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Abstract— We study the connectivity and capacity of finite area
ad hoc wireless networks, with an increasing number of nodes
(dense networks). We find that the properties of the network
strongly depend on the shape of the attenuation function. For
power law attenuation functions, connectivity scales, and the
available rate per node is known to decrease like 1/

√
n. On the

contrary, if the attenuation function does not have a singularity
at the origin and is uniformly bounded, we obtain bounds on
the percolation domain for large node densities, which show that
either the network becomes disconnected, or the available rate
per node decreases like 1/n.

I. INTRODUCTION

Properties of wireless ad hoc and sensor networks as funda-
mental as their connectivity and capacity are so challenging,
that they require (and may thus strongly depend on) assump-
tions on the physical features of the radio channels, on the
power assignments, on the node locations, on the traffic matrix,
to name a few.

The scalability of these properties is of primary concern,
hence the results obtained are often of asymptotic nature, valid
when the number of nodes n is large enough. This can be
achieved in two different ways: either the network is deployed
on a finite area s, with a sufficiently large node density λ
(we will speak in this paper of a dense network), or the node
density λ is kept constant, but the surface s is made sufficiently
large (we will then speak of an extended network).

In this paper, we assume that the nodes are located ac-
cording to a Poisson point process over the plane. We adopt
the physical model based on the signal to interference ratio
of Gupta and Kumar [1]. All stations are assumed to have
the same power, and some attenuation function l(·) is given.
Station A can receive a signal from station B if the ratio of
the power it receives from B to the total power received from
all other stations is above a threshold, denoted by β.

By analogy with CDMA networks, we introduce some
orthogonality factor γ, which can vary from 0 to 1, and
which stems from the imperfect orthogonality of the codes
used in CDMA. The value γ = 0 means that interferences
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are neglected or that the codes are perfectly orthogonal, the
value γ = 1 corresponds to the other extreme of a narrowband
system, where all interfering communications are considered
as noise.

A first study of connectivity of the resulting graph, called
Signal To Interference Ratio Graph (STIRG), has been made in
[2], for extended networks. The STIRG displays essential dif-
ferences from the graph obtained in the Boolean Model, where
γ = 0: the node degree is bounded instead of being Poisson,
and the existence of an edge between two nodes depends not
only on the location of these two nodes, but on the location
of all others. The main result of that paper was that under
attenuation functions with finite support, percolation occurs.
That is, the graph contains an infinite component, provided the
node density λ is large enough, and the orthogonality factor
γ is small enough. One can thus say that connectivity of ad
hoc networks scales well with the size of the network, even
in the case of models that take interferences into account.

In this paper, we first complete the study of the curve γ∗(λ)
in the 2-dim. parameter space (λ, γ), which marks the phase
transition between the sub-critical phase, where the STIRG
contains almost surely only finite-sized, disconnected clusters,
and the super-critical phase, where the STIRG contains an
infinite cluster with non-zero probability.

Contrary to [2], we do not assume that the attenuation
function is restricted to have a finite support, and we consider
the asymptotic connectivity of λ → ∞, hence this paper
focuses on dense networks.

We show that the shape of the attenuation function l(·) has
a crucial impact on this curve. In particular, we show that
the most popular attenuation function, namely the power law
function l(x) = x−α, where α is the path loss exponent (which
must be larger than 2 [2]) enjoys particular scaling properties
and a singularity at the origin that lead to a monotonically
increasing curve γ∗(λ).

However, in the most realistic case where l(x) is bounded
from above, the curve γ∗(λ) is non monotonic. Using site
percolation [3], we prove that for λ → ∞, γ∗(λ) decreases
at least as fast as 1/λ. Figure 1 shows the difference between
the two curves for the two attenuation functions l(x) = x−3

and l(x) = min(1, x−3), respectively. This means that the
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absence of singularity of the attenuation function at the origin
is an essential factor affecting connectivity in dense networks.

The vast majority of experimental power-law attenuation
models are valid at large scales, relatively far away from the
emitting antenna. Experimental models valid at a smaller scale
(from a few meters to a few kilometers) are usually piecewise
power laws, with different path loss exponents, increasing with
the distance from the antenna [4]. For example, [5] found by
regression a piecewise power law with two segments, the first
one having a path loss exponent between 1.4 and 2 for a range
of distances between 1 and 500 meters, and the second one
having a path loss exponent between 4 and 10 for a range
of distances between 500 and 1000 meters. The attenuation
function decreases slower close to the origin than a strict power
law, and is bounded from above for physical reasons. For
models neglecting interferences, and for extended networks,
these changes from a strict power law attenuation function
may be only second order effects on the performance of the
network. For models of dense networks taking interferences
into account, such as the STIRG, this paper will show that it
is no longer so.

Instead of deleting edges in the STIRG when the Signal
to Noise ratio is too low, which may result in a very poor
connectivity as the STIRG will be in a sub-critical phase if
the threshold β is set to high, an alternative is to decrease the
transmission rate. We will see that if the attenuation function
is bounded, the threshold β must decrease like 1/λ to maintain
connectivity. There is therefore a trade-off between capacity
and connectivity. By using a TDMA scheme allowing only a
fraction of 1/t nodes to emit simultaneously, one decreases the
amount of interferences, but also the rate available per node.
We prove that such a simple scheme does increase the connec-
tivity, at the expense of decreased capacity, which illustrates
again the trade-off between capacity and connectivity. Finally,
we prove that the total transport capacity does not increase
with n for bounded attenuation functions, whose support is
larger than the entire domain of size s, for any scheduling
strategy.

The paper is structured as follows. After having reviewed
some of the results on connectivity and capacity in the litera-
ture in the next section, we formally define the STIRG model
in Section III and the various assumptions made on the model.
We then review its scaling properties in Section IV, which will
be useful to examine the connectivity of dense networks with
a unbounded, power law attenuation function in Section V.
We next move to the central section of the paper, Section VI,
devoted to the asymptotic connectivity of the network and a
bound on capacity when the attenuation function is bounded
from above. Finally, we draw some conclusions and future
perspective in Section VII.

II. RELATED WORK

Connectivity and capacity are fundamental properties of ad
hoc networks.

Connectivity has received quite a lot of attention in the pre-
vious decade already, in the context of packet radio networks,
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and has gained renewed interest recently in the context of
ad-hoc and sensor networks. Many results apply to the full
connectivity of a network made of a finite number of nodes.
However, there are numerous papers on the connectivity of
infinite networks.

In extended networks, the connectivity problem is related
to percolation theory, which is to find the probability that a
node belongs to an infinite cluster of nodes. The most popular
model is the Poisson Boolean model, where node locations
follow a Poisson distribution, as in our work, but where only
the distance between two nodes determines the existence of
a link between them. This model is a particular case of the
STIRG for γ = 0, and was introduced by Gilbert [6], who
started the field of continuum percolation. Despite the apparent
simplicity of the Poisson Boolean model, the exact value of
the critical density λ∗ at which the transition occurs is still
an open problem. Some bounds on λ∗ have been obtained
analytically in [6], [7], [8], and numerically by many others
[9].

Percolation of a clustered wireless network, in which the
users (clients), who are distributed according to a Poisson
process, are all covered by base stations that can connect to
each other by a wireless link, is studied in [10]. This model
boils down to the Poisson Boolean Model if one base station
is placed at each client. The opposite case where base stations
are connected to each other by a wired link, but do not ensure
a complete coverage of the users, is studied in [11].

The assumption that two nodes are connected to each
other if and only if their distance is less than or equal to
some predefined radius is certainly too simplistic. In reality,
propagation in a real environment yields much more complex
and irregular coverage shapes than circles. Interestingly, it
appears that this irregularity makes the network percolate at
lower values of the density than the Boolean model [12]. The
later appears thus as a conservative model for noisy channels.
When interferences are taken into account however, this is
no longer true: for the same patterns, the Boolean model
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may have an infinite component of the connectivity graph,
whereas the STIRG could have no infinite component, or even
no connectivity at all [2]. This physical model was analyzed
in [13] in the infinite plane case under Poisson assumptions
within the context of CDMA networks. The level sets defining
the contours around a node where the Signal to Interference
has the same value can indeed have a very convoluted shape.

In dense networks, the full connectivity of the graph has
been shown to hold with probability 1 when the distance r
below which nodes can connect decreases at a rate slower
than

√
log n/n, with the number of nodes n tending to ∞ in

[14].
A similar problem, where the power of a node is adjusted

so that it can have a required number of neighbors, is studied
in [15]. When the node locations are restricted to be at the
vertices of a grid, instead of being scattered on the entire
area as in the previous examples, results on the asymptotic
connectivity of the network have been obtained in [16].

The capacity of wireless ad hoc networks belongs to the
very difficult field of multi-users information theory. In their
seminal paper, Gupta and Kumar [1] proved that the aggregate
transport capacity, defined as the sum of all the link capacities
multiplied by the distances between the source and destination,
is of the order of

√
n bit-meter per second, for dense networks,

point-to-point codes, a uniform traffic matrix and a power law
attenuation with a path loss exponent α > 2. This means that
the rate per user decreases as 1/

√
n and eventually reaches

0 for n → ∞. These results rely on the assumption that the
signal to noise and interference ratio exceeds some threshold
β, as in our paper. This assumption, which may make sense
in practice but is not truly of an information theoretic nature,
is not needed, and Xie and Kumar [17] have proven that
for attenuation functions of the type e−ax/xα, with either
a > 0 or α > 3, the aggregate transport capacity is of the
order of n/

√
log n bit-meter per second, under the assumption

that the minimum distance between any pair of nodes is
bounded below by some constant. This restriction forces the
domain size s to grow with n, hence that capacity result
applies to extended networks. These results were extended
to power law attenuation functions with α > 2 in [18], for
extended networks without the minimum distance restriction.
They encompass therefore the case where nodes are distributed
as a Poisson process.

These general results are more optimistic if one considers
some particular scenarios. For example, if there is only one
active source/destination pair, while the n− 2 other nodes act
as possible relays, the previous results would predict a con-
stant capacity, independent of n, whereas allowing arbitrarily
complex coding, this capacity is of the order of log n [19].
Another example is the increased capacity obtained when the
nodes are mobile: with one hop relaying, the total transport
capacity can be of the order of n [20]. Finally, the benefit
of hybrid multi-hop cellular networks is investigated for the
so-called protocol model in [21].

To summarize, one can notice that most of the papers study
the connectivity and capacity of ad hoc networks mainly for

the Boolean and physical models with power law attenuation
functions. We show in this paper that these properties are dra-
matically changed when the attenuation function is bounded
at the origin.

III. MODEL

On a given compact subset S of R
2 of area s, we consider a

two-dimensional Poisson process Φλ of intensity λ. The points
of the process are the nodes of the network. For any subset
E ⊂ S, we will denote by Φλ(E) the number of points located
in E. This number is a Poisson random variable of parameter
λe, where e is the area of E. In particular, the average total
number of points in S is

n := λs.

To describe the available links between these nodes, we use
the physical model as described in [1]. We define the signal
to noise and interference ratio (SINR) of the signal received
by Node j from Node i as

βij =
Pil(||xi − xj ||)

N0 + γ
∑

k �=i,j Pkl(||xk − xj ||) , (1)

where Pk is the power emitted by Node k, l(·) is the
attenuation function of the signals, N0 is the ambient noise,
and γ is the orthogonality factor between codes.

To study the connectivity of the network, we make the
assumption the two nodes are able to communicate directly if
the SINR of the signal they receive from each other is above
a certain threshold β:

Definition 1: Node i is directly connected to Node j if

βij > β and βji > β (2)
With this definition, we obtain a non-oriented graph that
describe the connectivity of the network. We call this graph
STIRG (Signal to interference ratio graph), as proposed in [2],
and denote it by G(λ, γ).

Throughout the paper, we make several assumptions on the
attenuation function l(·). The first assumption is that l(x) has
to decrease faster than x−2 when x tends to infinity. It was
proven in [2] that the STIRG model does not make sense
for large networks otherwise. In Section V, we assume that
l(x) = x−α, for some α > 2. In Section VI, we assume that
l(x) is decreasing, and that l(0) = M < ∞.

Moreover, for the sake of simplicity, while studying con-
nectivity, we will make the assumption that all the nodes emit
with a common power P . This assumption does actually not
essentially change the behavior of the model, compared to
the case where each node i emit with a particular power
Pi ∈ [Pmin, Pmax], with Pmin > 0 and Pmax < ∞. The
assumption that the minimal emitting power Pmin is strictly
positive will be relaxed in Sections VI-B and VI-C.

For the transport capacity, we do not require any minimal
SINR, but we assume that the available rate on a link is
given by the Gaussian channel model (the bandwidth has been
normalized to one for the sake of simplicity)

C(βij) =
1
2

log(1 + βij) ≤ 1
2
βij .
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We consider the model where communications take exclu-
sively place in a peer-to-peer manner. This means that at each
instant, each node emit data towards at most one other node,
and that the latter is the only node listening to the former. To
compute an upper bound to the actual transport capacity of
the network, we will thus sum the transport capacity provided
by each node. The transport capacity of an individual node
i, assuming that it transmits data towards Node j, is defined
as the capacity of the link C(βij) times the distance between
source and destination ||xi−xj ||. We will denote hereafter by
r(k) the destination of the data transmitted by Node k. In this
example, we have thus r(i) = j.

IV. SCALING PROPERTIES

In this section, we study the symmetry properties of the
STIRG model with respect to scaling. We derive a bunch of
useful tools that we will need later to study its properties.

A. The Poisson point process

We start by defining the dilation operator ha of R
2, with

a ∈ R+ as follows:

ha : R
2 −→ R

2

x �−→ ax

Let us also denote the probability space by Ω. If we apply
ha to the Poisson point process, we obtain another Poisson
point process, but with density λ/a2:

haΦλ = Φλ/a2 .

In particular, one can define Φλ and Φλ/a2 such that if we
apply ha to a particular realization of Φλ, we obtain the
corresponding realization of Φλ/a2 :

haΦλ,ω = Φλ/a2,ω ∀ω ∈ Ω.

Thus if x1 and x2 are two points of Φλ,ω , ax1 and ax2 belong
to Φλ/a2,ω . In particular, the distance between these points is
multiplied by a when we apply ha.

This technique, called coupling, allows us to compare
Poisson processes of different density. Briefly said, decreasing
the node density by a factor a2 is equivalent to multiply all the
distances by a (see [7] pp 28–31 for more details on scaling
and coupling).

B. The physical model

If we introduce now on top of the Poisson process our
physical model, we can derive its scaling properties. Let
us construct the STIRG for a given node density λ and
attenuation function l, and pick two nodes x1, x2 that are
directly connected. In other words, (2) holds for i = 1 and
j = 2. We apply then ha to the entire graph. We want to
show that the dilated (respectively contracted, if a < 1) graph
is another STIRG. We want thus to derive a condition on
ax1 and ax2 of the same form as (2). Let us try with a new
attenuation function l′(·). We want thus

P1l
′(||ax1 − ax2||)

N0 + γ
∑

k �=1,2 Pkl′(||axk − ax2||) > β.

This condition is always true if we choose l′ such that

l′(ax) = l(x).

Consequently, the STIRG G(λ, γ) with attenuation function
l(x) is equivalent by dilation to G(λ/a2, γ) with l′(x) =
l(x/a).

C. Symmetric attenuation functions

We saw that rescaling the STIRG model implies to modify
the attenuation function. We now look for a specific category
of these functions, such that the relative impact of rescaling
on the transmission gains is constant. In other words, if Node
1 sends to Node 2, and Node 3 sends to Node 4, we would
like to have

l(||ax1 − ax2||)
l(||x1 − x2||) =

l(||ax3 − ax4||)
l(||x3 − x4||) ,

or equivalently

l(ax)
l(x)

=
l(ay)
l(y)

, ∀a, x, y > 0.

We show in appendix that the only class of functions that has
this property happens to be the commonly used power law
function l(x) = cx−α. This implies that the model acquires
specific symmetry properties with respect to scaling when this
kind of attenuation function is considered. In the scaled graph,
we have (see Appendix)

P1a
−α||x1 − x2||−α

N0 + γ
∑

k �=1,2 Pka−α||xk − x2||−α
> β,

and thus

P1||x1 − x2||−α

aαN0 + γ
∑

k �=1,2 Pk||xk − x2||−α
> β. (3)

Rescaling the network in this case is therefore equivalent to
multiply the background noise by a factor aα. The attenuation
function remains unchanged.

D. Full connectivity and percolation

Let us conclude this section by a note on the difference
between full connectivity and connectivity in the super-critical
phase. For a given network topology, it is always possible to
find parameters to achieve full connectivity of the network. In
this paper, the position of the nodes is random. Therefore, we
want here to predict connectivity as a function of the param-
eters of the model. Because of the properties of the Poisson
point process, it is actually impossible to find parameters such
that the probability of fully connectivity is one.

For example, in the Boolean model, it has been shown in
[14] that the range of the nodes has to increase roughly like

√
n

to ensure fully connectivity. This means that given a number
of nodes n, one can choose a range r(n) such that the average
fraction of connected nodes is p(n), and

lim
n→∞ p(n) = 1.

However, for finite n, p(n) is always strictly smaller than 1.
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In this paper, to preserve the ergodic property of the model,
we will require that the probability for an arbitrary node
to be connected (that is, to belong to the largest connected
component of the network) is strictly positive. This requires
that the largest connected component contains a non-negligible
fraction of the nodes.

It was shown by simulation in [2] (and proven for bounded
decreasing attenuation functions over a finite support) that for
infinite area networks and for a sufficiently large node density
λ, there exists a critical value γ∗(λ) such that if γ < γ∗(λ), the
network contains a unique infinite-sized connected component.
The network is said to be super-critical in this case (we
sometimes also say that percolation occurs). Simulation results
show moreover that the fraction of nodes belonging to the
infinite component grows rapidly for γ < γ∗(λ). On the
contrary, if γ > γ∗(λ), the network is fragmented into finite-
sized components, and is said to be sub-critical.

In the case of a finite area network, as in this paper, the
picture remains the same. We simply consider a finite sample
of the infinite network. The average fraction of nodes in the
sample that belong to the infinite cluster is the same as in the
infinite network. Therefore, super-criticality implies positive
probability of connection. In the sequel, we will thus use
percolation to study connectivity.

V. POWER LAW ATTENUATION FUNCTIONS

As we saw in Section IV, when l(x) = x−α, the model
acquires new scaling properties. In particular, increasing the
node density by a factor a2 is equivalent to multiply the
background noise by a factor a−α. We show in this section
that the critical value γ∗(λ) is an increasing function of the
node density λ in this particular case, as observed in Figure
1.

Theorem 1: For an attenuation function l(x) = x−α, α >
2, the critical threshold γ∗(λ) for percolation of the STIRG
model, if it exists, is an increasing function of the node density.

Proof: Let λ1 and λ2 be two node densities such that
λ1 ≤ λ2. We consider a realization of G(λ1, γ), and pick an
edge of the graph, say between Node i and Node j. We define
also a =

√
λ1/λ2 ≤ 1. The SINR at Node j is

βij =
Pl(||xi − xj ||)

N0 + γ
∑

k �=i,j Pl(||xk − xj ||)
=

Paαl(||xi − xj ||)
aαN0 + γ

∑
k �=i,j Paαl(||xk − xj ||)

≤ Pl(a||xi − xj ||)
N0 + γ

∑
k �=i,j Pl(a||xk − xj ||) . (4)

On the other hand, if we apply the contraction ha to the
graph, we obtain a node density a2λ1 = λ2. The contracted
graph is thus the corresponding realization of G(λ2, γ). The
condition for the existence of a link between Node i and Node
j in G(λ2, γ) is

β′
ij =

Pl(||x′
i − x′

j ||)
N0 + γ

∑
k �=i,j Pl(||x′

k − x′
j ||)

> β,

where the coordinates x′
k are measured in the contracted space.

We have thus for any node k

x′
k = axk.

Therefore, because of (4),

β′
ij =

Pl(a||xi − xj ||)
N0 + γ

∑
k �=i,j Pl(a||xk − xj ||) > βij > β.

This proves that any link in G(λ1, γ) exists also in G(λ2, γ).
Super-criticality of the first implies thus super-criticality of
the second. However, we know that G(λ1, γ) is super-critical
if γ < γ∗(λ1). Therefore

γ < γ∗(λ1) ⇒ γ < γ∗(λ2).

We proved thus that γ∗(λ1) ≤ γ∗(λ2).
A word of caution is needed at this point, as the existence

of a non-trivial curve γ∗(λ) has not been proven to date for
power law attenuation functions, and it is only conjectured.
However, if it exists, γ∗(λ) enjoys a quite surprising property:
even though all nodes are emitting at the same time and thus
interfere more and more, increasing the node density helps
for connectivity. This result is counter-intuitive, and is due to
the very particular attenuation function. In fact, as l(x) tends
to infinity when x becomes small, the signal level remains
comparable to the interference level when the node density
increases.

The particularity of the power law attenuation function also
affects the capacity of the network. The case of a finite area
network with increasing node density has been studied in [1],
with this kind of attenuation function (in the physical model).
The result is that the total transport capacity of the network
grows at most like

√
n. This is a negative result, but we will see

in Section VI-C that the transport capacity remains constant
when the node density increases if the attenuation function is
bounded.

We conclude that power law attenuation functions lead to
scalable connectivity and half-scalable transport capacity in the
case of dense ad hoc networks. This is due to their invariance
property with respect to dilation.

VI. BOUNDED ATTENUATION FUNCTION

In this section, we address the case where the attenuation
function is uniformly bounded, namely:

l(x) ≤ M, ∀x ∈ R
+.

When the node density becomes high, the average level of
interference in the network becomes also high (its average
grows linearly with λ). If we assume that the attenuation
function is bounded, we see intuitively that communication
becomes impossible. One can observe that directly in the
expression of the signal-to-noise ratio:

bounded︷ ︸︸ ︷
Pl(||xi − xj ||)

N0 + γ
∑

k �=i,j

Pl(||xk − xj ||)
︸ ︷︷ ︸

unbounded

.
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r = 1

Node 3

Node 0

Node 1

Node 2

Fig. 2. A situation where the truncated attenuation performs better than the
unbounded one.

We guess that the critical value γ∗(λ) has to decrease to zero
when the node density λ increases. Simulation results confirm
this intuition, as shown in Figure 1. It is interesting to notice
that for moderate densities, the bounded attenuation function
leads to a much higher critical threshold than the power law.
This is due to the fact that the boundedness at the origin also
reduces the interference term.

To see more precisely what happens, let us look at a simple
example (depicted in Figure 2), with attenuation function
l(x) = min(1, x−α): consider a node (say Node 0) and assume
that it is connected to its two first neighbors (Nodes 1 and 2).
We look at the SINR available from the third neighbor (Node
3). When Node 0 listens to Node 3, most of the interference
comes from Nodes 1 and 2. If Node 3 is located at a distance
greater than 1 from Node 0, the strength of its signal at Node 0
is the same as with l(x) = x−α. However, if at the same time
Nodes 1 and 2 are located at a distance smaller than one (this
situation happens with a reasonable probability when λ has a
suitable value), their signals (taken as interference here) have
a magnitude bounded by 1. Thus, Node 3 has more chance to
be connected than in the unbounded attenuation function case.

A. Asymptotic behavior of γ∗(λ)

We will now study the asymptotic behavior of γ∗(λ) when
λ goes to infinity. We start by finding an upper bound and
show that it tends to zero when λ increases.

Let us assume that the attenuation function is decreasing:

x1 ≤ x2 ⇒ l(x1) ≥ l(x2)

and
l(0) = M. (5)

Second, we require that l(x) is greater than a positive
constant m in the neighborhood of the origin:

l(x) ≥ m, ∀x ∈ [0, δ], (6)

for some δ > 0.
Theorem 2: If the attenuation function is decreasing and

such that (5) and (6) hold, there exists a constant c1 < ∞
such that

γ∗(λ) <
c1

λ
. (7)

O

δ/2

Fig. 3. Mapping of the continuous STIRG model onto a site percolation
model

To prove this theorem, we will need the following simple
lemma:

Lemma 1: Let X be a Poisson random variable of param-
eter µ, and 0 < ε < 1 a positive constant. Then

lim
µ→∞ P[X ≤ (1 − ε)µ] = 0.

Proof: Using Chebycheff inequality:

P[|X − µ| ≥ εµ] ≤ V ar(X)
ε2µ2

=
1

ε2µ
.

Thus
lim

µ→∞ P[|X − µ| ≥ εµ] = 0,

which implies

lim
µ→∞ P[X ≤ (1 − ε)µ] = 0.

We then map our network onto a discrete model. We
proceed as follows: we divide R

2 into squares of edge length
δ/2, as depicted in Figure 3. The centers of these squares
form a lattice Z

2. We assume furthermore, without loss of
generality, that the origin of R

2 coincides with the origin of
the lattice.

Because of Condition (6), if there are n nodes in a square,
the sum of the interferences everywhere in the square is greater
than nm. Lemma 2 then follows:

Lemma 2: If there are more than

N ′ =
(1 + 2βγ)M

βγm
(8)

nodes inside a square, all nodes in this square are isolated.
Proof: Pick any node i inside the square, and another

node j (inside or outside the square). As l(·) is bounded from
above by M , we have

Pl(||xj − xi||) ≤ PM.
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Because of (6), we also have∑
k �=i,j

Pl(||xk − xi||) ≥
∑

k∈square,k �=i,j

Pl(||xk − xi||)

≥
∑

k∈square

Pl(||xk − xi||) − 2PM

≥ N ′Pm − 2PM

= βN ′N0 − 2PM.

Therefore we have

Pl(||xj − xi||)
N0 + γ

∑
Pl(||xk − xi||) ≤ PM

N0 + γ(βN ′Pm − 2PM)

≤ PM

γ(βN ′Pm − 2PM)

=
M

γ(βN ′m − 2M)
.

The above expression is clearly smaller than β when N ′ >
(1 + 2βγ)M/βγm, which implies that Node i is isolated.

We can now define a site percolation model by declaring a
site of Z

2 open if the square centered on this point contains
at most 2N ′ nodes. It is declared closed otherwise. It is clear
that each site is open or closed independently from the others.

We know from percolation theory that if

P(a site is open) < psite, (9)

the origin belongs to a finite cluster in the discrete model.
psite is the critical site percolation threshold, whose value
is around 0.59 (see [3] p.56). The number of nodes inside
a square is a Poisson random variable of parameter λδ2/4.
Lemma 1 implies that if for some 0 < ε < 1,

2N ′ ≤ (1 − ε)λδ2/4, (10)

we have
lim

λ→∞
P(a site is open) = 0,

which means that above some value of λ, Inequality (9) holds.
Inequality (10) is verified if:

2(1 + 2βγ)M
βγm

≤ (1 − ε)λδ2

4
, (11)

which can be recast as

γ ≥ 8M

β[(1 − ε)δ2λm − 16M ]
.

When λ ≥ 16M/δ2εm, a sufficient condition is

γ ≥ 8M

β(1 − 2ε)δ2λm
:=

c1

λ
. (12)

We thus proved that for sufficiently high densities, if γ ≥
c1/λ, the origin belongs a.s. to a finite cluster in the discrete
model. We now have to prove that in this case, the origin also
belong to a finite cluster in the continuous model.

Because of Lemma 2, when a site is closed, the square
centered on this site contains only isolated nodes (we will
call it hereafter a closed square). Therefore, in the continuous
model, when γ ≥ c1/λ, the origin is surrounded by a chain

q

Q

δ

δ/2

Node i

Node j

D1

D2

Fig. 4. The chain of closed squares separating the two nodes.

of closed squares with no link inside. To make sure that the
origin belong to a finite cluster, we have to prove that no link
can cross this chain.

Let us consider two nodes i and j, such that Node i is
located inside a square centered on an open site connected to
the origin (in the discrete model), and Node j is located inside
a square centered on an open site disconnected from the origin
(i.e. on the other side of the chain). As between these nodes,
there is a chain of closed squares, the distance between them
q := ||xi − xj || is larger than δ/2.

We consider two cases. First, we assume that δ/2 < q < δ.
In this case we construct the disk D1 of radius δ centered on
xi and the disk D2 of radius δ centered on xj , as depicted in
Figure 4. As the chain of closed squares separates xi and xj ,
there exists at least one closed square Q that has a non-empty
intersection with the segment [xi, xj ]. Moreover, the shortest
distance between [xi, xj ] and R

2\(D1 ∪ D2) is√
δ2 − q2

4
≥

√
3

2
δ.

As the diagonal of Q has length δ/
√

2, Q cannot have a non-
empty intersection with [xi, xj ] and with R

2\(D1∪D2) at the
same time. Therefore Q ⊂ D1 ∪ D2.

Furthermore, we count the number of nodes inside three
different subsets of Q:

N1 = Φλ(Q ∩ (D1\D2))
N2 = Φλ(Q ∩ (D2\D1))
N3 = Φλ(Q ∩ D1 ∩ D2).

As Q is a closed square, we have by assumption N1 + N2 +
N3 ≥ 2N ′. This implies that either

N1 + N3 ≥ N ′

or
N2 + N3 ≥ N ′.

Let us assume without loss of generality that the first inequality
holds. There are thus at least N ′ nodes located inside D1. As
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D1 has radius δ, the signal received by Node i from each of
these nodes is at least Pm. The SINR at Node i received from
Node j is thus upper-bounded by

βji ≤ PM

N0 + γN ′Pm
.

Plugging the value of N ′ into this expression, we obtain finally

βji ≤ β,

and no link between Node i and Node j exists. The same is
true if N2 + N3 ≥ N ′.

Let us now address the case where q > δ (the case q = δ
appears with probability zero). In this case, we draw the same
disks D1 and D2, but with radius q. There exists at least one
square Q of the chain such that Q ⊂ D1 ∪D2. We define N1,
N2 and N3 in the same way as above. Thus, either N1+N3 ≥
N ′ or N2 + N3 ≥ N ′.

Let us assume without loss of generality that N1+N3 ≥ N ′.
This implies that there are at least N ′ nodes inside D1. Node
j is by construction on the border of D1. Therefore, all these
nodes are closer to Node i than Node j. As we assumed that
l(x) is decreasing, the SINR at i from Node j is bounded
above by

βji ≤ Pl(q)
N0 + γPN ′l(q)

.

As M > m, from (8) we have

N ′ >
1

βγ
,

and thus
βji ≤ β,

meaning that the link cannot exist.
Consequently, we have proved that if the discrete model

is sub-critical, then the continuous model is sub-critical too.
We conclude that when (12) holds, the network is sub-critical.
This implies that the critical threshold is smaller than c1/λ.
This concludes the proof of Theorem 2.

In particular, we have

lim
λ→∞

γ∗(λ) = 0,

implying that for a fixed γ, the network eventually becomes
disconnected when the node density increases. In this case,
it would be interesting to decrease the required SINR β
(which means decreasing the rate on the links) in order to
reconnect the network. To finish this section, we will study
the asymptotic behavior of the critical β for percolation when
γ is fixed, that we will denote by β∗(λ).

We observe in (11) that β and γ play the same role, as they
are multiplied. Therefore, from this inequality, we can derive
a condition on β:

β ≥ 8M(1 + 2βγ)
(1 − ε)δ2γλm

≥ 8M

(1 − ε)δ2γλm
.

The condition has exactly the same form as the condition on
γ, and the same bound is valid for β∗(λ):

β∗(λ) ≤ c1

λ
. (13)

The two bounds (7) and (13) can be interpreted as follows:
when the node density becomes large, because of the interfer-
ences, one must either use wider spectrum (i.e. decrease γ) or
decrease the rate of the transmissions (i.e. decrease β). This
establishes thus a trade-off between connectivity and capacity.

B. A simple TDMA scheme

In the previous section, we concluded that connectivity
eventually becomes poor when the node density increases.
This is however true only if all nodes emit at the same time.
Actually, the poor connectivity is due to the interferences.
If we set γ = 0 in the model (we neglect interferences),
connectivity improves with density. This suggests that with
an appropriate strategy, good connectivity can be achieved in
this case.

In this section, we propose to randomly divide the nodes
into t categories (or time slots), and to let only the nodes of
one category emit at the same time. It has been shown in [2]
that using this scheme with t slots performs as well as having
γ = 1/t.

In this section, we compute a lower bound on the necessary
number of time slots t∗(λ) to restore connectivity when γ = 1
(no CDMA).

Theorem 3: If the attenuation function is decreasing and is
such that (5) and (6) hold, there exists a constant c2 > 0 such
that

t∗(λ) > λc2.
The derivation of this lower bound is very similar to that of

the previous section. We start thus with the same assumptions
on l(·). As each node chooses its category randomly between 1
and t, the process formed by the nodes of a particular category
is still a Poisson point process, but with intensity λ/t.

We divide the plane into squares in the same way as above,
i.e. as depicted in Figure 3. We then construct a site percolation
model on this grid by declaring a site of Z

2 closed if the square
centered on this site contain at least 2N ′ = 2(1 + 2β)M/βm
nodes of each category. Thus, if a site is declared closed,
during each time slot, according to Lemma 2 (with γ = 1),
the square is full of isolated nodes.

We compute now the probability that a site is closed. The
number of nodes of each category in a square is a Poisson
random variable of parameter δ2λ/2t. Let us call Ni the
variable counting the number of nodes of category i in the
square. We have

P(a site is closed) = P(
t⋂

i=1

{Ni > 2N ′})

=
t∏

i=1

P(Ni > 2N ′)

= P
t(Ni > 2N ′).
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Therefore, if

P(Ni > 2N ′) > t
√

1 − psite, (14)

where psite
∼= 0.59 is the site percolation threshold on Z

2, we
obtain

P(a site is open) < psite.

For having (14), the intensity of the Poisson random variable
Ni has to be large enough. Let µ be the minimal intensity of
a Poisson random variable Xµ such that P(Xµ > 2N ′) ≥
t
√

1 − psite. Then a sufficient condition for having (14) is

δ2λ

4t
> µ

or equivalently

t <
δ2λµ

4
.

We obtained thus the bound on t∗(λ) by proving that if

t < λc2

for some fixed constant c2 = δ2λµ/4, the network is almost
surely disconnected. This proves Theorem 3.

As each category has a node density λ/t, and as t > λc2,
we conclude that the node density of the nodes allowed to
emit at each time slot is uniformly bounded above by c2,
independently from the number of nodes. This means that
good connectivity can be achieved, but that nodes can emit
less and less frequently. This result suggests that the rate
throughput per node decreases like 1/λ.

However, our TDMA scheme is very simple, and our
negative result is possibly due to its sub-optimality. In the next
section, we study the transport capacity of dense networks with
bounded attenuation function in a much more general context.
We will see that the available rate per node has to decrease
like 1/λ, no matter what scheduling or power allocation is
used.

C. Transport capacity

In this section, we will prove that the total transport capacity
of dense ad hoc networks is bounded above by a constant,
independently from the power allocation strategy and number
of nodes.

We consider a compact region S of R
2, in which the

network is confined. We introduce furthermore the following
technical assumption on the attenuation function:

l(||x − y||) > 0 ∀x, y ∈ S. (15)

This condition is always verified if the attenuation is decreas-
ing and has unbounded support.

Theorem 4: If the attenuation function is bounded and
verifies (15), the total transport capacity of the network is
bounded above by a constant, independently of the number of
nodes.

As S is a compact set, we have

m := inf
x,y∈S

l(||x − y||) > 0.

Hereafter, we will denote by Pi the actual power emitted by
Node i, and by Ptot the total power emitted in the network.
Hence

Ptot =
∑

i

Pi.

Let us pick an arbitrary real number 0 < ε < 1/2, and call
dominant the nodes i such that Pi/Ptot > ε. Clearly, there are
no more than 1/ε dominant nodes in the network.

Let us now look at the transport capacity. As above, we
assume that Node i is transmitting towards a destination r(i)
located at a distance δi. The available SINR at Node r(i) is

βi,r(i) =
Pil(δi)

N0 + γI(xr(i))

with
I(xr(i)) =

∑
k �=i,r(i)

Pkl(||xk − xr(i)||).

As l(||x − y||) > m inside S by assumption, one can bound
I(xr(i)) from below

I(xr(i)) ≥ m(Ptot − Pi − Pr(i)),

and obtain a bound on βi,r(i)

βi,r(i) ≤ Pil(δi)
N0 + γm(Ptot − Pi − Pr(i))

.

Then, let us consider two distinct classes of nodes. The first
class C1 contains all nodes i that are not dominant and emit
towards a destination r(i) that is not dominant. For these
nodes, we use the following looser bound

βi,r(i) ≤ Pil(δi)
γmPtot(1 − 2ε)

.

The second class C2 contains the nodes that do not belong to
C1 (i.e. they are either dominant, or emit towards dominant
node, or both). For these nodes, we use the following bound:

βi,r(i) ≤ Pmaxl(δi)
N0

.

We notice that the second class contains a finite number of
nodes (this number is smaller than 2/ε).

We can now sum the individual transport capacities, and
obtain the total capacity of the network. In a first step, we
will add separately the transport capacities of the nodes of the
first class:∑

i∈C1

δiC(βi,r(i)) ≤
∑
i∈C1

1
2
δiβi,r(i)

≤
∑
i∈C1

δi
Pil(δi)

2γmPtot(1 − 2ε)

≤ max
i

[δil(δi)]
∑
i∈C1

Pi

2γmPtot(1 − 2ε)

≤ max
i

[δil(δi)]
Ptot

2γmPtot(1 − 2ε)

=
1

2γm(1 − 2ε)
max

i
[δil(δi)].
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We next add up the transport capacities of the nodes of the
second class:∑

i∈C2

δiC(βi,r(i)) ≤
∑
i∈C2

1
2
δiβi,r(i)

≤
∑
i∈C2

Pmax

2N0
δil(δi)

≤ Pmax

εN0
max

i
[δil(δi)].

The total transport capacity is thus bounded above by

Ctot ≤
(

Pmax

εN0
+

1
2γm(1 − 2ε)

)
max

i
[δil(δi)].

As l(·) is uniformly bounded and decreases at least as fast as
x−2, the function xl(x) is also bounded. This ensures that the
above maximum exists and is uniformly bounded, even if the
number of nodes goes to infinity.

We have therefore proved that the total transport capacity of
the network is uniformly bounded. Assuming a uniform traffic
matrix for example, this implies that the available bandwidth
per node decreases like 1/n.

VII. CONCLUSION

In this paper, we showed the strong impact of the shape
of the attenuation function on the properties of dense ad
hoc networks. The commonly used power law attenuation
confers to the model particular scaling properties. We used
the STIRG model defined in [2] to explain that in this case,
connectivity improves when the node density increases. The
transport capacity under these specific assumptions has been
proven to grow like the square root of the number of nodes,
by Gupta and Kumar [1].

We showed however that these results rely on the specific
shape of the power law function. In fact, if one uses a bounded
attenuation function, that does not diverge at the origin, both
connectivity and capacity results are much more pessimistic.
We proved that the critical value of the orthogonality co-
efficient γ∗(λ) must decrease at least as fast as 1/λ when
λ → ∞, which means that for a fixed value γ, the network will
become almost surely made of finite, disconnected clusters.
To keep the network well connected, one has to reduce the
minimal SINR required threshold β∗(λ) also like 1/λ, or
to limit the number of nodes that emit at the same time,
independently of the total number of nodes in the network. In
both cases, connectivity is maintained, but at the expense of a
decreased capacity. There is therefore a fundamental trade-off
between connectivity and capacity. We also proved that the
total transport capacity remains constant when the number of
nodes increases, provided that the attenuation function has a
support larger than the diameter of the network. This latter
result leads to much lower available rates per node (of the
order of 1/n) than in the Gupta and Kumar case (which was
of the order of 1/

√
n).

Physics predicts that the attenuation function has to be
bounded at the origin. Empirical models for attenuation func-
tions are usually piecewise power laws, valid for large scale

area, but with a smaller fading exponent close to the radiating
antenna. Other models (Rician, etc) need to be applied close to
the origin [4]. One suspects that the fading exponent tends to
zero when distances are very small. It remains to evaluate by
how much, in practice, ad hoc or sensor networks will have a
density large enough to invalidate a pure power law fading. It
is however clear that fundamental results on the connectivity
and capacity of dense ad hoc networks, which are almost the
only ones we have to date, strongly depend on the behavior
of the attenuation function at small scales.

APPENDIX

We consider a function that fulfill the following property:

l(ax)
l(ay)

=
l(x)
l(y)

∀x, y, a > 0

It follows from the above equality that

l(ax)
l(x)

=
l(ay)
l(y)

= c(a),

because x and y can be arbitrary chosen. Thus we have

l(ax) = c(a)l(x), ∀a, x �= 0.

By letting x = 1 in this last equality, we find that

c(a) =
l(a)
l(1)

,

and thus

l(ax) =
l(a)l(x)

l(1)
∀a, x �= 0

Let us consider now a transform of l:

L(x) := log (l(ex))

This new function is affine:

L(x + y) = log
[
l(ex+y)

]
= log [l(exey)]

= log
[
l(ex)l(ey)

l(1)

]

= log [l(ex)] + log [l(ey)] − log[l(1)]
= L(x) + L(y) − L(0),

and thus
L(x) = αx + L(0)

for some constant α. We finally compute then the original
function l(x):

l(x) = exp {L [log(x)]}
= exp [α log(x) + L(0)] = l(1)xα.
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