11 research outputs found

    Security in heterogeneous wireless networks

    Get PDF
    The proliferation of a range of wireless devices, from the cheap low power resource starved sensor nodes to the ubiquitous cell phones and PDA\u27s has resulted in their use in many applications. Due to their inherent broadcast nature Security and Privacy in wireless networks is harder than the wired networks. Along with the traditional security requirements like confidentiality, integrity and non-repudiation new requirements like privacy and anonymity are important in wireless networks. These factors combined with the fact that nodes in a wireless network may have different resource availabilities and trust levels makes security in wireless networks extremely challenging. The functional lifetime of sensor networks in general is longer than the operational lifetime of a single node, due to limited battery power. Therefore to keep the network working multiple deployments of sensor nodes are needed. In this thesis, we analyze the vulnerability of the existing key predistribution schemes arising out of the repeated use of fixed key information through multiple deployments. We also develop SCON, an approach for key management that provides a significant improvement in security using multiple key pools. SCON performs better in a heterogeneous environment. We present a key distribution scheme that allows mobile sensor nodes to connect with stationary nodes of several networks. We develop a key distribution scheme for a semi ad-hoc network of cell phones. This scheme ensures that cell phones are able to communicate securely with each other when the phones are unable to connect to the base station. It is different from the traditional ad hoc networks because the phones were part of a centralized network before the base station ceased to work. This allows efficient distribution of key material making the existing schemes for ad hoc networks ineffective. In this thesis we present a mechanism for implementing authenticated broadcasts which ensure non-repudiation using identity based cryptography. We also develop a reputation based mechanism for the distributed detection and revocation of malicious cell phones. Schemes which use the cell phone for secure spatial authentication have also been presented

    RANDOM GRAPH MODELING OF KEY DISTRIBUTION SCHEMES IN WIRELESS SENSOR NETWORKS

    Get PDF
    Wireless sensor networks (WSNs) are distributed collections of sensors with limited capabilities for computations and wireless communications. It is envisioned that such networks will be deployed in hostile environments where communications are monitored, and nodes are subject to capture and surreptitious use by an adversary. Thus, cryptographic protection will be needed to ensure secure communications, as well as to support sensor-capture detection, key revocation and sensor disabling. Recently, random key predistribution schemes have been introduced to address these issues, and they are by now a widely accepted solution for establishing security in WSNs. The main goal of the dissertation is to investigate and compare two popular random key predistribution schemes, namely the Eschenauer-Gligor (EG) scheme and the pairwise key distribution scheme of Chan, Perrig and Song. We investigate both schemes through their induced random graph models and develop scaling laws that corresponds to desirable network properties, e.g., absence of secure nodes that are isolated, secure connectivity, resiliency against attacks, scalability, and low memory load - We obtain conditions on the scheme parameters so that these properties occur with high probability as the number of nodes becomes large. We then compare these two schemes explaining their relative advantages and disadvantages, as well as their feasibility for several WSN applications. In the process, we first focus on the "full visibility" case, where sensors are all within communication range of each other. This assumption naturally leads to studying the random graph models induced by the aforementioned key distribution schemes, namely the random key graph and the random pairwise graph, respectively. In a second step, we remove the assumption of full visibility by integrating a wireless communication model with the random graph models induced under full visibility. We study the connectivity of WSNs under this new model and obtain conditions (for both schemes) that lead to the secure connectivity of th

    Connectivity in random key graphs ā€“ Simple proofs for special cases

    Get PDF
    We consider the random graph induced by the random key predistribution scheme of Eschenauer and Gligor under the assumption of full visibility. We report on recent results concerning a conjectured zero-one law for graph connectivity, and provide simple proofs for some special cases

    Zero-one laws for connectivity in random key graphs

    Get PDF
    The random key graph is a random graph induced by the random key predistribution scheme of Eschenauer and Gligor under the assumption of full visibility. We report on recent results concerning a conjectured zero-one law for graph connectivity.NSF Grant CCF-0729

    From cellular networks to mobile cloud computing: security and efficiency of smartphone systems.

    Get PDF
    In my ļ¬rst year of my Computer Science degree, if somebody had told me that the few years ahead of me could have been the last ones of the so-called PC-era, I would have hardly believed him. Sure, I could imagine computers becoming smaller, faster and cheaper, but I could have never imagined that in such a short time the focus of the market would have so dramatically shifted from PCs to personal devices. Today, smartphones and tablets have become our inseparable companions, changing for the better numerous aspects of our daily life. The way we plan our days, we communicate with people, we listen to music, we search for information, we take pictures, we spend our free time and the way we note our ideas has been totally revolutionized thanks to them. At the same time, thanks also to the rapid growth of the Cloud Computing based services, most of our data and of the Internet services that we use every day are just a login-distance away from any device connected to the Internet that we can ļ¬nd around us. We can edit our documents, look our and our friendsā€™ pictures and videos, share our thoughts, access our bank account, pay our taxes using a familiar interface independently from where we are. What is the most fascinating thing is that all these new possibilities are not anymore at the hand of technically-savvy geeks only, but they are available to newer and older generations alike thanks to the efforts that recently have been put into building user interfaces that feel more natural and intuitive even to totally unexperienced users. Despite of that, we are still far from an ideal world. Service providers, software engineers, hardware manufacturers and security experts are having a hard time in trying to satisfy the always growing expectations of a number of users that is steadily increasing every day. People are always longing for faster mobile connectivity at lower prices, for longer lasting batteries and for more powerful devices. On top of that, users are more and more exposed to new security threats, either because they tend to ignore even the most basic security-practices, or because virus writers have found new ways to exploit the now world-sized market of mobile devices. For instance, more people accessing the Internet from their mobile devices forces the existing network infrastructure to be continuously updated in order to cope with the constantly increase in data consumption. As a consequence, AT&Tā€™s subscribers in the United States were getting extremely slow or no service at all because of the mobile network straining to meet iPhone usersā€™ demand [5]. The company switched from unlimited trafļ¬c plans to tiered pricing for mobile data users in summer 2010. Similarly, Dutch T-Mobileā€™s infrastructure has not been able to cope with intense data trafļ¬c, thus forcing the company to issue refunds for affected users [6]. Another important aspect is that of mobile security. Around a billion of people today have their personal information on Facebook and half of them access Facebook from their mobile phone [7]; the size of the online-banking in America has almost doubled since 2004, with 16% of the American mobile users conducting ļ¬nancial-related activities from their mobile device [8]; on 2010, customers spent one billion of dollars buying products on Amazon via mobile devices [9]. These numbers give an idea of the amount of people that today could ļ¬nd themselves in trouble by not giving enough care into protecting their mobile device from unauthorized access. A distracted user who loses his phone, or just forgets it in a public place, even if for a short time only, could allow someone else to get unrestrained access to his online identity. By copying the contents of the phone, including passwords and access keys, an attacker could steal money from the userā€™s bank account, read the userā€™s emails, steal the userā€™s personal ļ¬les stored on the cloud, use the userā€™s personal information to conduct scams, frauds, and other crimes using his name and so on. But identity theft is not the only security problem affecting mobile users. Between 2011 and 2012, the number of unique viruses and malwares targeting mobile devices has increased more than six times, according to a recent report [10]. Typically, these try to get installed in the target device by convincing the user to download an infected app, or by making them follow a link to a malicious web site. The problems just exposed are major issues affecting userā€™s experience nowadays. We believe that ļ¬nding effective, yet simple and widely adoptable solutions may require a new point of view, a shift in the way these problems are tackled. For these reasons, we evaluated the possibility of using a hybrid approach, that is, one where different technologies are brought together to create new, previously unexplored solutions. We started by considering the issues affecting the mobile network infrastructure. While it is true that the usage of mobile connectivity has signiļ¬cantly increased over the past few years, it is also true that socially close users tend to be interested in the same content, like, the same Youtube videos, the same application updates, the same news and so on. By knowing that, operators, instead of spending billions [11] to update their mobile network, could try an orthogonal approach and leverage an ad-hoc wireless network between the mobile devices, referred to in literature as Pocket Switched Networks [12]. Indeed, most of the smartphones on the market today are equipped with short-ranged radio interfaces (i.e., Bluetooth, WiFi) that allow them to exchange data whenever they are close enough to each other. Popular data could be then stored and transferred directly between devices in the same social context in an ad-hoc fashion instead of being downloaded multiple times from the mobile network. We therefore studied the possibility of channeling trafļ¬c to a few, socially important users in the network called VIP delegates, that can help distributing contents to the rest of the network. We evaluated VIP selection strategies that are based on the properties of the social network between mobile devices users. In Chapter 2, through extensive evaluations with real and synthetic traces, we show the effectiveness of VIP delegation both in terms of coverage and required number of VIPs ā€“ down to 7% in average of VIPs are needed in campus-like scenarios to ofļ¬‚oad about 90% of the trafļ¬c. These results have also been presented in [1]. Next we moved to the security issues. On of the highest threats to the security of mobile users is that of an identity theft performed using the data stored on the device. The problem highlighted by this kind of attacks is that the most commonly used authentication mechanisms completely fail to distinguish the honest user from somebody who just happens to know the userā€™s login credentials or private keys. To be resistant to identity theft attacks, an authentication mechanism should, instead, be built to leverage some intrinsic and difļ¬cult to replicate characteristic of each user. We proposed the Personal Marks and Community Certiļ¬cates systems with this aim in mind. They constitute an authentication mechanism that uses the social context sensed by the smartphone by means of Bluetooth or WiFi radios as a biometric way to identify the owner of a device. Personal Marks is a simple cryptographic protocol that works well when the attacker tries to use the stolen credentials in the social community of the victim. Community Certiļ¬cates works well when the adversary has the goal of using the stolen credentials when interacting with entities that are far from the social network of the victim. When combined, these mechanisms provide an excellent protection against identity theft attacks. In Chapter 3 we prove our ideas and solutions with extensive simulations in both simulated and real world scenariosā€”with mobility traces collected in a real life experiment. This study appeared in [2]. Another way of accessing the private data of a user, other than getting physical access to his device, could be by means of a malware. An emerging trend in the way people are fooled into installing malware-infected apps is that of exploiting existing trust relationships between socially close users, like those between Facebook friends. In this way, the malware can rapidly expand through social links from a small set of infected devices towards the rest of the network. In our quest for hybrid solutions to the problem of malware spreading in social networks of mobile users we developed a novel approach based on the Mobile Cloud Computing paradigm. In this new paradigm, a mobile device can alleviate the burden of computationally intensive tasks by ofļ¬‚oading them to a software clone running on the cloud. Also, the clones associated to devices of users in the same community are connected in a social peer-to-peer network, thus allowing lightweight content sharing between friends. CloudShield is a suite of protocols that provides an efļ¬cient way stop the malware spread by sending a small set of patches from the clones to the infected devices. Our experiments on different datasets show that CloudShield is able to better and more efļ¬ciently contain malware spreading in mobile wireless networks than the state-of-the-art solutions presented in literature. These ļ¬ndings (which are not included in this dissertation) appeared in [3] and are the result of a joint work with P.h.D student S. Kosta from Sapienza University. My main contribution to this work was in the simulation of both the malware spreading and of the patching protocol schemes on the different social networks datasets. The Mobile Cloud Computing paradigm seems to be an excellent resource for mobile systems. It alleviates battery consumption on smartphones, it helps backing up userā€™s data on-the-ļ¬‚y and, as CloudShield proves, it can also be used to ļ¬nd new, effective, solutions to existing problems. However, the communication between the mobile devices and their clones needed by such paradigm certainly does not come for free. It costs both in terms of bandwidth (the trafļ¬c overhead to communicate with the cloud) and in terms of energy (computation and use of network interfaces on the device). Being aware of the issues that heavy computation or communication can cause to both the battery life of the devices [13], and to the mobile infrastructure, we decided to study the actual feasibility of both mobile computation ofļ¬‚oading and mobile software/data backups in real-life scenarios. In our study we considered two types of clones: The off-clone, whose purpose is to support computation ofļ¬‚oading, and the back-clone, which comes to use when a restore of userā€™s data and apps is needed. In Chapter 5 we give a precise evaluation of the feasibility and costs of both off-clones and back-clones in terms of bandwidth and energy consumption on the real device. We achieved this by means measurements done on a real testbed of 11 Android smartphones and on their relative clones running on the Amazon EC2 public cloud. The smartphones have been used as the primary mobile by the participants for the whole experiment duration. This study has been presented in [4] and is the result of a collaboration with P.h.D. Student S. Kosta from Sapienza University. S. Kosta mainly contributed to the experimental setup, deployment of the testbed and data collection

    Efficient Passive Clustering and Gateways selection MANETs

    Get PDF
    Passive clustering does not employ control packets to collect topological information in ad hoc networks. In our proposal, we avoid making frequent changes in cluster architecture due to repeated election and re-election of cluster heads and gateways. Our primary objective has been to make Passive Clustering more practical by employing optimal number of gateways and reduce the number of rebroadcast packets

    From cellular networks to mobile cloud computing: security and efficiency of smartphone systems.

    Get PDF
    In my ļ¬rst year of my Computer Science degree, if somebody had told me that the few years ahead of me could have been the last ones of the so-called PC-era, I would have hardly believed him. Sure, I could imagine computers becoming smaller, faster and cheaper, but I could have never imagined that in such a short time the focus of the market would have so dramatically shifted from PCs to personal devices. Today, smartphones and tablets have become our inseparable companions, changing for the better numerous aspects of our daily life. The way we plan our days, we communicate with people, we listen to music, we search for information, we take pictures, we spend our free time and the way we note our ideas has been totally revolutionized thanks to them. At the same time, thanks also to the rapid growth of the Cloud Computing based services, most of our data and of the Internet services that we use every day are just a login-distance away from any device connected to the Internet that we can ļ¬nd around us. We can edit our documents, look our and our friendsā€™ pictures and videos, share our thoughts, access our bank account, pay our taxes using a familiar interface independently from where we are. What is the most fascinating thing is that all these new possibilities are not anymore at the hand of technically-savvy geeks only, but they are available to newer and older generations alike thanks to the efforts that recently have been put into building user interfaces that feel more natural and intuitive even to totally unexperienced users. Despite of that, we are still far from an ideal world. Service providers, software engineers, hardware manufacturers and security experts are having a hard time in trying to satisfy the always growing expectations of a number of users that is steadily increasing every day. People are always longing for faster mobile connectivity at lower prices, for longer lasting batteries and for more powerful devices. On top of that, users are more and more exposed to new security threats, either because they tend to ignore even the most basic security-practices, or because virus writers have found new ways to exploit the now world-sized market of mobile devices. For instance, more people accessing the Internet from their mobile devices forces the existing network infrastructure to be continuously updated in order to cope with the constantly increase in data consumption. As a consequence, AT&Tā€™s subscribers in the United States were getting extremely slow or no service at all because of the mobile network straining to meet iPhone usersā€™ demand [5]. The company switched from unlimited trafļ¬c plans to tiered pricing for mobile data users in summer 2010. Similarly, Dutch T-Mobileā€™s infrastructure has not been able to cope with intense data trafļ¬c, thus forcing the company to issue refunds for affected users [6]. Another important aspect is that of mobile security. Around a billion of people today have their personal information on Facebook and half of them access Facebook from their mobile phone [7]; the size of the online-banking in America has almost doubled since 2004, with 16% of the American mobile users conducting ļ¬nancial-related activities from their mobile device [8]; on 2010, customers spent one billion of dollars buying products on Amazon via mobile devices [9]. These numbers give an idea of the amount of people that today could ļ¬nd themselves in trouble by not giving enough care into protecting their mobile device from unauthorized access. A distracted user who loses his phone, or just forgets it in a public place, even if for a short time only, could allow someone else to get unrestrained access to his online identity. By copying the contents of the phone, including passwords and access keys, an attacker could steal money from the userā€™s bank account, read the userā€™s emails, steal the userā€™s personal ļ¬les stored on the cloud, use the userā€™s personal information to conduct scams, frauds, and other crimes using his name and so on. But identity theft is not the only security problem affecting mobile users. Between 2011 and 2012, the number of unique viruses and malwares targeting mobile devices has increased more than six times, according to a recent report [10]. Typically, these try to get installed in the target device by convincing the user to download an infected app, or by making them follow a link to a malicious web site. The problems just exposed are major issues affecting userā€™s experience nowadays. We believe that ļ¬nding effective, yet simple and widely adoptable solutions may require a new point of view, a shift in the way these problems are tackled. For these reasons, we evaluated the possibility of using a hybrid approach, that is, one where different technologies are brought together to create new, previously unexplored solutions. We started by considering the issues affecting the mobile network infrastructure. While it is true that the usage of mobile connectivity has signiļ¬cantly increased over the past few years, it is also true that socially close users tend to be interested in the same content, like, the same Youtube videos, the same application updates, the same news and so on. By knowing that, operators, instead of spending billions [11] to update their mobile network, could try an orthogonal approach and leverage an ad-hoc wireless network between the mobile devices, referred to in literature as Pocket Switched Networks [12]. Indeed, most of the smartphones on the market today are equipped with short-ranged radio interfaces (i.e., Bluetooth, WiFi) that allow them to exchange data whenever they are close enough to each other. Popular data could be then stored and transferred directly between devices in the same social context in an ad-hoc fashion instead of being downloaded multiple times from the mobile network. We therefore studied the possibility of channeling trafļ¬c to a few, socially important users in the network called VIP delegates, that can help distributing contents to the rest of the network. We evaluated VIP selection strategies that are based on the properties of the social network between mobile devices users. In Chapter 2, through extensive evaluations with real and synthetic traces, we show the effectiveness of VIP delegation both in terms of coverage and required number of VIPs ā€“ down to 7% in average of VIPs are needed in campus-like scenarios to ofļ¬‚oad about 90% of the trafļ¬c. These results have also been presented in [1]. Next we moved to the security issues. On of the highest threats to the security of mobile users is that of an identity theft performed using the data stored on the device. The problem highlighted by this kind of attacks is that the most commonly used authentication mechanisms completely fail to distinguish the honest user from somebody who just happens to know the userā€™s login credentials or private keys. To be resistant to identity theft attacks, an authentication mechanism should, instead, be built to leverage some intrinsic and difļ¬cult to replicate characteristic of each user. We proposed the Personal Marks and Community Certiļ¬cates systems with this aim in mind. They constitute an authentication mechanism that uses the social context sensed by the smartphone by means of Bluetooth or WiFi radios as a biometric way to identify the owner of a device. Personal Marks is a simple cryptographic protocol that works well when the attacker tries to use the stolen credentials in the social community of the victim. Community Certiļ¬cates works well when the adversary has the goal of using the stolen credentials when interacting with entities that are far from the social network of the victim. When combined, these mechanisms provide an excellent protection against identity theft attacks. In Chapter 3 we prove our ideas and solutions with extensive simulations in both simulated and real world scenariosā€”with mobility traces collected in a real life experiment. This study appeared in [2]. Another way of accessing the private data of a user, other than getting physical access to his device, could be by means of a malware. An emerging trend in the way people are fooled into installing malware-infected apps is that of exploiting existing trust relationships between socially close users, like those between Facebook friends. In this way, the malware can rapidly expand through social links from a small set of infected devices towards the rest of the network. In our quest for hybrid solutions to the problem of malware spreading in social networks of mobile users we developed a novel approach based on the Mobile Cloud Computing paradigm. In this new paradigm, a mobile device can alleviate the burden of computationally intensive tasks by ofļ¬‚oading them to a software clone running on the cloud. Also, the clones associated to devices of users in the same community are connected in a social peer-to-peer network, thus allowing lightweight content sharing between friends. CloudShield is a suite of protocols that provides an efļ¬cient way stop the malware spread by sending a small set of patches from the clones to the infected devices. Our experiments on different datasets show that CloudShield is able to better and more efļ¬ciently contain malware spreading in mobile wireless networks than the state-of-the-art solutions presented in literature. These ļ¬ndings (which are not included in this dissertation) appeared in [3] and are the result of a joint work with P.h.D student S. Kosta from Sapienza University. My main contribution to this work was in the simulation of both the malware spreading and of the patching protocol schemes on the different social networks datasets. The Mobile Cloud Computing paradigm seems to be an excellent resource for mobile systems. It alleviates battery consumption on smartphones, it helps backing up userā€™s data on-the-ļ¬‚y and, as CloudShield proves, it can also be used to ļ¬nd new, effective, solutions to existing problems. However, the communication between the mobile devices and their clones needed by such paradigm certainly does not come for free. It costs both in terms of bandwidth (the trafļ¬c overhead to communicate with the cloud) and in terms of energy (computation and use of network interfaces on the device). Being aware of the issues that heavy computation or communication can cause to both the battery life of the devices [13], and to the mobile infrastructure, we decided to study the actual feasibility of both mobile computation ofļ¬‚oading and mobile software/data backups in real-life scenarios. In our study we considered two types of clones: The off-clone, whose purpose is to support computation ofļ¬‚oading, and the back-clone, which comes to use when a restore of userā€™s data and apps is needed. In Chapter 5 we give a precise evaluation of the feasibility and costs of both off-clones and back-clones in terms of bandwidth and energy consumption on the real device. We achieved this by means measurements done on a real testbed of 11 Android smartphones and on their relative clones running on the Amazon EC2 public cloud. The smartphones have been used as the primary mobile by the participants for the whole experiment duration. This study has been presented in [4] and is the result of a collaboration with P.h.D. Student S. Kosta from Sapienza University. S. Kosta mainly contributed to the experimental setup, deployment of the testbed and data collection
    corecore