi×ni matrix and v(i) the measurement
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noise vector with covariance R(i)δ(t−τ), representing a part of v. Accordingly, we define the

ni×ni matrix A(i) which contains the elements of A selected by the pairs of indices specified

by Ix
i × Ix

i , and the matrix Γ(i), composed of ni rows of Γ selected by Ix
i . Consequently,

the local system models available to the agents are defined by

Si : ẋ(i) = A(i)x(i) + Γ(i)e,

y(i) = C(i)x(i) + v(i), (2.2)

i = 1, . . . , N ; systems Si represent overlapping subsystems of S. Notice that decomposition

of S into overlapping subsystems does not have to rely necessarily on a decomposition of

the matrices from (2.1): the parameter matrices in (2.2) can also be obtained as a result

of approximate modelling and local identification, approximate aggregation, etc. (see e.g.

[80, 99, 19]).

We will assume that the agents are able to generate the overlapping local state estimates

x̂(i) of the vectors x(i) using steady state Kalman filters [4]. Since the final goal of all the

agents is to get the estimates of the entire state vector x of S, additional strategies can be

added to the local estimators (e.g., see [75, 103, 80, 29, 8]). However, all such approaches

require a kind of centralized strategy or special, model dependent communications between

the agents.

We propose an estimation algorithm based on the introduction of a consensus scheme

specifying communications between the agents (see e.g. [107, 105, 23, 39, 49, 51, 58, 73, 72]).

Namely, the estimate ξi of x generated by the i-th agent is given by

Ei : ξ̇i = Aiξ
i + ΣN

j=1

j 6=i
Kij(ξ̃i,j − ξi) + Li(y(i) − Ciξ

i), (2.3)

i = 1, . . . , N , where: Ai is an n × n matrix whose ni × ni elements are equal to those of

A(i), but are placed at the indices specified by Ix
i × Ix

i , while the remaining elements are

zeros; Ci is, similarly, a pi×n matrix with pi×ni elements equal to those of C(i), placed at

row-indices specified by Iy
i (notice that C(i)x(i) = Cix); Li is an n×pi matrix whose ni×ni

elements are equal those of the steady state gains L(i) in the local Kalman filters for Si,
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placed at row-indices specified by Ix
i ; Kij are constant n× n gain matrices; ξ̃i,j represents

the noisy estimate ξj communicated by the j-th node, i.e. ξ̃i,j = ξj + wij , where wij is

the n-dimensional zero-mean white communication noise between the nodes j and i, with

covariance E{wij(t)wij(τ)T } = Wijδ(t− τ), i, j = 1, . . . , N .

It is possible to observe that the proposed algorithm represents a combination of decen-

tralized overlapping Kalman filters and a first order consensus scheme which tends to make

the local estimates ξi as close as possible (e.g. [73, 72, 58]). Notice that the estimator Ei

reminds structurally of the distributed optimization algorithm proposed in [107, 105, 13],

and the parallel estimator proposed in [82].

Furthermore, we will assume that Kij = diag {kij
1 , . . . , kij

n }, where kij
ν ≥ 0, ν = 1, . . . , n,

i, j = 1, . . . , N , and that kij
ν = hij

ν gij
ν , hij

ν , gij
ν ≥ 0, where gij

ν directly reflects structural

properties of S and Sj and the uncertainty in the local estimates x̂(j), while hij
ν reflects

properties of communication links.

Therefore, the whole multi-agent network can be represented as a collection of n directed

graphs (digraphs) with N nodes corresponding to the agents and edges with gains kij
ν ,

specifying transmission of particular components of the vectors ξi between the nodes. Let Gν

represent the digraph connected to the ν-th component xν of x, ν = 1, . . . , n; its Laplacian

LGν is defined as LGν = [LGν
ij ], LGν

ij = kij
ν , i 6= j, LGν

ii = −∑
j,j 6=i k

ij
ν , i, j = 1, . . . , N [27].

2.1.1.2 Stability

Let Ξ = ((ξ1)T , . . . , (ξN )T )T ; then, from (2.3) we have

E : Ξ̇ = ΦΞ + ΛY + KΞΣ, (2.4)

where Φ = [Φij ], Φij = Kij , i 6= j, Φii = Ai − LiCi −
∑

j,j 6=i Kij , Λ = diag{L1, . . . , LN},
KΞ = diag{K̃1, . . . , K̃N}, K̃i =

[
Ki1 Ki2 · · · KiN

]
, Kii = 0, Y = ((y1)T , . . . , (yN )T )T ,

Σ = (wT
11, . . . , w

T
1N , wT

21, . . . , w
T
2N , . . . , wT

N1, . . . , w
T
NN )T , wii = 0, i, j = 1, . . . , N,. We will

investigate stability of E in the sense of stability of Φ. The basic starting assumptions are:

(A.2.1.1) the local estimators Ēi are asymptotically stable, i.e., the matrices A(i) −
L(i)C(i) are Hurwitz, i = 1, . . . , N .
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(A.2.1.2) For each Gν , ν = 1, . . . , n, there is at least one center node µ (from which

every node is reachable, e.g. [48]), satisfying ν ∈ Ix
µ .

In order to demonstrate stabilizability of E by a proper choice of the consensus gains,

we will introduce the following notation: hij
ν = h′ij ≥ 0 for ν ∈ Ix

i , and hij
ν = h′′ij ≥ 0 for

ν ∈ Īx
i = {1, . . . , n} \ Ix

i , ν = 1, . . . , n. We will also introduce Gij
1 = diag{gij

νi
1
, . . . , gij

νi
ni

}
and Gij

2 = diag{gij

ν̄i
1
, . . . , gij

ν̄i
n−ni

}, where νi
1, . . . , ν

i
ni
∈ Ix

i and ν̄i
1, . . . , ν̄

i
n−ni

∈ Īx
i , as well as

K1,0
ij = h′ijG

ij
1 and K2,0

ij = h′′ijG
ij
2 .

We will also adopt the following additional assumptions:

(A.2.1.3)
⋃N

i=1 Ix
i = {1, 2, . . . , n};

(A.2.1.4)
⋃

i,j=1,...,N ;i6=j(I
x
i

⋂
Ix
j ) 6= ∅.

Assumptions (A.2.1.3) and (A.2.1.4) imply that all the components of the state vector

x of S are estimated, and that there is at least one component estimated by more than one

local estimator.

Theorem 2.1.1 Let the assumptions (A.2.1.1), (A.2.1.2), (A.2.1.3) and (A.2.1.4) hold.

Then, for any given h′′ij ≥ 0 and gij
ν ≥ 0, it is possible to find such h′ij ≥ 0 that the estimator

E is asymptotically stable, i, j = 1, . . . , N , ν = 1, . . . , n.

Proof: Matrix Φ in (2.4) is cogredient to Φ′ =
[

Φ11 Φ12

Φ21 Φ22

]
, in which the blocks con-

taining A(i) − L(i)C(i), i = 1, . . . , N , are grouped together at the main block-diagonal in

such a way that Φ11 = [Φ11
ij ], Φ11

ij = K1,1
ij , i 6= j, Φ11

ii = A(i) − L(i)C(i) − ∑
j,j 6=i K

1,0
ij , so

that Φ12 = [Φ12
ij ], Φ12

ij = K1,2
ij , i 6= j, Φ12

ii = 0, Φ21 = [Φ21
ij ], Φ21

ij = K2,1
ij , i 6= j, Φ21

ii = 0 and

Φ22 = [Φ22
ij ], Φ22

ij = K2,2
ij , i 6= j, Φ22

ii = −∑
j,j 6=i K

2,0
ij ; i, j = 1, . . . , N ; by K1,1

ij , K1,2
ij , K2,1

ij

K2,2
ij we denote the submatrices of Kij obtained by deleting its elements with indices from

Īx
i × Īx

j , Īx
i × Ix

j , Ix
i × Īx

j and Ix
i × Ix

j , respectively.

Take such h′′ij ≥ 0, i, j = 1, . . . , N , that (A.2.1.2) is satisfied, and analyze the submatrix

Φ22 (which depends on h′′ij , and not on h′ij). Assumption (A.2.1.2) implies that each digraph

Ḡν opposite to Gν , ν = 1, . . . , n (obtained by reversing the direction of the arcs of Gν), has

only one closed strong component (a maximal induced strongly connected subdigraph with

no arcs leaving its node set [27, 48]). Consequently, those submatrices of Φ′ which represent

Laplacians of Gν , ν = 1, . . . , n, are cogredient to lower-block-triangular matrices with two

diagonal blocks, where the first is an irreducible Metzler matrix which has one eigenvalue
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at the origin and the remaining ones in the left-half plane, and the second is a diagonally

dominant Metzler matrix, which is, therefore stable [48, 49, 79]. The center nodes of Gν (or

the globally reachable nodes of Ḡν) have to belong to the set of nodes of the unique closed

strong component of Ḡν . Therefore, one concludes that Φ22 is composed of the submatrices

of Φ′ that are obtained from the irreducible Metzler matrices by deleting their rows and

columns with indices corresponding to the nodes of the strong components of Ḡν . These

irreducible submatrices are, in general, cogredient to

LD
ν =




−
∑

j,j 6=1

α1j α12 . . . α1Ñ

α21 −
∑

j,j 6=2

α2j . . . α2Ñ

. . .

αÑ1 αÑ2 . . . −
∑

j,j 6=Ñ

αÑj




,

where Ñ ≤ N , αij ≥ 0, α21 > 0 [24, 48, 27]. Deleting the first row and first column of LD
ν

we obtain a matrix in which the first row is strictly diagonally dominant, having in mind

that α21 > 0 as a consequence of irreducibility of LD
ν . Consequently, this matrix is Metzler

and quasidominant diagonal, which implies that it is Hurwitz (see e.g. [79]). Therefore, the

whole matrix Φ22 is Hurwitz, having in mind assumptions (A.2.1.3) and (A.2.1.4).

Assuming now that h′ij = 0, i, j = 1, . . . , N , we obtain that Φ12 = 0 and that Φ11 is

asymptotically stable, having in mind that the matrices A(i) − L(i)C(i), i = 1, . . . , N , are

Hurwitz by assumption; this implies that the whole matrix Φ is Hurwitz. Retaining the

same h′′ij as above and choosing such h′ij ≥ 0 that (A.2.1.2) is satisfied, we directly conclude

that there exists such ε > 0 that the system E is asymptotically stable as long as h′ij ≤ ε,

having in mind the continuous dependence between of eigenvalues of Φ on the values of h′ij

[30, 24]. Therefore, a stabilizing consensus scheme exists, and the theorem is proved.

Remark 2.1.1 It is straightforward to prove that in the case of nonoverlapping subsys-

tems the proposed estimator is stable under the conditions (A.2.1.1), (A.2.1.2) and (A.2.1.4)

for all nonnegative hij
ν .

Example 2.1.1 Consider as an illustration the estimator E with the state matrix Φ =
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[
A1 − h12I h12I

h21I A2 − h21I

]
, where A1 and A2 are n×n Hurwitz matrices and h12, h21 ≥ 0 (in

this case gij
ν = 1, i, j = 1, 2, ν = 1, . . . , n). According to Theorem 2.1.1, for h12 = 0, Φ is

Hurwitz for any h21 > 0; it remains Hurwitz for h12 positive and small enough.

If A1 = A2, it follows directly that det{Φ + jωI} 6= 0 for all real ω and all h12, h21 > 0.

This implies stability, having in mind that Φ is stable for h12 = h21 = 0 and that the

mapping of the parameters into the eigenvalues is continuous.

If A2 = 0, the same determinant condition requires det{(−h21 + jω)A1−ω2I− jω(h12 +

h21)I} 6= 0. If −σ + jΩ is any eigenvalue of A1, this condition gives h21σ − jh21Ω− jωσ −
ωΩ− ω2 − jω(h12 + h21) 6= 0, which is true for any h12, h21 > 0 and all real ω. Therefore,

Φ is again stable.

In general, when A1 6= A2 and A1, A2 6= 0, such a direct analysis becomes more compli-

cated, but it is possible to conclude that only special structures of A1 and A2 can impose

important restrictions on the stabilizing values of h12 and h21.

2.1.1.3 Optimization

In this section we will demonstrate that the consensus parameters can be determined by

minimizing the steady-state mean-square estimation error.

Inserting Y = ΨX + V in (2.4), where X = (xT , . . . , xT )T , Ψ = diag{C1, . . . , CN} and

V = ((v(1))T , . . . , (v(N))T )T is a white noise term with zero mean and covariance matrix

RV (which can be derived from R), one obtains from (2.1) and (2.4)

SE : Ż =
[

A 0
Φ̃ Φ

]
Z + BZΘ = ΦZZ + BZΘ (2.5)

where Z = (xT , (Ξ −X)T )T , Φ̃ = col{(A1 − A), . . . , (AN − A)} (col{.} denotes the block-

column matrix composed of the listed elements), BZ = diag{−Γ̃, Λ,KΞ}, Γ̃ = col{Γ, . . . ,Γ}
and Θ = (eT , V T , ΣT )T . Obviously, SE represents a stochastic system with the white noise

Θ as a stochastic input. We will distinguish two cases. If ΦZ is Hurwitz, the steady-state

covariance PZ of Z is defined by the positive semi-definite solution of the Lyapunov equation

ΦZPZ + PZΦT
Z + BZRZBT

Z = 0, (2.6)
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where RZ is the covariance matrix of Θ, which can easily be derived. If Φ̃ = 0, the system

itself can be unstable, but the steady-state covariance P of Ξ−X can be directly obtained

in the case of stable Φ by an appropriate splitting of (2.6).

If we define the vector H containing all the unknown parameters of the consensus scheme

in E, we can formulate the following optimization problem:

min
H

J = min
H

Tr P ; (2.7)

solutions to this problem (which is, in general, not convex) can provide convenient consensus

parameters for the proposed estimation scheme. The problem can be simplified by compos-

ing H only from the weights hij
ν , assuming that the parameters gij

ν for ν ∈ Ix
j , j = 1, . . . , N,

are proportional to some measure of the accuracy of the ν-th component of the j-th agent’s

state vector estimate. It has been found to be convenient to adopt that gij
ν is proportional

to the ν-th diagonal element of the inverse of the estimation error covariance matrix of the

corresponding local Kalman filter.

Example 2.1.2 Let S be represented by a fourth order model with A =
[

A11 A12

A21 A22

]
,

where A11 =
[
−1 0
−1 −2

]
, A12 =

[
0 0
−1 0

]
, A21 =

[
0 0.1

0.1 0

]
, A22 =

[
0 1
−3 −5

]
, with Γ = I

and Q = I. Assume that Agent 1 gets the measurements using C = C1 = [ 1 0 0 0 ] with

R = R1, and Agent 2 using C = C2 = [ 0 0 0 1 ] with R = R2, and that both agents

possess the knowledge of the entire state model; the communication noise is characterized

by W12 = 0.01 and W21 = 0.01. Assuming that the consensus gains are K12 = h12G12 and

K21 = h21G21, where G12 and G21 are diagonal matrices composed of the diagonal elements

of the steady state estimation error covariances P (2) and P (1) of the local Kalman filters,

parameters h12 ≥ 0 and h21 ≥ 0 are to be determined by optimization. Table 2.1 shows the

results obtained for R2 = 1 and different values of R1. The criterion values J show high

robustness of the proposed estimator. Both gains are higher for lower measurement noise

levels; however, h21 decreases much more rapidly, and for high values of R1 becomes close

to zero, having in mind that the mean-square error of the local estimator Ē1 becomes high.

Consider now three agents, the first two being the same as above (with R1 = R2 = 1),

14



h12 h21 J

R1=1 1521.9 855.5 1.9819
R1=10 898.4 49.56 2.0102
R1=100 170.2 1.927 2.0109
R1=1000 110.2 0.026 2.0110

Table 2.1: Optimization results for different measurement noise levels

while the third observes the system using C3 =
[

1 0 0 0
0 0 0 1

]
and R3 =

[
R1 0
0 R2

]
. Optimiza-

tion provides now six parameters, two per agent; the obtained results are: k12 = 0.155,

k13 = 0.355, k21 = 0.460, k23 = 0.300, k31 ≈ 0 and k32 ≈ 0, taking, as above, diagonal

matrices Gij equal to the main diagonals of the corresponding local estimation error co-

variance inverses. Obviously, the scheme behaves as predicted: Agent 3, with the globally

optimal Kalman estimator, does not need any help, so that the weights of the edges leading

to it are approximately zero. On the other hand, Agents 1 and 2 take the more accurate

estimates obtained from Agent 3 with higher gains.

When the local estimators are built using the local second-order state models defined

only by the submatrices A11 and A22, respectively, we obtain h12 = 0.6311 and h21 = 0.8088,

with J = 2.0271, assuming R1 = R2 = 1, leading to the conclusion that the estimator is

robust also with respect to modelling errors (see Table 2.1). Figure 2.1 depicts the form of

the corresponding criterion function, which is in this case obviously convex.

Example 2.1.3 In this example we consider two agents in two situations: in the first, the

subsystem models are disjoint, while in the second the subsystem models are of third order,

and are, obviously, overlapping. We assume now that S is composed of A11 =
[

1 1
−1 0.2

]
,

A12 =
[

0 0
−1 0

]
, A21 =

[
0.1 0
0 1

]
, A22 =

[
−0.1 1
−0.3 −5

]
, and that in situation I Agent 1 utilizes

A11, and Agent 2 utilizes A22. In situation II, we assume overlapping subsystems, with

A1 =




1 1 0 0
−1 0.2 −1 0
0.1 0 −0.1 0
0 0 0 0


 and A2 =




0 0 0 0
0 0.2 −1 0
0 0 −0.1 1
0 1 −0.3 −5


. With the same noise levels as above,

we obtained for situation I k1 = 0.001 and k2 = 0.1791, with J = 35.43, and for situation

II k1 = 2.5421 and k2 = 8.1781, with J = 7.8621. This example shows possible advantages
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Figure 2.1: Criterion function

of overlapping decompositions with respect to the disjoint ones.

Example 2.1.4 In this case we consider the problem not explicitly addressed in this

thesis: we will assume that the system has two deterministic inputs u1 and u2, so that we

have in S (model (4.12)) the additional term




1 0
0 0
0 0
0 1




[
u1
u2

]
. We take disjoint case as in the

Example 2.1.2, and assume that Agent 1 knows only u1 (square wave), and that Agent 2

knows only u2 (sine wave). The estimator E is applied, with the usual modification taking

care of the locally known deterministic inputs within the local Kalman filters (the consensus

scheme remains unaltered) [4].

The given Figures 2.2 and 2.3 represent the estimation errors of ξ1 and ξ2 as functions

of time in the case when k1 = k2 = 0 (Fig. 2.2), and in the case when the consensus scheme

exists with k1 = k2 = 10 (Fig. 2.3). It is obvious that the consensus scheme efficiently

reduces the estimation error in spite of the lack of the a priori knowledge about the inputs.

2.1.1.4 Denoising by Consensus

The aim of this subsection is to give an insight into an interesting aspect of the proposed

algorithm: its capability to reduce the measurement noise influence as a function of both

the number of nodes and the network connectivity. Convergence rate of the schemes for
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consensus averaging has been studied in [110, 111]. Pursuing another line of thought, we

will analyze asymptotic denoising capabilities of the proposed estimator using simple, yet

representative examples of networks with different connectivities.

Case A) Consider first the case when the algorithm E in (2.4) consists of N identical

local estimators of the state x of S and a consensus scheme with K̃ = [Kij ], Kij = kI, i 6= j,

Kii = −(N − 1)kI, i, j = 1, . . . , N , k > 0 (fully connected graphs). Assuming that wij = 0,

the steady-state estimation error covariance matrix PN satisfies

Φ1PN + PNΦ1T + QN = 0, (2.8)

where Φ1 = Ã + K̃, Ã = diag {Ā, . . . , Ā}, Ā = A − LC (L is the local steady-state

optimal Kalman gain), and QN = [QN,ij ], QN,ij = ΓQΓT , i 6= j, QN,ii = ΓQΓT +

LRLT , i, j = 1, . . . , N . If T1 =




I I · · · I
I −(N − 1)I · · · I

· · ·
I · · · −(N − 1)I


 , we have T−1

1 K̃T1 =

diag{0,−NkI, . . . ,−NkI}. Applying T−1
1 and T1 to (2.8), we obtain for N large enough

that the diagonal n× n blocks PD,i
N of PD

N = T−1
1 PNT1, i = 1, . . . , N become: PD,1

N ≈ NP̂ ,

where P̂ is the solution of the Lyapunov equation

ĀP̂ + P̂ ĀT + ΓQΓT = 0, (2.9)

and PD,i
N ≈ 1

2kN LRLT , i = 2, . . . , N .

If the average performance index of an estimator is defined as J̄N = 1
N TrPN , we obtain

J̄N =
1
N

TrPD
N ≈ TrP̂ +

1
2kN

Tr(LRLT ),

so that J̄ = limN→∞ J̄N = TrP̂ . Obviously, the estimation scheme, averaging different

realizations of the measurement noise, is able to achieve complete asymptotic denoising,

since, according to (2.9), the term LRLT is eliminated from the standard local Lyapunov

equation

ĀP ∗ + P ∗ĀT + ΓQΓT + LRLT = 0 (2.10)
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for the covariance matrix P ∗ of one independent local estimator.

Case B) In the case of the consensus matrix with minimal connectivity which still

satisfies (A.2.1.2), we have K̃ =



−kI kI · · · 0

0 −kI kI · · · 0
· · ·

kI 0 · · · 0 −kI








N (directed ring). Matrix T2

transforming K̃ to its Jordan form retains from T1 only the first block-column block, so

that PD,1
N is the same as in Case A). However, we have

(Ā + λiI)PD,i
N + PD,i

N (Ā + λiI)∗ + LRLT = 0, (2.11)

for i = 2, . . . , N , where F ∗ denotes the conjugate transpose of F and λi are the nonzero

distinct eigenvalues of the consensus matrix (which all lie on a circle with center at (−k, 0)

and radius k). According to [78], we have

J̄N =
1
N

TrPN ≥ TrP̂ + n
λmin(LRLT )

2σmax(Ā + λiI)
, (2.12)

where λmin(.) denotes the minimal eigenvalue and σmax(.) the maximal singular value of an

indicated matrix. Consequently, the estimator does not ensure complete asymptotic denois-

ing, in spite of the fact that the underlying graph is strongly connected. This conclusion

can be readily extended to double directed rings, as well as to all graphs with Laplacians

in the form of circulant matrices with a predefined fixed number M of edges entering each

node. Namely, in this case we have that maxi |λi| ≤ 2kM , so that the conclusions related

to (2.11) can still be applied (see [28] for properties of circulant matrices). However, the

criterion J̄N still decreases with k. It is interesting that in the simple case of consensus

averaging treated in [110, 111], asymptotic denoising is achieved whenever the underlying

undirected graph is connected.

Case C) In general, it appears that the problem of defining the relationship between the

network connectivity and the asymptotic denoising achievable by the proposed estimator is

difficult. Consider here, however, a special case in which

TrPD,i
N ≤ κi

|λi| , (2.13)
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where 0 ≤ κi ≤ κ < ∞, i = 2, . . . , N . Then,

J̄ ≤ TrP̂ + lim
N→∞

κ

(N − 1)

N∑

i=2

1
|λi| . (2.14)

Let 1/|λm1 | ≥ . . . ≥ 1/|λmi | ≥ . . . ≥ 1/|λmN |, i = 1, . . . , N . Assuming that for any ε > 0

there exists a positive integer N0 such that 1/|λmi | < ε for all i > N0, we obtain J̄ = TrP̂

as in Case A), since the second term in (2.14) tends to zero when N →∞.

In particular, in the case of Laplacians in the form of circulant matrices treated already

in Case B), we have that

λi = k(−M(N) +
M(N)∑

l=1

e−j 2π
N

(i−1)l), (2.15)

i = 2, . . . , N , and that (2.11) holds, where M(N) represents the number of edges entering

each node, which is here supposed to depend on N [28]. It is possible to see that in

the case when limN→∞M(N) = ∞ we have that maxi |λi| = ∞, and that the above

assumption about the nature of the sequence {1/|λmi |} holds, so that, accordingly, (2.14)

implies complete asymptotic denoising.

The given examples show that complete asymptotic denoising results from sufficient

graph connectedness.

Communication noise. When the communication noise exists, the Lyapunov equation

for the estimation error covariance contains an additional term depending on the matrix

Wij = W . Then, for example, one can show that in the case of the fully connected graph

(Case A))

J̄ = lim
N→∞

1
N

TrPN = TrP̂1 +
k

2
TrW.

where

ĀP̂1 + P̂1Ā
T + ΓQΓT + k2W = 0.

The whole scheme works better than the set of N independent local Kalman filters in spite of

the communication noise if TrP̂1 + k
2TrW < TrP ∗, where P ∗ is the solution of the Lyapunov

equation (2.10).
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Example 2.1.5 The estimator in this example consists of a set of identical local Kalman

filters estimating the whole state of the fourth order system described in Example 2.1.2

(C = I), connected by a consensus scheme. The average criterion J̄N = 1
N TrPN has

been calculated as a function of the number of nodes N for the network topologies from

Case A) (solid lines) and Case B) (dotted lines); the consensus gain k has been taken as

a parameter. The horizontal line corresponds to TrP̂ , the lower bound obtained by using

(2.9). The presented results (Fig. 2.4) fully confirm the given theoretical analysis.
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Figure 2.4: Average criterion as a function of N

2.1.2 Discrete-Time Case

Now, we will consider a discrete-time version of the proposed consensus based estimation

scheme, where we will assume that the inter-agent network is lossy, i.e. that communication

faults can happen, with some predefined probabilities, and that the local measurements are

intermittent.
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2.1.2.1 Problem Definition

Let a finite-dimensional discrete-time stochastic system be represented by

S : x(t + 1) = Fx(t) + Ge(t),

y(t) = Hx(t) + v(t) (2.16)

where t is the discrete-time instant, x = (x1, . . . , xn)T , y = (y1, . . . , yp)T , e = (e1, . . . , em)T

and v = (v1, . . . , vp)T are its state, output, input and measurement noise vectors, respec-

tively, while F , G and H are constant n × n, n × m and p × n matrices, respectively. It

is assumed that {e(t)} and {v(t)} are white zero-mean sequences of independent vector

random variables with covariance matrices Q and R, respectively.

Similarly as in the continuous-time case, we will assume that the i-th agent has a

possibility to observe the pi-dimensional vector y(i) = (yli1
, . . . , ylipi

)T , composed of the set

of components of y with indices contained in the agent’s output index set Iy
i = {li1, . . . , lipi

},
li1, . . . , l

i
pi
∈ {1, . . . p}, li1 < . . . < lipi

, pi ≤ p. We will assume further that the i-th agent

possesses the local system model Si defined as

Si : x(i)(t + 1) = F (i)x(i)(t) + G(i)e(t),

y(i)(t) = H(i)x(i)(t) + v(i)(t), (2.17)

i = 1, . . . , N , where x(i) is an ni-dimensional vector composed of the components of x

selected by the agent’s state index set Ix
i = {ji

1, . . . , j
i
ni
}, ji

1, . . . , j
i
ni
∈ {1, . . . n}, ji

1 < . . . <

ji
ni

, ni ≤ n, and v(i) is a measurement noise vector containing the components of v selected

by Iy
i , having the covariance matrix R(i) (which can be readily obtained from R); F (i), G(i)

and H(i) are ni × ni, ni ×m and pi × ni matrices, respectively.

Starting from the local model Si and the accessible measurements y(i), the i-th agent

is supposed to be able to generate autonomously the local estimate x̂(i) of the vector x(i).

The following local estimator will be assumed to be implementable by the i-th agent:

Ēi : x̂(i)(t + 1|t) = F (i)x̂(i)(t|t− 1) + γi(t)F (i)L(i)[y(i)(t)−H(i)x̂(i)(t|t− 1)], (2.18)
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where L(i) is the steady state Kalman gain given by L(i) = P (i)H(i)T [H(i)P (i)H(i)T +R(i)]−1,

P (i) is a solution of the algebraic Riccati equation

P (i) = F (i)[P (i) − L(i)H(i)P (i)]F (i)T + G(i)QG(i)T , (2.19)

while γi(t) is a scalar equal to 1 when the i-th agent receives measurements y(i), and 0

otherwise ([81]). It is natural to assume that subsystems Si are defined in such a way

that the pairs (F (i), G(i)Q
1
2 ) are stabilizable and the pairs (F (i),H(i)) detectable, so that

the matrices F (i) −L(i)H(i), the state matrices of the estimators (2.18), are asymptotically

stable and P (i) > 0, i = 1, . . . , N , ([4, 81]). The estimator based on the steady-state gain

L(i) has been selected for the sake of clarity of presentation aimed dominantly at structural

aspects of the proposed estimator; even better performance can be expected in practice

from estimators with time varying gains (see e.g. [81]). In general, the local estimators can

be designed using any methodology, in such a way that the general requirements formulated

below are satisfied (robust estimators, fault detection filters, etc).

In a similar way as in the continuous-time case, we propose the following algorithm,

based on the introduction of a discrete-time consensus scheme:

Ei : ξi(t|t) = ξi(t|t− 1) + γi(t)Li[y(i)(t)−Hiξi(t|t− 1)],

ξi(t + 1|t) =
∑N

j=1 Cij(t)Fjξj(t|t) (2.20)

i = 1, . . . , N , where ξi is an estimate of x generated by the i-th agent, Fi is an n × n

matrix with ni × ni nonzero elements that are equal to those of F (i), but are placed at the

indices defined by Ix
i × Ix

i , while Hi and Li are pi × n and n × pi matrices, respectively,

obtained from H(i) and L(i) in the same way as Fi is obtained from F (i). We will assume

that Cij(t), i, j = 1, . . . , N , are n× n time-varying gain matrices defining communications

between the nodes, given in the form Cij(t) = kij(t)Kij(t), where kij(t) = 1 when the

directed communication link from the node j to the node i exists, and kij(t) = 0 otherwise;

Kij(t) are diagonal matrices with nonnegative elements, giving appropriate weights to the

estimates communicated between the agents. Furthermore, we will assume that {kij(t)},
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i, j = 1, . . . , N, i 6= j, are mutually independent scalar sequences of independent binary

random variables, satisfying P{kij(t) = 1} = pij and P{kij(t) = 0} = 1 − pij for i 6= j,

as well as that kii(t) = 1, i = 1, . . . , N . Also, we will assume that {γi(t)} is a sequence of

independent binary random variables independent of {kij(t)}, i, j = 1, . . . , N, i 6= j, such

that P{γi(t) = 1} = pii and P{γi(t) = 0} = 1−pii. We will also introduce the random vector

Ξt composed of N2 binary components: N(N − 1) elements kij(t) (i, j = 1, . . . , N, i 6= j)

and N elements γi(t). This vector is, by assumption, generated on the basis of Bernoulli

trials, i.e., {Ξt} represents a sequence of independent random vectors; let πr be the time

invariant probabilities of all possible realizations Ξ[r] of Ξt, r = 1, . . . , ν, ν = 2N2
.

Define the nN×nN consensus matrix C̃(t) = [Cij(t)], i, j = 1, . . . , N , and assume that it

is row-stochastic for all t, i.e. C̃(t) is a non-negative matrix in which the sum of the elements

in each row is equal to one ([30]). This assumption is in accordance with the definition

of discrete-time consensus schemes presented in e.g. [39, 72, 107, 57]. Having in mind

uncertainty of the communication links, this assumption practically implies recalculation

or re-scaling of the sub-matrices Kij(t) composing the consensus matrix C̃(t) for each new

realization of kij(t), i, j = 1, . . . , N . This re-scaling does not impose any difficulty and can

be easily done locally by each agent in many different ways. One of the straightforward

possibilities is to adopt initial diagonal positive semidefinite matrices Kij(0) = K0
ij , i, j =

1, . . . , N , according to some predefined criterion (e.g. accuracy of the local estimation), and

to obtain C̃(t) for each t by dividing all the elements of each row of the matrix C̃0(t) =

[kij(t)K0
ij ], i, j = 1, . . . , N , by the sum of all the elements of the same row, i.e. C̃(t) =

c̄(t)C̃0(t), where c̄(t) = diag{∑j k1j(t)(K0
1j)1, . . . ,

∑
j k1j(t)(K0

1j)N , . . . ,
∑

j kNj(t)(K0
Nj)1,

. . . ,
∑

j kNj(t)(K0
Nj)N}−1 and (K0

ij)l represents the l-th element at the diagonal of the block

K0
ij = diag{(K0

ij)1, . . . , (K
0
ij)N}.

The proposed estimator is strictly scalable as far as the calculation of ξi(t|t) in (2.20) is

concerned, since it does not depend on the number of agents; on the other hand, calculation

of ξi(t + 1|t) remains scalable as long as each agent communicates with a bounded number

of neighbors. Consequently, scalability of the algorithm can be violated only when the

structure of the consensus matrix C̃(t) is such that the number of connections per node

tends to infinity when N tends to infinity.
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Let us introduce the following notation: F̃E = diag{F1, . . . , FN}, Φ̃ = diag{Φ1, . . . , ΦN},
Φi = Fi − LiHi, and Ã(t) = C̃(t)Φ̃. Introducing X̂(t|t) = vec{ξ1(t|t), . . . , ξN (t|t)} and

X̂(t + 1|t) = vec{ξ1(t + 1|t), . . . , ξN (t + 1|t))}, we can obtain a compact formulation of the

proposed algorithm

X̂(t|t) = X̂(t|t− 1) + L̃[Y (t)− H̃X̂(t|t− 1)]

X̂(t + 1|t) = C̃(t)F̃EX̂(t|t), (2.21)

where Y (t) = vec{y(1)(t), . . . , y(N)(t)}, L̃ = diag{L1, . . . , LN} and H̃ = diag{H1, . . . , HN}
(vec{., .} represents a column vector obtained by concatenation of the column vectors in

the braces). Further, for the prediction error ε(t + 1|t) = X̂(t + 1|t) − X(t + 1), where

X(t) = vec{x(t), . . . , x(t)}, we obtain ε(t + 1|t) = Ã(t)ε(t|t − 1) + C̃(t)(F̃E − F̃ )X(t) +

C̃(t)Γ̃(t)L̃H̃V (t) − E(t), where F̃ = diag{F, . . . , F}, V (t) = vec{v(1)(t), . . . , v(N)(t)} and

E(t) = vec{e(t), . . . , e(t)}. Consequently, we obtain the following state space system-

estimator model:

Z(t + 1) =

[
F̃ 0

C̃(t)(F̃E − F̃ ) Ã(t)

]
Z(t) +

[
G̃ 0
−G̃ C̃(t)L̃H̃

]
N(t), (2.22)

where Z(t) = vec{X(t), ε(t|t− 1)} and N(t) = vec{E(t), V (t)}.
Furthermore, we obtain

Z̄(t + 1) = B̃(t)Z̄(t), (2.23)

where Z̄(t) = E{Z(t)} and B̃(t) =

[
F̃ 0

C̃(t)(F̃E − F̃ ) Ã(t)

]
and

col{P (t + 1)} = (B̃(t)⊗ B̃(t))col{P (t)}+ (D̃[r] ⊗ D̃[r])col{W}] (2.24)

where P (t) = E{Z(t)Z(t)T } and D̃(t) =

[
G̃ 0
−G̃ C̃(t)]L̃H̃

]
and W = E{N(t) N(t)T } =

diag{Q∗, R̃}, where Q∗ =




Q · · · Q
...
Q · · · Q


 and R̃ = diag{R(1), . . . , R(N)}. (col{.} denotes a

vector obtained by concatenating columns of an indicated matrix and the sign ⊗ denotes

the Kronecker’s product).
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2.1.2.2 Stability

In the stability analysis of the proposed estimator, we will use the following results from

the matrix analysis.

Lemma 2.1.1 [60] Let f(.) be a matrix norm having the property f(A) ≤ f(B) for

two n× n matrices A and B satisfying A ≤ B (A ≥ 0 means that all the elements of A are

nonnegative). Let g(.) be any matrix norm and let A be partitioned into square blocks Aii.

Then, h(A) is a matrix norm, where

h(A) = f







g(A11) · · · g(A1k)
...

...
g(Ak1) · · · g(Akk)





 . (2.25)

Lemma 2.1.2 ([30], Lemma 5.6.10) Let A be an n × n matrix and ε > 0. Then,

there exists a matrix norm ‖A‖ such that

ρ(A) ≤ ‖A‖ ≤ ρ(A) + ε, (2.26)

where ρ(A) is the spectral radius of a matrix A (ρ(A) = maxi |λi(A)|, where λi(A) are the

eigenvalues of A).

A norm satisfying the requirement (2.26) is the norm ‖A‖τ = ‖DτU
T AUD−1

τ ‖∞,

where U is an orthogonal matrix in the representation A = U∆UT , where ∆ is an up-

per triangular matrix (according to the Schur’s theorem), Dτ = diag{τ, τ2, τ3, . . . , τn} and

‖A‖∞ = maxi
∑n

j=1 |aij | (for A = [aij ], i, j = 1, . . . , n). Inequality (2.26) is satisfied for any

given ε > 0 by choosing τ ≥ 0 large enough.

The following two theorems give sufficient conditions for stability of the proposed algo-

rithm in the sense of convergence to zero of the estimation error mean and boundedness

of the mean-square error. The analysis is based on the definition of a new, specially con-

structed norm according to Lemma 2.1.1, adapted to the partition of the consensus matrix

C̃(t) into the blocks Cij(t), and the methodology from [81, 54, 55].

Theorem 2.1.2 Let Ã[r] be partitioned into blocks Ã
[r]
jk = C

[r]
jk Φ[r]

j , where C
[r]
jk and Φ[r]

j
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are realizations of Cjk(t) and Φj(t) obtained by choosing Ξt = Ξ[r], and let ρ(Φ[r]
k ) < b

[r]
k <

∞, k = 1, . . . , N , together with

ν∑

r=1

πr max
j

N∑

k=1

ρ(C [r]
jk )b[r]

k < 1. (2.27)

Then, limt→∞E{ε(t|t− 1)} = 0 if the system (2.16) is asymptotically stable. If the system

(2.16) is not asymptotically stable, limt→∞E{ε(t|t− 1)} = 0 if, additionally, F̃E = F̃ .

Proof: Consider the matrix Ã[r] and define its norm ‖Ã[r]‖? in the following way:

‖Ã[r]‖? =

∥∥∥∥∥∥∥∥∥




‖C [r]
11Φ[r]

1 ‖τ · · · ‖C [r]
1NΦ[r]

N ‖τ

...
...

‖C [r]
N1Φ

[r]
1 ‖τ · · · ‖C [r]

NNΦ[r]
N ‖τ




∥∥∥∥∥∥∥∥∥
∞

, (2.28)

having in mind properties of the norm ‖.‖∞, and Lemma 2.1.1. For particular terms in

(2.28) we have that ‖C [r]
jk Φ[r]

k ‖τ ≤ ρ(C [r]
jk )‖Φ[r]

k ‖τ , having in mind that ‖C [r]
jk ‖τ = ρ(C [r]

jk ) for

diagonal matrices C
[r]
jk . Moreover, it is always possible to find such a τ̄ > 0 that for any

τ > τ̄ we have ‖Φ[r]
k ‖τ ≤ ρ(Φ[r]

k ) + ε, for any given ε > 0. Making ε small enough we always

have that ρ(Φ[r]
k )+ ε ≤ b

[r]
k (having in mind that the assumption ρ(Φ[r]

k ) < b
[r]
k is in the form

of a strict inequality). Therefore, ‖Φ[r]
k ‖τ ≤ b

[r]
k , and consequently,

‖Ã[r]‖? ≤ max
j

N∑

k=1

ρ(C [r]
jk )b[r]

k ,

so that the matrix
∑ν

r=1 πrÃ[r] is Hurwitz if (2.27) holds, implying that the model for the

mean (2.23) is asymptotically stable if F̃ is Hurwitz. The second statement of the Theorem

follows trivially from the definition of the matrix B̃[r], since E{X(t)} and E{ε(t|t − 1)}
become decoupled. Thus the result.

Theorem 2.1.3 The proposed estimator provides ‖S(t)‖ < ∞, where S(t) = E{ε(t|t−
1)ε(t|t− 1)T }, ∀t ∈ I, (I is the set of all integers), if ρ(Φ[r]

k ) < b
[r]
k < ∞, k = 1, . . . , N ,

ν∑

r=1

πr[max
j

N∑

k=1

ρ(C [r]
jk )b[r]

k ]2 < 1 (2.29)
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and the system (2.16) is asymptotically stable. If the system (2.16) is not asymptotically

stable, ‖S(t)‖ < ∞ if, additionally, F̃E = F̃ .

Proof: If Ã[r] is partitioned into n×n blocks A
[r]
ij , i, j = 1, . . . , N , then it is possible to

show that the matrix Ã[r] ⊗ Ã[r] is cogredient to

ÃP
[r] ⊗ ÃP

[r] =




A
[r]
11 ⊗A

[r]
11 . . . A

[r]
11 ⊗A

[r]
1N . . . A

[r]
1N ⊗A

[r]
1N

A
[r]
11 ⊗A

[r]
21 . . . A

[r]
11 ⊗A

[r]
2N . . . A

[r]
1N ⊗A

[r]
2N

...
A

[r]
21 ⊗A

[r]
11 . . . A

[r]
21 ⊗A

[r]
1N . . . A

[r]
2N ⊗A

[r]
1N

...
A

[r]
N1 ⊗A

[r]
N1 . . . A

[r]
N1 ⊗A

[r]
NN . . . A

[r]
NN ⊗A

[r]
NN




i.e. ÃP
[r] ⊗ ÃP

[r] = Tp(Ã[r] ⊗ Ã[r])T T
p , where Tp is a permutation transformation. Therefore,

the norm ‖ÃP
[r] ⊗ ÃP

[r]‖? is a norm ‖Ã[r] ⊗ Ã[r]‖◦ of Ã[r] ⊗ Ã[r], i.e.

‖Ã[r] ⊗ Ã[r]‖◦ = ‖ÃP
[r] ⊗ ÃP

[r]‖? =

∥∥∥∥∥∥∥∥∥




‖A[r]
11 ⊗A

[r]
11‖τ . . . ‖A[r]

1N ⊗A
[r]
1N‖τ

...
...

‖A[r]
N1 ⊗A

[r]
N1‖τ . . . ‖A[r]

NN ⊗A
[r]
NN‖τ




∥∥∥∥∥∥∥∥∥
∞

.

Majorizing the last expression similarly as in Theorem 2.1.2, one obtains that

‖Ã[r] ⊗ Ã[r]‖◦ ≤ max
j,l

N∑

k=1

ρ(C [r]
jk )b[r]

k

N∑

m=1

ρ(C [r]
lm)b[r]

m ,

so that the matrix
∑ν

r=1 πr(Ã[r]⊗Ã[r]) is Hurwitz if (2.29) holds. As (2.29) implies (2.27), we

also have that both matrices
∑ν

r=1 πr(F̃E ⊗ Ã[r]) and
∑ν

r=1 πr(Ã[r]⊗ F̃E) are Hurwitz if F̃E

is Hurwitz, implying asymptotic stability of the model (2.24), and, therefore, boundedness

of P (t) (and, consequently, of S(t)). The second statement follows directly, since F̃E = F̃

decouples the models of the system and the estimation error. Thus the result.

Remark 2.1.2 A comparison of the above results with the results related to the

continuous-time estimator shows basic similarity of the main ideas and some technical

differences. The main point of the stability analysis presented therein has been to show

the existence of stabilizing consensus gains assuming that the local estimators are asymp-
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totically stable. The above results provide a more specific insight into the the influence

of the particular components of the system, supposing intermittent observations and com-

munication faults. It is important to notice that Theorems 2.1.2 and 2.1.3 do not assume

explicitly asymptotic stability of the local estimators: parameters of the consensus matrix

can be selected in such a way that the conditions (2.27) and (2.29) hold in spite of the fact

that b
[r]
k > 1 for some k and r, i.e. when some local estimators are unstable. This is a

clear consequence of the eventual instability of some local estimators for γi(t) = 0, having

in mind that Theorems 2.1.2 and 2.1.3 deal with the average behavior of the whole estima-

tor. However, instability of some local estimators can be tolerated even in the case of no

measurement and communication errors (with probability 1). We can directly observe that

in this case the condition (2.27) can be satisfied for some consensus parameters provided

for each j there exists a term ρ(C [1]
jk )b[1]

k 6= 0 in which b
[1]
k < 1 (there is only one realization

Ξ[1] in the case of no errors). This condition, requiring, in fact, that each unstable node

receives information directly from at least one stable node, is too conservative. Note here

only that it is possible to show that there exist stabilizing consensus parameters in more

general cases when all the nodes with unstable local estimators are reachable from at least

one node with a stable local estimator.

Example 2.1.6 Intercommunications between the agents introduced by the consensus

matrix increase, in principle, robustness to measurement faults. A clear insight can be

obtained by analyzing a simple example with two estimators. Assume that the system is

of first order and unstable, with F = 1.1; assume also that F (1) = 1.2, L(1) = 0.7 and

H(1) = 1 for the first agent, and F (2) = 1.2, L(2) = 0.9 and H(2) = 1 for the second,

according to (2.17) and (2.18). Both estimators are stable when the measurements are

available (when γi = 1). Assume also that a multi-agent network is implemented with

the fixed consensus matrix C̃ = 0.5
[

1 1
1 1

]
, according to the proposed algorithm (2.21).

Figure 2.5 contains stability boundaries in the 1−p11, 1−p22-plane in the sense of Theorem

2.1.2 (label (1)) and Theorem 2.1.3 (label (2)) for different values of the communication

probability p = p12 = p21; solid lines are obtained by using the derived conditions (2.27)

or (2.29), while the dotted lines correspond to the experimentally obtained real stability

boundaries (for p = 0 explicit results can be obtained by using [81, 54]). The derived
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boundaries are based on sufficient conditions and are conservative, as expected; however,

the beneficial effects of the consensus scheme are obvious.
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Figure 2.5: Stability boundaries

Example 2.1.7 Basic effects of introducing the consensus scheme in the proposed es-

timator are further illustrated by the following example. The system S is assumed to be

represented by (2.16) with F =




1/2 1 0
−1 −1/5 −1
0 −2/3 1/2


, G = I and H =

[
0 1 0
0 0 1

]
, Q = I3 and

R = diag{R(1), R(2)}. It can be easily seen that this system can be decomposed into two

overlapping subsystems S1 and S2 according to (2.17), described by F (1) =

[
1/2 1
−1 −1/5

]
,

G(1) = I2, H(1) = [ 0 1 ], F (2) =

[
−1/5 −1
−2/3 1/2

]
, G(2) = I2, H(2) = [ 0 1 ], with the same noise

covariances as in the case of S (notice that the second subsystem is unstable). According

to the exposed methodology, we will design a consensus based estimator for S starting from

the local Kalman filters Ē1 and Ē2 for S1 and S2, by introducing the consensus matrix C̃(t)

with C11(t) = α1(t)I2, C12(t) = (1− α1(t))I2, C21(t) = (1− α2(t))I2 and C22(t) = α2(t)I2,

where 0 ≤ α1(t), α2(t) ≤ 1 (for R(1) = R(2) = 0.1 we have L(1) = [ 0.8270 0.0681 ]T and

L(2) = [−0.9517 0.4248 ]T in (2.18)). This means that we have two agents, the first having

the local model S1 and having access to the output y(1) (the noisy state component x2), and

the second having the local model S2 and having access to the output y(2) (the noisy state
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component x3). Fig. 2.6 shows the performance of the proposed estimator (curve (2)), of

the local Kalman filters Ē1 and Ē2 (curves (3) and (4)) and of the globally optimal Kalman

filter (curve(1)); the curves represent the experimentally obtained mean-square error for

the estimate of x2 obtained by the first agent on the basis of 200 realizations, assuming

α1(t) = α2(t) = 0.5. As it can be easily seen, performance of the proposed estimator is

close to the optimal, while the local estimators alone are obviously inferior. The estimates

obtained by the second agent are very close to those obtained by the first, as a consequence

of the main tendency of the consensus scheme.
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Figure 2.6: Mean square error for different estimators

Example 2.1.8 In the case when two agents get their measurements with different

accuracies (R(1) 6= R(2)), we have the design problem of determining the coefficients α1(t)

and α2(t) in the consensus matrix, having in mind that, logically, a larger weight should be

given to the agent with higher local estimation accuracy. A heuristic local adaptive strategy

implementable on line can easily be added to the basic estimation algorithm. Define

ζi(t + 1) = δiζi(t) + (1− δi)(y(i)(t)−Hiξi(t|t))2,

where 0 < δi < 1, i = 1, 2, representing filtered squared residuals obtained by the agents.

Then, according to the general ideas exposed above, the consensus coefficients can be defined
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as

α1(t) = ζ1(t)−1/(ζ1(t)−1 + ζ2(t)−1) = ζ2(t)/(ζ1(t) + ζ2(t)),

α2(t) = ζ2(t)−1/(ζ1(t)−1 + ζ2(t)−1) = ζ1(t)/(ζ1(t) + ζ2(t)),

enforcing that the weights in the consensus matrix are inversely proportional to the local

estimation accuracy. Table 2.2, containing the average weight α1(t) obtained after t = 50

iterations, gives an illustration of the efficiency of the described adaptation procedure.

R(1) = 1 R(1) = 10 R(1) = 100
R(2)=1 0.4731 0.3577 0.1914
R(2)=10 0.5537 0.4927 0.2602
R(2)=100 0.7945 0.5789 0.5498

Table 2.2: Adaptive consensus coefficient α1 for different values of the measurement noise
variances

2.1.2.3 Optimization

Optimization of the consensus gains can be done following the approach given in the

continuous-time case. Namely, if the optimization criterion is taken to be the steady-state

mean-square prediction error of the whole estimator defined as J = TrS = Tr limt→∞ S(t)

(where S(t) is defined in Theorem 2.1.3), then, if we collect all the unknown parameters in

a vector θ, the following problem can be posed: minimize J with respect to θ, where J is

calculated from the solution of the following Lyapunov-like algebraic equation derived from

(2.24)

P =
ν∑

r=1

πr[B̃[r]PB̃T
[r] + D̃[r]WD̃T

[r]], (2.30)

having in mind that S is a block of P . This equation has a solution under the conditions

formulated within Theorem 2.1.3. It is to be noticed that intermittent measurements and

communication losses make this optimization problem much more difficult and numerically

more complex than the optimization problem formulated in continuous-time estimator.

Example 2.1.9 The following example illustrates the above optimization procedure

in the case of an unstable system. The system is supposed to be given by (2.16) with
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F =
[

2 1
−1 1

]
, G =

[
1
0

]
, Q=1; the eigenvalues of F are at 1.5 ± j0.866. There are two

agents with two Kalman filters, the first using H(1) = [ 1 0 ] with R(1) = 0.1, and the second

H(2) = [ 0 1 ] with R(2) = 1, so that L(1) =
[

2.0750
−0.7807

]
and L(2) =

[
−1.5448
−2.1632

]
, supposing

that both estimators possess the information about the system model. Optimization is done

with respect to the scalar parameters α1 and α2 in C11(t) = α1I and C22(t) = α2I. The

results have been found to be sensitive to the initial conditions, having in mind system in-

stability. Fig. 2.7 depicts the dependence of the obtained parameters on the communication

probability p = p12 = p21. As it can be seen, the quality of the first estimator dominates

in the case of high communication reliability, since R(2) > R(1); when the communication

reliability deteriorates, the relative importance of the second local estimator increases, as

expected.
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Figure 2.7: Optimal consensus parameters

2.1.2.4 Denoising

We will do the similar analyzes of the denoising effects of the introduced consensus scheme

as in the case of the proposed continuous-time algorithm. Hence, we will use characteristic

network topologies and assume that all the estimators have the information about the

overall system model, and that they observe identical components of the state vector, but
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with different realizations of the measurement noise with covariance R (generalizations to

more complex structures are feasible, although technically more difficult). We will also

assume that the measurements are never interrupted, and that there are no communication

faults.

Case A) The consensus matrix C̃(t) is constant and is given in the form C̃(t) = C̃
(N)
1 =

1
N




I I · · · I
I I · · · I· · ·
I I · · · I


, where I stands for In.

The steady-state estimation mean-square error S in the case when the agents possess

the exact system models satisfies the following Lyapunov-like algebraic equation:

S =
ν∑

r=1

πr[Ã[r]SÃT
[r] + Ẽ[r]WẼT

[r]], (2.31)

where Ẽ[r] =
[
−G̃ C̃[r]Γ̃[r]]L̃H̃

]
. The adopted assumptions lead to the following simplified

relation

S(N) = C̃
(N)
1 [Φ̃S(N)Φ̃T + L̃H̃R̃H̃T L̃T ]C̃(N)T

1 + G̃Q∗G̃T (2.32)

where the superscript (N) is added to emphasize that there are N agents; the block-diagonal

matrices Φ̃, L̃, H̃ and G̃ are composed of identical block-diagonal elements.

We observe now that C̃
(N)
1 has n eigenvalues at 1, and (N − 1)n eigenvalues at 0. Its

diagonalization can be done by

TN =




I I · · · I
I −(N − 1)I · · · I

· · ·
I · · · −(N − 1)I


 ,

with T−1
N = 1

N




I I · · · I
I −I 0 · · ·

· · ·
I 0 · · · −I


, so that

T−1
N C̃

(N)
1 TN = C̄

(N)
1 =




I 0 · · ·
0 0 0 · · ·· · ·
0 0 · · · 0


 . (2.33)
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Applying T−1
N and TN to equation (2.32), we obtain

S̄(N) = C̄
(N)
1 [Φ̃S̄(N)Φ̃T + L̃H̃R̃H̃T L̃T ]C̄(N)T

1 + Q̄(N) (2.34)

where S̄(N) = T−1
N S(N)TN and Q̄(N) = T−1

N G̃Q∗G̃T TN =




NGQGT · · · 0
...
0 · · · 0


. A solution

to this equation is S̄(N) =




Ŝ(N) 0 · · ·
0 0 0 · · ·· · ·
0 0 · · · 0


, where Ŝ(N) is obtained from the Lyapunov

equation

Ŝ(N) = ΦŜ(N)ΦT + LHRHT LT + NGQGT . (2.35)

Obviously, the mean-square error for the whole estimator is J = Tr S̄(N) = Tr Ŝ(N). Having

in mind that N independent estimators have the mean-square error equal to NĴ , where

Ĵ = Tr Ŝ and Ŝ is a solution to the standard local Lyapunov equation

Ŝ = ΦŜΦT + LHRHT LT + GQGT , (2.36)

we take J̄ = 1
N J as the average criterion “per agent”, and obtain that for N large enough

J̄ ≈ TrS∗, where S∗ is a solution of the Lyapunov equation

S∗ = ΦS∗ΦT + GQGT . (2.37)

Comparing (2.36) and (2.37), one concludes that for large N the consensus scheme asymp-

totically achieves complete denoising in the sense that it reduces the mean-square error

from the level defined by (2.36) to the level defined by (2.37) where the term depending on

R is eliminated.

Case B) C̃(t) = C̃
(N)
2 = 1

2




I I 0 · · · 0
0 I I 0 · · ·· · ·
0 0 · · · I I
I 0 · · · 0 I


, i.e., the network graph forms a directed

ring.

Reasoning as in Case A), we obtain for the diagonal blocks (S̄(N))i of S̄(N), i = 2, . . . , N ,
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the following relations:

(S̄(N))i = |λ(N)
i |2[Φ(S̄(N))iΦT + LHRLT HT ]; (2.38)

where λ
(N)
i , i = 1, . . . , N , are N distinct eigenvalues of the consensus matrix C̃

(N)
2 , uniformly

distributed on a circle in the complex plane, with radius 1
2 and the center at (1

2 , 0); the first

block (S̄(N))1 is the same as in Case A). It is obvious that now limt→∞ 1
N

∑N
i=1 Tr(S̄(N))i

6= 0, so that denoising in the above sense is not achievable in spite of the fact that all the

nodes are reachable from any other node; a similar phenomenon has been observed in the

case of the continuous-time algorithm proposed in the previous subsection.

However, the relation (2.38) indicates how complete asymptotic denoising can be achieved

in the case of graphs with complexity lying between the above two extremes. Assuming

that (2.38) holds, we can easily conclude that

‖ΣN
i=2(S̄

(N))i‖ ≤ β
N∑

i=1

|λ(N)
i |2

for some finite β > 0. Therefore, it comes out that the condition

N∑

i=1

|λ(N)
i |2 = o(N) (2.39)

is sufficient for successful denoising in this case. In general, any rigorous analysis is here

faced with considerable technical difficulties; however, in some special cases the condition

(2.39) can be more directly related to structural properties of the corresponding graphs,

like in the following examples.

Example 2.1.10 We assume that the graph that describes the network is undirected

(i.e. all the links between the agents are bidirectional). Under this assumption, it is easy

to show that
N∑

i=1

(λ(A)
i )2 = 2M, (2.40)

where λ
(A)
i , i = 1, ..., N , are the eigenvalues of the graph’s adjacency matrix A, defined as

A = [aij ], where aij = kij , i 6= j and aii = 0, i, j = 1, . . . , N ; matrix A is constant in

36



the case of no communication faults ([22]). Next, we assume that the number of links per

node in the graph is the same, and that all the weights Kij in the consensus matrix are the

same and equal to 1
µ+1I, where µ = µ(N) is the number of links per node. Under these

assumptions, it is obvious that the consensus matrix C̃ is equal to 1
µ+1(A⊗ In + I). Since

we assumed an undirected graph structure, matrices C̃ and A are symmetric and all their

eigenvalues are real. Thus, it is easy to show (using (2.40) and the fact that
∑N

i=1 λ
(A)
i = 0

and M = Nµ(N)/2), that the condition (2.39) reduces to

N

µ(N)
= o(N). (2.41)

Therefore, for the assumed network structure, the sufficient condition for complete denoising

is that the number of links per node µ(N) tends to infinity with the number of nodes N

(compare with analogous results for the continuous time case).

Example 2.1.11 This example illustrates the denoising capabilities of the proposed

estimator for different network topologies. We assume that all the agents have identical

models of a fourth order system, with F =




0.8 0 0 0
0.8 0.7 0 0
0.5 0.3 0.8 0.3
0 0.5 0.1 0.7


, H = I4, Q = 0.5I4, R =

0.5I4, but with different realizations of the measurement noise. Average values of the

criterion (J̄) have been calculated for five network topologies: a) fully connected network;

b) directed ring; c) undirected ring; d) random graph with fixed probability 0.2 of connection

between every two nodes; e) random graph for which probability of connection decreases

as 1/d2
ij , where dij is the distance between the nodes i and j. The results are shown in

Fig. 2.8. The horizontal dashed line correspond to the criterion lower bound Tr(S∗), where

S∗ is obtained by using (2.37). The presented results fully confirm the above analysis.

In the case of the fully connected graph, the curve converges exactly to the lower bound

of the criterion when N tends to infinity. As expected, in the case of the directed and

undirected rings the limit values of the criterion are higher than Tr(S∗), since the complete

denoising is not achievable. We have the same situation in the case e) of random graphs for

which the probability of connection decreases as 1/d2
ij , since the average number of links

per node converges to a constant when N tends to infinity. However, when the probability
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of connection is constant for all the pairs of nodes (case d)), we can see that the complete

asymptotic denoising is achieved. The explanation lies in the fact that for case d) (fixed

probability) the average number of links per node grows linearly with N (it is equal to pN

where p is probability of connection between two nodes).
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Figure 2.8: Average criterion as a function of N

Remark 2.1.3 According to the above results, complete asymptotic denoising is achiev-

able in the case of networks with the number of edges E = O(N2), but scalability of the

algorithm becomes violated. However, the algorithm is still capable of achieving complete

asymptotic denoising when the number of edges satisfies E = O(Nµ(N)), where µ(N) tends

to infinity at a much slower rate than the linear function (e.g. µ(N) = O(log N)), ensuring

a better scalability. In the case of a bounded number of branches entering each node, strict

scalability holds, but complete asymptotic denoising is not achievable; in practice, however,

the algorithm can still efficiently suppress the noise influence and provide reliable overall

results.
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2.2 Decentralized Parameter Estimation by Consensus Based

Stochastic Approximation

This section deals with the problem of distributed parameter estimation. In the first part

of this section the formulation of the algorithm and the main definitions are presented. The

second part is devoted to the convergence analysis of the proposed algorithm. It starts

with five main lemmas, providing tools for further derivations. Lemma 2.2.1 determines the

main structure of the network resulting from general requirements for measurement avail-

ability and inter-agent communications, while Lemma 2.2.2 deals more specifically with

characteristic properties of the matrix generating the network graph. Lemmas 2.2.3 and

2.2.4 treat the basic convergence problem of recursions involving matrix gain structures

typical for the proposed algorithm, while Lemma 2.2.5 proves the existence of solution of

a Lyapunov-type linear matrix equation which appears in the subsequent derivations. The

first convergence theorem deals with the case of asymptotically nonvanishing gains and pro-

vides the resulting estimation error covariance matrix. It represents a generalization of the

classical results of Polyak (e.g. [61, 62]) to the multi-agent environment based on consensus,

including intermittent observations and inter-agent communications treated on the basis of

the corresponding probabilities like in [77, 81, 54, 55]. The following theorem deals with

asymptotically vanishing gains, giving conditions for the mean-square convergence of the

parameter estimates. Theorem 2.2.3 provides an estimate of the rate of convergence of the

algorithm under specific conditions. Finally, a discussion of the required network topology,

a treatment of the problem of additive communication noise, as well as a brief presentation

of the important problem of denoising, analogously to the result presented in the context

of state estimation.

2.2.1 Problem Formulation and Algorithm Definition

Consider the situation in which N autonomous agents perform real-time estimation of pa-

rameters in the following local regression models:

yi(t) = θT ϕi(t) + ξi(t), (2.42)
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i = 1, . . . , N , where t is the discrete-time instant, θ represents the unknown parameter

vector (dim θ = m), ϕi(t) are the vectors of regressors locally accessible to the agents, yi(t)

are the local scalar output measurements and ξi(t) the local measurement noises.

We will assume that in the case of no connection between the agents local estimation of

the parameter vector θ is done by the gradient-type stochastic approximation algorithm

θ̂L
i (t + 1) = θ̂L

i (t) + γL
i (t)[yi(t)− θ̂L

i (t)T ϕi(t)]ϕi(t), (2.43)

i = 1, . . . , N , where θ̂L
i (t) is the local estimate of θ and {γL

i (t)} a positive number sequence

[53, 61, 62, 64, 65, 108].

We will assume that the agents are, in general, connected by directed communication

links aimed at transmitting the current parameter estimates. We will denote by C̃ij(t) m×m

time-varying diagonal matrix gains with nonnegative entries, defining transmission gains of

the parameter estimates from the j-th to the i-th node (agent), i, j = 1, . . . , N . Based on

the local estimation algorithms (2.43) and the introduced communication links between the

agents, we propose the following consensus based parameter estimation algorithm (compare

with the similar discrete-time consensus based state estimation algorithm presented in the

previous section):

θ̂i(t) = θ̃i(t) + γ̃i(t)[yi(t)− θ̃i(t)T ϕi(t)]ϕi(t),

θ̃i(t + 1) =
∑N

j=1 C̃ij(t)θ̂j(t), (2.44)

where θ̃i(t) is the estimate of θ generated by the i-th agent, i = 1, . . . , N . Obviously,

for C̃ii(t) = I and C̃ij(t) = 0, i 6= j, the algorithm (2.44) reduces to (2.43). Defining

θ̃(t) =
[
θ̃1(t)T · · · θ̃N (t)T

]T
, Y (t) =

[
y1(t) · · · yN (t)

]T
, Φ(t) = diag{ϕ1(t), . . . , ϕN (t)},

C̃(t) = [C̃ij(t)], i, j = 1, . . . , N, and Γ̃(t) = diag{γ̃1(t), . . . , γ̃N (t)}⊗Im, where ⊗ denotes the

Kronecker’s product, we obtain the following compact representation of the whole estimation

algorithm:

θ̃(t + 1) = C̃(t)θ̃(t) + C̃(t)Γ̃(t)Φ(t)[Y (t)− Φ(t)T θ̃(t)]. (2.45)

The algorithm represents, in fact, a combination of the local estimation algorithms of
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stochastic gradient type (2.43) and a first order discrete-time consensus scheme, already

introduced in the previous section. It can be considered as a practical way of achieving

asymptotic agreement upon the parameter estimates, which overcomes the needs for both

prior and posterior distributions inherent to general treatments of the distributed decision

making problem (e.g. [16, 106]). More specifically, the consensus scheme is aimed at: (a)

reducing the number of nodes performing measurements and local estimation by distribut-

ing the estimates throughout the network; (b) increasing reliability of the estimates in the

case of missing observations; (c) contributing to the estimation accuracy and reduction of

measurement noise influence.

Remark 2.2.1 Notice that the algorithm (2.44) is formulated in accordance with the

usual split of state estimation algorithms into their ”filtering” and ”prediction” parts; in

our case the ”filtering” part corresponds to the local stochastic gradient algorithms, and

the ”prediction” part to convex combinations of the available local estimates. Alternative

structures are possible, in accordance with [107, 105, 13, 44, 45, 113]. Starting, for example,

from [107, 105], one can obtain

θ̃i(t + 1) =
N∑

j=1

C̃ij(t)θ̃j(t) + γ̃i(t)[yi(t)− θ̃i(t)T ϕi(t)]ϕi(t). (2.46)

Averaging can be applied only to the increment of the estimates γ̃i(t)[yi(t)− θ̃i(t)T ϕi(t)]ϕi(t),

as in [44]. It could be expected that these algorithms have similar properties as the pro-

posed one. However, it will be seen later that (2.45) have some advantages, including a

more transparent formulation of the convergence conditions.

Remark 2.2.2 The consensus scheme introduces implicitly averaging of the estimates

generated by the agents, since the available measurements contain local outputs containing

different measurement noise realizations. Such an ensemble averaging is essentially different

from the time averaging done on one measurement realization, introduced in the Polyak’s

stochastic approximation with averaging [63]. The Polyak’s scheme can, obviously, be

introduced locally within the proposed algorithm, with the aim to improve the overall

convergence rate of the algorithm.

In order to encompass the important case of intermittent measurements and unreliable
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communication links, we will adopt that the introduced matrices Γ̃(t) and C̃(t) are random,

satisfying the following general assumptions:

- the constituent blocks of C̃(t) are in the form C̃ij(t) = kij(t)Cij(t), where {kij(t)},
i, j = 1, . . . , N , are mutually independent scalar sequences of independent binary random

variables, such that P{kij(t) = 1} = pij and P{kij(t) = 0} = 1−pij for i 6= j, while matrices

Cij(t) are m ×m diagonal weighting matrices with positive entries which can reflect local

estimation uncertainty (for example, the elements of Cij(t) can be chosen to be higher in

the case of higher accuracy obtainable by the local estimator at the j-th node);

- the diagonal elements of Γ̃(t) are in the form γ̃i(t) = κi(t)γi(t), where {γi(t)} is a

predefined deterministic sequence and {κi(t)} a sequence of independent binary random

variables, such that κi(t) = 1 in the case when the local measurement is available to the i-

th agent at time t, and κi(t) = 0 in the opposite case; we will adopt that P{κi(t) = 1} = pii

and P{κi(t) = 0} = 1− pii;

- Xt is the random vector composed of N2 binary components: N(N−1) elements kij(t),

i, j = 1, . . . , N, i 6= j, and N elements κi(t), i = 1, . . . , N , so that {Xt} represents a sequence

of independent random vectors; let πi be the probabilities of all possible realizations X(i)

of Xt, i = 1, . . . , 2N2
(superscript (i) will denote in the sequel the i-th realization of an

indicated variable);

- K(t) = [kij(t)] is a matrix with binary elements, where the off-diagonal elements kij(t),

j 6= i, are determined by the current realization of Xt, while the diagonal elements are fixed

in such a way that kii(t) = 1 for all indices for which pii > 0, and for the remaining indices

kii(t) are fixed to either 1 or 0;

- K(i), C̃(i) and Γ̃(i)(t), i = 1, . . . , Ñ = 2N2
, will denote all possible realizations of K(t),

C̃(t) and Γ̃(t) resulting from different realizations X(i) of Xt; matrices C̃(i) will be assumed

to be time invariant;

- K∗ and C̃∗ represent the ”full” realizations of the random matrices K(t) and C̃(t),

obtained by introducing kij(t) = 1 if pij > 0 and kij(t) = 0 if pij = 0, i, j = 1, . . . , N , i 6= j;

- similarly, Γ̃∗(t) is the ”full” realization of Γ̃(t), obtained by introducing κi(t) = 1 if

pii > 0 and κi(t) = 0 if pii = 0;

- the consensus matrix C̃(t) is row-stochastic for all t, i.e. the sum of the elements of
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each of its rows is equal to 1.

Remark 2.2.3 The assumption about the diagonal elements of K(t) implies that the

estimate θ̃i(t+1) explicitly depends on θ̂i(t) when the i-th agent has the access to measure-

ments with positive probability. When this probability is equal to 0, the choice kii(t) = 1

enables incorporation of a local a priori estimate of the parameter vector, and prevents

from forgetting previously received estimates.

Remark 2.2.4 As in the discrete-time state estimation scheme, the assumption that

C̃(t) is row stochastic requires its recalculation for each new realization of Xt. This can be

done by re-normalization of its rows as in the Subsection 2.1.2.

As above, we will represent the instantaneous inter-agent connections in the network

by a directed graph G(K(t)) = {N (K(t)}, E(K(t)} associated with the matrix K(t), where

N (K(t)) is the node set (|N (K(t))| = N) and E(K(t)) the arc set, where the arc from node

j to node i exists if kij(t) > 0 (|.| denotes the cardinality of an indicated set). Obviously,

K(t) represents at the same time the adjacency matrix of the graph G(K(t)). Graphs G(P )

and G(K∗) associated with matrices P and K∗ will have an important role in the sequel.

These matrices have the same off-diagonal positions of positive entries. At the diagonal,

matrix K∗ has positive entries for all indices for which pii > 0; in addition, it can have

positive entries for some indices for which pii = 0. The inverse graph of G(.) will be denoted

by Ḡ(.): it is obtained by reversing the direction of the arcs in G(.)

2.2.2 Convergence Analysis

We will study convergence properties of the proposed algorithm starting from the following

basic assumptions:

(A.2.2.1) {ϕi(t)}, i = 1, . . . , N , are sequences of independent equally distributed ran-

dom vectors with the following properties:

(a) E{ϕi(t)ϕi(t)T } = B = [bkj ] (‖B‖ < ∞); B satisfies the strict diagonal dominance

condition

|bkk| >
m∑

j=1,j 6=k

|bkj |, (2.47)

k, j = 1, . . . , m (see [79]);
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(b) fourth order moments of {ϕi(t)}, are finite, so that it is possible to find such an mN×mN

matrix B̄, ‖B̄‖ < ∞, that E{Φ(t)Φ(t)T UΦ(t)Φ(t)T } ≤ B̄UB̄T for any symmetric mN×mN

matrix U ≥ 0 (for symmetric positive semidefinite matrices A and B, A ≥ B means that

A−B is positive semidefinite);

(A.2.2.2) {ξi(t)} are sequences of independent zero-mean random variables with var ξi(t)

= qi, i = 1, . . . , N ;

(A.2.2.3) sequences {Xt}, {ϕi(t)} and {ξi(t)}, i = 1, . . . , N , are mutually independent;

(A.2.2.4) Γ(t) = diag{γ1(t), . . . , γN (t)} > 0, ∀t ≥ 0; limt→∞ Γ(t) = Γ∞ ≥ 0;

(A.2.2.5) The set N ∗ ⊂ N (P ) containing all the nodes of the graph G(P ) which have

the indices i corresponding to pii > 0 is nonempty, and each node in N (P ) is reachable

from at least one node from N ∗.

Remark 2.2.5 Assumption (A.2.2.1) is stronger than the analogous assumptions for

the stochastic approximation procedures in linear system identification, e.g. [62, 76]; this

is a direct consequence of the introduction of the consensus scheme. The assumption that

the covariance B does not depend on i logically follows from the structure of (2.42). As-

sumptions (A.2.2.2) - (A.2.2.4) are classical for the stochastic approximation algorithms.

Assumption (A.2.2.5) deals explicitly with the network structure: graphs G(P ) and G(K∗)

contain loops at the nodes characterized by positive probabilities of getting measurements,

while the outgoing branches from these nodes ensure adequate distribution of the parameter

estimates throughout the network [27, 48]. Obviously, the network evolves stochastically,

and concrete links depend on realizations of {Xt}.
Convergence analysis of the proposed algorithm requires some preliminary results, pre-

sented in the form of five lemmas.

Lemmas 2.2.1 and 2.2.2 deal with the main structural properties of the network graph.

Lemma 2.2.1 Let P = [pij ], i, j = 1, . . . , N , according to the above definitions, and let

assumption (A.2.2.5) be satisfied. Then the matrix P is cogredient to

P̄ =




P1 · · · 0
0 P2 · · ·
0 · · · Pk 0

Q1 · · · Qk P0


 (2.48)
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where P0 is an r0 × r0 matrix, 0 ≤ r0 < N , Pi are irreducible ri × ri matrices satisfying

0 < ri < N , Qi are r0 × ri matrices, i = 1, . . . , k, and 1 ≤ k ≤ |N ∗|.
Proof: We will prove the lemma by construction. Take any node i1 from the node

set N ∗ defined in (A.2.2.5), together with all the nodes from G(P ) reachable from this

node, and construct the corresponding subdigraph in which i1 is a center node (a node

from which every node in the subdigraph is reachable [48]). Consequently, the inverse

digraph of this subdigraph contains one and only one closed strong component (a maximal

induced subdigraph which is closed and strongly connected), and, therefore, this subdigraph

can be associated to a nonnegative matrix R∗
i1

cogredient to R̄i1 =

[
Ri1 0
Si1 R0

i1

]
, where Ri1

is irreducible. If N ∗ − N (R∗
i1

) = ∅, we have the result, since R̄i1 has the structure of

P̄ in (2.48). If N ∗ − G(R∗
i1

) 6= ∅, we take a node i2 from N ∗ − G(R∗
i1

), and construct,

analogously as above, the subdigraph G(R∗
i2

), where R∗
i2

is cogredient to R̄i2 , which has

the same lower block triangular structure as R̄i1 . Continuing until exhaustion of all the

nodes from N ∗, one obtains J ≤ |N ∗| subdigraphs G(R∗
i1

), . . . ,G(R∗
iJ

) and matrices R∗
i1

,

. . ., R∗
iJ

to which they are asssociated, together with the corresponding cogredient matrices

R̄i1 , . . . , R̄iJ , respectively. By assumption (A.2.2.5), the whole node set N (P ) is decomposed

by the above procedure into J overlapping subsets. By construction, the node set that

represents the union of the non-overlapping parts of the node sets N (R∗
ij

), j = 1, . . . , J ,

contains k, 1 ≤ k ≤ J , closed strong components of the inverse subdigraph Ḡ(P ), associated

to k of J irreducible submatrices Rij of R̄ij , j = 1, . . . , J ; denote these submatrices by Pl,

l = 1, . . . , k. Therefore, according to [48] (Theorem 2.7), P is cogredient to P̄ in (2.48).

Thus the result.

Lemma 2.2.2 Let the assumption (A.2.2.5) be satisfied and let Q[l] =
[
Q

[l]
1 · · · Q

[l]
k

]

be defined by

P̄ l =

[
diag{P l

1, . . . , P
l
k} 0

Q[l] P l
0

]
, (2.49)

where P̄ is given by (2.48) (Al with no brackets around the superscript will denote in the

sequel the l-th power of a matrix A). Then:

(a) there exists an integer lj such that for l ≥ lj each block matrix Q
[l]
j , j = 1, . . . , k,

contains at least one row whose all elements are positive;
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(b) there exists an integer l
′
such that for l ≥ l

′
each row of Q[l] contains at least one

entire row belonging to Q
[l]
j , j = 1, . . . , k, whose all elements are positive.

Proof: The proof is based on the arguments exposed in [48]. Consider the inverse di-

graph Ḡ(P̄ ), and identify the overlapping subsets N (P0)1, . . . ,N (P0)k of N (P0), containing

those nodes that are connected to the nodes from N (P1), . . . ,N (Pk), respectively. Accord-

ing to [48] (Theorem 2.7), for each j, j = 1, . . . , k, there is a walk from N (P0)j to some node

from N(Pj) of length mj ≥ N − k − |⋃k
i=1,i 6=j N (P0)i|. Moreover, having in mind strong

connectedness of Ḡ(Pj), we conclude that there is a walk of length lj ≥ mj + rj from any

node in N (P0)j to any node from N (Pj). Therefore, matrix Q
[l]
j , generated according to

(2.49) by Q
[r+1]
j = QjP

r
j + P0 Q

[r]
j , r = 1, . . . , k− 1, contains the rows composed of positive

elements at the row indices corresponding to the elements of N (P0)j , and the remaining

elements are equal to zero. This fact proves assertion (a). Assertion (b) results from the

same way of reasoning applied to the whole matrix Q[l], i.e. to all the nodes from N (P̄ ),

having in mind that each element of N (P0) is connected to at least one subset N (Pj),

according to assumption (A.2.2.5). Then, we can simply take l∗ = maxj lj .

Lemmas 2.2.3 and 2.2.4 treat the basic matrix recursions appearing within the subse-

quent theorems. Lemma 2.2.3 is introductory, and assumes scalar parameters. Lemma 2.2.4

provides an important generalization to the case of vector parameters, involving positive

definite matrix gains, in accordance with the definition of the algorithm.

Lemma 2.2.3 Let R = [rij ], i, j = 1, . . . , N , and its cogredient matrix R̄ be nonnegative

row-stochastic matrices having the same structure as P and P̄ , respectively, i.e. R ∼ P and

R̄ ∼ P̄ (for nonnegative matrices A and B, A ∼ B if both matrices have the same associated

digraphs). Let R̄D = R̄D, where D = diag{D1, . . . , Dk, D0}, Di = diag{di,1, . . . , di,ρi},
where either di,j = 1 or di,j = d < 1, j = 1, . . . , ρi, D0 = Iρ0 (ρ0 × ρ0 identity matrix),

and let TrDi < ρi, i = 1, . . . , k (the last assumption means that at least one element di,j

is strictly less than 1 for each i). Let Z(t) be an N × N symmetric positive semidefinite

matrix generated by the recursion

Z(t + 1) = RD Z(t) RT
D, (2.50)
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starting from some Z(0) ≥ 0, where RD is cogredient to R̄D. Then, Z(t) → 0 when t →∞.

Proof: Matrices Pi, i = 1, . . . , k, in (2.48) are primitive matrices since each subdigraph

ḠPi is strongly connected and aperiodic by construction, according to Lemma 2.2.1 (see

[27, 48, 30]). Define R̄ using P̄ by replacing Pi by Ri, i = 0, . . . , k, and Qi by Si, i = 1, . . . , k

(obviously, Pi ∼ Ri and Qi ∼ Si). Therefore, matrices Ri, i = 1, . . . , k, are primitive and,

in addition, row-stochastic by assumption. Therefore, there exists such an integer li that

Rli
i Â 0 [24, 12, 30] (A Â 0 denotes that all the elements of a matrix A are positive).

Moreover, we have that (RiDi)li−1Ri Â 0 having in mind that Ri ∼ RiDi, according

to the properties of Di. Also, ‖(RiDi)li−1Ri‖∞ ≤ 1, having in mind that Ri is row-

stochastic and Di is diagonal with positive entries not greater than 1 (‖A‖∞ = maxi
∑

j |aij |
for a matrix A = [aij ]). In the same way, (RiDi)li Â 0, but, in addition, we have now

that ‖(RiDi)li‖∞ < 1, having in mind that and that at least one column of the matrix

(RiD
li−1
i )Ri consisting entirely of positive elements becomes multiplied by a positive number

less than 1 (at least one element di,j , j = 1, . . . , ρi, is strictly less than 1 by assumption).

Take l ≥ l′ = maxi(N − k + li), i = 1, . . . , k, and write (R̄D)l as:

(R̄D)l =

[
diag{(R1D1)l, . . . , (RkDk)l} 0

S
[l]
D Rl

0

]
, (2.51)

where S
[l]
D is a matrix readily obtained from S[l] ∼ Q[l] (in accordance with the definition of

R̄ ∼ P̄ - see (2.49) and the proof of Lemma 2.2.2), by replacing Rj with RjDj and Sj with

SjDj , j = 1, . . . , k − 1, i.e. after multiplying at least one nonzero element of each of its

rows by a positive number less than one (see assertion (b) from Lemma 2.2.2). Having in

mind that ‖(RiDi)li‖∞ < 1, one concludes that ‖(R̄D)l‖∞ < 1, implying that ‖Rl
D‖∞ < 1.

Iterating (2.50) l steps backwards, one obtains

Z(t + 1) = Rl
DZ(t− l + 1)(RT

D)l.

Moreover, if vec(Z(t)) denotes the vector obtained from Z(t) by concatenating its column
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vectors, we have the following equivalent representation

vec(Z(t + 1)) = [Rl
D ⊗Rl

D] vec(Z(t− l + 1)). (2.52)

According to the above analysis, ‖[Rl
D ⊗ Rl

D]‖∞ < 1, implying that ‖vec(Z(t))‖ → 0, or

Z(t) → 0, when t →∞. Thus, the result.

Lemma 2.2.4 Let R(B) and R̄(B) be row-stochastic Nm×Nm matrices obtained from

R and R̄, respectively, by replacing their scalar elements rij with matrix blocks rijMij ,

where Mij are m ×m diagonal matrices with positive entries, i, j = 1, . . . , N . Let D(B) =

{D(B)
1 , . . . , D

(B)
k , D

(B)
0 } be an Nm×Nm matrix obtained from D (Lemma 2.2.2) by replacing

in Di scalars di,j with m×m symmetric positive definite matrices ∆i,j in such a way that

∆i,j = I when dij = 1 and ∆i,j = ∆ > 0, ‖∆‖∞ ≤ 1, when dij = d < 1, and let
∑ρi

j=1 ‖∆i,j‖∞ < ρi, i = 1, . . . , k (‖A‖∞ = maxi
∑

j |aij | for a matrix A = [aij ]). Then, the

matrix Z(B)(t+1) generated by the recursion Z(B)(t+1) = R
(B)
D Z(B)(t)R(B)T

D (starting from

some Z(B)(0) ≥ 0) converges to zero, where R
(B)
D is a matrix cogredient to R̄

(B)
D = R̄(B)D(B).

Proof: If R
(B)
i , i = 1, . . . , k, is constructed using Ri (see the proof of Lemma 2.2.3)

in the same way as R(B) is constructed using R, we first conclude that there exists such

an integer li that (R(B)
i )li is composed of N × N diagonal m × m blocks with positive

entries, as a consequence of primitiveness of Ri (Rli
i Â 0) and the properties of the con-

stituent blocks of R
(B)
i . Reasoning as in the proof of Lemma 2.2.3, we analyze matrix

(R(B)
i D

(B)
i )li−1R

(B)
i . It is straightforward to conclude that all of its m×m blocks are in the

form
∑

q F
(q)
1 ∆̄1 · · ·F (q)

li−1∆̄li−1F
(q)
li

, where F
(i)
j are diagonal m ×m matrices with positive

entries and ∆̄j are symmetric and positive definite m×m matrices, by assumption (equal

either to I or to ∆), j = 1, . . . , li. These blocks are never zero matrices, having in mind

Lemma 2.2.3. Moreover, none of their rows can be equal to the zero row vector, having in

mind that F
(i)
j ∆j has the same positions of positive entries, negative entries and zero en-

tries as ∆j , and that, therefore, their diagonal elements always remain positive. Therefore,

matrix (RB
i D

(B)
i )li contains at least one block-column from (R(B)

i D
(B)
i )li−1R

(B)
i (which en-

tirely consists of nonzero blocks having no zero rows), in which each element is multiplied

by ∆, which satisfies ‖∆‖∞ < 1, according to the assumption. Having in mind that R
(B)
i
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is row stochastic by assumption, this fact immediately implies that ‖(R(B)
i D

(B)
i )li‖∞ < 1.

Now, it is possible to extend directly the reasoning of the proof of Lemma 2.2.3, and to

conclude further that ‖(R̄(B)
D )l‖∞ < 1; the rest of the proof represents a direct extension of

the proof of Lemma 2.2.3.

Lemma 2.2.5 establishes the existence of a solution of the Lyapunov-like matrix equation

used for describing asymptotic covariance of the estimates in Theorem 2.2.1.

Lemma 2.2.5 Let for some positive integers µ and ν

W =
ν∑

i=1

αiAiWAT
i + γ

µ∑

j=1

βjBjWBT
j + Q, (2.53)

where W is a square matrix, αi ≥ 0 and
∑ν

i=1 αi = 1. Assume that ‖Ai‖∞ ≤ 1, i = 1, . . . , ν,

and that there exists such a positive integer l that mini ‖Al
i‖∞ < 1. Then for any constants

βj , matrices Bj , j = 1, . . . , µ and a square matrix Q there exists such a γ̄ > 0 that for

0 ≤ γ < γ̄ the matrix equation (2.53) has a unique solution.

Proof: We will apply the methodology of successive approximations, see e.g. [61]. Let

W0 = 0; then, we define Wn+1 by

Wn+1 −
ν∑

i=1

αiAiWn+1A
T
i = γ

µ∑

j=1

βjBjWnBT
j + Q. (2.54)

We also have

∆Wn+1 −
ν∑

i=1

αiAi∆Wn+1A
T
i = γ

µ∑

j=1

βjBj∆WnBT
j , (2.55)

where ∆Wn = Wn − Wn−1. The assumptions of the Lemma imply that ‖[∑ν
i=1 αi(Ai ⊗

Ai)]l‖∞ < 1 for some positive integer l, and that, therefore, ρ(
∑ν

i=1 αi(Ai ⊗Ai)) < 1 (ρ(.)

denotes the spectral radius of an indicated matrix). Having in mind that
∑ν

i=1 αiAi∆Wn+1A
T
i

=
∑ν

i=1 αi (Ai ⊗Ai) vec(∆Wn+1), we conclude that, consequently, the equation (2.55) has

a unique solution for ∆Wn+1 satisfying

‖∆Wn+1‖∞ ≤ ζγΣµ
j=1|βj |‖Bj‖2

∞‖∆Wn‖∞ (2.56)

for some finite ζ > 0 ([10, 61]). Choosing γ < γ̄ = ζ−1(
∑µ

j=1 |βj |‖Bj‖2∞)−1, we have
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‖∆Wn+1‖∞ ≤ a‖∆Wn‖∞ with a < 1, so that Wn converges to some limit W∞, which

represents the solution to (2.53). Hence the result.

The following theorem deals with the asymptotic behavior of (2.45) in the case of non-

vanishing gains Γ(t).

Theorem 2.2.1 Let assumptions (A.2.2.1) - (A.2.2.5) be satisfied and let Γ∞ > 0. Then

it is possible to find a scalar γ̄ > 0 such that for Γ∞ ≤ γ̄ImN

U(t) ≤ U∞ + V (t) (2.57)

where U(t) = E{(θ̃(t)− θ̄)(θ̃(t)− θ̄)T } (by E{.} we denote the mathematical expectation)

θ̄ =
[
θT · · · θT

]T , limt→∞ V (t) = 0 and U∞ is the solution of the following matrix equation

U∞ =
∑Ñ

i=1[C̃
(i)(I − Γ̃(i)

∞ B̃)U∞(I − Γ̃(i)
∞ B̃)C̃(i)T +

C̃(i)Γ̃(i)
∞ B̄U∞B̄T Γ̃(i)

∞ C̃(i)T − C̃(i)Γ̃(i)
∞ B̃U∞B̃ Γ̃(i)

∞ C̃(i)T + C̃Γ̃(i)
∞ Q̄Γ̃(i)

∞ C̃(i)T ]πi, (2.58)

where Γ̃(i)
∞ are constant matrices obtained from the generally time varying matrices Γ̃(i)(t) by

inserting Γ(t) = Γ∞ = diag{γ∞,1, . . . , γ∞,N}, i.e. Γ̃(i)
∞ = Γ̃(i)(t)|Γ(t)=Γ∞ ,Q = diag{q1, . . . , qN},

B̃ = diag{B, . . . , B} and Q̄ = E{Φ(t)QΦ(t)T } = Q⊗B.

Proof: From (2.45) we have immediately

∆θ̃(t + 1) = C̃(t)[ImN − Γ̃(t)Φ(t)Φ(t)T ]∆θ̃(t) + C̃(t)Γ̃(t)Φ(t)Ξ(t) (2.59)

where ∆θ̃(t) = θ̃(t) − θ̄ and Ξ(t) =
[
ξ1(t) · · · ξN (t)

]T
, having in mind that Im − C̃ii(t) =

∑N
j=1,j 6=i C̃ij(t) (since C̃(t) is row-stochastic, by definition), and that, therefore, C̃(t)θ̃(t)−

θ̄ = C̃(t)∆θ̃(t). After multiplying (2.59) with ∆θ̃(t+1)T from the right and taking the con-

ditional expectation given the communication and measurement links at time t determined

by the realization Xt, we obtain

U(t + 1|Xt) ≤ C̃(t)U(t)C̃(t)T − C̃(t)Γ̃(t)B̃U(t)C̃(t)T−

−C̃(t)U(t)B̃Γ̃(t)C̃(t)T + C̃(t)Γ̃(t)B̄U(t)B̄T Γ̃(t)C̃(t)T + C̃(t)Γ̃(t)Q̄Γ̃(t)C̃(t)T , (2.60)
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where U(t + 1|Xt) = E{∆θ̃(t + 1)∆θ̃(t + 1)T |Xt}, having in mind that {Xt} is a sequence

of independent random vectors. After averaging (2.60) with respect to Xt and applying

assumption (A.2.2.1 b)), we obtain

U(t + 1) ≤ ∑Ñ
i=1[C̃

(i)U(t)C̃(i)T − C̃(i)Γ̃(i)(t)B̃U(t)C̃(i)T − C̃(i)U(t)B̃Γ̃(i)(t) C̃(i)T +

+C̃(i) Γ̃(i)(t)B̄U(t)B̄T Γ̃(i)(t)C̃(i)T + C̃(i)Γ̃(i)(t)Q̄Γ̃(i)(t)C̃(i)T ]πi. (2.61)

Define the bounding sequence Ū(t) satisfying U(t) ≤ Ū(t) for all Ū(0) = U(0) by

Ū(t + 1) =
∑Ñ

i=1[C̃
(i)Ū(t)C̃(i)T − C̃(i)Γ̃(i)(t)B̃Ū(t)C̃(i)T − C̃(i)Ū(t)B̃Γ̃(i)(t) C̃(i)T +

+C̃(i) Γ̃(i)(t)B̄Ū(t)B̄T Γ̃(i)(t)C̃(i)T + C̃(i)Γ̃(i)(t)Q̄Γ̃(i)(t)C̃(i)T ]πi. (2.62)

Following methodologically [62], we will now replace Γ(t) with Γ∞ + ∆Γ(t), where

‖∆Γ(t)‖ = o(1) (o(1) denotes a sequence tending to zero when t → ∞), and Ū(t) with

U∞ + V (t), where U∞ is a constant matrix.

We will focus the analysis first on the terms depending on U∞ and Γ∞. The following

set of conclusions is important for further derivations:

(1.a) according to assumption (A.2.2.1 a)), for sufficiently small values of a positive

scalar γ, matrix I − γB is positive definite, strictly diagonally dominant and satisfies the

condition ‖I − γB‖∞ < 1, having in mind that mini[1 + γ(|bi1|+ · · · − bii + · · ·+ |bin|)] < 1,

according to (2.47).

(1.b) matrix C̃∗, the “full” realization of the consensus matrix, is structurally equivalent

to the matrix R(B) in Lemma 2.2.4, in the same way as K∗ is structurally equivalent to

P (except for some loops corresponding to the nodes which do not have access to mea-

surements), in such a way that the blocks C∗
ij in C̃∗ correspond to the blocks rijMij in

RB;

(1.c) both matrices C̃∗ and R(B) are row-stochastic by assumption;

(1.d) matrix C̃∗(I−Γ̃∗∞B̃), where Γ̃∗∞ is defined as Γ̃∗(t)|Γ(t)=Γ∞ , represents a realization

C̃(i1)(I − Γ̃(i1)
∞ B̃) for some i1 ∈ {1, . . . , Ñ}, having a positive probability πi1 ;

(1.e) C̃∗(I− Γ̃∗∞B̃) is structurally equivalent to the matrix R
(B)
D in Lemma 2.2.4 for γi∞
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small enough, i = 1, . . . , N (matrix I − γi∞B corresponds to ∆ in Lemma 2.2.4), having

in mind the assumed diagonal dominance of B, so that matrix I − Γ̃∗∞B̃ has the properties

of D(B) in Lemma 2.2.4 (notice that the algorithm gains γ̃i(t) have nonzero values for the

indices i which correspond to the indices of all the nonzero probabilities pii);

(1.f) according to Lemma 2.2.4, ‖(C̃∗(I − Γ̃∗∞B̃))l‖ < 1 for some integer l ≥ 1, having

in mind (A.2.2.1 a)) and (A.2.2.5);

(1.g) according to Lemma 2.2.5 and under the assumptions of the theorem, the matrix

equation (2.58) has a unique solution for sufficiently small values of γi∞, i = 1, . . . , N .

Conclusion (1.g) allows using (2.58) to eliminate all the terms containing U∞ and Γ∞

from (2.61), so that we obtain

V (t + 1) =
Ñ∑

i=1

[C̃(i)V (t)C̃(i)T − C̃(i)B̃Γ̃(i)
∞V (t)C̃(i)T −

−C̃(i)V (t)Γ̃(i)
∞ B̃C̃(i)T + C̃(i)Γ̃(i)

∞ B̄V (t)B̄T Γ̃(i)
∞ C̃(i)T ]πi + F (t), (2.63)

where F (t) contains the terms depending on ∆Γ(t), such that their norms are in the form

of o(1)‖U∞‖, o(1)‖V (t)‖, etc.

Having in mind continuous dependence of the eigenvalues of a matrix upon its el-

ements, for any given Γ̃(i)
∞ satisfying (A.2.2.4) and (2.63) it is possible to find such a

Γ̄(i)
∞ = Γ̃(i)(t)|

Γ(t)=γ̄
(i)
∞ I

, where γ̄
(i)
∞ > 0 is small enough, that

C̃(i)V (t)C̃(i)T − C̃(i)Γ̃(i)
∞ B̃V (t)C̃(i)T − C̃(i)V (t)B̃Γ̃(i)

∞ C̃(i)T +

+C̃(i)Γ̃(i)
∞ B̄V (t)B̄T Γ̃(i)

∞ C̃(i)T ≤ C̃(i)(I − Γ̄(i)
∞ B̃)V (t)(I − Γ̄(i)

∞ B̃)C̃(i)T . (2.64)

Therefore, we define, similarly as above, a bounding matrix sequence V̄ (t) satisfying V (t) ≤
V̄ (t), generated by

V̄ (t + 1) =
Ñ∑

i=1

[C̃(i)(I − Γ̄(i)
∞ B̃)V̄ (t)(I − Γ̄(i)

∞ B̃)C̃(i)T ]πi + F (t), (2.65)
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for some V̄ (0) = V (0). Iterating now (2.65) l steps backwards, we obtain

V̄ (t + 1) =
Ñ∑

i1=1

· · ·
Ñ∑

il=1

Π[l]
i1,··· ,il V̄ (t− l + 1)(Π[l]

i1,··· ,il)
T πi1 · · ·πil + Fl(t) (2.66)

where Π[l]
i1,··· ,il = C̃(i1)(I − Γ̄(i1)

∞ B̃) · · · C̃(il)(I − Γ̄(il)∞ B̃), i1, . . . , il = 1, . . . , Ñ , while the term

Fl(t) depends on F (t) and Π[m]
i1,··· ,im for m < l. Define Π[l]∗ = (C̃∗(I − Γ̄∗∞B̃))l, according to

the above definitions and (1.d). We infer now, using Lemmas 2.2.3 and 2.2.4, together with

the conclusion (1.g), that ‖Π[l0]∗‖∞ < 1 for some l0 ≥ 1. Therefore, starting from (1.d) we

have immediately from (2.66) that for l > l0

‖V̄ (t + 1)‖∞ ≤ (1− λ1)‖V̄ (t− l + 1)‖∞ + o(1), (2.67)

where 0 < λ1 < 1 (notice that the important condition λ1 > 0 is ensured by the properties

of the ”full” realization defined by the structure of measuring nodes and communications

links having positive probabilities). According to e.g. [61] (Lemmas 1 and 4), we derive

directly that limt→∞ V̄ (t) = 0, implying that limt→∞ V (t) = 0. Thus the result.

Now we will analyze convergence of the parameter estimates in the mean-square sense

in the case when Γ(t) asymptotically tends to zero.

(A.2.2.6) limt→∞ γi(t) = 0,
∑∞

t=1 γi(t) = ∞, i = 1, . . . , N , maxi γ
2
i (t) = o(mini γi(t)).

Theorem 2.2.2 Let assumptions (A.2.2.1)-(A.2.2.6) be satisfied. Then limt→∞ U(t) =

0, i.e., θ̃(t) converges to θ̄ in the mean square sense.

Proof: We immediately get (2.62) from (2.59) in the same way as in the case of Theorem

2.2.1. We rewrite (2.62) using (2.64) and directly construct a bounding matrix sequence

Ū(t) satisfying U(t) ≤ Ū(t) defined by

Ū(t + 1) =
Ñ∑

i=1

[C̃(i)(I − Γ̃(i)(t)B̃)Ū(t)(I − Γ̃(i)(t)B̃)C̃(i)T + G(t)]πi, (2.68)

where G(t) =
∑Ñ

i=1 C̃(i)Γ̃(i)(t)Q̄Γ̃(i)(t)C̃(i)T .

Convergence properties of (2.68) depend primarily, as in the case of (2.65), on the

properties of the matrix C̃∗(I − Γ̃∗(t)B̃). As matrix K∗ remains the same as in Theorem
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2.2.1, for sufficiently high values of t we can extend the basic conclusions (1.a) - (1.h) to

the time varying case. Technically, we iterate (2.68) l times backwards and analyze the

resulting time varying terms analogous to those in (2.66). Reasoning as in Theorem 2.2.1,

we can derive, using (A.2.2.1a), (A.2.2.5) and (A.2.2.6), the following basic conclusions:

(2.a) having in mind the general property that Al Â 0 ⇐⇒ ∏l
i=1 Ai Â 0 if the places

of positive elements are the same for nonnegative primitive matrices A,A1, . . . , Al (see

also the proofs of Lemmas 2.2.3 and 2.2.4), we conclude, similarly as in Lemma 2.2.4 and

Theorem 2.2.1, that for each t ≥ t0 there exists such an integer l ≥ 1 that the matrix

Π∗(t, t− l +1) = C̃∗[I− Γ̃∗(t)B̃]C̃∗[I− Γ̃∗(t−1)B̃] · · · C̃∗[I− Γ̃∗(t− l +1)B̃)] is composed of

N ×N nonzero m×m blocks (notice that Π∗(t, t− l + 1) is analogous to Π[l]∗ in Theorem

2.2.1);

(2.b) matrix Π∗(t, t − l + 1) can be expressed as Π∗(t, t − l + 1) = C̃∗l − Γ̃∗(t)B̃C̃∗l −
C̃∗Γ̃∗(t− 1)B̃C̃∗(l−1) − . . .− C̃∗lΓ̃∗(t− l + 1)B̃ + higher order terms in Γ̃; therefore, we

have for t > t1 and some l > l1 ≥ 1

‖Π∗(t, t− l + 1)‖∞ ≤ 1− λ2 min
i

γi(t− l + 1), (2.69)

where λ2 > 0, as a consequence of the diagonal dominance of B, and of the fact C̃∗ is

row stochastic, according to the assumptions (A.2.2.1 a)) and (A.2.2.6) and the results of

Lemmas 2.2.2 and 2.2.4 (notice that it is possible to find such a sufficiently small λ
′
2 > 0

that for t large enough all the higher order terms in γi(t) can be maximized by λ
′
2γi(t) in

(2.69)).

Consequently, we readily obtain from (2.68) that asymptotically

‖Ū(t + 1)‖∞ ≤ [1− λ2 min
i

γi(t− l + 1)]‖Ū(t− l + 1)‖∞ + µ2 max
i

γi(t− l + 1)2 (2.70)

for some l ≥ 1 and 0 < µ2 < ∞, according to (A.2.2.2), (A.2.2.3) and (A.2.2.6). We

can now use the classical results from the field of stochastic approximation (see e.g. [61],

Lemma 1 and Corollary 2, or [83], Final Value Theorem) and conclude directly that

limt→∞ ‖Ū(t)‖∞ = 0, implying limt→∞ U(t) = 0. Hence the result.
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Theorem 2.2.2 gives rise directly to an estimate of the convergence rate of the algorithm

for a specific form of the weighting sequence Γ̃(t).

Corollary 2.2.1 Let the assumptions of Theorem 2.2.2 be satisfied, and let γi(t) = γi/t,

γi > 1/λ2, λ2 > 0, i = 1, . . . , N . Then, we have from (2.70) that

‖U(t)‖∞ ≤ l

t

µ2 maxi γi

λ2 mini γi − 1
+ o(

1
t
) (2.71)

Proof: The proof follows directly from (2.70) after applying Chung’s lemma (see e.g.

[66], Theorem 2, [21], Lemma 1).

An estimate of the convergence rate in the matrix form, analogous to the one from

Theorem 2.2.1, can be derived under a set of additional assumptions.

Theorem 2.2.3 Let assumptions (A.2.2.1) - (A.2.2.3) and (A.2.2.5) be satisfied. Let

C̃(t) = C̃ be deterministic and time invariant, Γ̃(t) = Γ(t) = 1
t Γ, where Γ > 0 is a constant

diagonal matrix, and matrix ΓB̃ − 1
2I be positive definite and diagonally dominant. Then,

asymptotically

U(t) ≤ 1
t
[V∞ + V (t)], (2.72)

provided a positive semidefinite solution for V∞ exists simultaneously for (I − C̃)V
1
2∞ = 0

and

C̃V∞C̃T − C̃ΓB̃V∞C̃T − C̃V∞B̃ΓC̃T + C̃ΓQ̄ΓC̃T = 0, (2.73)

and ‖V (t)‖ = o(1).

Proof: The proof follows methodologically [62], taking into account specific properties

of the proposed algorithm. We start again from (2.61) and obtain

U(t + 1) ≤ C̃U(t)C̃T − 1
t C̃ΓB̃U(t)C̃T − 1

t C̃U(t)B̃Γ C̃T +

+ 1
t2

C̃ ΓB̄U(t)B̄T ΓC̃T + 1
t2

C̃ΓQ̄ΓC̃T , (2.74)

taking into account the assumptions of the theorem. After replacing U(t) by 1
t [V∞ + V (t)],

similarly as in Theorem 2.2.1, we first analyze the terms depending on V∞ in the resulting

inequality. The first important conclusion is that V∞ = C̃V∞C̃T under the assumptions of
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the theorem, so that the corresponding terms can be eliminated from both sides of (2.74). In

the next step, we apply (2.73) to the terms containing 1
t , provided a solution to both (2.73)

and (I − C̃)V
1
2∞ = 0 exists. The problem is not trivial, in general. However, if we assume

that V∞ = XWXT , matrix X can be directly obtained from (I − C̃)X = 0; this matrix is,

obviously, singular. Replacing V∞ = XWXT in (2.73), we obtain a singular equation for

W , which has either an infinite number of solutions or no solutions. In general, supposing

that a solution for W exists, we obtain further, after eliminating the terms depending on

V∞ like in Theorem 2.2.1, that V (t) ≤ V̄ (t), where V̄ (t) satisfies

V̄ (t + 1) = C̃[I − 1
t
(ΓB̃ − 1

2
I)]V̄ (t)[I − 1

t
(ΓB̃ − 1

2
I)]T C̃T + G(t), (2.75)

with ‖G(t)‖∞ = o(1
t ) + o(1

t )‖V̄ (t)‖∞. Following the methodology of Theorem 2.2.2, we

obtain for t large enough that

‖V̄ (t + 1)‖∞ ≤ (1− λ3

t− l + 1
)‖V̄ (t− l + 1)‖∞ + o(

1
t− l + 1

), (2.76)

where λ3 > 0, having in mind the assumed properties of the matrix ΓB̃− 1
2I (these properties

are required from the matrix B̃ itself in (A.2.2.1 a)). Consequently, limt→∞ ‖V̄ (t)‖∞ = 0,

according to e.g. [61, 62]. Thus the result.

Remark 2.2.6 Obviously, the above methodology of convergence analysis can be applied

to the similar algorithms mentioned in Remark 2.2.1 [107, 105, 44, 113]. We will only

remark here that matrix C̃∗(I − Γ̃∗(t)B̃), playing the main role in the above analysis,

becomes C̃∗− Γ̃∗(t)B̃ in the case of the algorithm based on “convexification” of the previous

estimates (see [105, 107, 44, 113]), and becomes I − C̃∗Γ̃∗(t)B̃ in the case of the algorithm

based on “convexification” of the increments, presented in [44], paragraph 7.6. It is evident

that in both cases a delineation between the influence of the terms resulting from the

local stochastic approximation schemes and from the network properties alone cannot be so

clearly achieved as in the case of the proposed algorithm. Moreover, it seems, according to

simulations, that the proposed algorithm possesses superior asymptotic properties. Without

drawing any resolute conclusion here, we will demonstrate a typical performance of all three
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algorithms through a simple example. Let C̃ =
[

0.5 0.5
c 1− c

]
, Γ̃ =

[
0.1 0
0 g

]
, B = 1 and

Q =
[

1 0
0 1

]
, where c and g are scalars. In this simple case, it is possible to calculate

exactly the asymptotic covariance of the estimates according to P = APAT + Q′, where

A = C̃(I − Γ̃) and Q′ = C̃QC̃T in the case of the proposed algorithm (AL1), A = C̃ − Γ̃

and Q′ = Q in the case of the algorithm in (2.46) (AL2), and A = I − C̃Γ̃ and Q′ = C̃QC̃T

in the case of the third mentioned algorithm ([44]) (AL3). Table 2.3 gives the eigenvalues

λ1 and λ2 of A and J = TrP for all three algorithms and several values of the parameters

c and g. It is evident that the proposed algorithm AL1 gives the best performance; AL3 is

c=0.25,g=0.1 c=0.25,g=0.3 c=0.75,g=0.1 c=0.75, g=0.3
λ1, λ2 J λ1, λ2 J λ1, λ2 J λ1, λ2 J

AL1 0.9000 5.8514 0.2044 2.7343 0.9000 5.5588 0.8176 3.2371
0.2250 0.7706 -0.2250 -0.1926

AL2 0.9000 6.7277 0.0706 3.7316 0.9000 6.5980 0.8274 4.5570
0.1500 0.7794 -0.3500 -0.4774

AL3 0.9750 6.8009 0.9693 3.8721 0.9000 - 1.0443 -
0.9000 0.7557 1.0250 0.8397

Table 2.3: Performance of different algorithms

in two cases even unstable.

2.2.3 Discussion

2.2.3.1 Network Topology

Formulation of the problem introduces random communication links and random access to

measurements; also, assumption (A.2.2.5) does not require from all the agents to receive

measurements with positive probabilities. The results of Lemmas 2.2.1 and 2.2.2 formalize

the whole setting in terms of the properties of the network graph related to the ”full”

realization. Lemma 2.2.1 shows that the graph ḠP is composed of a certain number of

closed strong components. Consequently, ρ(Pi) = 1 is a simple eigenvalue of Pi, i = 1, . . . , k

in (2.48), and we immediately realize connections with the first order discrete time consensus

scheme discussed in e.g. [23, 39, 49, 51, 57, 73]. However, this result is insufficient for direct

conclusions about the convergence of the proposed algorithm, having in mind the dynamics
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of the local parameter estimation algorithms themselves. Lemmas 2.2.3 and 2.2.4 provide

necessary prerequisites for the convergence analysis. Lemma 2.2.4 contains an important

generalization encompassing ”consensus matrices” with positive definite blocks. The proofs

of the Lemmas 2.2.1-4 are derived mainly using the results presented in [48].

A comparison of the above results with those related to the overlapping decentralized

state estimation algorithm presented in Section 2.1 shows that the stability results derived

there in the sense of keeping the mean-square estimation error bounded do not explicitly

rely on so strict assumptions concerning the network structure. This is a consequence of

the fact that all the local estimators in the state estimation problem are assumed to receive

measurements with positive probabilities, relaxing the corresponding requirements.

2.2.3.2 Additive Communication Noise

Assume that the uncertainty of inter-agent communications in the network is modelled as

additive zero-mean white communication noise, in such a way that the i-th agent receives

θ̃j(t) + ηij(t) instead of θ̃j(t) from the j-th agent, i, j = 1, . . . , N, i 6= j, where ηij(t) is the

noise term. Assuming that the rest of the whole setting is the same as above, we obtain from

(2.44) an additional additive term at the right hand side of (2.45) in the form C̃η(t)η(t),

where C̃η(t) = diag{
[
C̃12(t) . . . C̃1N (t)

]
, · · · ,

[
C̃N1(t) . . . C̃N,N−1(t)

]
} and

η(t) =
[
η12(t)T · · · η1N (t)T . . . ηN1(t)T . . . ηN,N−1(t)T

]T
. In general, it is not possible in

this case to achieve convergence of the parameter estimates generated by the proposed

algorithm only by adopting a gain sequence Γ(t) tending to zero, like in Theorem 2.2.2.

An idea of how to overcome this problem is based on adopting vanishing communication

gains, according to the main ideas of stochastic approximation procedures. Notice first that

in the case when all the agents have permanent access to the measurements, the mean-

square convergence can be achieved by the local algorithms themselves after disconnecting

the network. In general, when the consensus scheme is introduced, convergence of the
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parameter estimates can be achieved in the general case by adopting C̃(t) = I + L̃(t), where

L̃(t) =




−
∑

j,j 6=1

C̃1j(t) C̃12(t) · · · C̃1N (t)

C̃21(t) −
∑

j,j 6=2

C̃2j(t) · · ·

· · ·
C̃N1(t) C̃N2(t) · · · −

∑

j,j 6=N

C̃Nj(t)




,

with ‖L̃(t)‖∞ ≤ δ(t), where {δ(t)} is a positive number sequence satisfying limt→∞ δ(t) = 0

and δ(t)2 = o(mini γi(t)). After some technicalities similar to those presented in Theorem

2.2.2, we obtain the following basic inequality analogous to (2.70):

‖Ū(t+1)‖∞ ≤ [1−λ4 min
i

γi(t− l+1)]‖Ū(t− l+1)‖∞+µ2 max
i

γi(t− l+1)2 +µ3δ(t− l+1)2,

(2.77)

where 0 < λ4, µ3 < ∞, wherefrom the conclusion limt→∞ ‖U(t)‖∞ = 0 follows in the same

way as in Theorem 2.2.2.

Additive communication noise is certainly not the most adequate model for uncertainty

in modern communications, so that this case has dominantly a theoretical significance.

However, the idea to apply stochastic approximation type algorithms for consensus seeking

in a noisy environment has appeared recently in [31, 32]. Our case is, however, different,

having in mind that the consensus scheme obeying the above time varying law represents

only a part of the proposed decentralized estimation scheme, and that we are not looking

for the conditions ensuring asymptotic consensus, but for the conditions ensuring the mean-

square convergence of the parameter estimates.

2.2.3.3 Denoising

According to Remark 2.2.2, the proposed scheme, containing a specific ensemble averaging,

can directly contribute to the overall suppression of measurement noise influence, having

in mind that the local outputs are corrupted by different noise realizations. However, the

efficiency of noise suppression depends on the network complexity. Following similar line of
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thought as in the state estimation algorithms, it can be shown that the condition

N∑

i=1

|λ(N)
i |2 = o(N), (2.78)

where λ
(N)
i , i = 1, . . . , N , are N distinct eigenvalues of the consensus matrix C̃(N) (N

denotes the number of nodes) is sufficient for achieving asymptotic denoising in the sense

of reducing the asymptotic mean square error bound to zero (for the case of non-vanishing

gains). As in the state estimation case, it is possible to show that the condition (2.78) holds

in the case of undirected graphs when the number of connections per node tends to infinity

when N tends to infinity, but at a rate which can be much slower than the linear function.

In the case of the gains tending to zero, when t tends to infinity, the denoising effect

contributes to the rate of convergence of the algorithm.
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Chapter 3

Multi-Agent Consensus Based

Control Structures

In this chapter we will address the problem of structured, multi-agent control of complex

networked systems [86]. Two consensus based algorithms will be proposed; one is based on

the consensus at the control input level, and the second algorithm is based on the consensus

at the state estimation level (described in Chapter 2).

3.1 Problem Formulation

Let a complex system be represented by a linear model

S : ẋ = Ax + Bu

y = Cx, (3.1)

where x ∈ Rn, u ∈ Rm and y ∈ Rν are the state, input and output vectors, respectively,

while A, B and C are constant matrices of appropriate dimensions.

Assume that N agents have to control the system S according to their own resources.
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The agents have their local models of parts of S

Si : ζ̇(i) = A(i)ζ(i) + B(i)v(i)

y(i) = C(i)ζ(i) (3.2)

where ζ(i) ∈ Rni , v(i) ∈ Rmi and y(i) ∈ Rνi are the corresponding state, input and output

vectors, and A(i), B(i) and C(i) constant matrices, i = 1, . . . , N . Components of the input

vectors v(i) = (v(i)
1 , . . . , v

(i)
mi)T represent subsets of the global input vector u of S, so that

v
(i)
j = upi

j
, j = 1, . . . ,mi, and pi

j ∈ V i, where V i = {pi
1, . . . , p

i
mi
} is the input index set

defining v(i). Similarly, for the outputs y(i) we have y
(i)
j = yqi

j
, j = 1, . . . , νi, and qi

j ∈ Y i,

where Y i = {qi
1, . . . , q

i
pi
} is the output index set; according to these sets, it is possible to

find such constant pi × n matrices Ci that y(i) = Cix, i = 1, . . . , N . The state vectors

ζ(i) do not necessarily represent parts of the global state vector x. They can be chosen,

together with the matrices A(i), B(i) and C(i), according to the local criteria for modelling

the input-output relation v(i) → y(i). In the particular case when ζ(i) = x(i), x
(i)
j = xri

j
,

j = 1, . . . , ni, ni ≤ n and ri
j ∈ X i, where X i = {ri

1, . . . , r
i
ni
} is the state index set defining

x(i). In the last case, models Si, in general, represent overlapping subsystems of S in a more

strict sense; matrices A(i), B(i) and C(i) can represent in this case submatrices of A, B and

C.

The task of the i -th agent is to generate the control vector v(i) and to implement

the control action u(i) ∈ Rµi , satisfying u
(i)
j = usi

j
, j = 1, . . . , µi, and si

j ∈ U i, where

U i = {si
1, . . . , s

i
µi
} is the control index set defining u(i). It is assumed that U i ⊆ V i and

U i ∩U j = ∅, so that
∑N

i=1 µi = m, that is, the control vector u(i) of the i -th agent is a part

of its input vector v(i), while one and only one agent is responsible for generation of each

component of u within the considered control task. Consequently, all agents include the

entire vectors v(i) of Si in their control design considerations, but they have to implement

only those components of v(i) for which they are responsible.

In the case when the inputs v(i) do not overlap, the agents perform their task au-

tonomously, without interactions with each other; that is we have the case of decentralized

control of S, when the control design is based entirely on the local models Si. However,
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in the case when the model inputs v(i) overlap, more than one model Si can be used for

calculation of a particular component of the input vector u. Obviously, it would be ben-

eficial for the agent responsible for implementation of that particular input component to

use different suggestions about the control action and to calculate the numerical values of

the control signal to be implemented on the basis of an agreement between the agents. The

agents that do not implement any control action (U i = ∅) could, in this context, represent

“advisors” to the agents responsible for control implementation. Our aim is to propose

several overlapping decentralized feedback control structures for S based on a consensus

between multiple agents.

We will classify different control structures which can be used for solving the above

problem in two main groups: (1) the structures based on the consensus at the control input

level; (2) the structures based on the consensus at the state estimation level.

3.2 Structures Based on Consensus at the Control Input

Level

3.2.1 Algorithms Derived from the Local Dynamic Output Feedback Con-

trol Laws

We assume that all the agents are able to design their own local dynamic controllers which

generate the input vectors v(i) in Si according to

Ci : ẇ(i) = F (i)w(i) + G(i)y(i)

v(i) = K(i)w(i) + H(i)y(i) (3.3)

where w(i) ∈ Rρi represents the controller state, and matrices F (i), G(i), K(i) and H(i) are

constant, with appropriate dimensions. Local controllers are designed according to the local

models and local design criteria, i = 1, . . . , N . Assuming that the agents can communicate

between each other, the goal is to generate the control signal u for S based on mutual

agreement, starting from the inputs v(i) generated by Ci. The idea about reaching an

agreement upon the components of u stems from the fact that the index sets V(i) are, in
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general, overlapping, so that the agents responsible for control implementation according to

the index sets U (i) can improve their local control laws by getting “suggestions” from the

other agents.

Algorithm 1 The second relation in (3.3) gives rise to v̇(i) = K(i)ẇ(i) +H(i)ẏ(i), where-

from we get

v̇(i) = K(i)[F (i)w(i) + G(i)y(i)] + H(i)C(i)[A(i)ζ(i) + B(i)v(i)]

= K(i)F (i)w(i) + K(i)G(i)y(i) + H(i)C(i)A(i)ζ(i) + H(i)C(i)B(i)v(i). (3.4)

Since y(i) are the available signals, and v(i) vectors to be locally generated for participation

in the agreement process, we will use the following approximation

v̇(i) ≈ [K(i)F (i)K(i)+ + H(i)C(i)B(i)]v(i)

+ [K(i)G(i) + H(i)C(i)A(i)C(i)+ −K(i)F (i)K(i)+H(i)]y(i), (3.5)

where F
(i)
∗ = K(i)F (i)K(i)+ and A

(i)
∗ = C(i)A(i)C(i)+ are approximate solutions of the

aggregation relations K(i)F (i) = F
(i)
∗ K(i) and C(i)A(i) = A

(i)
∗ C(i), respectively, where A+

denotes the pseudoinverse of a given matrix A [80, 38].

We will assume, for the sake of presentation clarity, that all the agents can have their

“suggestions” for all the components of u; that is, we assume that the vector Ui ∈ Rm is

a “local version” of u proposed by the i -th agent to the other agents. Furthermore, we

introduce m× ρi and m× νi constant matrices Ki and Hi, obtained by taking the rows of

K(i) and H(i) at the row indices defined by the index set V(i) and leaving zeros elsewhere,

and ni ×m matrix Bi obtained from B(i) by taking its columns at the indices defined by

V i. Let U = col{U1, . . . , UN}, Y = col{y(1), . . . , y(N)}, K̃ = diag{K1, . . . , KN} and H̃ =

diag{H1, . . . ,HN}. Similarly, let Ã = diag{A(1), . . . , A(N)}, B̃ = diag{B1, . . . , BN}, C̃ =

diag{C(1), . . . , C(N)}, F̃ = diag{F (1), . . . , F (N)}, and G̃ = diag{G̃(1), . . . , G̃(N)}. Assume

that the agents communicate between each other in such a way that they send current

values of Ui to each other. Accordingly, we define the consensus matrix as Γ̃ = [Γij ],

where Γij , i, j = 1, . . . , N , i 6= j, are m × m diagonal matrices with positive entries and
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Γii = −∑N
i=1,i6=j Γij , i = 1, . . . , N . Then, the algorithm for generating U , i.e. the vector

containing all the agent input vectors Ui, i = 1, . . . , N , representing the result of the overall

consensus process, is given by

U̇i =
∑N

j=1,j 6=i Γij(Uj − Ui) + [KiF
(i)K+

i + HiC
(i)B(i)]Ui+

+[KiG
(i) + HiC

(i)A(i)C(i)+ −KiF
(i)K+

i ]y(i), (3.6)

i = 1, . . . , N , or

U̇ = [Γ̃ + K̃F̃ K̃+ + H̃C̃B̃]U + [K̃G̃ + H̃C̃ÃC̃+ − K̃F̃ K̃+H̃]Y. (3.7)

The vector U generated by (3.7) is used for control implementation in such a way that the

i -th agent picks up the components of Ui selected by the index set U (i) and applies them to

the system S. If Q is an m ×mN matrix with zeros everywhere except one place in each

row, where it contains 1; for the j -th row with j ∈ U (i), 1 is placed at the column index

(i− 1)m + j. Then, we have u = QU , and system (3.1) can be written as

ẋ = Ax + BQU. (3.8)

Also, according to the adopted notation, y(i) = Cix, so that Y = C̄x, where C̄T =
[
CT

1 · · · CT
N

]
. Therefore, the whole closed-loop system is represented by

[
U̇
ẋ

]
=




Γ̃ + K̃F̃ K̃+ + H̃C̃B̃ (K̃G̃ + H̃C̃ÃC̃+−
−K̃F̃ K̃+H̃)C̄

BQ A




[
U
x

]
. (3.9)

Obviously, the system is stabilized by the controller (3.7) if the state matrix in (3.9) is

asymptotically stable.

Algorithm 2 One alternative for the above algorithm is the algorithm depending ex-

plicitly on the regulator state w(i). It has the disadvantage of being of higher order than

Algorithm 1; however, it does not utilize any approximation of w(i) with v(i). Recalling
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(3.4), we obtain equation

v̇(i) ≈ K(i)F (i)w(i) + H(i)C(i)B(i)v(i) + [K(i)G(i) + H(i)C(i)A(i)C(i)+]y(i),

since w(i) is generated by the first relation in (3.3). If W = col{w(1), . . . , w(N)}, then we

have, similarly as in the case of (3.7), that

U̇ = [Γ̃ + H̃C̃B̃]U + K̃F̃W + [K̃G̃ + H̃C̃ÃC̃+]Y. (3.10)

The whole closed-loop system can be represented as


 U̇

Ẇ
ẋ


 =




Γ̃ + H̃C̃B̃ K̃F̃ (K̃G̃ + H̃C̃ÃC̃+)C̄

0 F̃ G̃C̄
BQ 0 A




[
U
W
x

]
. (3.11)

Both control algorithms 1 and 2 have the structure which reduces to the local controllers

when Γ̃ = 0. In the case of Algorithm 1, the local controllers are derived from Ci after

aggregating (3.3) to one vector-matrix differential equation for v(i), while in the case of

Algorithm 2 the differential equation for v(i) contains explicitly the term w(i), generated by

the local observer in Ci. The form of these controllers is motivated by the idea to introduce

a first order dynamic consensus scheme. Namely, without the local controllers, relation

U̇ = Γ̃U provides asymptotically a weighted sum of the initial conditions Ui(t0), if the graphs

corresponding to the particular components of Ui have a center node (see e.g. [71, 98]).

Combination of the two terms provides a possibility to improve the overall performance

by exploiting potential advantages of each local controller. However, the introduction of

additional dynamics required by the consensus scheme may deteriorate the performance,

and makes the choice of the local controller parameters dependable upon the overall control

scheme.

Example 3.2.1 An insight into the possibilities of the proposed algorithms can be

obtained from a simple example in which the system S is represented by (3.1), with

A =

[
0.8 2 0
−2.5 −5 −0.3

0 10 −2

]
, B =

[
0
1
0

]
and C =

[
1 0 0
0 0 1

]
. Assume that we have two agents
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characterized by S1 with A(1) =
[

0.8 2
−2.5 −5

]
, B(1) =

[
0
1

]
and C(1) = [ 1 0 ], and S2 with

A(2) =
[
−5 −0.3
10 −2

]
, B(2) =

[
1
0

]
and C(2) = [ 0 1 ]. Obviously, there is only one con-

trol signal u. Assume that the second agent is responsible for control implementation, so

that u = u(2) = v(2), according to the adopted notation. Assume that both agents have

their own controllers C1 and C2, obtained by the LQG methodology, assuming a low mea-

surement noise level, so that F (1) =
[

1.6502 2.0000
−2.4717 −2.8223

]
, G(1) =

[
−0.8502
−0.26970

]
, K(1) =

[ 0.7414 0.82231 ] and H(1) = 0, and F (2) =
[
−2.2361 −24.3071
0.1000 1.1200

]
, G(2) =

[
24.2068
−3.1200

]
,

K(2) = [ 0.2361 0.0003 ] and H(2) = 0. The system S with the local controller C2 is un-

stable. Algorithm 1 has been applied according to (3.7), after introducing Q = [ 0 1 ]

and Γ12 = Γ21 = 100I2. Fig. 3.1 presents the impulse response for all three components

of the state vector x for S. Algorithm 2 has then been applied according to (3.11); the

corresponding responses are presented in Fig. 3.2.
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Figure 3.1: Impulse response for Algorithm 1

It is to be emphasized that the consensus scheme puts together two local controllers,

influencing in such a way both performance and robustness. Here, the role of the first

controller is only to help the second controller in defining the control signal. The importance

of the consensus effects can be seen from Fig. 3.3 in which the responses in the case when

Γ̃ = 0 is presented for the Algorithm 1. It is obvious that the response is worse than in Fig.
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Figure 3.2: Impulse response for Algorithm 2

3.1. In the case of Algorithm 2 the system without consensus is even unstable (Fig. 3.4).

The control algorithms can be made more flexible by introducing some adjustable pa-

rameters, so that, for example, the terms K̃F̃ K̃+ in (3.7) and K̃F̃ in (3.10) are multiplied

by a parameter α, and the term K̃G̃ in both algorithms by β; it has been found to be

beneficial to have α > 1 and β < 1.

The problem of stabilizability of S by the proposed algorithms is, in general, very difficult

having in mind the supposed diversity of local models and dynamic controllers. Any analytic

insight from this point of view into the system matrices in (3.9) and (3.11) seems to be very

complicated. It is, however, logical to expect that the introduction of the consensus scheme

can, in general, contribute to the stabilization of S. Selection of the elements of Γ̃ can,

obviously, be done in accordance with the expected performance of the local controllers

and the confidence in their suggestions (see, for example, an analogous reasoning related to

the estimation problem addressed in Chapter 2). In this sense, connectedness of the agents

network contributes, in general, to the overall control performance.
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Figure 3.3: Algorithm 1: local controllers without consensus

3.2.2 Algorithms Derived from Local Static Feedback Control Laws

Algorithm 3 Assume now that we have static local output controllers, obtained from Ci

in (3.3) by introducing F (i) = 0, G(i) = 0 and K(i) = 0, so that we have v(i) = H(i)y(i).

Both algorithms 1 and 2 give in this case

U̇ = Γ̃U + H̃C̃[B̃U + ÃC̃+Y ]. (3.12)

The closed-loop system is now given by

[
U̇
ẋ

]
=

[
Γ̃ + H̃C̃B̃ H̃C̃ÃC̃+C̄

BQ A

] [
U
x

]
. (3.13)

A special case of the above controller deserves particular attention. Assume in the

Algorithm 3 that C(i) = Ini and that that ζ(i) = x(i), y(i) = x(i) represents a part of the

vector x. In the special case when all the agents possess the knowledge about the entire

model of S, y(i) = x, and the agents can differ by their control laws and responsibilities for

control actions. Under these assumptions, algorithm 3 becomes

U̇ = Γ̃U + H̃[B̃U + Ãx̃], (3.14)
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Figure 3.4: Algorithm 2: local controllers without consensus

where x̃ = col{x(1), . . . , x(N)}, dim{x̃} = ni represents the expanded vector x, available

through measurements. Notice that it is always possible to find a full rank
∑N

i=1 ni × n

matrix V that x̃ = V x (for a general discussion about state expansion, see [80]). The

closed-loop system is now

[
U̇
ẋ

]
=

[
Γ̃ + H̃B̃ H̃ÃV

BQ A

] [
U
x

]
. (3.15)

Remark 3.2.1 The proposed multi-agent control schemes can be compared to those

overlapping decentralized control schemes for complex systems that are derived by using

the expansion/contraction paradigm and the inclusion principle (especially in the case of

Algorithm 3) e.g. [80, 38, 35, 36, 99, 101], having in mind that both approaches follow anal-

ogous lines of thought, starting from similar information structure constraints (the above

presented approach is, however, much more general). From this point of view, formulation

of the local controllers connected to the agents corresponds to the controller design in the

expanded space in the case of inclusion based systems, and the application of a dynamic con-

sensus strategy to the contraction to the original space for control action implementation,

see e.g. [80, 35, 36]. The proposed methodology offers, evidently, much more flexibility (lo-

cal model structure, agreement strategy), at the expense of additional closed loop dynamics
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introduced by the consensus scheme itself. Moreover, it is interesting to notice that numer-

ous numerical simulations show a pronounced advantage of the proposed scheme (smoother

and even faster responses). The reason could be found in the advantage of the consen-

sus strategy over the contraction transformation, which seems to be overly simplified and

unsatisfactory for putting together locally designed overlapping decentralized controllers.

In Section 3.4 an application of the mentioned expansion/contraction methodology to the

control of formations of UAVs will be presented and compared with the proposed consensus

based methodology.

3.3 Structures Based on Consensus at the State Estimation

Level

The previous section was devoted to general structures with consensus at the input level

in systems where multiple agents with overlapping resources and different competences

participate in defining the global control law. The algorithms start from the local models

and the local controllers, and the consensus scheme tends to make equal the overlapping

components of the local input vectors. It is possible to approach the problem in a different

way, where the consensus strategy is introduced at the level of state estimation. This

estimation scheme itself has been proposed in Section 2.1.

Algorithm 4 Assume that the local models are such that ζ(i) = x(i), so that the

dynamic systems Si are overlapping subsystems of S. Therefore, we have the same system

decomposition as in Section 2.1, continuous-time case. We will assume that all the agents

have the a priori knowledge about the optimal state feedback for S, expressed as u =

Kox. Using this knowledge and the estimation scheme (2.3), the agents can calculate the

corresponding inputs Ui = Koξi; implementation of the control signals is done according to

the index sets U i.

The decentralized overlapping estimation scheme with consensus, providing state esti-

mates of the whole state vector x to all the agents, together with the globally optimal control

law, represents a control algorithm, denoted as Algorithm 4, which provides a solution to

the posed multi-agent control problem of S.
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Defining K̃o = diag{Ko, . . . , Ko}, we have, according to the above given notation, that

u = QK̃oΞ, so that the whole closed-loop system becomes

[
Ξ̇
ẋ

]
=

[
Γ̃ + Ã∗ − L̃∗C̃∗ + B̃∗K̄ L̄

BQK̃o A

] [
Ξ
x

]
, (3.16)

where K̄ = col{QKo, . . . , QKo} and L̄ = col{L1C1, . . . , LNCN}. A simplified version of

the above algorithm, from the point of view of communications, is obtained by replacing

the actual input u by the local estimates of the input vector Ui = Koξi, having in mind the

local availability of ξi.

Example 3.3.1 In this example the performance of the above algorithm is demonstrated

on the same system as in the Example 3.2.1. The local estimators are performing the local

state estimation using the gains L1 = [−4 9]T and L2 = [2 − 7]T . The consensus gains in

the matrix Γ̃ are selected to be Γ12 = Γ21 = 1000I2. The global LQ optimal control matrix

Ko is implemented by both agents. Since only the second agent implements the input u,

we assume that the first one uses the estimate Ui = Koξi in the local state estimation

algorithm. The impulse response of the proposed control algorithm, which is shown in

Figure 3.5, is comparable to the the impulse response of the globally LQ optimal controller

shown in the same figure.
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Figure 3.5: Algorithm 4 and globally LQ optimal controller
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Stability analysis of Algorithm 4 represents in general a very complex task. It is possible

to apply the methodology of [82] under very simplifying assumptions, and to show that

the eigenvalues of (3.16) are composed of the eigenvalues of Ã∗ − L̃∗C̃∗, Ã∗ + B̃∗K̄ and

Ã∗ − L̃∗C̃∗ + B̃∗K̄ modified by a term depending on the eigenvalues of the Laplacian of

the network and the consensus gain matrices. However, the underlying assumptions include

the one that all the agents have the exact system model, as well as that the control inputs

are transmitted throughout the network; in the overlapping decentralized case, which is in

the focus of this work, these assumptions are violated, making the stability problem much

more complex, dependent on the accuracy of the local models and the related estimators.

3.4 Decentralized Overlapping Tracking Control of a Forma-

tion of UAVs

3.4.1 Introduction

In this section we present a novel design methodology for decentralized overlapping track-

ing control law of planar formations based on the expansion/contraction paradigm and

the inclusion principle [100]. In Subsection 3.4.2, a specific formation state-space model

is formulated on the basis of the assumed information structure, using the initial results

presented in [99, 101]; this approach enables treating formation as an interconnection of

subsystems formally attached to each vehicle. Section 3.4.3 deals with a general control de-

sign methodology for a formation to track given references of velocity and relative distances

of the vehicles with respect to their neighbors, which allows local application of diverse con-

troller design methodologies, like LQ or LMI design. As the resulting overall feedback and

feedforward matrix gains do not allow proper contraction to the original system space for

implementation, a special attention is paid to the contractibility issue. It is shown that suit-

ably modified feedback and feedforward gains can be constructed. Section 3.4.4 is devoted

to the stability issue. It is proved, starting from a digraph representation of the information

flow, that asymptotic convergence of all the states to the desired constant references can be

achieved provided the underlying digraph has a spanning tree. This result, derived directly
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on the basis of the proposed formation state model and the expansion/contraction method-

ology, is in accordance with the recent results related to the second order consensus scheme

[68, 70, 69]. In Section 3.4.5 a dynamic output scheme with local observers is presented in

the case when the velocities of the neighboring vehicles are not known [80, 99, 35]. Section

3.4.6 contains simulation results and comparison of the proposed control scheme based on

the inclusion principle with the consensus based control scheme proposed in Section 3.3.

3.4.2 Formation Model

Consider a set of N vehicles moving in a plane, in which the i-th vehicle is represented by

the linear double integrator model

żi = Avzi + Bvui =
[

02×2 I2

02×2 02×2

]
zi +

[
02×2

I2

]
ui, (3.17)

(i = 1, . . . , N), where zi ∈ R4 and ui ∈ R2 are the state and the control input vectors,

respectively (0m×n denotes the m× n zero matrix, and In the n× n identity matrix). The

state zi and the input ui are related to the physical state and input through standard

transformations, e.g. [101]. We will assume that the i-th vehicle is provided with the

information about the set of neighboring vehicles, indices of which define the set of sensing

indices Si = {si
1, . . . , s

i
mi
}; this information includes velocities and relative distances of

the neighboring vehicles with respect to the i-th vehicle, the velocity of the vehicle itself,

as well as the relative distance references and the velocity reference (which is supposed

to be the same for all the vehicles). Decomposing zi as zi =
[
z′Ti z′′Ti

]T
, where z′i =

[
z′i,1 z′i,2

]T
= [ zi,1 zi,2 ]T and z′′i =

[
z′′i,1 z′′i,2

]T
= [ zi,3 zi,4 ]T , we introduce the following

change of variables

x′i =
∑

j∈Si

αi
jz
′
j − z′i, x′′i = z′′i , (3.18)

where αi
j ≥ 0 and

∑
j∈Si

αi
j = 1; x′i =

[
x′i,1 x′i,2

]T
represents the distance between the i-th

vehicle and a ”centroid” of the set of vehicles selected by Si, with a priori selected weights
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αi
j (in the case of formation leaders when Si = ∅, x′i = −z′i). Therefore, one obtains

ẋ′i =
∑

j∈Si

αi
jz
′′
j − z′′i =

∑

j∈Si

αi
jx
′′
j − x′′i , ẋ′′i = ui, (3.19)

i = 1, . . . , N , using the fact that z′′i = ż′i, so that x′′i =
[
x′′i,1 x′′i,2

]T
= z′′i =

[
z′′i,1 z′′i,2

]T
=

ż′i =
[
ż′i,1 ż′i,2

]T
[101].

Defining the formation state and control input vectors x and u as concatenations of all

the vehicle state and control input vectors xi =
[
x′Ti x′′Ti

]T
and ui, i = 1, . . . , N , we obtain

the following formation state model

S : ẋ = Ax + Bu = [(G− I)⊗Av]x + [I ⊗Bv]u, (3.20)

where ⊗ denotes the Kronecker’s product. We will assume that each vehicle has the infor-

mation about the reference state trajectories ri =
[
r′Ti r′′Ti

]T
, so that the control task to

be considered is the task of tracking the desired references.

The above described set of N vehicles with their sensing indices and the corresponding

weights can be considered as a directed weighted graph G in which each vertex represents a

vehicle, and an arc with the weight αi
j leads from vertex j to vertex i if j ∈ Si. Consequently,

the weighted adjacency matrix G = [Gij ] is an N ×N square matrix defined by Gij = αi
j

for j ∈ Si, and Gij = 0 otherwise. We will define the weighted Laplacian of the graph as

L = [Lij ], Lij = Gij , i 6= j, Lii = −∑
j αi

j (e.g., see [23]).

3.4.3 Decentralized Tracking Design by Expansion/Contraction

The structure of the formulated model (3.20) indicates that it is possible to consider the

formation as an interconnection of N overlapping subsystems. Extending the reasoning suc-

cessfully applied within the platooning problem (e.g., [91, 99, 101]), we will assign to the

i-th vehicle in a formation a formally defined subsystem S̃i with the state vector containing

the vehicle state coordinates x′i and x′′i , together with the second components x′′j (velocity

components) of the state vectors of all the vehicles sensed by the i-th vehicle, and the input

vector ũi containing the vehicle control vector ui, together with the control vectors uj asso-
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ciated with all the vehicles sensed by the i-the vehicle, i.e. x̃i =
[
x′′Tsi

1
· · · x′′Tsi

mi
x′Ti x′′Ti

]T

and ũi =
[
uT

si
1
· · · uT

si
mi

uT
i

]T

. Consequently, the subsystem models are:

S̃i : ˙̃xi = Ãix̃i + B̃iũi, (3.21)

where Ãi =

[
02mi×2mi 02mi×4

Ai
α −Av

]
, Ai

α =


 αsi

1
I2

... · · · ...αsi
mi

I2

02×2mi


 and

B̃i =

[
I2mi×2mi 02mi×2

04×2mi Bv

]
.

We define the expansion S̃ of S as a system whose state and input vectors are defined

as concatenations of the subsystem state and input vectors, that is, x̃ =
[
x̃T

1 . . . x̃T
N

]T
and

ũ =
[
ũT

1 . . . ũT
N

]T
. Consequently,

S̃ : ˙̃x = Ãx̃ + B̃ũ, (3.22)

where Ã = diag{Ã1, . . . , ÃN} and B̃ = diag{B̃1, . . . , B̃N}.
The expanded state and control vectors x̃ and ũ can be represented as full rank linear

transformations of the original state and control vectors x and u, i.e. x̃ = V x and ũ = Ru,

where V T =
[
V T

1 · · · V T
N

]T
and RT =

[
RT

1 · · · RT
N

]T
, with Vi =

[
V ′

i

V ′′
i

]
and Ri =

[
R′

i

R′′
i

]
,

where V ′
i is an mi× 2N (2× 2)-block matrix containing I2 in j-th row at the column index

2si
j , j = 1, . . . , mi and zeros elsewhere, V ′′

i a 2 × 2N (2 × 2)-block matrix containing I2

at the (2i − 1)-st place in the first tow and at the 2i-th place in the second row, R′
i is an

mi ×N block matrix containing I2 in j-th row at the column index si
j , j = 1, . . . , mi and

zeros elsewhere and R′′
i a 1×N block matrix containing I2 at the i-th place.

It is not difficult to verify on the basis of the structure of S, S̃, V and R, that S and S̃

satisfy, in general, the following conditions:

ÃV = V A, B̃R = V B. (3.23)

According to the inclusion principle, the original model S is a restriction of S̃ (see e.g.

[37, 38, 35, 34, 80] for basic results related to the inclusion principle). Consequently, stability
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of S̃ implies stability of S.

Once S̃ is defined and the subsystems S̃i extracted, the next task is to design the local

control laws for the subsystems. If r̃i(t) represents a given reference signal for the i-th

subsystem (the desired state trajectory of S̃i), then we have to determine pairs of constant

feedback and feedforward matrices (K̃i, M̃ i) in the local tracking control laws for (3.22)

F̃i : ũi = K̃ix̃i + M̃ ir̃i, (3.24)

i = 1, . . . , N . Notice that the references for x′i, denoted as rd
i , i = 1, . . . , N , are related to

the set of references for individual inter-vehicle distances with respect to the sensed vehicles,

denoted as rd
i−si

j
, simply by rd

i =
∑mi

j=1 αi
si
j
rd
i−si

j
.

In the case when Si = ∅ (formation leaders), ũi = ui, and we have only the velocity

feedback, so that K̃i =
[
0 KLi

]
and M̃ i =

[
0 MLi

]
, where KLi and MLi are 2×2 matrices.

When Si = {si
1, . . . , s

i
mi
} 6= ∅, we assume that the control signals are uj = K̂i

jx
′′
j +

M̂jr
v for all j ∈ Si, where rv is the velocity reference; the design of K̂i

j and M̂ i
j can,

in principle, be done as in the case of the vehicles with Si = ∅. However, the control

vector ui is obtained using all the measurements available in S̃i, i.e., ui = K̄ix̃i + M̄ ir̃i,

where both K̄i and M̄ i can be decomposed as K̄i =
[
K̄i

1 . . . K̄i
mi

K̄i
mi+1 K̄i

mi+2

]
and

M̄ i =
[
M̄ i

1 . . . M̄ i
mi

M̄ i
mi+1 M̄ i

mi+2

]
, having in mind the structure of x̃i (and r̃i).

Therefore, the tracking control law for S̃i given by (3.24) is characterized by matrices

K̃i =

[
K̂i 02mi×4

K̄i

]
and M̃ i =

[
M̂ i 02mi×4

M̄ i

]
, where K̂i = diag{K̂i

si
1
, . . . , K̂i

si
mi

}, and

M̂ i = diag{M̂ i
si
1
, . . . , M̂ i

si
mi

}; the structure of K̃i and M̃ i reflects the fact that the i-th

vehicle senses the vehicles selected by Si.

The overall control law F̃ for the whole expanded system S̃ is characterized by the pair

(K̃, M̃), where K̃ = diag{K̃1, . . . , K̃N} and M̃ = diag{M̃1, . . . , M̃N}, so that

F̃ : ũ = K̃x̃ + M̃ r̃, (3.25)

where r̃ is the desired trajectory of x̃.

The final step in the formation control design is the contraction of the obtained tracking
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controller for the expansion S̃ to the controller for the original system S, given by

F : u = Kx + Mr, (3.26)

where r is the desired trajectory of x (r̃ = V r). The contractibility conditions given by

RK = K̃V, RM = M̃V, (3.27)

ensure that the closed-loop system (S,F) represents a restriction of the closed-loop system

(S̃, F̃) (for more details on contractibility, see [93]). However, relations (3.27) do not have

any solutions for K and M in the case when K̃ and M̃ are in the form of block diagonal

matrices [35, 37, 36, 80].

One way to overcome this problem is to suitably modify both K̃ and M̃ in such a way

as to achieve contractibility [35, 101]. We define K̃m (or M̃m) by K̃m = K̃m1 + K̃m2, where

K̃m1 = RRT K̃, while K̃m2 is constructed in such a way as to reduce the number of off-block-

diagonal terms in K̃m1, and to satisfy, at the same time, the restriction condition K̃m1V = 0.

More specifically, in order to construct the l-th block-row of K̃m2 (l = 1, . . . , N +
∑N

i=1 mi),

we first locate the part of the l-th block-row in K̃m1 which belongs to some K̃i, i = 1, . . . , N

(diagonal blocks), and then identify the block-column index νl in the following way: a) when

Si = ∅, νl is the column index of KLi; b) when Si 6= ∅, this is the block-column index of

either K̂i
j (j = 1, . . . , mi) within the first mi block-rows in K̃i, or of K̄i

mi+2 in the last

block-row of K̃i. Then, we identify the block-column of V having ”I” at its νl-th block-row;

the block-row indices of the remaining ”I”’s in the same block-column compose a set V NZ
l .

Then, the nonzero terms in l-th block-row of K̃m2 are taken to be the blocks from the l-th

row of K̃m1 at the block-column indices defined by V NZ
l with the reversed sign, while the

sum of these blocks is put at the column index νl. Therefore, the resulting contracted gains

are

K = R+K̃mV, M = R+M̃mV. (3.28)
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The vehicle control ui in the case when Si 6= ∅ is generated by

ui =

[
K̄i

1 . . . K̄i
mi

K̄i
mi+1 K̄i

mi+2 +
∑

k∈S̄i

K̂k
i

]
x̃i +

[
M̄ i

1 . . . M̄ i
mi

M̄ i
mi+1 M̄ i

mi+2 +
∑

k∈S̄i

M̂k
i

]
r̃i. (3.29)

3.4.4 Stability

The resulting closed-loop system is represented by

Scl : ẋ = Aclx + Bclr (3.30)

where Acl = [(G−I)⊗Av +[(I⊗Bv)R+K̃mV ] and Bcl = [(I⊗Bv)R+M̃mV ]. Both matrices

K = R+K̃mV and M = R+M̃mV are composed of N × N (4 × 4)-blocks, such that for

Si 6= 0 we have the block




0 0
K̄i

mi+1 K̄i
mi+2 +

∑

k∈S̄i

K̂k
i


 at the corresponding block diagonal

and the blocks

[
0 0
0 K̄i

j

]
, j = 1, . . . , mi, at the block indices (i, si

j) determined by Si; for

Si = 0 we have in the i-th block row only the diagonal block
[

0 0
0 KLi

]
, i = 1, . . . , N .

Therefore, the state matrix Acl contains in the i-th block row for Si 6= 0 the diagonal block


0 −I

K̄i
mi+1 K̄i

mi+2 +
∑

k∈S̄i

K̂k
i


 and the blocks


 0 αi

si
j
I

0 K̄i
j


, j = 1, . . . ,mi, at the block indices

(i, si
j), and

[
0 −I

0 KLi

]
at the diagonal for Si = 0, i = 1, . . . , N . The indices of the nonzero

(4 × 4)-blocks in Acl are the same as the indices of the nonzero elements in the adjacency

matrix G of the formation graph. Therefore, the matrix Acl is cogredient (amenable by

permutation transformations) to the following matrix

AP
cl =

[
0 (G− I)⊗ I2

diag{K̄1
m1+1, . . . , K̄

N
mN+1} Kcl

]
, (3.31)

where Kcl contains (2 × 2)-blocks K̄i
mi+2 +

∑
k∈S̄i

K̂k
i at the block diagonal and K̄i

j , j =

1, . . . , mi, at the block indices (i, si
j), i = 1, . . . , N . The eigenvalues of Acl are the solutions

of the equation det(λI4N − Acl) = 0, or, equivalently, of det(λI4N − AP
cl) = 0, which gives
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rise to

det(λ2I2N − λKcl − diag{K̄1
m1+1, . . . , K̄

N
mN+1}((G− I)⊗ I2)) = 0. (3.32)

We will assume that all the constituent (2× 2)-blocks of K are diagonal with nonnegative

entries, so that K (and, consequently, Acl) can be decomposed into two components KI and

KII (AI
cl and AII

cl ) which correspond to the components x′i,I , and x′i,II (or x′′i,I and x′′i,II)

of the two-dimensional distance and velocity vectors in S (in the sequel, it is understood

that the assumptions and conclusions about KI and AI
cl hold analogously for KII and AII

cl ).

We will analyze solutions of (3.32) under simplifying assumptions emphasizing structural

properties of the formation:

(A.3.4.1) Matrices KI
cl and (diag{K̄1

m1+1, . . . , K̄N
mN+1})I(G − I) can be transformed

into the triangular form by the same unitary matrix W (Schur transformation [30]).

(A.3.4.2) If µ1, . . ., µN and ν1, . . ., νN are the eigenvalues of KI
cl and (diag{K̄1

m1+1,

. . ., K̄N
mN+1})I (G − I), respectively, then there are such real numbers γi > 0 and εi > 0

that µi = γiνi − εi, i = 1, . . . , N .

Theorem 3.4.1 Let assumptions (A.3.4.1-2) be satisfied, and let the formation digraph

G have a directed spanning tree. Then, for γi large enough matrix AI
cl has one simple

eigenvalue at 0, and all the remaining eigenvalues have negative real parts.

Proof: Applying W T and W to (3.32), one obtains

det(λI2N −AP
cl) =

N∏

i=1

(λ2 − (γiνi − εi)λ− νi) = 0, (3.33)

wherefrom the eigenvalues of AI
cl are

λi± =
γiνi − εi ±

√
(γiνi − εi)2 + 4νi

2
, (3.34)

i = 1, . . . , N .

When Si 6= ∅, i = 1, . . . , N , we have G − I = L, where L is the weighted Laplacian of

the formation digraph G. If this digraph has a directed spanning tree, L has one simple

zero eigenvalue and the other eigenvalues have negative real parts, so that for ν1 = 0, one

obtains λ′1+ = 0 and λ1− = −γi. For the remaining νi, i = 2, . . . , N , a simple geometric
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reasoning based on [70, 68] shows that the corresponding λi± have negative real parts for

γi large enough. Remark only that the condition γi >
√

2
Re{νi} which can be derived from

the results in [70, 68] is overly conservative: it is possible to check the case of real νi, when,

in fact, Re{λi±} < 0 for all positive γi.

If there is one vehicle satisfying Si = ∅, G−I is nonsingular if the digraph has a spanning

tree. However, in this case K̄i
m1+1 = 0, and, therefore, matrix (diag{K̄1

m1+1, . . ., K̄N
mN+1})I

((G−I))) has one simple eigenvalue at the origin, i.e. for ν1 = 0, one obtains again λ1+ = 0

and λ1− = −γi, etc. Thus the result.

We will adopt further simplifying assumptions implying assumptions (A.3.4.1-2) in order

to make clear the main structural properties of the analyzed formation control law.

(A.3.4.3) (a) (K̄i
mi+1)

I = κ > 0, (b) (K̄i
j)

I = ρ > 0, (c)(K̄i
mi+2 +

∑
k∈S̄i

K̂k
i )I =

−miρ− ε, ε > 0, i = 1, . . . , N .

Theorem 3.4.2 Let assumption (A.3.4.3) be satisfied and let the underlying graph G
have a directed spanning tree. Then AI

cl has a single eigenvalue at zero and all the remaining

eigenvalues have negative real parts for ρκ−1 large enough.

Proof: The proof is entirely based on Theorem 3.4.1, with ρκ−1 playing the role of γi.

The main result of this section, connecting the results of Theorems 3.4.1 and 3.4.2 with

the specific structure of the proposed formation model, is given in the following theorem.

Theorem 3.4.3 Let M̃ = −K̃. Then, under the assumptions of Theorem 3.4.2, for

ρκ−1 large enough:

(a) when Si 6= ∅, i = 1, . . . , N , limt→∞[x′i(t) − r̄d
i ] = 0 and limt→∞[x′′i (t) − r̄v] = 0,

i = 1, . . . , N , where r̄d =
[
r̄d
1 · · · r̄d

N

]
satisfies r̄d = Lr̄z and r̄z and r̄v are arbitrary

predefined constant 2N -dimensional and 2-dimensional vectors, respectively;

(b) when Sj = ∅ for some j ∈ {1, . . . , N}, xj(t) →t→∞ r̄vt, limt→∞[x′i(t) − r̄d
i ] = 0,

i = 1, . . . , N , i 6= j, and limt→∞[x′′i (t)− r̄v] = 0, i = 1, . . . , N , where r̄d
i , i = 1, . . . , N , i 6= j,

and r̄v are arbitrary predefined 2-dimensional vectors.

Proof: Assume first that Si 6= ∅, i = 1, . . . , N . Then, according to Theorem 3.4.2,

e(AP
cl)

I t = P

[
1 0
0 eJt

]
P−1, (3.35)
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where P =
[
r1

... · · · ... r2N

]
and P−1 =




sT
1· · ·

sT
2N


, ri representing the right eigenvectors (or

generalized eigenvectors) and si the left eigenvectors (or generalized eigenvectors) of (AP
cl)

I

and where the (2N − 1) × (2N − 1) matrix J is Hurwitz. Without loss of generality, we

choose rT
1 =

[
1T κε−11T

]
and sT

1 =
[
pT
1 0

]
, where 1T = [ 1 · · · 1 ] and p1 is a nonnegative

vector such that pT
1 L = 0 and pT

1 1 = 0 as a consequence of the fact that L has a simple

zero eigenvalue; also, sT
1 r1 = 1. Consequently, we obtain, having in mind that M̃ = −K̃,

that when t →∞ [
XI

1 (t)

XI
2 (t)

]
→

[
1

κε−11

] [
pT
1 0

] [
XI

1 (0)

XI
2 (0)

]
, (3.36)

where X1(t)IT = [(x′1,I−r̄d
1,I)

T · · · (x′N,I−r̄d
N,I)

T ] and X2(t)IT = [(x′′1,I−r̄v
I )

T · · · (x′′N,I−r̄v
I )T ]

(x′j,I denotes the first component of x′j , x′′j,I the first component of x′′j , etc., j = 1, . . . N).

Obviously, XI
1 (t) → 1pT

1 XI
1 (0) and XI

2 (t) → κε−11pT
1 XI

1 (0). However, according to the

model definition in Section 2, we have the transformation




x′1,I(t)
...

x′′1,I(t)
...




=
[

L 0
0 I

]



z′1,I(t)
...

z′′1,I(t)
...




,

so that, according to the assumption of the theorem that r̄d = Lr̄z for some r̄z, we obtain

[
XI

1 (t)

XI
2 (t)

]
=

[
L 0
0 I

][
ZI

1 (t)

ZI
2 (t)

]
, (3.37)

where Z1(t)IT = [(z′1,I−r̄z
1,I)

T · · · (z′N,I−r̄z
N,I)

T ] and Z2(t)IT = [(z′′1,I−r̄v
I )T · · · (z′′N,I−r̄v

I )T ].

Introducing

[
XI

1 (0)

XI
2 (0)

]
back into (3.36), one obtains that limt→∞XI

1 (t) = limt→∞XI
2 (t) = 0

for any r̄z and r̄v, having in mind that pT
1 L = 0.

Suppose now, without loss of generality, that S1 = ∅. According to Theorem 3.4.2,

(AP
cl)

I has a simple zero eigenvalue and G − I is nonsingular. It is straightforward to

deduce that now rT
1 = [ 1 0 · · · 0 ] and sT

1 =
[
1 0 · · · 0 (ε− ρ)−1 0 · · · 0

]
, so that x1(t) →

x′1,I(0)+(ε−ρ)x′′1,I(0)+ r̄v
I t when t →∞, and that the remaining components of the vector[

XI
1 (t)

XI
2 (t)

]
tend to zero for any r̄d

i , i = 2, . . . , N , and r̄v. Hence the result.
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3.4.5 Output Feedback with Decentralized Observers

Assume that the measurements available to the vehicles do not contain the velocities

of the sensed vehicles, so that yi, the measurement vector of the i-th vehicle, is com-

posed of the distances with respect to the sensed vehicles and its own velocity, i.e. yi =
[
(z′si

m1
− z′i)

T · · · (z′si
mi
− z′i)

T (z′′i )T
]T

. If our task is to construct local state estimators,

we will attach to the vehicles specific subsystem models Ξi having the form

Ξi : ξ̇i = A∗i ξi + B∗
i ũi (3.38)

with the state vectors ξi =
[
(z′′si

1
)T · · · (z′′si

mi
)T (z′si

1
− z′i)

T · · · (z′si
mi
− z′i)

T (z′′i )T
]T

, where

A∗i =




02mi×2N

Ā∗i
02×2N


, in which Ā∗i is a mi × N (2 × 2)-block matrix in which all block rows

contain −I2 at the last column index and I2 at the column index si
mj

, j = 1, . . . , mi,

and B∗
i =




I2mi 02mi×2

02mi×2mi 02mi×2

02×2mi I2


 (ũi is defined as ũi =

[
uT

si
1
· · · uT

si
mi

uT
i

]T

). Subsystem

models S̃i used for control design in the previous sections can be easily obtained from Ξi

as aggregations, i.e. x̃i = Uξi where U is a full rank (2mi + 4) × (4mi + 2) matrix of

the form U =




I2mi

αi
si
1
I2 · · · αi

si
mi

I2

I2


, so that we have the aggregation conditions

UA∗i = ÃiU . Notice that Ξi cannot be used for control design purposes, having in mind

that it is uncontrollable from ũi. However, it can used as a basis for defining the following

local observers of Luenberger type

E∗i : ˙̂
ξi = A∗i ξ̂i + B∗

i ũi + L∗[yi − C∗ξ̂i], (3.39)

where L∗ is the estimator gain (e.g. Kalman gain) and C∗ =
[
02(mi+1)×2mi

I2(mi+1)

]
.

Essentially, the main problem related to E∗i is how to define the control vector ũi, since the

real control inputs of the neighboring vehicles are generally unknown at the i-th vehicle.

We will adopt here approximations, motivated by the idea to generate ũi by using the

subsystem control law F̃i in (3.24) in which x̃i is replaced by its estimate obtained by
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using E∗i in such a way that ˆ̃xi = Uξ̂i, where ξ̂i is generated by (3.39), so that ũi = ũ∗i =
[
u∗Tsi

1
· · · u∗Tsi

mi
u∗Ti

]T

= K̃i ˆ̃
ix + M̃ ir̃i. According to the description of the structure of F̃i

given in Subsection 3.4.4, the control vector components u∗
si
1
, . . . , u∗

si
mi

are generated by the

local feedback designed for the leading vehicles as u∗j = K̂i
j ẑ
′′
j +M̂jr

v, j = si
1, . . . , s

i
mi

, where

ẑ′′j is a part of the state estimation vector ξ̂i. According to (3.29), the last component u∗i in

ũ∗i is defined by

u∗i =

[
K̄i

1 . . . K̄i
mi

K̄i
mi+1 K̄i

mi+2 +
∑

k∈S̄i

K̂k
i

]
Uξ̂i+

[
M̄ i

1 . . . M̄ i
mi

M̄ i
mi+1 M̄ i

mi+2 +
∑

k∈S̄i

M̂k
i

]
r̃i, (3.40)

where x̂′i is easily obtained from x̂∗i according to the definition of the vector xi as a function

of the distances with respect to the sensed vehicles (this mapping is incorporated in the

transformation U).

3.4.6 Global LQ Optimal State Feedback with the Consensus Based Es-

timator

We can attach the following global quadratic criterion to (3.17)

J =
∫ ∞

0
(xT Qx + uT Ru)dt, (3.41)

where Q ≥ 0 and R > 0 are appropriately defined matrices. However, direct construction

of the LQ optimal state regulator is not directly possible, since (3.17) is in general not

completely controllable.

The main observation in this respect is that the part of the state vector of (3.17)

which corresponds, for example, to the relative positions with respect to the first axis

x′1 =
[
x′i,1 · · · x′′N,1

]T
satisfies the relation x′1 = (I −G)p1, where p1 is the vector of abso-

lute vehicle positions with respect to a reference frame. Now, assuming that the graph G
has a spanning tree, we recollect that the Laplacian L has one eigenvalue at the origin, and

the rest in the open left-half plane. This means that when I−G = L we have that rT x = 0,

where rT is the left eigenvector of L corresponding to the zero eigenvalue. On the other hand,
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it is straightforward to realize that S is not controllable, since rank [ B AB ] = 2(N − 1)

(having in mind that A2 = 0). However, it is possible to see that the system is in this case

controllable for the admissible initial conditions satisfying rT x0 = 0. The given observations

do not hold in the case when I −G 6= L, which corresponds to a formation having a leader;

namely, the matrix I − G is then nonsingular provided G has a spanning tree. Having

in mind that, physically, a real formation always satisfies the imposed initial conditions,

a way of solving the above problem of the controllability of S can be seen after applying

to x a nonsingular transformation T =
[

rT

U

]
(U is a full rank matrix, and rT is linearly

independent of the rows of U). Namely, it is possible to realize that S is controllable for all

the admissible initial conditions provided the system is controllable with respect to v = Ux:

a model for v represents an aggregation of S. Therefore, we will construct an aggregated

formation model

Sa : v̇ = Āv + B̄u, (3.42)

where v = Ux, and the system matrices satisfy the aggregation conditions UA = ĀU and

B̄ = UB. In order to take care of optimality, we will attach to (3.42) the following criterion

J̄ =
∫ ∞

0
(vT Q̄v + uT Ru)dt. (3.43)

Obviously, the criterion J includes the criterion J̄ , i.e. J = J̄ , if UT Q̄U = Q. If one

starts from J , an approximate solution to the posed optimization problem can be found

by formulating J̄ using the approximate relation Q̄ = U+T QU+ (where U+ denotes the

pseudoinverse of U) and solving the optimization problem for Sa. If K̄ is the corresponding

optimal feedback gain matrix obtained by the standard design procedure, the feedback

gain matrix K for S can be found simply by applying the relation K = K̄U , since in

this case the closed-loop system (Sa, K̄) is an aggregation of the closed-loop system (S,K)

and J = J̄ . Notice that U can be chosen in many different ways: a simple choice is, for

example, U =




0.5 0 0.5 · · ·
0 1 0 · · ·
0 0 0 1 · · ·· · ·

· · · 1


, which does not substantially change the structure of Q̄

with respect to Q. Also, for a given U , different choices of Ā are possible; having in mind
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the sparsity of A, Ā can be found for adequate choices of U by simple linear combinations

of the rows of A and deletions of its columns.

By using a consensus based estimation algorithm exposed in Section 3.3 each agent is

supplied with the global state estimates and, hence, each agent can implement globally

optimal feedback control law calculated using the above exposed methodology.

3.4.7 Controller Realizations and Experiments

In this subsection we illustrate the proposed methods for control of formations of UAVs.

First, we give example of the formation control of five vehicles with a leader, using the

proposed design method based on the inclusion principle. Then we give an example of the

formation control without the leader, using the proposed consensus based estimator and the

globally LQ optimal feedback. A comparison with the method based on the inclusion prin-

ciple demonstrates the advantage and much better performance of the proposed consensus

based scheme.

3.4.7.1 Example 1

The above exposed methodology for formation tracking control design based on the inclu-

sion principle has been implemented by using the suboptimal hierarchical LQ strategy for

local controller design and Kalman filters as local observers, based on the results presented

in [59, 92, 91, 99]. A formation of five vehicles has been simulated, assuming that one

vehicle plays the role of the formation leader. It has been assumed that the second vehicle

observes the first, the third vehicle observes the first, the fourth observes the second and

the third and the fifth vehicle observes the third. The proposed design methodology has

been applied for both, the case of perfect state measurements and the case of dynamic

output feedback controller design, assuming that the measurements of the local velocity

and the distances to the neighboring vehicles are available in the vehicles. The references

of the distances (with respect to the centroid of the neighboring vehicles) and velocities

have been composed in such a way as to obtain reconfiguration of the formation starting

from the ”V” form and ending with a line (platoon). Figures 3.6 and 3.7 represent the

x-components of the distances and velocities of four vehicles in the formation, excluding

86



5 10 15 20 25 30 35 40 45 50

0
0.5

1
1.5

reference
no est.
with est.

5 10 15 20 25 30 35 40 45 50

0
0.5

1
1.5

5 10 15 20 25 30 35 40 45 50

0
0.5

1
1.5

5 10 15 20 25 30 35 40 45 50

0
0.5

1
1.5

Time

Figure 3.6: Distance plots

the leader. Obviously, tracking is very successful, even in the regime of fast changes of the

references. It is important to emphasize that the presented curves correspond to a specific

choice of the weighting matrices in the quadratic criterion; different choices of these matri-

ces provide different tracking properties. This has been illustrated in Fig. 3.8 and Fig 3.9,

where the formation response is shown for the case when the suboptimal hierarchical LQ

controllers are obtained using larger weights for the velocity tracking. Hence, in this case,

the tracking of the velocity is better compared with the Fig 3.7, at the expense of worst

distance tracking, compared to Fig 3.6.

3.4.7.2 Example 2

In this example, a formation of four vehicles without a formation leader has been simulated.

It has been assumed that the second vehicle observes the first, the third vehicle observes

the first, the fourth observes the second and the third and the first vehicle observes the

fourth. We applied the methodology exposed in the Section 3.5 for finding the globally LQ

optimal feedback gains. The consensus based estimator, proposed in Chapter 2 and Section

3.3 has been implemented by each agent, assuming the same information flaw between the

agents defined by the formation structure. The consensus gains are all set to be the same,
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Figure 3.7: Velocity plots

equal to 100. In Fig. 3.10 and Fig. 3.11 x-components of the distances and velocities of

all four vehicles in the formation are depicted, assuming step distance reference change.

On the other hand, Figures 3.12 and 3.13 represent the responses of the same formation

with the controllers designed using the inclusion principle with local estimators, exposed in

Subsections 3.4.2-5. It is obvious that better performance is obtained using the consensus

based control structure, at the expense of additional communications between the vehicles

in the formation.
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Figure 3.8: Distance plots
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Figure 3.9: Velocity plots
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Figure 3.10: Distance plots: consensus based controllers
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Figure 3.11: Velocity plots: consensus based controllers
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Figure 3.12: Distance plots: expansion/contraction based controllers
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Figure 3.13: Velocity plots: expansion/contraction based controllers
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Chapter 4

Stochastic Extremum Seeking with

Applications to Mobile Sensor

Networks

As already mentioned, the proposed consensus based (state or parameters) estimation al-

gorithms are highly robust to local model uncertainties, noise influence, measurement and

communication faults, and, at the same time, provide highly accurate estimates. Hence,

they can be naturally applied by mobile (wireless) sensor networks in numerous scenarios.

In this chapter a stochastic extremum seeking algorithm will be proposed and rigorously an-

alyzed, motivated by its effective applications within mobile sensor networks, for searching

the points in the plane where the optimal sensing capabilities can be achieved.

Section 4.1 contains the problem definition. Section 4.2 is devoted to the convergence

analysis of the main, one dimensional stochastic ES algorithm. It is proved that the system

converges under the specified conditions to the extremum point in the mean square sense

and with probability one. In Section 4.3 applications of the proposed scheme to noise

source localization and adaptive state estimation, where the measurement noise influence is

minimized are presented. In Section 4.4 the proposed basic 1D scheme is extended to the

two dimensional case and a scheme for the planar autonomous vehicle target localization is

proposed, where the vehicle is modeled as a single integrator. In Section 4.5 the scheme is
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further generalized to the case when the vehicle is modeled as a double integrator. Finally,

in Section 4.6 a scheme involving unicycle vehicle model is proposed and the convergence

analysis is given. All the proposed schemes are illustrated with several simulations.

4.1 Discrete-Time Extremum Seeking Algorithm with Time-

Varying Gains

We will consider a discrete-time extremum seeking algorithm with sinusoidal perturbation,

as shown in Figure 4.1. The basic idea is as follows. Since we cannot measure the gradi-

ent of an unknown function f , whose unique extremum we are seeking, a slow sinusoidal

perturbation (compared to the dynamics of the stable systems Fi(z) and Fo(z)), with fre-

quency ω = aπ, 0 < a < 1, a is a rational number, is added to the system input in order to

observe its effects to the output y(k). In the further analysis we will assume that f(θ) has

a minimum at θ = θ∗ and that locally it can be approximated with the quadratic form:

f(θ) = f∗ + (θ − θ∗)2 (4.1)

where f∗ is a constant. Possible cubic and higher order terms can be neglected in the local

convergence analysis; hence we are omitting them here. The sinusoidal perturbation, going

through the mapping f , will be modulated by its local slope. Therefore, we use a high

pass filter z−1
z+h , 0 < h < 1, which filters out a DC component of the measurements y(k)

corrupted by noise ζ(k). Then, the resulting noisy sinusoidal signal is being demodulated

(by the multiplication with the same frequency sinusoid). Hence, the input to the integrator

− 1
z−1 is proportional to the slope of the function f(θ) and it will drive θ to the extremal

value (for which the slope of the function f(θ) is zero).

In the next section we will prove convergence of θ(k) to the extremal point θ∗ (with

probability one and in the mean square sense) in the presence of the measurement noise

ζ(k). What makes this possible is, similarly as in the stochastic approximation algorithms

(e.g. [61, 21, 62]), the introduction of the time varying, vanishing gains ε(k) and α(k) which

make the system capable of eliminating noise. Note that in the case of similar algorithm
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Figure 4.1: Discrete-time extremum seeking scheme

whose local stability has been analyzed in [20, 42] noisy measurements and time-varying

gains have not been assumed; hence θ(k) in their case was proved to converge only to some

O(α) neighborhood of the extremal point. Also, because of the time varying gains, the

averaging theory can not be applied directly, as in [20, 42], what makes the analysis much

more complicated. For the clarity of presentation, we will assume that dynamics of the

systems Fi(z) and Fo(z) are fast enough so that they can be neglected in the convergence

analysis.

In the derivation of the tracking error equation we will use the following lemmas, which

can be found in [20].

Lemma 4.1 ([20], Lemma 2) If the transfer functions G(z) and H(z) have all of their

poles inside the unit circle, the following statement is true for any real φ and any uniformly

bounded v(k):

G(z)[(H(z)[cos(ωk − φ)])v(k)] = Re{ej(ωk−φ)H(ejω)G(ejωz)[v(k)]}+ ε−k. (4.2)

Lemma 4.2 ([20], Lemma 3) For any two rational functions A(·) and B(·, ·), the

following is true:

Re{ej(ωk−ψ)A(ejω)}Re{ej(ωk−φ)B(z, ejω)[v(k)]} =

= 1
2Re{ej(ψ−φ)A(e−jω)B(z, ejω)[v(k)]}+ 1

2Re{ej(2ωk−ψ−φ)A(ejω)B(z, ejω)[v(k)]}. (4.3)
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Lemma 4.3 ([20], Lemma 4) For any rational function B(·, ·) the following is true:

Re{ej(ωk−φ)B(z, ejω)[v(k)]} =

= cos(ωk − φ)Re{B(z, ejω)[v(k)]} − sin(ωk − φ)Im{B(z, ejω)[v(k)]}. (4.4)

The following equations model the behavior of the above described system:

y(k) = f∗ + (θ(k)− θ∗)2 + ζ(k) (4.5)

θ(k) = α(k) cos(ωk)− 1
z − 1

[ξ(k)] (4.6)

ξ(k) = ε(k) cos(ωk − φ)
z − 1
z + h

[y(k)] (4.7)

where ζ(k) is the measurement noise, and, throughout the chapter, the expression H(z)[x(k)]

denotes a time domain signal obtained as the output of the transfer function H(z) when

the input is x(k).

We define the tracking error as:

θ̃(k) = θ∗ − θ(k) + α(k) cos(ωk). (4.8)

By substituting (4.6) into (4.8) we obtain

θ̃(k) = θ∗ +
1

z − 1
[ξ(k)] (4.9)

which can be written as a difference equation:

θ̃(k + 1) = θ̃(k) + ξ(k) (4.10)
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Consequently, we substitute (4.5) in (4.7) and then in (4.10) and obtain

θ̃(k + 1)− θ̃(k) = ε(k)c(ωk)
z − 1
z + h

[f∗ + (θ(k)− θ∗)2 + ζ(k)]

= ε(k)c(ωk){ z − 1
z + h

[θ̃(k)2] +
z − 1
z + h

[−2α(k) cos(ωk)θ̃(k)]

+
z − 1
z + h

[f∗ + α(k)2 cos2(ωk)] +
z − 1
z + h

[ζ(k)]}. (4.11)

where c(ωk) = cos(ωk − φ). After applying Lemmas 4.1-3 to the linear term in (4.11),

containing 2α(k) cos(ωk)θ̃(k), we finally obtain the following equation which describes the

evolution of the tracking error:

θ̃(k + 1)− θ̃(k) = ε(k){L(z)[α(k)θ̃(k)] + Φ1(k) + Φ2(k) + Φ3(k) + u(k)} (4.12)

where

L(z) = −1
2 [ejφM(z, ejω) + e−jφM(z, e−jω)], (4.13)

Φ1(k) = s(2ωk)Im{M(z, ejω)[α(k)θ̃(k)]}, (4.14)

Φ2(k) = −c(2ωk)Re{M(z, ejω)[α(k)θ̃(k)]}, (4.15)

Φ3(k) = c(ωk) z−1
z+h [θ̃(k)2], (4.16)

u(k) = d(k) + c(ωk) z−1
z+h [ζ(k)] (4.17)

d(k) = c(ωk) z−1
z+h [f∗ + α(k)2 cos2(ωk)] + ε−k, (4.18)

s(2ωk) = sin(2ωk − φ), c(2ωk) = cos(2ωk − φ), ε−k denotes exponentially decaying terms

and M(z, ejω) = (ejωz − 1)/(ejωz + h). Hence, all the terms in equation (4.12) are time-

varying; the first four terms depend on θ̃ (Φ3(k) is nonlinear), while the input term u(k) is

composed of the deterministic part d(k) and the stochastic part n(k) = c(ωk) z−1
z+h [ζ(k)] .

4.2 Convergence Analysis

In the convergence analysis we will assume that the following basic assumptions are satisfied:

(A.4.1) The sequence {ζ(k)} is a martingale difference sequence defined on a probability
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space (Ω,F , P ) with a specified sequence of σ-algebras Fk ⊆ Fk+1, such that the variables

ζ(k) are measurable with respect to Fk and they satisfy

E{ζ(k)2} = σ(k)2 < M < ∞, k = 1, 2, ... (4.19)

(A.4.2) The sequence ε(k) is decreasing, ε(k) > 0, k = 1, 2, ... and limk→∞ ε(k) = 0

(A.4.3) The sequence α(k) is decreasing, α(k) > 0, k = 1, 2, ... and limk→∞ α(k) = 0

(A.4.4)
∑∞

k=1 ε(k)α(k) = ∞
(A.4.5)

∑∞
k=1 ε(k)2 < ∞

(A.4.6)
∑∞

k=1 ε(k)α(k)2 < ∞
(A.4.7) −π

2 < φ + Arg{ ejω−1
ejω+h

} < π
2

The following theorem deals with the asymptotic behavior of the algorithm.

Theorem 4.1 Let the assumptions (A.4.1-7) be satisfied. Then θ(k) converges to θ∗

almost surely (a.s.) and in the mean square sense under the condition that supk(|θ̃(k)|) < K

(a.s.), 0 < K < ∞.

Proof. We will analyze the right hand side of equation (4.12) term by term.

Thus, we start with the first term, by writing

ε(k)L(z)[α(k)θ̃(k)] = ρ(k)L(z)[θ̃(k)] + ε(k)δl(k), (4.20)

where δl(k) = L(z)[α(k)θ̃(k)] − α(k)L(z)[θ̃(k)] and ρ(k) = ε(k)α(k). If l(k), k = 0, 1, ... is

the impulse response of the system S with transfer function L(z), we have

δl(k) = l(0)[α(k)− α(k)]θ̃(k) + l(1)[α(k − 1)− α(k)]θ̃(k − 1) + · · ·

+ l(k − 1)[α(1)− α(k)]θ̃(1) (4.21)

so that

δl(k) = [α(k − 1)− α(k)]y1(k) (4.22)

where y1(k) can be considered as the output of a time varying system S1 with the impulse

response h1(k, j) = l(j)α(k−j)−α(k)
α(k−1)−α(k) and input θ̃(k), i.e., y1(k) =

∑k−1
j=0 h1(k, j)θ̃(k − j).
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System S1 is bounded-input, bounded-output (b.i.b.o.) stable, having in mind that h1(k, j)

is absolutely summable under the formulated assumptions (S is exponentially stable and

α(k) satisfies (A.4.3-4)).

In the further analysis we define κ = 1
2Re{ejφ ejω−1

ejω+h
}. Notice that we also have κ =

−∑∞
j=0 l(j), according to the above notation. Also notice that κ > 0 having in mind

assumption (A.4.7). It will turn out that the linear term −κθ̃(k) will be dominant in the

right hand side of the tracking error difference equation and, thus, crucial for proving the

almost sure convergence of the algorithm.

Hence, we write L(z)[θ̃(k)] = −κθ̃(k) + δlκ(k) and obtain

δlκ(k) = L(z)[θ̃(k)] + κθ̃(k) =
∑k−1

j=0 l(j)[θ̃(k − j)− θ̃(k)] + [
∑k−1

i=0 l(i) + κ]θ̃(k) (4.23)

where the last term is equal to λ(k)θ̃(k), with λ(k) = −∑∞
i=k l(i). After iterating (4.12)

back to the initial condition and plugging into the first term in (4.23), we obtain

δlκ(k) = − l(1){ε(k − 1)[L(z)[α(k − 1)θ̃(k − 1)] + Φ(k − 1) + u(k − 1)]}

− l(2){ε(k − 2)[L(z)[α(k − 2)θ̃(k − 2)] + Φ(k − 2) + u(k − 2)] (4.24)

+ ε(k − 1)[L(z)[α(k − 1)θ̃(k − 1)] + Φ(k − 1) + u(k − 1)]}+ ... + λ(k)θ̃(k)

where Φ(k) = Φ1(k) + Φ2(k) + Φ3(k). After regrouping the terms in (4.24), we obtain

δlκ(k) =
k−1∑

j=1

[−
k−1∑

i=j

l(i)]ε(k − j){L(z)[α(k − j)θ̃(k − j)]

+ Φ(k − j) + u(k − j)}+ λ(k)θ̃(k) (4.25)

Defining a time-varying system S2 with the impulse response h2(k, j) = l̄(k, j) ε(k−j)
ε(k−1) , where

l̄(k, j) = −∑k−1
i=j l(i), we can write

δlκ(k) = ε(k − 1)y2(k) + λ(k)θ̃(k) (4.26)

where y2(k) =
∑k−1

j=0 h2(k, j){L(z)[α(k− j)θ̃(k− j)] + Φ(k− j) + u(k− j)} is the output of
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S2. One can easily verify that S2 is b.i.b.o. stable under the adopted assumptions, while

λ(k) is exponentially decaying.

Now, we focus on Φi(k), i = 1, 2, 3, terms in equation (4.12).

Considering first Φ1(k) defined by (4.14), we form, similarly as before, the difference

δl1(k) = α(k)s(2ωk)Im{M(z, ejω)[θ̃(k)]} − s(2ωk)Im{M(z, ejω)[α(k)θ̃(k)]} (4.27)

and obtain that

δl1(k) = α(k)s(2ωk)[α(k − 1)− α(k)]y3(k) (4.28)

where y3(k) is the output of a b.i.b.o. stable system S3 with the input θ̃(k) and with

the impulse response sequence h3(k, j) = m1(j)
α(k−j)−α(k)
α(k−1)−α(k) , where {m1(j)} is the impulse

response of Im{M(z, ejω)} which is exponentially stable.

Further, we write Im{M(z, ejω)[θ̃(k)]} = κ1θ̃(k) + δ1
κ(k), where κ1 = Im{ ejω−1

ejω+h
}, and,

following the methodology of deriving (4.24) and (4.25), we obtain

δ1
κ(k) =

k−1∑

j=1

[−
k−1∑

i=j

m1(i)]ε(k − j){L(z)[α(k − j)θ̃(k − j)]

+ Φ(k − j)u(k − j)}+ µ1(k)θ̃(k) (4.29)

where µ1(k) = −∑∞
i=k m1(i) is decaying exponentially. Following further an analogous

reasoning as above, we obtain

δ1
κ(k) = ε(k − 1)y4(k) + µ1(k)θ̃(k) (4.30)

where y4(k) is the output of a b.i.b.o. stable system S4 with impulse response h4(k, j) =

m̄1(k, j) ε(k−j)
ε(k−1) , where m̄1(k, j) = −∑k−1

i=j m1(i), and with the input L(z)[α(k)θ̃(k)]+Φ(k)+

u(k). Consequently, we have

Φ1(k) = α(k)s(2ωk)[κ1θ̃(k) + δ1
κ(k)] + δl1(k) (4.31)
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Again, using analogous arguments we obtain that

Φ2(k) = −{α(k)c(2ωk)[κ2θ̃(k) + δ2
κ(k)] + δl2(k)} (4.32)

where κ2 = Re{ ejω−1
ejω+h

}, while

δl2(k) = α(k)c(2ωk)[α(k − 1)− α(k)]y5(k) (4.33)

and

δ2
κ(k) = ε(k − 1)y6(k) + µ2(k)θ̃(k) (4.34)

where y5(k) is the output of a b.i.b.o. stable system S5 with the input θ̃(k) and with the

impulse response sequence h5(k, j) = m2(j)
α(k−j)−α(k)
α(k−1)−α(k) . {m2(j)} is the impulse response

of Re{M(z, ejω)} which is exponentially stable, µ2(k) = −∑∞
i=k m2(i) is exponentially

decaying. Furthermore, y6(k) is the output of a b.i.b.o. stable system S6 with the impulse

response h6(k, j) = m̄2(k, j) ε(k−j)
ε(k−1) , where m̄2(k, j) = −∑k−1

i=j m2(i), and with the input

L(z)[α(k)θ̃(k)] + Φ(k) + u(k).

Therefore, after replacing the obtained expressions for L(z)[α(k)θ̃(k)]+Φ1(k)+Φ2(k)+

Φ3(k) in (4.12), we obtain

θ̃(k + 1) = [1− κρ(k) + η(k)]θ̃(k) + π(k) + ε(k)u(k) (4.35)

where

η(k) = [κ1s(2ωk)− κ2c(2ωk)]ρ(k) (4.36)

and

π(k) = ε(k) δl(k) + ρ(k)δlκ(k) + ε(k)c(2ωk)δ1
κ(k)

+ ε(k)δl1(k) + ε(k)s(2ωk)δ2
κ(k)

+ ε(k)δl2(k) + ε(k)Φ3(k) (4.37)

Considering first the term η(k) in (4.36), we can easily derive that η(k) = ρ(k) sin(2ωk+
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ψ), where ψ depends on φ and φM = Arg{ ejω−1
ejω+h

}. If N is the integer period of sin(2ωk),

we have further that

|
∞∑

k=1

η(k)| ≤
bN

2
c∑

j=1

bj

∞∑

k=0

[ρ(j + kN)− ρ(j + bN
2
c+ kN)] < ∞ (4.38)

where bj ≥ 0, j = 1, . . . , bN
2 c, having in mind that ω = aπ, where a is a rational number.

Therefore, having in mind that
∑∞

k=1 ρ(k) = ∞ (A.4.4), from (4.35) we obtain for k large

enough that

θ̃(k + 1) =
k∏

j=1

(1− κ′ρ(j))θ̃(1) +
k∑

j=1

[π(j) + ε(j)u(j)]
k∏

i=j+1

(1− κ′ρ(i)) (4.39)

where 0 < κ′ < κ. Now, using the inequality 1 − x ≤ e−x it is easy to see that
∏k

j=1(1 −
κ′ρ(j)) → 0 when k → ∞, having in mind the condition (A.4.4). Furthermore, after

applying the Kronecker’s lemma to the second term at the right hand side of (4.39), we

conclude that θ̃(k) converges to zero almost surely if
∑∞

j=1[π(j)+ ε(j)u(j)] converges (a.s.).

In order to show that the last condition holds, we will decompose π(j) as π(j) =
∑3

i=1 πi(j), where π2(j) and π3(j) contain only those components of y2(j), y4(j) and y6(j)

(outputs of b.i.b.o. stable linear systems S2, S4 and S6) that are responses to the inputs

ε(j)d(j) and ε(j)n(j), respectively; π1(j) contains all the remaining terms of π(j).

According to the Assumptions (A.4.2-5), boundedness of θ̃(k) guarantees the prop-

erty that
∑∞

k=1 π1(k) converges. This is evident for all the terms in π1(k) except the

last one, where we need to verify that
∑∞

k=1 ε(k)Φ3(k) converges. To this end, we fol-

low a similar approach as in deriving (4.38). By defining s(k) = ε(k)c(ωk) z−1
z+h [θ̃(k)2] =

ε(k)c(ωk)
∑k−1

i=0 l∗(i)θ̃(k − i)2 and r(k) =
∑k−1

i=0 l∗(i)θ̃(k − i), where l∗(i) is the impulse

response of z−1
z+h , we have that

∞∑

k=1

s(k) ≤
N∑

j=1

bj

∞∑

k=0

[ε(j + 2kN)r(j + 2kN)− ε(j + N + 2kN)r(j + N + 2kN)]

=
N∑

j=1

bj

∞∑

k=0

{[ε(j + 2kN)− ε(j + N + 2kN)]r(j + 2kN)

− ε(j + N + 2kN)[r(j + N + 2kN)− r(j + 2kN)]} (4.40)
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for some bj ≥ 0, j = 1, ..., N , where 2N is the integer period of cos(ωk). The first term in

equation (4.40) converges, having in mind boundedness of r(k). For the second one, we can

write:

r(j + N + 2kN)− r(j + 2kN) =

=
j+N+2kN−1∑

i=0

l∗(i)θ̃(j + N + 2kN − i)2 −
j+2kN−1∑

i=0

l∗(i)θ̃(j + 2kN − i)2

=
j+2kN−1∑

i=0

l∗(i)[θ̃(j + N + 2kN − i)2 − θ̃(j + 2kN − i)2]

+
j+N+2kN−1∑

i=j

l∗(i)θ̃(j + 2kN − i)2 (4.41)

The second term in the above equation exponentially goes to zero when k →∞. The first

term can be written as

j+2kN−1∑

i=0

l∗(i)[θ̃(j + N + 2kN − i)2 − θ̃(j + 2kN − i)2]

=
j+2kN−1∑

i=0

l∗(i)[θ̃(j + N + 2kN − i)− θ̃(j + 2kN − i)]

·[θ̃(j + N + 2kN − i) + θ̃(j + 2kN − i)] (4.42)

By treating the difference θ̃(j + N + 2kN − i)− θ̃(j + 2kN − i) the same way as in deriving

(4.23), (4.24) and (4.25), that is, by substituting and iterating equation (4.12), having in

mind the condition that θ̃(j + N + 2kN − i) + θ̃(j + 2kN − i) is bounded, one can conclude

that the absolute value of the whole sum in (4.42) can be bounded by k1ε(j + 2kN − i),

for some k1 > 0. Therefore, using condition (A.4.5) we can conclude that the sum (4.40)

converges.

The analysis proceeds with the terms in (4.35) depending on d(k). Using the identity

cos2(ωk) = 1
2(1 + cos(2ωk)), we obtain that d(k) = d1(k) + d2(k) + ε−k, where

d1(k) = c(ωk)
z − 1
z + h

[f∗ +
1
2
α(k)2] (4.43)
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d2(k) =
1
2
c(ωk)

z − 1
z + h

[α(k)2 cos(2ωk)] (4.44)

Considering the term d1(k) we first conclude that z−1
z+h [f∗] = 0 (high pass filter). Further-

more,
z − 1
z + h

[α(k)2] = α(k)2
k−1∑

j=0

l∗(j)
α(k − j)2

α(k)2
(4.45)

where sequence {l∗(j)} is the impulse response of the system z−1
z+h . The summation in

(4.45) can be considered as the output of a b.i.b.o. stable time varying system with the

impulse response h7(k, j) = l∗(j)
α(k)2

and with the input α(k)2. Therefore, we conclude that

|d1(k)| ≤ k2α(k)2, where k2 > 0 is a constant. Similarly, for d2(k) we have

d2(k) =
1
2
c(ωk)α(k)2

k−1∑

j=0

l∗(j) cos(2ω(k − j))
α(k − j)2

α(k)2
(4.46)

which leads, as above, to the conclusion that |d2(k)| ≤ k3α(k)2, where k3 > 0 is a constant.

Therefore, we have

|d(k)| ≤ k4α(k)2 (4.47)

for some constant k4 > 0.

Consequently, it follows clearly that
∑∞

j=1[ε(j)d(j)+π2(j)] converges, under the adopted

assumption (A.4.6).

The last part of (4.35) to be analyzed is the stochastic component, obtained as a con-

sequence of ε(k)n(k). We will first demonstrate that

∞∑

k=1

ε(k)n(k) converges a.s. (4.48)

To do so, we will use the results from [67] (Theorem 1) which state that the sufficient

conditions for (4.48) to be satisfied, both with probability 1 and in the mean square sense,
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are

(a) r(k) =
∞∑

j=k+1

ε(j)Ψj,k → 0, k →∞ (4.49)

(b)
∞∑

k=1

ε(k)2σ(k)2 < ∞ (4.50)

(c)
∞∑

k=1

ε(k)σ(k)r(k) < ∞ (4.51)

where Ψk,m = ‖E{n(k)|Fm}‖2 with k > m, ‖ · ‖2 = (E{| · |2}) 1
2 and Fk is a sequence of

σ-algebras such that the variables n(k) are measurable with respect to Fk. These conditions

specify a class of noise with a sufficiently slowly increasing second moment and a sufficiently

fast decreasing correlation.

For condition (a) we have

E{n(j)|Fk} = E{
j∑

i=1

l∗(j − i)ζ(i)|Fk}c(ωj)

=
j∑

i=1

l∗(j − i)E{ζ(i)|Fk}c(ωj)

= c(ωj)[
k∑

i=1

l∗(j − i)ζ(i) +
j∑

s=k+1

l∗(j − i)E{ζ(s)|Fk}]

= c(ωj)
k∑

i=1

l∗(j − i)ζ(i) (4.52)

where we used the fact that E{ζ(s)|Fk} = 0 for s > k and E{ζ(s)|Fk} = ζ(s) for s ≤ k

(since ζ(i) is a martingale difference sequence), {l∗(i)} is the impulse response sequence of

z−1
z+h . Furthermore, from (4.49) and (4.52), we have

r(k) =
∞∑

j=k+1

ε(j)|c(ωj)|E{(
k∑

i=1

l∗(j − i)ζ(i))2} 1
2

≤ K ′
∞∑

j=k+1

ε(j)
k∑

i=1

l∗(j − i)2 (4.53)

for some positive constant K ′, where we used the fact that E{ζ(i)ζ(j)} = 0 for i 6= j
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and E{ζ(i)ζ(j)} = σ(i)2 for i = j. The last term in (4.53) goes to zero when k → ∞
having in mind that ε(k) → 0 and l∗(k) → 0 exponentially, when k → ∞. Therefore, the

condition (4.49) is satisfied. Condition (4.50) follows directly from the Assumptions (A.4.1)

and (A.4.5). To prove condition (4.51) we have

∞∑

k=1

ε(k)σ(k)r(k) ≤ K ′
∞∑

k=1

ε(k)σ(k)
∞∑

j=k+1

ε(j)
k∑

i=1

l∗(j − i)2

= K ′
∞∑

k=1

ε(k)2σ(k)
∞∑

j=k+1

ε(j)
ε(k)

k∑

i=1

l∗(j − i)2 (4.54)

The last term converges having in mind conditions (A.4.2) and (A.4.5). Therefore, the

property (4.48) holds.

Using the above arguments, it follows directly that
∑∞

j=1 π3(j) converges a.s., and in

the mean square sense.

Therefore,
∑∞

j=1[π(j)+ ε(j)u(j)] converges almost surely, and in the mean square sense,

and we have the result.

Remark 4.1 The results of Theorem 4.1 hold under the general condition that |θ̃(k)|
is bounded a.s.. Such an assumption is realistic for practical applications; it represents

a frequent assumption for convergence analysis of diverse stochastic approximation based

schemes (see, e.g., [43]). It could be eliminated by introducing fixed or expanding trunca-

tions as in, e.g., [18]. Also, if we are interested in the probability P (|θ̃(k)| < K for all k ≥
k0), where K is a preselected constant, it is possible to follow the line of thought in [61]

based on the Kolmogorov’s inequality for semi-martingales.

Remark 4.2 The main assumption for proving the almost sure convergence to the

extremal point and, hence, for complete measurement noise elimination, was that gains

α(k) and ε(k) tend to zero at a pre-specified rate. However, it might be the case that the

extremal point has some constant drift and is slowly changing in time. In this situation,

in order to achieve tracking of the extremal point, we can define positive lower bounds for

the time varying coefficients α(k) and ε(k), at the expense of not being able to completely

eliminate the noise influence any more. The values of the lower bounds would reflect the

compromise between the tracking capabilities of the algorithm and the noise immunity. It
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is also possible to apply adaptive procedures similar to those used in the neural network

training algorithms, based on the observations of the noisy criterion function, e.g. [14].

4.3 An Application to Mobile Sensors

In this section some direct applications of the stochastic extremum seeking scheme to the

optimal positioning of mobile sensors will be presented.

4.3.1 Noise Source Localization

Assume that we have a noise source which generates an independent zero-mean sequence

{ξ(k)} with variance which depends on a parameter θ, i. e., E{ξ(k)2} = R(θ), where R(θ)

is assumed to be a convex function of θ. Our goal can be to find the optimal θ∗ which

minimizes (or maximizes) R(θ) by measuring {ξ(k)} generated for different values of θ,

having in mind that θ can define the physical position of the noise source. According to the

above results, we can apply the extremum seeking (ES) scheme for this purpose. Assume

that the measurements fed to the ES scheme in Fig. 4.1 are defined as y(k) = ξ(k)2, and

write y(k) = R(θ) + ζ(k), where ζ(k) = ξ(k)2 − R(θ). The sequence {ζ(k)} is white and

zero-mean with finite variance, assuming that the fourth-order moment of ξ(k) is finite.

Therefore, according to Fig. 4.1, y(k) represents the noisy output, R(θ(k)) the noiseless

output and ζ(k) the measurement noise, according to the above notation. Using Theorem

4.1, it is straightforward to prove the following Corollary.

Corollary 4.1 Assume that y(k) = ξ(k)2, where {ξ(k)} is an independent zero-mean

sequence with variance R(θ) which depends on a parameter θ and satisfies (4.1), and

E{ξ(k)4} < ∞. Then, under the Assumptions (A.4.1-7) the ES scheme depicted in Fig. 4.1

generates θ(k) which converges to θ∗ a.s. and in the mean square sense under the condition

that supk(|θ̃(k)|) < K (a.s.), 0 < K < ∞.

The Corollary has a great practical importance, since it represents a basis for either

noise source localization or finding a position with the lowest noise influence. In the next

section, the scheme in Fig. 4.1 is generalized to the two dimensional case, using orthogonal

sinusoidal perturbations. Then, utilizing the above approach, the ES scheme becomes able
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to find the position in the plane corresponding to the extremum of the noise variance.

4.3.2 Optimal Observer Positioning for State Estimation

Assume now that we are faced with a more complex problem of state estimation in which

the Kalman filter is applied, and that it is necessary to find the best place in the plane

for an observer, assuming that the measurement noise variance is coordinate dependent.

This problem is fundamental in applications related to mobile sensor networks. Recall

that in the optimal steady state regime of the estimator the innovation sequence {ν(k)} =

{z(k)−Cx̂(k|k)} is white (under appropriate assumptions), where z(k) is the system output,

x̂(k|k) is the state estimate and C is the output matrix of the system (assuming that

we have a scalar output). Assume that {v(k)} is the filter measurement noise, which is

white, with variance depending on the position of the observer in a plane, i.e., E{v(k)2} =

R(θ1(k), θ2(k)) (θ1(k) and θ2(k) are the observer’s coordinates). Then, we have

E{ν(k)2} = Rν(θ1(k), θ2(k)) = CP (θ1(k), θ2(k))CT + R(θ1(k), θ2(k)) (4.55)

where P (θ1(k), θ2(k)) is the steady state estimation error covariance matrix which satisfies

the algebraic Riccati equation

P = ΦPΦT − ΦPCT [CPCT + R]−1CPΦT + Q (4.56)

where Φ is the state matrix of the system model and Q is the input driving noise covariance.

We can calculate p = CPCT by assuming that CΦPΦT CT ≈ ap and CΦPCT ≈ bp, for

some constants a and b. From (4.56) we obtain that p, which is scalar, is a solution of the

quadratic equation

b2p2 + (1− a)p(p + R)− q(p + R) = 0 (4.57)

where q = CQCT . It is easy to verify that for R small enough p ≈ p∗ + a∗R, where p∗ and

a∗ > 0 are constants depending on the parameters a, b and q. Therefore, from (4.55) we

derive

Rν(θ1(k), θ2(k)) ≈ R∗
ν + a∗1(θ1(k)− θ∗1)

2 + a∗2(θ2(k)− θ∗2)
2 (4.58)
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for some constants R∗
ν , a∗1 and a∗2, assuming that R(θ1(k), θ2(k)) can be approximated by

a quadratic function, where (θ∗1, θ
∗
2) is the optimal position. From this result we conclude

that the observer position can be asymptotically optimized by applying the ES scheme as

in Corollary 1. Namely, we take the realizations ν2(k) as measurements (instead of ξ2(k))

and apply the ES scheme from Fig. 1, for one dimensional case; the scheme asymptotically

provides the optimal observer position. Two dimensional case will be analyzed in detail in

the next three sections.

One practical modification of this scheme is to take 1
T

∑k
i=k−T+1 ν(i)2 instead of ν2(k)

in order to reduce the equivalent noise variance (by the factor T ).

4.4 Velocity Actuated Vehicles

In this section, the proposed one dimensional ES scheme will be generalized to the two

dimensional, hybrid case. We will model an autonomous vehicle, moving in the plane, as a

velocity actuated point mass such that

ẋ = vx, ẏ = vy (4.59)

where (x, y) is the position of the point mass and vx and vy are the velocity inputs. We

will consider a stochastic, two dimensional, discrete-time extremum seeking algorithm with

sinusoidal perturbation connected to (4.59), as shown in Figure 4.2. The nonlinear map

represents the signal being tracked. As in the 1D case, we will assume that the nonlinear

map J = f(x, y) has a local minimum and our goal is to position the vehicle at this minimal

point. For simplicity, we will assume that this nonlinear map is quadratic and its Hessian

is diagonal

J = f(x, y) = f∗ + qx(x− x∗)2 + qy(y − y∗)2 (4.60)

where (x∗, y∗) is the unknown maximizer, f∗ is the unknown minimum and qx and qy

unknown positive constants. The discrete integrator from the 1D scheme shown in Fig.

4.1 is now contained in the vehicle model (4.59). Notice that this is a hybrid system:

the continuous part contains zero order hold circuits (ZOH) and integrators for the two
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channels, and the discrete part contains the whole ES algorithm.

 

1

s

hz

z

+

−1
 

( )kγ  

( )
x

s k ( )
x

t k  

x  

 

( )kγ

( )
y

t k( )
y

s k  

1

s

xv

y
v  y  

VEHICLE 

( , )f x y

ZOH 

ZOH 

( )w k  

( )kς

( )v k
T

Figure 4.2: Extremum seeking scheme for the velocity driven vehicle

The following equations model the behavior of the described system:

v(k) = f∗ + qx(x(k)− x∗)2 + qy(y(k)− y∗)2 (4.61)

x(k) = (1− z−1)Z{L−1{ 1
s2
}|t=kT }[ξ(k) + sx(k)] (4.62)

y(k) = (1− z−1)Z{L−1{ 1
s2
}|t=kT }[η(k) + sy(k)] (4.63)

sx(k) = α(k + 1) cos(k + 1)ω − α(k) cos kω (4.64)

sy(k) = α(k + 1) sin(k + 1)ω − α(k) sin kω (4.65)

ξ(k) = −γ(k)tx(k)w(k) (4.66)

η(k) = −γ(k)ty(k)w(k) (4.67)

w(k) = M(z)[v(k) + ζ(k)] (4.68)

tx(k) = β(k) cos(ωk − ϕ) (4.69)

ty(k) = β(k) sin(ωk − ϕ) (4.70)
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where ζ(k) is the measurement noise, M(z) = z−1
z+h , x(k) and y(k) are coordinates of the

vehicle in discrete time.

The additive sinusoidal signals sx(k) and sy(k) can easily be mapped to the vehicle

output, when we simply obtain

s∗x(k) = T
k−1∑

j=1

sx(j) = Tα(k) cosωk, (4.71)

s∗y(k) = T

k−1∑

j=1

sy(j) = Tα(k) sinωk. (4.72)

Similarly as in the 1D case we define the tracking error as:

x̃(k) = x∗ − x(k) + s∗x(k) (4.73)

ỹ(k) = y∗ − y(k) + s∗y(k) (4.74)

and obtain the following compact vector-matrix representation:

Z̃(k + 1) = Z̃(k) + ε(k)C(k)w(k) (4.75)

where Z̃(k) = [x̃(k), ỹ(k)]T , ε(k) = Tγ(k)β(k) and C(k) = [cos(ωk − ϕ), sin(ωk − ϕ)]T .

In the sequel, we will assume that the assumptions (A.4.1-6) are satisfied. We will

analyze the scheme from Fig. 4.2 under the above assumptions term by term, following the

decomposition introduced in the proof of the Theorem 4.1. First, we focus on the essential

terms allowing an adequate approximation of the gradient of the function f(x, y), and,

consequently, convergence to its minimum. We substitute (4.73) and (4.74) in (4.61) and

extract the linear part of v(k) given by −2[qxs∗x(k)x̃(k) + qys
∗
y(k)ỹ(k)], and concentrate on

the corresponding part of the right hand side of (4.75), which is given by

L(k) = ε(k)C(k)S(z, k)[Z̃(k)], (4.76)

where S(z, k)[Z̃(k)] = qxM(z)[s∗x(k)x̃(k)] +qyM(z)[s∗y(k)ỹ(k)]. The vector L(k) can be

analyzed element by element. For the first element, one can obtain, using Lemmas 4.1-3,
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that

2c(ωk)M(z)[sinωkα(k)ỹ(k)] = s(2ωk)Re{M(ejωz)[α(k)ỹ(k)]}

+ c(2ωk)Im{M(ejωz)[α(k)ỹ(k)]}

− Im{ejϕM(ejωz)[α(k)ỹ(k)]}, (4.77)

where s(2ωk) = sin(2ωk − ϕ) and c(2ωk) = cos(2ωk − ϕ). Other elements of the matrix

L(k) can be treated similarly. Therefore, for the final form for L(k) we get

L(k) = ε(k)[−A(k) + B1(k) + B2(k)]12, (4.78)

where 12 = [1, 1]T ,

A(k) =
1
2

[
Re{ejϕmα(k)} Im{ejϕnα(k)}
−Im{ejϕmα(k)} Re{ejϕnα(k)}

]

B1(k) =
1
2
c(2ωk)

[
Re{mα(k)} Im{nα(k)}
Im{mα(k)} −Re{nα(k)}

]

B2(k) =
1
2
s(2ωk)

[
−Im{mα(k)} Re{nα(k)}
Re{mα(k)} Im{nα(k)}

]
,

mα(k) = M(ejωz)[α(k)x̃(k)] and nα(k) = M(ejωz)[α(k)ỹ(k)].

Following methodologically the proof of the Theorem 4.1, we decompose the terms with

α(k)x̃(k) and α(k)ỹ(k) as inputs in the following way:

ε(k)Re{ejϕM(ejωz)[α(k)x̃(k)]} = ρ(k)Re{ejϕM(ejωz)[x̃(k)]}+ ε(k)δl(k) (4.79)

where ρ(k) = ε(k)α(k). Using the fact that M(z) is asymptotically stable, we can derive

that

δl(k) = [α(k − 1)− α(k)]y1(k). (4.80)

where y1(k) is the output of a stable linear time varying system with x̃(k) as input. Analo-

gous conclusions can be derived for ε(k)Im{ejϕM(ejωz)[α(k)x̃(k)]}, and for the case when
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x̃(k) is replaced by ỹ(k).

The crucial point is defining the matrix

K =

[
cos(ϕ + ψ) sin(ϕ + ψ)
− sin(ϕ + ψ) cos(ϕ + ψ)

]
|M(ejω)|. (4.81)

where ψ = Arg{M(ejω)}. Notice that we also have that κ1 =
∑∞

j=0 lR(j) and κ2 =
∑∞

j=0 lI(j), where lR(j) and lI(j) are the impulse responses of Re{ejϕM(ejωz)} and Im{ejϕ

M(ejωz)}, respectively.

It is possible to demonstrate that the first term in (4.79) can be written as

Re{ejϕM(ejωz)[x̃(k)]} = −κ1x̃(k) + δx
κ1

(k) (4.82)

and

Im{ejϕM(ejωz)[x̃(k)]} = −κ2x̃(k) + δx
κ2

(k), (4.83)

where

δx
κ1

(k) = ρ(k − 1)y2(k) + ε(k − 1)y3(k) (4.84)

and

δx
κ2

(k) = ρ(k − 1)y4(k) + ε(k − 1)y5(k). (4.85)

y2(k), y3(k), y4(k) and y5(k) represent outputs of asymptotically stable linear time varying

systems with x̃(k) and ỹ(k) as inputs. The same reasoning is applicable to the similar terms

in (4.78) depending on ỹ(k).

Matrices B1(k) and B2(k) can be treated term by term. For example, we can show that

Re{M(ejωz)[α(k)x̃(k)]} = α(k)κ1x̃(k) + σR(k) (4.86)

or

Im{M(ejωz)[α(k)x̃(k)]} = α(k)κ2x̃(k) + σI(k) (4.87)

where
∑∞

k=1 σR(k) < ∞ and
∑∞

k=1 σI(k) < ∞. Then, one can demonstrate that σR(k) =

ρ(k−1)y6(k)+ε(k−1)y7(k) and σI(k) = ρ(k−1)y8(k)+ε(k−1)y9(k) where y6(k), y7(k), y8(k)
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and y9(k) are outputs of asymptotically stable LTV systems with Z̃(k) as input.

Finally, after substituting the obtained expressions back into (4.75), we obtain

Z̃(k + 1) = [I −Kρ(k) + Γ(k)]Z̃(k) + Π(k) + Φ(k) + U(k) (4.88)

where Γ(k) is a matrix sequence having the form [C1s(2ωk)+C2c(2ωk)]ε(k), where C1 and

C2 are constant matrices. Π(k) is a matrix sequence containing the terms δl(k), δx
κ1

(k), δx
κ2

(k),

etc., described earlier and analyzed in detail in Section 4.2, while

Φ(k) = ε(k)C(k)M(z)[x̃(k)2 + ỹ(k)2] (4.89)

and U(k) is the “external” input term

U(k) = ε(k)C(k)M(z)[f∗ + s∗x(k)2 + s∗y(k)2 + ζ(k)] (4.90)

We first realize the crucial fact that K > 0 if and only if cos(ϕ + ψ) > 0, that is

−π

2
< ϕ + ψ <

π

2
(4.91)

(notice also that ψ is close to π
2 for small values of ω). Furthermore, it is possible to show

(using the arguments exposed in the proof of the Theorem 4.1) that

|
∞∑

k=1

Γ(k)| =
N
2∑

j=1

Bj

∞∑

k=0

|ε(j + kN)− ε(j +
N

2
+ kN)| < ∞ (4.92)

where Bj , j = 1, . . . , N
2 are constant matrices with positive elements, N is the integer period

of [C1s(2ωk) + C2c(2ωk)]. Therefore, for the recursion Z̄(k + 1) = [I −Kρ(k) + Γ(k)]Z̄(k)

(which represents a part of (4.88)) we have

‖Z̄(k)‖ ≤ c0 exp{−c1

∞∑

j=1

kρ(j)} (4.93)

where c0, c1 > 0, implying limk→∞ ‖Z̄(k)‖ = 0, having in mind (A.4.4). Also, similarly as
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in the proof of the Theorem 4.1, we can conclude that
∑∞

j=1 Φ(j) < ∞. Since
∑∞

k=1 ρ(k) =

∞, by applying Kronecker’s lemma, we conclude that Z̃(k) → 0 almost surely (a.s) if
∑∞

k=1 U(k) < ∞ (a.s.) which has been already proved in Theorem 4.1. Therefore, we

proved the following theorem:

Theorem 4.2 Let the assumptions (A.4.1-6) and (4.91) be satisfied. Then, for the

scheme from Fig. 4.2, x(k) converges to x∗ and y(k) converges to y∗ almost surely and in

the mean square sense under the condition that supk(||Z̃(k)||) < B (a.s.), 0 < B < ∞.
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Figure 4.3: Velocity driven vehicle coordinates

Example 4.1 In this example we will apply the described ES algorithm to the adaptive

state estimation problem described in the Subsection 4.3.2. We assume the following model

for the discrete-time Kalman state estimator: F =
[

0.5 −0.1
0.2 0.2

]
, G =

[
0.2 0
0 0.2

]
, H = [0 1],

where F is the system matrix, G is the input matrix, H is the output matrix, input noise

covariance matrix is
[

1 0
0 1

]
and the measurement noise variance depends on the coordinates

of the vehicle x and y as the quadratic function R(x, y) = 0.5 + 5x2 + 5y2. The goal is to

position the vehicle (modeled as the single integrator) at the minimum variance point (0, 0),

without the knowledge of the function R(x, y). According to the above discussion, we can

apply the scheme in Fig. 4.2, using estimator’s squared residuals as the criterion function

which is to be minimized. We set the parameters in the scheme to be h = 0.07, ω = 0.6π,
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Figure 4.4: Velocity driven vehicle trajectory
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Figure 4.5: Noisy criterion function measurements (Kalman filter squared residuals)
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α(k) = 1
k0.25 , ε(k) = 1

k0.75 , ϕx = ϕy = 0, which satisfy the convergence conditions. The

coordinates x(t) and y(t) are shown in Fig. 4.3, for the initial conditions x(0) = 1.5 and

y(0) = 1. The trajectory of the vehicle is shown in Fig. 4.4. The exact convergence to the

optimal point is achieved in spite of the fact that the variance of the noise is time-varying

and very large when the vehicle is far from the optimal point (since it depends quadratically

on the vehicle coordinates). This is illustrated in Fig. 4.5, where the noisy measurements

(squared residuals), as a function of time, are shown.

4.5 Force Actuated Vehicles

In this section we are going to present a modified ES scheme with discrete-time control

for force actuated point mass models based on double integration in the analog part of the

system. Both the analog vehicle model and the digital ES scheme are presented in Fig.

4.6. One can observe that the control scheme in Fig. 4.6 differs from the one in Fig. 4.2
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Figure 4.6: Extremum seeking scheme for the force actuated vehicle

by the introduction of the ideal discrete time differentiators 1 − z−1. Compare this with

[115], where a purely analog scheme is considered, and where phase-lead compensators are

introduced in order to recover some of the phase in the feedback loop lost due to the addition

of the second integrator. The equations modelling the behavior of the scheme are similar
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to the ones for the scheme in Fig. 4.2. The only difference is that we have now

x(k) = (1− z−1)2Z{L−1{ 1
s3
}|t=kT }[ξ(k) + sx(k)] (4.94)

y(k) = (1− z−1)2Z{L−1{ 1
s3
}|t=kT }[η(k) + sy(k)]. (4.95)

The sinusoidal signals sx(k), sy(k), tx(k) and ty(k) are taken to have the same form as in

the case of single integrators. First notice that we have

(1− z−1)2Z{L−1{ 1
s3
}|t=kT } =

1
2
T 2(1− z−1)

z + 1
(z − 1)2

=
1
2
T 2(1 + z−1)

1
z − 1

. (4.96)

Consequently, the sinusoidal signals sx(k) and sy(k) become

s∗x(k) =
1
2
T 2[α(k) cosωk + α(k − 1) cosω(k − 1)]

s∗y(k) =
1
2
T 2[α(k) sinωk + α(k − 1) sinω(k − 1)] (4.97)

when mapped to the discrete-time outputs of the vehicle, i.e., to the inputs of the nonlin-

earity. Consequently, we again have the relations (4.73) and (4.74), and the following new

system model:

Z̃(k + 1) = Z̃(k) + N(z)[ε(k)C(k)w(k)], (4.98)

where N(z) = 1
2T (1 + z−1).

Stability of this hybrid scheme can be studied using the same methodology as in Section

4.3 and Section 4.4. The main point is again the influence of the linear term L(k) (see

(4.78)), which becomes now

L(k) = N(z)[ε(k)C(k)S(z, k)[Z̃(k)]], (4.99)

where S(z, k) has the same form as in (4.78). Now, we have a more complicated case than

in Section 4.4. We have, for example,

N(z)[c(ωk)β(k)M(z)[s∗x(k)x̃(k)]] = Re{ej(ωk−ϕ)N(ejωz)[h(k)]} (4.100)
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where h(k) = Re{ej(ωk−τ)M(ejωz)[α(k)x̃(k)]}, τ is either 0 or ω (according to (4.97)).

However, our focus is on the term analogous to N(z)[ε(k)A(k)], where A(k) is defined in

(4.78). Noticing that, simply, cos(ωk−ϕ)[cosωk +cosω(k−1)] = cos ω
2 [cos(2ωk−ϕ− ω

2 )+

cos(ϕ− ω
2 )], we select the terms not depending on ωk and obtain the matrix A′(k) analogous

to A(k) (the difference is in the expressions for s∗x(k) and s∗y(k)) and K ′ analogous to K:

K ′

|M(ejω)| = cos
ω

2




cos(ϕ + ψ +
ω

2
) sin(ϕ + ψ +

ω

2
)

− sin(ϕ + ψ +
ω

2
) cos(ϕ + ψ +

ω

2
)


 (4.101)

According to the arguments used in Section 4.4, we conclude that the system is asymptot-

ically stable under the conditions (A.4.1-6) and if

−π

2
< ϕ +

ω

2
+ ψ <

π

2
. (4.102)

The rest of the stability analysis can be conducted following the proof of Theorem 4.2.

Example 4.2 In this example, we present the simulation results for the force actuated

vehicle seeking the minimum of the (unknown) function J = f(x, y) = 1+ 1
2(x+1)2 + 1

2(y +

0.5)2. The measured output of this nonlinear map is corrupted with the white noise with

variance σ2 = 0.4. The other parameters of the scheme in Fig. 4.6 are set to be h = 0.07,

ω = 0.6π, α(k) = 1
k0.25 , ε(k) = 1

k0.75 , ϕx = π, ϕy = −π, satisfying the conditions (A.4.2-6)

and (4.102). The coordinates of the vehicle x(t) and y(t) are shown in Fig. 4.7 and the

trajectory of the vehicle is shown in Fig. 4.8, for the initial position x(0) = 1, y(0) = 0.6.

Both coordinates converge exactly to the minimal point (−1,−0.5), in spite of the presence

of the strong noise which can be seen in Fig. 4.9, where the noisy measurements of the

criterion function J are depicted.

4.6 Nonholonomic Vehicles

In this section, we consider the unicycle model of a mobile robot with a sensor which is

collocated at the center of the vehicle (the case when the sensor is located at some distance

r from the center of the vehicle can be treated as in [114]). The equations of motion of the
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Figure 4.7: Force actuated vehicle coordinates
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Figure 4.8: Force actuated vehicle trajectory
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Figure 4.9: Noisy measurements of the criterion function

vehicle/sensor are

ẋ = v cos θ, ẏ = v sin θ, θ̇ = Ω0, (4.103)

where (x, y) are the coordinates of the center of the vehicle, θ its orientation and v, Ω0 are

the forward and angular velocity inputs. Our ES algorithm will be tuning only the forward

velocity input v, keeping the angular velocity Ω0 constant. The whole scheme containing

both the vehicle and the discrete-time control algorithm is represented in Fig. 4.10. Our
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Figure 4.10: Extremum seeking scheme for the unicycle vehicle model

immediate concern is the mapping of the system variables induced by the unicycle in discrete

120



time. It is straightforward to show that we have

x(k) = 2
sin ω0

2

Ω0

k−1∑

j=0

v(j) cosω0(j +
1
2
)

y(k) = 2
sin ω0

2

Ω0

k−1∑

j=0

v(j) sinω0(j +
1
2
) (4.104)

where ω0 = TΩ0. Assuming that the additive signal is given by s(k) = α(k) sin ω(k + 1
2),

we obtain that its maps to the nonlinearity inputs are

s∗x(k) =
sin ω0

2

Ω0

k−1∑

j=0

α(j)[cos(ω + ω0)(j +
1
2
) + cos(ω − ω0)(j +

1
2
)] (4.105)

s∗y(k) =
sin ω0

2

Ω0

k−1∑

j=0

α(j)[sin(ω + ω0)(j +
1
2
) + sin(ω − ω0)(j +

1
2
)] (4.106)

Assuming that k is large enough we obtain, after convenient trigonometric transformations,

that

s∗x(k) ≈ kxα(k) cos ωk cosω0k (4.107)

s∗y(k) ≈ kyα(k) cosωk sinω0k (4.108)

where kx and ky are appropriately defined constants. Furthermore, we define

x̃(k) = x∗ − x(k) + s∗x(k) (4.109)

ỹ(k) = y∗ − y(k) + s∗y(k) (4.110)

and obtain

Z̃(k + 1) = Z̃(k) + 2
sin ω0

2

Ω0
cosω0(k +

1
2
)ε(k)c(ωk)w(k) (4.111)

where c(ωk) = cos(ωk − ϕ).

Using the same methodology as in Section 4.4 we can analyze the scheme represented

by the equations (4.107)-(4.111). First, we extract the linear part of the second term on
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the right hand side of (4.111). We obtain, similarly as in Section 4.4, that

L(k) = k3 cosω0(k +
1
2
) cos(ωk − ϕ)S(z, k)[Z̃(k)] (4.112)

where S(z, k)[Z̃(k)] = qxM(z)[s∗x(k)x̃(k)] +qyM(z)[s∗y(k)ỹ(k)] and k3 is an appropriate con-

stant. In order to apply the methodology used in Section 4.3 and Section 4.4, we transform

the products in (4.112) and (4.107) into sums using standard trigonometric transformations,

and we apply Lemma 4.1 or (4.77) in the following way

2 cos((ω ± ω0)k − ϕ +
ω0

2
)M(z)[sin((ω ± ω0)k)α(k)ỹ(k)] =

= sin(2(ω ± ω0)k − ϕ +
ω0

2
)Re{M(ejωz)[α(k)ỹ(k)]}

+ cos(2(ω ± ω0)k − ϕ +
ω0

2
)Im{M(ejωz)[α(k)ỹ(k)]}

− Im{ej(ϕ−ω0
2

)M(ejωz)[α(k)ỹ(k)]}, (4.113)

Notice that the above relation shows the influence of the y-channel to the x-channel, i.e.

it defines the weight of ỹ in the linear part of the relation for x̃, similarly as in the single

integrator case. After a similar treatment of all the terms appearing in L(k) defined by

(4.112), we obtain an expression analogous to (4.78), consisting of four terms containing

sine and cosine functions with the frequencies 2(ω±ω0) as multipliers, four additional terms

containing sine and cosine functions with the frequencies 2ωk and 2ω0k as multipliers,

together with the main term analogous to A(k) in (4.78) not containing any sinusoidal

component. The last term is again crucial for stability of the scheme. Following (4.113),

one can derive that in the unicycle case we have

A′′(k) =

[
Re{ejϕ′mα(k)} Im{ejϕ′nα(k)}
−Im{ejϕ′mα(k)} Re{ejϕ′nα(k)}

]

where ϕ′ = ϕ− ω0
2 . For the matrix K ′′ analogous to K we get

K ′′ =

[
cos(ϕ′ + ψ) sin(ϕ′ + ψ)
− sin(ϕ′ + ψ) cos(ϕ′ + ψ)

]
|M(ejω}| (4.114)
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having in mind that the scheme in Fig. 4.10 contains the same processing blocks as the

scheme in Fig. 4.1. The above matrix is positive definite for

−π

2
< ϕ′ + ψ <

π

2
(4.115)

which does not impose any additional problem in a priori selection of ϕ in the multiplying

signal. Therefore, the scheme in Fig. 4.10 is stable under the conditions (A.4.1-6) plus

condition (4.115).
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Figure 4.11: Nonholonomic vehicle coordinates

Example 4.3 In this example we illustrate the simulation results for optimal positioning

of the Kalman estimator, as described in the Example 4.1, with the single integrators

replaced by the unicycle. The Kalman estimator parameters are assumed to be the same

as in the Example 4.1. We apply the scheme in Fig. 4.10 the same way as in the case

of velocity actuated vehicle (by taking the estimator’s squared residuals as the criterion

function to be minimized). The parameters of the scheme are set to be h = 0.07, ω = 0.6π,

α(k) = 1
k0.25 , ε(k) = 1

k0.75 , ϕ = 0, Ω0 = ω/5, which satisfy the conditions (A.4.2-6), as well

as the condition (4.115). The convergence of the coordinates x(t) and y(t) to the optimal

point is illustrated in Fig. 4.11. The trajectory of the unicycle is shown in Fig. 4.12.
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Figure 4.12: Nonholonomic vehicle trajectory

4.7 Multi-Target Extremum Seeking Using Global Utility

Functions

This section is devoted to the problem of target assignment in multi-agent systems using

multi-variable extremum seeking algorithm with specially designed global utility functions

which capture the dependance among different, possibly conflicting, agents’ objectives.

Assume we are faced with the problem of assigning N targets, defined by N minima

of N unknown functions (assuming each function has exactly one minimum), to N agents,

so that each agent is assigned with a different target. In particular, assume that each, out

of N agents can measure N different (unknown) functions fi(xi, yi), i = 1, ..., N , xi and yi

are agents coordinates, and the goal is to design an algorithm that will automatically lead

the agents to a configuration in which they will cover the minima of all the functions fi,

i = 1, ..., N . Towards this goal, we can define global utility functions that depend on all the

measured functions by all the agents, that would have exactly N ! minima corresponding

to all the configurations in which each target is covered by exactly one agent. If by fij we

denote the function fi measured by the j-th agent, the simplest utility function satisfying
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the formulated condition is:

F (f11, f12, ..., fNN ) = m1f11f12...f1N + m2f21f22...f2N + ... + mNfN1fN2...fNN (4.116)

where mi > 0, i = 1, ..., N are weighting parameters which determine the target significance

(the larger mi is, the more important the target i is). Assuming that the values of the

function fi at minimum points are zero, the function (4.116) will have exactly N ! minima

corresponding to all the configurations in which the agents has covered all the targets

(minima of all the functions fi). Hence, we can apply the multi-variable extremum seeking

algorithm ([6]) in order to find the local extremum of the function (4.116). This extremum

will correspond to the best configuration of the agents in which they cover all the targets.

This final configuration is the closest one to the initial positions of all the agents, taking into

account the weights of the targets mi. The proposed algorithm, involving multi-variable

extremum seeking, is shown in Fig. 4.13. Obviously, this scheme is centralized, since we
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Figure 4.13: Multi-target extremum seeking using utility function F

assume that all the agents have access to all the measurements of the other agents. The

signals sxi(k), syi(k), txi(k) and tyi(k) are in the same form as in the Section 4.4. Each

agent applies a 2D ES scheme (such as the one shown in Fig. 4.2, assuming velocity

driven vehicles), but with different frequency sinusoidal perturbation, which has to satisfy
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ωi + ωj 6= ωk, for all i, j, k = 1, ..., N ([6]). Therefore, the resulting scheme is a 2N

dimensional ES scheme, which solves the problem of seeking the closest local extremum of

the given utility function F , having in mind the assumption that all the agents have the

access to this function. Similar schemes as in Sections 4.5 and 4.6 can be applied in the

cases of force actuated vehicles or unicycles, respectively.

Another utility function that can be applied is in the following form ([2]):

F (f11, f12, ..., fNN ) = m1(1− e−δf11)...(1− e−δf1N ) + ... + mN (1− e−δfN1)...(1− e−δfNN )

(4.117)

where δ 6= 0 is a parameter which determines the level of utility dependence. This function

involves the normalized deviations from the targets and, hence, is less sensitive to very

large deviations (1− e−δfij → 1 when fij →∞,) at the expense of slower convergence. This

is desirable property in the proposed ES based algorithm, having in mind that for large

deviations from the minima the algorithm easily blows up.

Remark 4.3 The important assumption in the proposed multi-agent scheme is that

the values of the functions fi at the minimum points are zero. If this is not the case and

the minimal values are unknown, an adaptive strategy can be applied, in which the agents

would, in each step, subtract a percentage of the final values of the functions fi (which

should be zero) and then initialize the proposed algorithm again until these values are close

enough to zero.

Example 4.4 In this example we illustrate the proposed multi target extremum seeking

algorithm from Fig. 4.13 for the case of two agents. Functions measured by agents, whose

minima we are seeking are f1i = x2
i + y2

i , i = 1, 2 and f2i = (xi − 1)2 + (yi − 1)2, i = 1, 2.

The utility function (4.116) is applied, with m1 = 1 and m2 = 1. In Fig. 4.14, the

trajectories of the two vehicles (modeled as single integrators) are shown, for the initial

condition x1(0) = 0.6, y1(0) = 0.6, x2(0) = 0.4 and y1(0) = 0.4. It can be seen that both

minima are covered by the agents, each one going to the closer one. In Fig 4.15, trajectories

are shown for the initial conditions x1(0) = 1.2, y1(0) = 1.1, x2(0) = 0.7 and y1(0) = 0.7.

In this case, minimum of f1 is closer to both agents; hence both, agents aim at this target

at beginning. The second one changes its target to the minimum of f2 when the first one
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Figure 4.14: Two targets ES: trajectories of the vehicles
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Figure 4.15: Two targets ES: trajectories of the vehicles
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is much closer to the minimum of f1.

Example 4.5 In this example the proposed multi-target algorithm is applied for the case

of three agents. The measured functions are f1i = x2
i +y2

i , i = 1, 2, 3, f2i = (xi−1)2+(yi−1)2,

i = 1, 2, 3 and f3i = (xi + 1)2 + (yi + 1)2, i = 1, 2, 3. Hence, the targets are (0, 0), (1, 1)

and (−1,−1). The utility function (4.116) is applied, with m1 = 1, m2 = 1 and m3 = 1. In

this example, the additive measurement noise of small variance (0.1) is added to the agents’

measurements. The trajectories of the agents are shown in Fig 4.16, for the initial conditions

x1(0) = 1.4, y1(0) = 0.8, x2(0) = 0.25, y2(0) = 0.2, x3(0) = −0.5 and y3(0) = −0.5. Note
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Figure 4.16: Three targets ES: trajectories of the vehicles

here that depending on the noise realization different agents can end up in different targets.

In Fig 4.17, the trajectories are shown for the case of constant, non-vanishing integrator

gains and amplitudes of the sinusoidal perturbations in the ES scheme. The benefit of the

proposed time-varying scheme, capable of eliminating the measurement noise is obvious.

Example 4.6 Finally, this example illustrates the application of the utility function

(4.117) for two agents and for the two cases of the weighting coefficients m1 and m2.

Measured functions are the same as in the Example 4.4. In Fig 4.18 trajectories are shown

for the initial conditions x1(0) = 0.5, y1(0) = 0.5, x2(0) = 1.2 and y1(0) = 0.7, and for the

weighting coefficients m1 = 1, m2 = 1. In Fig 4.19 the trajectories are shown for the same
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Figure 4.17: Three targets ES: trajectories of the vehicles
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Figure 4.18: Two targets ES: trajectories of the vehicles
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Figure 4.19: Two targets ES: trajectories of the vehicles

initial conditions but for different weights: m1 = 6 and m2 = 1. In this case, the first target

has greater priority, so that the second agent (starting at the point (1.2, 0.7))) also aims at

the first target at the beginning, changing the trajectory towards the second target when

the first one is close enough to the more important one.
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Chapter 5

Conclusions and Future Directions

5.1 Thesis Summary

The primary focus of this thesis is on two crucial problems in multiple agent, networked

control systems and mobile sensor networks. The first one is the problem of decomposition

of complex/large-scale, networked systems into smaller, overlapping subsystems, formulat-

ing their local estimation and/or control laws and defining communication schemes (over

unreliable communication channels) which would ensure stability, acceptable performance,

robustness and scalability of the overall system. The second problem addressed in this the-

sis, which is the critical problem within mobile sensor networks, is the problem of searching

positions for mobile nodes on which optimal sensing capabilities can be achieved.

Novel, consensus based state and parameter estimation schemes have been proposed,

in both continuous-time and discrete-time. The algorithms are based on: a) overlapping

system decomposition, b) implementation of local state or parameter estimators according

to local resources, c) formulation of the inter-agent communication scheme based on the

consensus algorithm, which provides the global state or parameter estimates to all the

agents in the network. Stability and the asymptotic properties of the proposed algorithms

have been analyzed. Also, conditions concerning network complexity have been derived for

achieving asymptotic elimination of the measurement noise (when the number of agents go

to infinity). For the state estimation scheme, a strategy for obtaining consensus gains based

on the minimization of the total mean-square error is proposed. Properties and performance
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of the proposed schemes have been illustrated in several examples.

Several structures for multi-agent control based on a dynamic consensus strategy have

been proposed. After formally defining the problem of multi-agent control with informa-

tion structure constraints, two novel classes of overlapping decentralized control algorithms

based on consensus are presented. In the first class, an agreement between the agents is

required at the level of control inputs, while for the second class of algorithms, the agree-

ment is required at the state estimation level. In this case, a control scheme based on state

estimation with consensus, coupled with a globally optimal state feedback, is presented and

analyzed. The proposed control algorithms have been illustrated by several examples which

demonstrate their effectiveness. Also, the proposed consensus based control scheme has

been applied to decentralized overlapping tracking control of a planar formation of UAVs.

A comparison with the design methodology based on the expansion/contraction paradigm

and the inclusion principle is given.

In order to address the problem of searching the optimal sensing positions for mobile

sensors, new assumptions have been introduced into the extremum seeking algorithm with

sinusoidal perturbation. It has been assumed that the integrator gain and the perturbation

amplitude are time varying (decreasing in time with a proper rate) and that the output is

corrupted with measurement noise. The convergence of the algorithm, with probability one

and in the mean square sense, has been proved. The proposed one dimensional algorithm

has been extended to two dimensional, hybrid schemes and directly applied to the optimal

mobile sensor positioning, where the vehicles are modeled as single integrators, double

integrators or unicycles. Also, a multi-target assignment problem, where multiple objectives

need to be fulfilled by a number of agents has been addressed. An algorithm based on multi-

variable local extremum seeking of a suitably constructed global utility function has been

proposed and analyzed. It has been shown how the utility function parameters and agents’

initial conditions impact the trajectories and destinations of the agents. Several simulation

studies illustrate the proposed algorithms.
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5.2 Future Directions

One natural direction for future work is to extend the proposed extremum seeking based al-

gorithms for the optimal sensor placement to the multi-objective, decentralized optimization

scenarios, which are more desirable having in mind local constraints and communication un-

reliability of the mobile sensor networks. In particular, local utility functions can be designed

for each agent whose local optimization can lead to an overall goal. A natural approach

to these problems is the game theoretic approach where we treat each agent as a player

in a dynamic game, so that we can use game theoretic (cooperative or non-cooperative)

concepts to find particular strategies which correspond to global equilibriums.

In order to apply the proposed consensus based stochastic approximation algorithm to

the problem of system identification and adaptive control (e.g. for the identifications of

ARMA processes) the assumptions regarding local regression models need to be relaxed.

An analyzes of the asymptotic behavior of the proposed scheme with this relaxation, which

will lead to colored noise models, can be considered as future work. Also, in order to

achieve faster convergence, matrix gains in local recursive algorithms (e.g. local least square

algorithms) can be considered. Furthermore, a promising direction is to apply the proposed

consensus based scheme to a case when the local agents are using errors-in-variables models

([18]) for the local identification. In this case, the agents would calculate input-output

correlations according to their local models, and the consensus scheme can be applied in

order to achieve agreement upon the correlation functions.

Another future direction is to analyze more rigorously connective stability of the pro-

posed multi-agent control structures. In particular, a methodology based on vector Lya-

punov functions can be used in order to find subsystem interconnection gains (gains in the

consensus scheme) which would guarantee stability of the overall system.

Furthermore, the interaction between control and communication factors for the pro-

posed networked large scale systems can be explored in more details. In particular, one

can analyze other communication scenarios and architectures and introduce the parameters

such as delays, channel capacity, quantization errors or particular communication protocols

in the analysis of the proposed networked estimation or control algorithms.
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Applications of the proposed decentralized control and estimation algorithms are nu-

merous. Besides the proposed application to formations of UAVs, a promising one would

be to extend it to the control of formations of aircraft in deep space. This deserves a par-

ticular attention since the absolute positions of the aircraft can not be measured; hence the

agreement on the local estimates of the positions and the velocities among the surround-

ing aircraft (through the proposed consensus-based algorithms) is of crucial importance for

accurate positioning.
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[7] K. B. Ariyur and M. Krstić, Real time optimization by extremum seeking, Wiley,

Hoboken, NJ, 2003.

[8] Y. Bar-Shalom and X.R. Li, Multitarget-multisensor tracking: Principles and tech-

niques, YBS Publishing, 1995.

[9] B. Baran, E. Kaszkurewicz, and A. Bhaya, Parallel asynchronous team algorithms:

convergence and performance analysis, IEEE Trans. Parallel and Distributed Syst. 7

(1996), 677–688.

[10] R. Bellman, Introduction to matrix analysis, McGraw Hill, New York, 1960.

135



[11] C. Belta and V. Kumar, Abstraction and control for groups of robots, IEEE Transac-

tions on Robotics 20 (2004), 865–875.

[12] A. Berman and R. J. Plemmons, Nonnegative matrices in mathematical sciences,

Academic Press, New York, 1979.

[13] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and distributed computation: Numerical

methods, Prentice Hall, 1989.

[14] C. M. Bishop, Neural networks for pattern recognition, Clarendon Press, Oxford, 1995.

[15] V. D. Blondel, J. M. Hendrickx, A. Olshevsky, and J. N. Tsitsiklis, Convergence

in multiagent coordination, consensus and flocking, Proc. IEEE Conf. Decision and

Control, 2005.

[16] V. Borkar and P. Varaiya, Asymptotic agreement in distibuted estimation, IEEE Trans.

Autom. Control 27 (1982), 650–655.

[17] C. G. Cassandras and W. Li, Sensor networks and cooperative control, European

Journal of Control 11 (2005), 436–463.

[18] H. F. Chen, Stochastic approximation and its applications, Kluwer Academic Pub-

lisher, 2003.
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learning: data mining and prediction, 6th Seminar NEUREL, Belgrade, 2002.
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