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PARAMETRIZATION AND GEOMETRIC ANALYSIS
OF COORDINATION CONTROLLERS
FOR MULTI–AGENT SYSTEMS

Xiaoli Wang and Yiguang Hong

In this paper, we address distributed control structures for multi-agent systems with
linear controlled agent dynamics. We consider the parametrization and related geometric
structures of the coordination controllers for multi-agent systems with fixed topologies.
Necessary and sufficient conditions to characterize stabilizing consensus controllers are
obtained. Then we consider the consensus for the multi-agent systems with switching
interaction topologies based on control parametrization.
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1. INTRODUCTION

Cooperation control of multi-agent systems becomes a very active research area
from the beginning of this century. In fact, the distributed approach to large-scale
networked systems shows more feasibility and greater operational capability than
conventional centralized control and recent years have witnessed the rapid develop-
ment of distributed control protocols via interconnected communication to achieve
the collective tasks.

Consensus, formation, and swarming are important problems of multi-agent co-
ordination, since in reality it is usually required that all the agent vehicles achieve
the desired relative position and the same velocity. Various consensus or formation
problems were formulated and considered from different viewpoints ([3, 13, 14, 15]).
A general formulation of vehicle formation was shown and some problems such as
how the topology of the information flow affects the stability and performance of the
system coordination were discussed in [3]. The local controllers were proposed to
achieve a consensus among a group of autonomous mobile agents with second-order
dynamics with switching interconnection topologies in [5], while linear stabilizing
feedback was studied when the directed graph associated with the considered multi-
agent systems containing a spanning tree in [8].
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Controller parametrization is a very fundamental problem in control theory. It
provides an elegant and efficient way to solve the stabilizing and related design prob-
lems, with which all the stabilizing controllers are characterized in unified forms
([2, 7, 10, 12]). The parametrization of all asymptotically stabilizing controllers was
investigated for linear and nonlinear systems in many papers (see [11, 12] and [7]
and the references therein), respectively, where the parameterized controllers well
showed the structures of stabilizing controllers of the considered systems. There
were many results on parametrization structures of linear (dynamical) systems, but
these results could not be applied straightforward to multi-agent systems due to the
complexities of multi-agent interactions. On the other hand, although multi-agent
consensus or formation is a problem related to synchronization or stabilization of a
low-dimensional manifold (not stabilization of equilibria and limited cycles), there
are some relationships between the coordination control and simultaneous stabiliza-
tion of control systems ([2, 9]). In fact, linear-matrix-inequality-based formulas for
this problem and related techniques on simultaneous control are inspirative in the
studies of parametrization of multi-agent control design.

The objective of this paper is to study the parametrization of the coordination
controllers of multi-agent systems. In other words, we aim to give a general ex-
pression of all the coordination controllers of the considered multi-agent systems.
Motivated by the existing results on the necessary and sufficient conditions for the
formation stabilizing controllers (see [3, 8]), we show the geometric structures of
coordination controllers with necessary and sufficient conditions for agent dynamics
in general linear forms. Also, we find the set of coordination controllers is diffeo-
morphic to the Cartesian product of the set of positive matrices and the set of skew
symmetric matrices satisfying certain algebraic conditions. Here, we mainly analyze
the local control make the system consensus with fixed graph topology, and the in-
terconnection topology between agents are not to be influenced by local controllers
as assumed in related papers like [3] and [8].

The paper is organized as follows. In Section 2, necessary preliminaries are given
for our analysis. Then, in Section 3, we study the parametrization and related geo-
metric structures of the coordination controllers for multi-agent systems with neces-
sary and sufficient conditions, and moreover, in Section 4, based on parametrization,
coordination problems are further investigated for multi-agent systems with switch-
ing topologies. Finally, the concluding remarks are given in Section 5.

2. PRELIMINARIES

In this section, we will provide some preliminary knowledge for the discussion in the
following sections.

As usual, the interaction topology of multi-agent systems can be described by
graphs (see [4] for the details of graph theory). Let G = (V, E , A∗) be a weighted
directed graph (or digraph) of order N with the set of nodes V = {π1, π2, . . . , πN},
set of edges E ∈ V × V, and a weighted adjacency matrix A∗ = [aij ] ∈ RN×N with
nonnegative adjacency elements. An edge (πi, πj) in a weighted digraph denotes
that node πj can obtain information from node πi, but not necessary vice versa.
In this way, we call πi is the parent node and πj is the child node. The weighted
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adjacency matrix A∗ of a weighted digraph is defined such that aij is positive if
(πj , πi) ∈ E , while aij = 0 if (πj , πi) 6∈ E , and moreover, aii = 0 because self edges
are not allowed. The graph G is said to be undirected if (πi, πj) ∈ E⇔ (πj , πi) ∈ E ,
and let, aij = aji, ∀j 6= i. The set of neighbors of node πi at time t is denoted
by π(i)(t) = {πj ∈ V : (πi, πj) ∈ E , j = 1, . . . , N}. In this paper, we assume that
π(i)(t) 6= ∅, i = 1, . . . , N , meaning each agent can sense at least one other agent.
L = 4 − A∗ is the Laplacian matrix of G and 4 is the degree matrix of G with
diagonal elements di =

∑N
j=1 aij , i = 1, . . . , N . A directed path is a sequence of

edges in the directed graph G of the form (πi1, πi2), (πi2, πi3), . . . . An undirected
path in an undirected graph is defined analogously. A tree is a digraph, in which
every node has exactly one parent except for one node, called the root, which has
no parent, and the root has a directed path to every other node. A spanning tree
of a digraph is a tree formed by the graph edges that connect all the nodes of the
graph; namely, there exists at least one node having a directed path to all of the
other nodes. An undirected graph is said to be connected if it contains a spanning
tree.

The next lemma is well known (referring to [4]).

Lemma 2.1. 0 is an eigenvalue of Laplacian matrix L with 1N = (1, . . . , 1)T as the
corresponding eigenvector. A digraph has a spanning tree if and only if 0 is a simple
eigenvalue of L.

In what follows, the digraph is assumed to have a spanning tree.
In this paper, we consider a set of N agents, whose dynamics are identical as

follows:

ẋi = Axi + Bui, i = 1, . . . , N, (1)

where (A, B) is stabilizable, B is of full column rank, xi ∈ Rn, ui ∈ Rm, are the
states and controls of the agent i, i = 1, . . . , N . In the multi-agent network, each
agent receives the external state measurements relative to its neighbors as follows:

zi =

N∑

j=1

aij(xi − xj), i = 1, . . . , N,

and the control law is expressed as:

ui = Kzi, i = 1, . . . , N. (2)

The distributed control law ui based on the relative information zi of the system
cannot make the system converge to any given position. Instead, it may achieve the
system consensus (or formation); namely, make the following hold

lim
t→∞

[xi(t) − xj(t)] = 0, i, j = 1, . . . , N.

In this scenario, the graph topology is usually unchanged with control (2).
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In practice, the interactions among the agents are time-varying and therefore,
the interaction topologies of the considered multi-agent systems change over time.
Suppose that there is an infinite sequence of bounded, non-overlapping, continuous
time-intervals [ti, ti+1), i = 0, 1, . . . , starting at t0 = 0.

Denote the set of the interconnection digraphs with spanning trees as G =
{G1, G2, . . . , G

eN} with P = {1, 2, . . . , Ñ} as its index set. The special case is the
connected undirected graphs. As usual, we assume there is a dwell time τ such that
ti+1 − ti ≥ τ, i = 0, 1, · · · .

To describe the variable interconnection topologies, we define a switching signal
σ : [0,∞) → P, which is piecewise constant. Therefore, Gi and the connection weight
aij (i, j = 1, . . . , N) are time-varying, and moreover, Laplacian matrix Lp (p ∈ P)
associated with the switching interconnection graph is also time-varying (switching
at ti, i = 0, 1, . . .), though it is a time-invariant matrix in any interval [ti, ti+1). Let
x = (xT

1 , . . . , xT
N )T , then the dynamics considered under the switching interaction

topologies can be rewritten in a compact form:

ẋ = [IN ⊗ A + (IN ⊗ BK) (Lσ ⊗ In)]x, (3)

where ⊗ denotes the Kronecker product. In many cases, the interaction topologies
may be fixed, and then the multi-agent system becomes a special form of (3):

ẋ = [IN ⊗ A + (IN ⊗ BK) (L ⊗ In)]x, (4)

where L still represents the Laplacian matrix of a digraph with a spanning tree.
The consensus of system (3) is achieved under control (2), if, for any initial

condition (x1(0), . . . , xn(0)), the manifold Ω = {x ∈ RnN : x1 = . . . = xN} is set
attractive, or equivalently,

lim
t→+∞

‖xi(t) − xj(t)‖ = 0, i, j = 1, . . . , N.

Then (2) is called a coordination controller.
Finally, we introduce basic results of generalized inverse matrices (see [1] for

details). Let B† ∈ Rm×n be a generalized inverse matrix of B. Then

1) Both BB† and I − BB† are symmetric matrices. Furthermore,

BB†B = B, B†BB† = B†, BT BB† = BT ,

2) BB† is an orthogonal projection matrix to Im B, and I−BB† is the orthogonal
projection matrix to orthogonal complement of ImB.

The next lemma is important in the following analysis.

Lemma 2.2. [1] Let A1 ∈ Rm×n, A2 ∈ Rp×q and A3 ∈ Rm×q be given. The linear
matrix equation A1XA2 = A3 can be solved if and only if

A1A
†
1A3A

†
2A2 = A3. (5)



Parametrization of Multi-Agent Coordination Controllers 789

Furthermore, if (5) is satisfied, all the solutions can be given by

X = A†
1A3A

†
2 − Z + A†

1A1ZA2A
†
2,

where Z ∈ Rn×p is an arbitrary matrix.

For convenience, denote the boundary of a set S as ∂S, the set of n × n positive
definite matrices as PD(n), the set of n × n skew symmetric matrices as Skew(n),
the set of n × n stable matrices as ϕ(n), and Sm

∗ = S∗ × . . . × S∗︸ ︷︷ ︸
m

for any set S∗.

3. CONTROLLER PARAMETRIZATION

In this section, we focus on the parametrization of coordination controllers for sys-
tem (4).

Note that the number of the nonzero eigenvalues of the Laplacian matrix asso-
ciated with the digraph having a spanning tree is N − 1 according to Lemma 2.1.
Then, we state with the following lemma.

Lemma 3.1. For given Qi ∈ PD(n), i = 1, . . . , N − 1, if there is K to satisfy

(A + λiBK)Pi + Pi(A + λiBK)T + Qi = 0, Pi ∈ PD(n), i = 1, . . . , N − 1, (6)

where λi, i = 1, . . . , N−1 are the nonzero eigenvalues of Laplacian matrix associated
with the digraph having a spanning tree, then Pi, i = 1, . . . , N − 1, satisfy

(I − BB†) (APi + PiA
T + Qi) (I − BB†) = 0, i = 1, . . . , N − 1, (7)

λj [B
†(APi + PiA

T + Qi)

(
I − 1

2
BB†

)
P−1

i + λiB
†SP−1

i ] (8)

=λi

[
B†(APj + PjA

T + Qi)

(
I − 1

2
BB†

)
P−1

j + λjB
†SP−1

j

]
, j = 1, . . . , N − 1

and K is taken the form of

K = − 1

λi
[B†(APi + PiA

T + Qi)

(
I − 1

2
BB†

)
P−1

i ] − B†SP−1
i , λi 6= 0, (9)

with

S = BB†S ∈ Skew(n) ⇔ S = BB†SBB† ∈ Skew(n). (10)

P r o o f . From (6), we have

APi + PiA
T + Qi = −(λiBKPi + λiPiK

T BT ). (11)
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Now pre-multiply and post-multiply I − BB† in both sides of (11), then we obtain
(7). Setting

W1 = BB†(APi + PiA
T + Qi)BB†,

W2 = BB†(APi + PiA
T + Qi) (I − BB†),

we get
APi + PiA

T + Qi = W1 + W2 + WT
2

from (7).
Choose a matrix S ∈ Skew(n) with S = BB†S and denote Si = λiS. Since

BB†(APi + PiA
T + Qi)

(
I − 1

2
BB†

)
+ BB†Si

= BB†(APi + PiA
T + Qi)

(
I − 1

2
BB†

)
+ Si

=
1

2
W1 + W2 + Si,

by Lemma 2.2, there exists a matrix K satisfying the following linear matrix equa-
tion:

−λiBKPi =
1

2
W1 + W2 + Si, (12)

and all the possible solutions can be given by

λiK = −B†(APi+PiA
T +Qi)

(
I − 1

2
BB†

)
P−1

i −B†SiP
−1
i +(I−B†B)Z, ∀Z ∈ Rm×n.

Since B is of full column rank matrix, the last term of the above equation is 0.
Note that the considered digraph has a spanning tree and therefore, the 0 eigen-

value of the Laplacian matrix is simple. Since K satisfies N − 1 equations in (6),
Pi, Pj , i, j = 1, . . . , N − 1 satisfy (8), and K takes the form of (9). ¤

The following theorem is about the parametrization of the multi-agent coordina-
tion controllers.

Theorem 3.2. Assume the interconnection digraph of the multi-agent system (4)
has a spanning tree. Then the following conditions are equivalent:

1) The consensus of system (4) is achieved.

2) Any coordination controller K makes A+λiBK stable (Hurwitz), where λi, i =
1, . . . , N − 1 are the nonzero eigenvalues of Laplacian matrix L.

3) For given Qi ∈ PD(n), i = 1, . . . , N − 1, K satisfies (6).

4) Pi ∈ PD(n), i = 1, . . . , N − 1 satisfy (7), (8).

5) K can be written in the form of (9) with Pi ∈ PD(n), i = 1, . . . , N − 1
satisfying (7), (8).
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P r o o f . 1) ⇔ 2): Since the digraph has a spanning tree, it follows from Lemma
2.1 that, Ω = {x ∈ RnN : x1 = . . . = xN} = {x ∈ RnN : (L ⊗ In)x = 0}. First we
prove that

[IN ⊗ A + (IN ⊗ BK) (L ⊗ In)]Ω ⊆ Ω.

For each x ∈ Ω, ∃α ∈ Rn, x = 1N ⊗ α, then we have

[IN ⊗ A + (IN ⊗ BK) (L ⊗ In)](1N ⊗ α) = (IN ⊗ A) (1N ⊗ α) = 1N ⊗ Aα ∈ Ω,

which also implies that the matrix with the transformation restriction of IN ⊗ A +
(IN ⊗ BK) (L ⊗ In) on Ω is exactly IN ⊗ A. Thus, the matrix IN ⊗ A + (IN ⊗
BK) (L ⊗ In) induces a linear transformation on the quotient space RnN/Ω, whose
eigenvalues are those of A + λBK with λ a nonzero eigenvalue of L. We conclude
that the quotient dynamics are globally asymptotically stable if and only if A+λBK
is stable for each λ 6= 0. Moreover, asymptotical stability of the quotient dynamics
is equivalent to x(t) + Ω → Ω, where x(t) is the solution of system (4). From the
definition of Ω, this means that the set Ω is attractive, namely, the consensus of
system (4) is achieved.

2) ⇔ 3): It is obvious.

3) ⇒ 4) and 3) ⇒ 5): They are obtained by Lemma 3.1.

4) ⇒ 3): From the proof of Lemma 3.1, we can see that, if Pi, i = 1, . . . , N − 1
satisfy (7) and (8), K can be given in (9), and then we have the equation (12) with
W1, W2 defined in the proof of Lemma 3.1. Noting that Si ∈ Skew(n), we have

−(λiBKPi + λiPiK
T BT ) = W1 + W2 + WT

2 .

With (7), APi + PiA
T + Qi = W1 + W2 + WT

2 . Then we obtain

−(λiBKPi + λiPiK
T BT ) = APi + PiA

T + Qi,

which is exactly (6).

The above proof also implies 5) ⇒ 3). Thus, Theorem 3.2 is proved. ¤

Remark 3.3. One of the main result in [3] showed that the controllers stabilize the
N identical agents if and only if they stabilize a single one with the same dynamics
modified by only a scalar taking values according to the eigenvalues of the inter-
connected Laplacian matrix, while, in Theorem 3.2, we only deal with the nonzero
eigenvalues of the Laplacian matrix since we consider multi-agent consensus (or set
stability) instead of conventional stability. Additionally, in paper [8], the authors
made discussions on how to choose local feedback for the agent dynamics with sys-
tem matrices in some specific forms, while our system (1) takes a more general form.
In fact, we propose the coordination controllers with parametrization approaches,
different from those given in [3] and [8].

It is known that the controller parametrization of multi-agent coordination is very
important in practical design since it transforms the construction of the distributed
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controllers to the change of certain parameters in the controllers according to control
tasks or systems constraints, which may largely simplify the design problem in some
situations. Also, it is useful to study the geometric structures of the coordination
controllers.

For convenience, set

(1) PDN−1(n; A,B,Q1, . . . , QN−1) = {P = (P1, . . . , PN−1) : Pi ∈ PD(n), i =
1, . . . , N − 1 satisfy (7), (8)}.

(2) Skew(n; B) denotes the set of n × n skew symmetric matrices which satisfy
(10).

(3) Ks(A,B) denotes the set of coordination controllers for (4), that is to say the
system (4) achieves consensus under any coordination controller in Ks(A,B).

Remark 3.4. When N = 1, the multi-agent problem becomes a “single-agent”
problem, the conventional case discussed in some papers including [12]. In fact, it is
not hard to see that

1) For P = (P1, . . . , PN−1) ∈ PDN−1(n; A,B,Q1, . . . , QN−1), Pi is a subset of
m(2n−m+1)

2 -dimensional linear space {P ∈ PD(n) : (A + BK̄)P + P (A +
BK̄)T + Q = 0, Q ∈ PD(n)};

2) Skew(n; B) is a subset of m(m−1)
2 -dimensional linear subspace of Skew(n)

(note that if m = 1, Skew(n; B) is empty);

3) PD
N−1

(n; A,B,Q1, . . . , QN−1), Skew(n;B) are unbounded and convex.

The next result further shows the geometric structures of the coordination con-
trollers.

Theorem 3.5. The set Ks(A, B) is diffeomorphic to

PDN−1(n; A,B,Q1, . . . , QN−1) × Skew(n;B).

P r o o f . We show that (9) defines a bijective mapping

ψ(Q1,...,QN−1) : PD
N−1

(n; A,B,Q1, . . . , QN−1) × Skew(n; B) → Ks(A,B).

Clearly, it follows from Lemma 3.1 that K = ψ(Q1,...,QN−1)(P, S) belongs to Ks(A,B),
for any (P, S) ∈ PD

N−1
(n; A,B,Q1, . . . , QN−1) × Skew(n; B). To see ψ(Q1,...,QN−1)

is bijective, we need to show that, for any K ∈ Ks(A,B), there exists a unique
positive definite solution of equation (6):

Pi =

∫ ∞

0

exp((A + λiBK)t)Qi exp((A + λiBK)T t) dt.
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According to (12),

Si = λiS = −
(

λiBKPi +
1

2
W1 + W2

)
.

When λi 6= 0, we can take

S = − 1

λi

(
λiBKPi +

1

2
W1 + W2

)
.

By Lemma 3.1, Pi, i = 1, .., N − 1 satisfy (7), (8) and K is the form of (9). The
uniqueness of S follows easily from the contradiction to the existence of such two
pairs. Therefore, there is unique (P1, . . . , PN−1) ∈ PDN−1(n; A,B,Q1, . . . , QN−1),
S ∈ Skew(n; B). Thus, there is the inverse of mapping ψ(Q1,...,QN−1). More-

over, both ψ(Q1,...,QN−1) and ψ−1
(Q1,...,QN−1)

are of C∞ class since ψ(Q1,...,QN−1) and

ψ−1
(Q1,...,QN−1)

are polynomial functions. Thus, ψ(Q1,...,QN−1) is diffeomorphism (bi-

jective and differentiable mapping). ¤

The above theorem tells us that Ks(A,B) and PDN−1(n; A,B,Q1, . . . , QN−1) ×
Skew(n; B) share the same geometric structures. Then we go further to show the
relationship between

PDN−1(n; A,B,Q1, . . . , QN−1) × Skew(n; B)

and

(PD(n) × Skew(n))N−1 = (PD(n) × Skew(n)) × . . . × (PD(n) × Skew(n))︸ ︷︷ ︸
N−1

.

In fact, for any

(P, S) ∈ PDN−1(n; A,B,Q1, . . . , QN−1) × Skew(n; B), P = (P1, . . . , PN−1),

K can be written as the form of (9), and then

A + λiBK = A − BB†(APi + PiA
T + Qi)

(
I − 1

2
BB†

)
P−1

i − λiSP−1
i

= −1

2
QiP

−1
i + (S0(Pi) − λiS)P−1

i ,

where

S0(Pi) = APi − BB†(APi + PiA
T + Qi)

(
I − 1

2
BB†

)
+

1

2
Qi. (13)

Therefore, P ∈ PDN−1(n; A,B,Q1, . . . , QN−1) yields

S0(Pi) + S0(Pi)
T = (I − BB†) (APi + PiA

T + Qi) (I − BB†) = 0.
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Thus, S0(Pi) − λiS ∈ Skew(n).
Denote ϕi(n; A,B) = {A+λiBK : K ∈ Ks(A,B)}, i = 1, . . . , N − 1. Obviously,

a linear mapping

χ : Ks(A, B) 3 K → (A+λ1BK, . . . , A+λN−1BK) ∈ (ϕ1(n; A,B), . . . , ϕN−1(n; A,B)),

induce an imbedding f−1
(Q1,...,QN−1)

◦ χ ◦ ψ(Q1,...,QN−1) :

PDN−1(n; A,B,Q1, . . . , QN−1) × Skew(n; B) → (PD(n) × Skew(n))N−1,

where

f−1
(Q1,...,QN−1)

(A + λ1BK, . . . , A + λN−1BK)

= ((P1, S0(P1) − λ1S), . . . , (PN−1, S0(PN−1) − λN−1S)) .

Therefore, we can easily obtain

Corollary 3.6. There is an imbedding mapping from

PDN−1(n; A,B,Q1, . . . , QN−1) × Skew(n; B) to (PD(n) × Skew(n))N−1.

Note that when N = 1, the results in Theorem 3.5 and Corollary 3.6 are consistent
with those obtained in [12].

Two examples are given for illustrating the above results.

Example 1. Here we consider a group of 3 mobile agents, described by connected
undirected graphs. Obviously, the number of all the possible Laplacian matrices is 4.
Here we omit their exact expressions. We only consider one of the Laplacian matrix
of G as following:




2 −1 −1
−1 1 0
−1 0 1


 ,

the eigenvalues of it are λ1 = 0, λ2 = 1, λ3 = 3. In this example, set

A =

(
1 1
1 0

)
,

B = (1 0)T , then B† = (1 0). Represent Pi ∈ PD(2), i = 1, 2, 3 as

Pi =

(
ηi1 ηi2

ηi2 ηi3

)
, ηi1 > 0, ηi1ηi3 > η2

i2,

S =

(
0 µ

−µ 0

)
,

Qi = I2, i = 1, 2, 3.
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From (10), we have S = (0)2×2.

Since m = 1, this can also be easily obtained (see Remark 3.4). Using (7), we get
ηi2 = − 1

2 . Let

P2 =

(
η1 − 1

2
−1

2 η3

)
, η1 > 0, η1η3 >

1

4
.

We can calculate P3 from (8). Based on (9), we have

K =

(
−η1

1

2
− η1 − η3

)
P−1

2 .

To show the imbedding map, we calculate S0(P2) (based on (13)), A + BK,

S0(P2) =

(
0 −η1

η1 0

)
, A + BK = S0(P2)P

−1
2 .

The next example will show the relationship between our results and some existing
coordination controllers.

Example 2. Consider a group of N mobile agents, described by digraphs with a
spanning tree.

If we set the system matrices A = 0, B = 1 and let λ be a nonzero eigenvalue of
the Laplacian matrix, then we can have S = 0, P = η, η > 0 with the same step as
in Example 1. Then we can obtain the coordination controllers:

ui = −
N∑

j=1

1

2λη
aij(xi − xj), i = 1, . . . , N,

from (9), which is consistent with the controllers given in some papers (like [13]).

For the second-order integrator system ẍ∗
i = ui, i = 1, . . . , N, we have

ẋi = Axi + Bui with xi = (x∗
i ẋ∗

i )
T ,

A =

(
0 1
0 0

)
,

and B = (0 1)T (and then B† = (0 1)). Let λ be the nonzero eigenvalue of the
Laplacian matrix, with the same step as in Example 1, we can have S = 0,

P =

(
η1 −1

2
− 1

2 η3

)
, η1 > 0, η1η3 >

1

4
.

Based on (9), we have

K = − 2

λ(4η1η3 − 1)

(
2η2

3 +
1

2
η1 + η3

)
.
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Figure. The positions and velocities of the three agents.

Take η1 = 2η2
3 + 1

2 − η3, and then we can construct the coordination controllers:

ui = − 2(η1 + η3)

λ(4η1η3 − 1)

N∑

j=1

aij(x
∗
i − x∗

j + ẋ∗
i − ẋ∗

j ), i = 1, . . . , N,

with the same form as given in the literature (such as [14]).
The initial conditions are randomly selected as follows:

x1(0) = 1, x2(0) = 3, x3(0) = 2, v1(0) = 1, v2(0) = 0, v3(0) = 3.

4. SWITCHING TOPOLOGIES

In this section, we study the multi-agent coordination with switching interaction
topologies based on controller parametrization.

Let us consider the system (3) with switching topologies. As defined before, there

are at most Ñ digraphs with spanning trees. For each digraph with a spanning tree,
there are N −1 nonzero eigenvalues of its Laplacian matrix. Therefore, for all the Ñ
digraphs, we will have Ñ(N −1) nonzero eigenvalues. In fact, since some eigenvalues

may be the same, the number of all different nonzero eigenvalues of the Ñ Laplacian
matrices, whose graphs have spanning trees, is finite, denoted as M̃ , which is no
larger than Ñ(N − 1). Denote the set of all the different nonzero eigenvalues as

Λ = {λi | λi, i = 1, . . . , M̃} for convenience.

The following result gives conditions on the consensus for system (3).

Theorem 4.1. Suppose the digraphs to describe the switching interconnection topolo-
gies have spanning trees and M̃ is the number of all different nonzero eigenval-
ues of all the Laplacian matrices, whose graphs have spanning trees. Given Qi ∈
PD(n)(i = 1, . . . , M̃), if for any 0 < ε, there exist Pi ∈ PD(n)(i = 1, . . . , M̃)
satisfying

(I − BB†) (APi + PiA
T + Qi) (I − BB†) = 0, i = 1, . . . , M̃ , (14)
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λj [B
†(APi + PiA

T + Qi)

(
I − 1

2
BB†

)
P−1

i + λiB
†SP−1

i ] (15)

= λi[B
†(APj + PjA

T + Qi)

(
I − 1

2
BB†

)
P−1

j + λjB
†SP−1

j ], j = 1, . . . , M̃

and λmin{QiP
−1
i } ≥ −2 ln ε

τ (τ is the dwell time), i = 1, . . . , M̃ , then the consensus
is achieved for system (3) under the distributed controller K of form (9).

P r o o f . Denote

λ∗
min = min

λi∈Λ
{λi} > 0, λ∗

max = max
λi∈Λ

{λi}.

For any p ∈ P, there exists a Tp making Up = TpLpT
−1
P upper triangular with

diagonal elements 0, λp
2, . . . , λ

p
N . Set

ν = max
p∈P

{‖Tp‖‖T−1
p ‖}, ε =

1

2ν
. (16)

We claim

−1

2
λmax{QiP

−1
i } ≤ Re(λ(A + λiBK)) ≤ −1

2
λmin{QiP

−1
i }, i = 1, . . . , M̃ . (17)

In fact, if there exist Pi ∈ PD(n), i = 1, . . . , M̃ satisfying (14), (15), with the same
procedure as given in Theorem 3.2, we obtain

(A + λiBK)Pi + Pi(A + λiBK)T + Qi = 0, i = 1, . . . , M̃ . (18)

Clearly, we have

P
− 1

2
i (A + λiBK)P

1
2

i + P
1
2

i (A + λiBK)T P
− 1

2
i + P

− 1
2

i QiP
− 1

2
i = 0.

Obviously,

λ(P
− 1

2
i QiP

− 1
2

i ) = λ(P
1
2

i P
− 1

2
i QiP

− 1
2

i P
− 1

2
i ) = λ(QiP

−1
i ). (19)

Let α∗ be the eigenvector of P
− 1

2
i (A + λiBK)P

1
2

i with respect to its eigenvalue λ∗,
that is,

P
− 1

2
i (A + λiBK)P

1
2

i α∗ = λ∗α∗. (20)

It is easy to see

λmin(−P
− 1

2
i QiP

− 1
2

i ) (α∗)T ᾱ∗ ≤ (λ∗ + λ̄∗) (α∗)T ᾱ∗ = 2Re(λ∗) (α∗)T ᾱ∗

≤ λmax(−P
− 1

2
i QiP

− 1
2

i ) (α∗)T ᾱ∗,
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where λ̄∗, ᾱ∗ are the complex conjugates of λ∗, α∗. Based on (19), we can have

−λmax{QiP
−1
i } ≤ 2Re(λ∗) = 2Re(λ(A + λiBK)) ≤ −λmin{QiP

−1
i },

which implies (17).
Since Pj satisfies

λ{QjP
−1
j } ≥ −2

ln ε

τ
, j = 1, . . . , M̃ ,

Re(λ(A + λiBK)) ≤ ln ε
τ , i = 1, . . . , M̃ . Set δ = minλi∈Λ{−Re(A + λiBK) } > 0,

then −δ ≤ ln ε
τ . Set

r(t) = (L ⊗ In)x(t), w(t) = (T ⊗ In)x(t),

Denote the Laplacian matrix as Lk during the interval [tk−1, tk), k = 1, 2, . . . , for
simplicity. Uk = TkLkT−1

k is upper triangular with diagonal elements 0, λk
2 , . . . , λk

N .
Then

r(t) = (Lk ⊗ In)x(t), w(t) = (Tk ⊗ In)x(t),

C̃k = (Tk ⊗ In)[IN ⊗ A + (IN ⊗ BK) (Lk ⊗ In)](T−1
k ⊗ In) = IN ⊗ A + Uk ⊗ BK,

where C̃k is upper triangular with diagonal blocks 0, A + λk
2BK, . . . , A + λk

NBK.
Since

ẇ(t) = (Tk ⊗ In)ẋ(t) = C̃kw(t),

w(tk) = exp(C̃k(tk − tk−1))w(tk−1).

Moreover,

r(tk) = (Lk ⊗ In)x(tk) = (Lk ⊗ In) (T−1
k ⊗ In)w(tk)

= (T−1
k ⊗ In) (Uk ⊗ In) exp(C̃k(tk − tk−1))w(tk−1).

Since

(Uk ⊗ In)C̃k = (Uk ⊗ In)(IN ⊗ A + Uk ⊗ BK)

= Uk ⊗ A + U2
k ⊗ BK = (IN ⊗ A + Uk ⊗ BK) (Uk ⊗ In)

= C̃k(Uk ⊗ In),

Uk ⊗ In, exp(C̃k(tk − tk−1)) can commute. Then

r(tk) = (T−1
k ⊗ In) exp(C̃k(tk − tk−1))(Uk ⊗ In)w(tk−1)

= (T−1
k ⊗ In) exp(C̃k(tk − tk−1)) (Tk ⊗ In)r(tk−1).

Since the eigenvalues of C̃k are the same with those of A + λk
i BK, λk

i ∈ Λ, we can

have Re(λ(C̃k)) ≤ −δ. It follows from [16] that

‖ exp(C̃k(tk − tk−1))‖ ≤ ‖ exp(−δ(tk − tk−1))‖ ≤ exp(−δτ) ≤ ε.
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As a result,

‖r(tk)‖ ≤ νε‖r(tk−1)‖ =
1

2
‖r(tk−1)‖,

where ν, ε are defined in (16). Thus, ‖r(tk)‖ → 0, as k → ∞. Since the digraphs
have spanning trees, according to Lemma 2.1 that x(tk) → Ω, as k → ∞. Therefore,
x(t) → Ω as t → ∞, which implies the consensus is achieved for system (3). ¤

5. CONCLUSIONS

The parametrization of coordination controllers is important in theoretical analysis
and practical applications. In this paper, we studied the parametrization problem
of multi-agent systems in a general linear form. The geometric structures of the
coordination controllers for multi-agent systems were obtained with fixed topolo-
gies. Some necessary and sufficient conditions were found to characterize the con-
sensus controllers. Also, the multi-agent consensus with switching interconnection
topologies was considered with help of controller parametrization. In future, the
parametrization and geometric analysis of coordination controllers for multi-agent
systems with heterogeneous dynamic systems will be considered.
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