31 research outputs found

    Connectivity vs Capacity in Dense Ad Hoc Networks

    Get PDF
    We study the connectivity and capacity of finite area ad hoc wireless networks, with an increasing number of nodes (dense networks). We find that the properties of the network strongly depend on the shape of the attenuation function. For power law attenuation functions, connectivity scales, and the available rate per node is known to decrease like 1/sqrt(n). On the contrary, if the attenuation function does not have a singularity at the origin and is uniformly bounded, we obtain bounds on the percolation domain for large node densities, which show that either the network becomes disconnected, or the available rate per node decreases like 1/n

    On the Effect of Channel Impairments on VANETs Performance

    Get PDF
    The primary means of studying the performance of vehicular ad hoc networks (VANETs) are computer simulations. Nowadays, the development of analytical models and the use of hybrid simulations that combine analytical modeling with discrete-event simulation are of great interest due to the significant reduction in computational cost. In this paper, we extend previous work in the area by suggesting an analytical model that includes distance-dependent losses, shadowing and small-scale fading. Closed-form expressions for the packet reception probability and the packet forwarding distance in the absence of simultaneous transmissions are presented. Numerical simulations validate the proposed formulation. The impact of path loss and fading on network throughput is explored. Interesting results that shows the efficacy of the approach are provided. The derived formulation is a useful tool for the modeling and analysis of vehicular communication systems

    An Analytical Expression for k-connectivity of Wireless Ad Hoc Networks

    Get PDF
    Over the last few years coverage and connectivity of wireless ad hoc networks have fascinated considerable attention. The presented paper analyses and investigates the issues of k-connectivity probability and its robustness in wireless ad hoc-network while considering fading techniques like lognormal fading, Rayleigh fading, and nakagami fading in the ad hoc communication environment, by means of shadowing and fading phenomenon. In case of k-connected wireless sensor network (WSNs), this technique permits the routing of data packets or messages via individual (one or more) of minimum k node disjoint communication paths, but the other remaining paths can also be used. The major contribution of the paper is mathematical expressions for k-connectivity probability
    corecore