-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by Royal Holloway - Pure

Combinatorial Aspects of
Key Predistribution for
Resource-Constrained Networks

Michelle Louise Kendall

Thesis submitted to the University of London
for the degree of Doctor of Philosophy

Information Security Group
School of Mathematics and Information Security

Royal Holloway, University of London

2013

https://core.ac.uk/display/28904763?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Declaration of Authorship

I, Michelle Louise Kendall, hereby declare that this thesis and the work pre-
sented in it is entirely my own. Where I have consulted the work of others,

this is always clearly stated.

Signed:

Date:

Acknowledgements

To my patient supervisor, Keith, without whom I would not have reached this
point; for agreeing to supervise me, for teaching me the ways of research and

academic writing, and for keeping me motivated throughout;

To my co-authors, Keith, Siaw-Lynn, Maura, Doug, Ed and Wilfrid, for in-

spiring conversations and wise guidance (and a finite Erdés number!);

To all my colleagues at Royal Holloway who have supported, taught and en-
couraged me: to Shahram for the chocolate, to Liz and Gaven for the lifts and
pancakes, to Laurence for the maths puzzles and teaching advice, to Stephanie
for the conversation about expander graphs, to Tamas and Andrew for sur-
viving the typos of The Probabilistic Method together, and to all my office

mates;

To my fantastic friends and family for providing me with the love and support
necessary to complete this thesis, and in particular to my brilliant housemate
Liz for keeping me sane, entertained and well-fed, to Wilfrid for all the invalu-

able advice, and to Mum for the proof-reading and constant encouragement;

And to my wonderful husband, Ed, for putting up with me through the PhD
years, for competing to get the first doctorate, for all the cups of tea and “there

there”s, and for your continued belief in me;

Thank you.

Abstract

To secure a network of small devices using symmetric key cryptography is
a non-trivial task. Nevertheless, it is important because public key cryptog-
raphy is computationally expensive and therefore infeasible to implement on
some small, battery-powered devices with limited memory. We study methods
for allocating symmetric keys to devices before deployment, known as key pre-
distribution schemes. Using combinatorial techniques, we analyse and design

a variety of key predistribution schemes.

We provide a correction to the previously stated formula for calculating the
resilience of certain random key predistribution schemes, presenting instead a
rigorously proved and widely applicable formula. We also present a simplified

formula for calculating the connectivity.

Next, we examine the role of expander graphs in key predistribution schemes.
We demonstrate that good expansion is desirable for robust schemes, and dis-
cuss how this can be achieved. In particular, we examine the expansion of key
predistribution schemes built from expander graph constructions, which pro-
vide perfect resilience. We show that if perfect resilience is not required, key
predistribution schemes with higher connectivity and expansion can be created
from hypergraphs and designs, and we explore the relationships between these
constructions. We argue for the use of hypergraphs to represent and anal-
yse key predistribution schemes, and identify open problems which, if solved,
could lead to further suitable and robust constructions for key predistribution

schemes.

Finally, we study a class of schemes which we call ‘broadcast-enhanced key

4

predistribution schemes’. These are schemes which make use of a trusted base
station and a broadcast channel to update and revoke keys in a network whilst
it is operational. We explore the range of benefits which such schemes can
provide, and present and analyse two constructions for particular scenarios: a
scheme which allows efficient revocation of devices, and a scheme which creates
hierarchy amongst the devices for efficient routing and battery consumption.
We demonstrate that our schemes provide effective and flexible trade-offs be-
tween the conflicting parameters of connectivity, resilience, key storage and

broadcast load.

Contents

1 Introduction 12
1.1 Chapter overviews 13
1.2 Publications oo 16

2 Preliminaries 17
2.1 Principles of cryptography and information security 18

2.1.1 Cryptography for secrecy and authentication 18
2.1.2 Symmetric and asymmetric keys 19
2.1.3 Adversarymodels 20
2.1.4 Key management 21
2.2 Key predistribution schemeso 22
2.2.1 Definition and applications 22
2.2.2 Framework 23
2.2.3 Metrics 25
2.2.4 Network adversary model 27
2.3 Combinatorics 29
231 Graphs. 29
2.3.2 Graph representations of KPSs 31
2.3.3 Combinatorial designs 32
2.4 Existing schemes and techniques 36
24.1 Random KPSs, 37
2.4.2 Deterministic KPSs 00000 39
2.4.3 Key establishment 40
2.4.4 Communication between non-adjacent nodes 41

3 Generalised formula for the resilience of random key predis-
tribution schemes 44
3.1 Introduction 45

CONTENTS

3.2 Background: random key predistribution schemes
3.2.1 Eschenauer Gligor KPS
3.2.2 The g-composite scheme

3.3 Previous formulae for resilience of g-composite scheme
3.3.1 Chan, Perrig and Song
332 Yumand Lee L.

3.4 Generalised resilience for random key predistribution schemes

3.5 Numerical examples oo

3.6 Conclusion

Expander graphs and key predistribution schemes
4.1 Introductiono
4.2 Expander graphs
4.2.1 Boundary properties and expansion
4.2.2 The implications of large € for networks
4.2.3 Spectral expansion
4.3 Expansion in product graphs
4.4 Expansion in intersection graphs
4.5 Analysing the expansion of existing KPSs
4.5.1 KPSs based on expander graph constructions
452 Random KPSs,
4.5.3 Combinatorial designs
4.6 Using expansion as a metric
4.6.1 Components
4.6.2 Cut-edges
4.6.3 Cutpoints

4.7 Conclusion

Hypergraphs, expansion and key predistribution schemes

5.1 Introduction

5.2 Hypergraph representations of KPSs
5.2.1 Representing a KPS with a hypergraph
5.2.2 Trivial KPS examples.
5.2.3 Design-based KPS example
5.2.4 Hypergraphs and designs

5.3 Expansion in hypergraphs

63
64
65
65
67
70
71
78
81
82
83
84
90
93
94
95
96

CONTENTS

6

5.3.1 Expansion in KPSs without perfect resilience
5.3.2 Constructions for hypergraphs with good expansion . . .
5.3.3 Cayley hypergraphs,
5.3.4 Comparing Ramanujan expander graphs and Cayley hy-
pergraphs as constructions for KPSs

5.4 Conclusion

Broadcast-enhanced key predistribution schemes
6.1 Introduction
6.2 Motivation and definitions
6.2.1 Broadcast encryptiono
6.2.2 Broadcast-enchanced key predistribution
6.2.3 Advantages of BEKPSs over KPSs
6.3 Framework oo
6.3.1 BEKPSmodel
6.3.2 Setting
6.3.3 Metrics Lo
6.3.4 Expansiono
6.4 The BEKPS of Cichonnet al.
6.4.1 Simplifying proofs from [Cichon et al. 2010]
6.4.2 Refining estimates
6.4.3 Refining the calculation of resilience
6.4.4 Numerical examples
6.4.5 Intersection thresholds
6.5 Revocation o
6.5.1 LKH
6.5.2 BEKPS for revocation
6.5.3 Analysis
6.6 Hierarchical temporal key distribution
6.6.1 BEKPS for hierarchical temporal key distribution
6.6.2 Analysis

6.7 Conclusion

7 Concluding remarks

Bibliography

List of Figures

2.1

2.2

4.1

4.2

4.3

4.4

5.1
5.2
2.3
5.4
2.5
5.6
2.7

6.1

6.2
6.3
6.4

Example of corresponding communication, key and intersection
graphs L 31
Graph representation of KPS from Example 2.4 34

A product graph corresponding to an identical communication

and key graph pair. Lo Lo 73
A product graph corresponding to a communication and key

graph pair with empty intersection. 74
Examples of 3-regular graphs on 10 nodes with different expan-

sion parameters. Lo 79
Distinguishing between cases where e =0 92
Graph and hypergraph representations of a simple KPS 101
Trivial key predistribution schemes represented by graphs 102

Trivial key predistribution schemes represented by hypergraphs 103
Graph and hypergraph representations of a 2 — (9,3,1) design . 104

KPS from Ramanujan expander graph construction, from [18] . 111

Cayley hypergraph on 18 nodes 113
Incidence matrix for Cayley hypergraph on 18 nodes. 115
Plot of the deterioration of v(i) (Equation (6.5.2)) in comparison

to the straight line (v — ¢) for an example network of v = 1000

nodes, where n = 1000 and £k =30. 151
LKH tree on 16 nodes 152
Example of partitioning nodes into L = &7 trees 155

Plot of the values of Pry, fail; and 0] when p =1 and there are
1,2,22,...,2% nodes per tree for key storage o = 25,50 and 100
respectivelyo Lo 162

LIST OF FIGURES

6.5 Plot of the values of Pry, fail; and b when p = 2 and there are
1,2,22,...,2% nodes per tree for key storage o = 25,50 and 100
respectivelyo

6.6 LKH treeon 16 nodes

10

List of Tables

3.1

3.2

5.1

6.1

6.2

Comparison of formulae when n = 1000, £ = 100, ¢ = 10, hence
Pri =0.555019
Comparison of formulae when n = 1000, £ = 100, s = 10

Resilience of the extended Cayley hypergraph

Examples of connectivity parameters (to four decimal places)
for different key pool sizes m and the number of temporal keys
given to primary and secondary nodes, k1 and ko respectively.

Examples of connectivity and resilience metrics (to four decimal
places) and broadcast cost for fixed network size v = 1000 and
varying: the average number of secondary nodes to which a
single temporal key set is sent, x; the number of primary nodes
p; the number of keys in the key pool m; and the number of keys

given to primary and secondary nodes, k1 and kg respectively.

11

171

178

CHAPTER 1

Introduction

Many questions in information security can be approached from a combinato-
rial perspective. In this thesis we demonstrate combinatorial, and in particular
graph-theoretical, approaches to the construction and analysis of key predistri-
bution schemes for networks. We use graph theory to suggest new approaches
for the construction of key predistribution schemes, and to draw links between
existing approaches. We also use combinatorial methods to simplify expres-
sions and proofs of existing results, and we give details of certain claims from
the literature which have not been rigorously proven, before providing the

corrected statements and formulae.

Our analysis covers the calculation of resilience in random key predistribution
schemes, the role of expander graphs in key predistribution schemes, designs
and hypergraphs with good expansion, and finally a class of schemes which
unite ideas from broadcast encryption and key predistribution schemes. We

now give an overview of each of the chapters which follow.

12

1.1 Chapter overviews

1.1 Chapter overviews

In Chapter 2 we outline the cryptographic principles which form the founda-
tions of all our key predistribution scheme scenarios. Next, we formally define
key predistribution schemes and the relevant combinatorial tools for their con-
struction and analysis. We then provide a brief overview of the literature on
key predistribution schemes, drawing distinctions between deterministic and
random key predistribution schemes, and explaining their connection with key

establishment schemes.

To analyse and compare key predistribution schemes it is helpful to calculate
their resilience, which is a measure of the proportion of the network compro-
mised by an adversary which has learned keys from a small number of nodes.
In Chapter 3 we provide a single formula to express the resilience of a wide
range of random key predistribution schemes. We give details of two previous
statements of this formula: that of Chan et al. [20], which makes an incorrect
assumption of probabilistic independence, and the formula given by Yum and
Lee [75], which is difficult to compute. The chapter also includes a proof of the
commonly-stated formula for the resilience of Eschenauer and Gligor’s seminal
random key predistribution scheme [32], and a simplified expression for the

connectivity of the g-composite scheme from [20].

It is common to represent both key predistribution schemes and networks with
graphs. Chapters 4 and 5 are concerned with graph theory in key predistribu-

tion schemes, and in particular the concept of expansion in graphs.

13

1.1 Chapter overviews

A graph which represents the key sharing in a network is known as the key
graph, and a graph which represents the relative locations of distributed de-
vices is known as the communication graph. Vertices represent devices or
‘nodes’, edges in the key graph represent shared keys, and edges in the com-
munication graph correspond to the pairs of nodes which are within wireless
communication range. A pair of devices share an edge in the intersection of
these two graphs exactly when they are within communication range and share

common key(s).

In Chapter 4 we study the use of graph-theoretical tools for the analysis of key
predistribution schemes, and in particular consider the role of expander graphs
in their construction and analysis. We critique the suggestions of Ghosh in [36],
demonstrating that his claim of good expansion being desirable in the product
graph is unsubstantiated. We provide a simple example which demonstrates
that good expansion in the product graph can be achieved even when the

intersection graph is worst-possible.

Instead, we identify that good expansion in the intersection graph is desir-
able for well connected, robust networks, and refer to two key predistribution
schemes [17, 60] which are based on expander graph constructions. These pro-
vide perfect resilience but at the expense of lower connectivity than many other
key predistribution schemes with comparable key storage. In particular, we
show that random key predistribution schemes and many of the combinatorial
designs which have been suggested for use as KPSs have good expansion. This

is a previously unstated advantage of using these constructions for KPSs.

14

1.1 Chapter overviews

In Chapter 5 we argue for the use of hypergraphs to represent and construct key
predistribution schemes. We show that a hypergraph representation has ben-
efits over the previously-used graph representations because it clearly demon-
strates the key storage and resilience, as well as the connectivity. Developing
ideas from Chapter 4, we propose that wherever perfect resilience is not re-
quired, higher connectivity can be achieved through the use of expander hyper-
graphs to construct key predistribution schemes. We present a simple exam-
ple of a key predistribution scheme based on a Cayley hypergraph and show
that, whilst far from optimal amongst expanding hypergraph constructions,
it achieves our aims of increasing connectivity and slightly lowering resilience,
whilst maintaining low key storage and good expansion. We argue that further
research into random uniform hypergraph constructions and random strongly
regular graphs would be likely to provide further robust key predistribution

scheme constructions.

For network environments where a trusted base station and broadcast chan-
nel are available, we propose a category of schemes called broadcast-enhanced
key predistribution schemes (BEKPSs) which utilise the extra resources to im-
prove upon standard key predistribution schemes. In Chapter 6 we provide
a simplification of some of the proofs from the scheme of Cichon et al. [23],
which we classify as a BEKPS. We then study two particular benefits which
BEKPSs can provide over key predistribution schemes where a base station
and broadcast channel are not available, namely the ease of revocation and
the possibility to create a dynamic hierarchy amongst the devices. We pro-
pose families of BEKPSs which are suitable for each of these scenarios, and our

analysis demonstrates that they are effective in their aims, whilst providing

15

1.2 Publications

practical and flexible trade-offs between connectivity, resilience and broadcast

load.

We conclude in Chapter 7 with a summary of our work, and propose further

questions for future consideration.

1.2 Publications

The research in Chapter 3 is joint work with Ed Kendall, Wilfrid S. Kendall
and Keith M. Martin, and appears as a paper on the Cryptology ePrint

Archive [41].

Chapter 4 is largely based on the paper ‘On the role of expander graphs in
key predistribution schemes for wireless sensor networks’ [42] with Keith M.

Martin, which was presented at WEWoRC 2011.

Finally, Chapter 6 is joint work with Keith M. Martin, Siaw-Lynn Ng, Maura
B. Paterson and Douglas R. Stinson and also appears on the Cryptology ePrint

Archive [43].

16

CHAPTER 2

Preliminaries

Contents
2.1 Principles of cryptography and information security 18
2.1.1 Cryptography for secrecy and authentication 18
2.1.2 Symmetric and asymmetric keys 19
2.1.3 Adversary models 20
2.1.4 Key management 21
2.2 Key predistribution schemes 22
2.2.1 Definition and applications 22
2.2.2 Framework oL 23
2.2.3 Metricso 25
2.2.4 Network adversary model 27
2.3 Combinatorics00 0L 29
2.3.1 Graphs 29
2.3.2 Graph representations of KPSs 31
2.3.3 Combinatorial designs 32
2.4 Existing schemes and techniques 36
24.1 Random KPSs 37
2.4.2 Deterministic KPSs 39
2.4.3 Key establishment 40
2.4.4 Communication between non-adjacent nodes 41

In this chapter we present the core principles, definitions and notation on

which the subsequent chapters rely. We begin with an introduction to some of

17

2.1 Principles of cryptography and information security

the fundamental principles of cryptography and information security in Sec-
tion 2.1. In Section 2.2 we define key predistribution schemes and explain the
motivation for their study. Next, in Section 2.3, we give an introduction to
the relevant mathematical tools used in the construction of key predistribution
schemes, namely combinatorial designs and graphs. In particular, Section 2.3.2
demonstrates how graphs can be used to represent key predistribution schemes.
Finally, in Section 2.4 we present a brief review of the literature on determin-
istic and random key predistribution schemes, and explain the connection to

a related concept, key establishment schemes.

2.1 Principles of cryptography and information
security

2.1.1 Cryptography for secrecy and authentication

The principle of encrypting information to provide secrecy is reasonably fa-
miliar: we are surrounded by scenarios where information needs to be stored
or transmitted with restrictions on who can access or read it. Encryption
provides a method for ensuring (or, in many cases, ensuring with high proba-
bility) that only an intended recipient is able to decrypt and view the original
data. Encryption and decryption algorithms generally require at least one

cryptographic key; we will provide further details in Section 2.1.2.

Another important use of cryptographic keys is to provide forms of authen-
tication. For our purposes, it suffices to say that cryptographic keys can be

used to provide entity authentication, an assurance that the message originated

18

2.1 Principles of cryptography and information security

from a specific person or device, and data authentication or data integrity, an
assurance that the message received is identical to the message sent, and has

not been altered in any way. For more details and examples, see [51].

We note that, in the variety of scenarios which we consider, many will have no
particular need for secrecy. For example, if we consider a network of devices
measuring temperature over an area of land, this data may not be confidential,
and indeed, could easily be obtained by anyone visiting the area. However, it
may well be important for the devices to use cryptography when sharing their
measurements in order to provide assurance that each data point really did
originate from the device claiming to have sent it, and that the measurement
has not been altered during transmission. Thus, we note that there is a variety
of reasons why it may be necessary for devices to store cryptographic keys. In
the analysis which follows we will not be concerned with the purpose of the
keys, or the particular algorithms and protocols in which they will be used,

but simply the question of how to distribute the keys to the devices.

2.1.2 Symmetric and asymmetric keys

Before the 1970s, cryptographic keys were symmetric, that is, the same key
was used to encrypt and decrypt the data. In 1973, James Ellis, Clifford
Cocks and Malcolm Williamson developed an asymmetric algorithm, whereby
the keys needed for encryption and decryption were different. Their work at
GCHQ was not publicised, but similar ideas were developed independently
by Whitfield Diffie and Martin Hellman, who in 1976 proposed the idea of

an asymmetric cryptosystem [28] and Ron Rivest, Adi Shamir and Leonard

19

2.1 Principles of cryptography and information security

Adleman who proposed the RSA cryptosystem in 1977 [59]. We refer the

interested reader to [61, 63] for further details.

Asymmetric schemes are also known as public key algorithms because the en-
cryption key can be made public. That is, they rely on the idea that it is
computationally infeasible to derive the decryption key from the encryption
key, as long as a particular computational problem (such as factoring or the
discrete logarithm problem) is computationally infeasible. These ideas revolu-
tionised cryptography as they enabled entities to send and receive encrypted
data without having previously agreed a symmetric key. In particular, public
key cryptography is ideal for exchanging encrypted messages between enti-
ties which have no pre-existing relationship. However, public key algorithms
are currently more computationally expensive than symmetric key algorithms.
There remain applications and devices where public key cryptography is in-
feasible, and pre-agreeing a symmetric key is still necessary. It is on such

scenarios that we focus in this thesis.

2.1.3 Adversary models

When considering the strength of a cryptographic algorithm or protocol, it
is important to consider the type of adversary against which one wishes to
be secure. Notice that no cryptographic protocol between users A and B is
secure if A or B tells the adversary all of the keys being used. Similarly,
many cryptographic algorithms would be insecure against an adversary with
infinite time and/or computing power at its disposal. It is therefore important

to specify exactly which threats one is seeking to protect against. We gen-

20

2.1 Principles of cryptography and information security

erally make worst-case assumptions, so as to provide an upper bound on the
damage caused by an adversary. We will give our detailed adversary model in

Section 2.2.4.

2.1.4 Key management

Key management is an important part of any system which uses cryptography,
and can easily be a weak link in an otherwise well-designed cryptographic

system. Areas of key management include:

e Key generation: the production of ‘good’ keys, that is, keys which

ideally do not conform to any pattern which an adversary could exploit;
e Key distribution: the allocation of keys to devices;

e Key refreshing/update: replacing keys - it may be desirable to define
a ‘lifetime’ for keys, that is, a window of time during which they may be

used, and after which they should be changed;

e Key revocation: removing a key from use - if a key becomes known to
an adversary, we ideally want to be able to stop that key being used for

further communication.

Our focus will be mainly on key distribution, in particular key predistribution,
as defined in Section 2.2.1. In Chapter 6 we will also discuss how revocation
and updates can be achieved in certain scenarios, and present efficient ways of

doing so.

21

2.2 Key predistribution schemes

2.2 Key predistribution schemes

2.2.1 Definition and applications

We consider the distribution of keys to networks of small, resource-constrained
devices, or ‘nodes’. A wireless sensor network (WSN) is an example of such
a network. It is a collection of static, small, battery powered devices called
sensor nodes, which communicate with each other wirelessly. The resulting
network is usually used for monitoring an environment by gathering local data
such as temperature, light or motion. Much of the literature on key predis-
tribution schemes is concerned with wireless (or distributed) sensor networks,
including at least a third of the papers cited in this thesis. However, we will
be considering schemes which are applicable to any distributed, stationary
network of homogeneous, resource-constrained nodes. As we assume that the
nodes are lightweight and battery powered, it is important to consider battery
conservation in order to allow the network to remain effective for the appro-
priate period of time, and to ensure that the storage required of the nodes is

not beyond their memory capacity.

Resource-constrained networks can be deployed in a range of different en-
vironments, including potentially hostile areas such as military or volcanic
zones [71], where it would be dangerous or impractical to carry out the moni-
toring or data gathering by hand. In hostile environments it may be necessary
to encrypt messages for security and/or authentication. Various cryptographic
key management schemes have been proposed for such scenarios. In some cases

there is an online key server or base station to distribute keys to the nodes

22

2.2 Key predistribution schemes

whenever necessary; if not, key predistribution schemes are required.

A key predistribution scheme (KPS) is a method for allocating keys to the
nodes of a network before they are deployed into their chosen environment.
We consider KPSs which assign symmetric keys, since small sensor nodes are
resource-constrained with low storage, communication and computational abil-
ities, and are often unable to support asymmetric cryptography. A major
drawback of KPSs is that once the keys have been predistributed, subsequent
key management operations are challenging to conduct [4]. We will present
examples of KPSs in Section 2.4. In order to make best use of the nodes’ lim-
ited resources, it is usually desirable to minimise the key storage requirement
whilst maximising the connectivity and resilience of a network. We define

these concepts more precisely in Section 2.2.3.

2.2.2 Framework

We identify four aspects of key predistribution which together form a frame-
work in which to categorise and study KPSs. Whilst many papers in the KPS
literature include specifications and/or analysis for each of these stages, others
only briefly mention or omit altogether the details of key generation, shared key
discovery and network alterations, focusing purely on the key predistribution

aspect.

Key generation Before the nodes are deployed, an entity which we call the

trusted base station must create a set of keys. Specifically, a key pool K of

23

2.2 Key predistribution schemes

n symmetric keys {K7, Ko, ..., K,} is selected from the space of all possible

keys.

Key predistribution The trusted base station allocates to each node a
subset of keys from the key pool. The size of the key pool and the number
of keys allocated to each node are chosen to provide a trade-off between the
conflicting metrics of key storage, connectivity and resilience, as defined in

Section 2.2.3.

Shared key discovery Once the nodes have been deployed, in order for
them to begin secure communication, a shared key discovery protocol such as
one of those given in [17, 73] should be implemented. This ensures that each
node determines the set of other nodes with which it shares keys. If the keys
are assigned in a way known to all the nodes, then a node N; can broadcast
information about its identity, its node identifier, from which any node N;
can derive the list of key identifiers which correspond to N;’s key set. It then
remains for each node to look up whether any of these keys is also known to
them. If keys are not assigned in a deterministic or publicly known way, then
each node has to broadcast its whole list of key identifiers in order to perform

shared key discovery.

Network alterations Some implementations of KPSs will include the ca-
pacity for a network to make alterations after the initial shared key discovery.

Such alterations can include the revoking of keys or nodes, the establishing of

24

2.2 Key predistribution schemes

new keys between nodes, and the updating of old keys. These can be effected
by node voting systems [20, 71| and techniques discussed in Section 2.4.4. If
a trusted base station is able to broadcast instructions to a network as in a
BEKPS (Chapter 6), then a wide range of update and revocation protocols is

possible.

2.2.3 Metrics

The metrics typically used to analyse key predistribution schemes are:

Key storage: the number of keys which each node is required to store.

Unless otherwise stated, the key storage will be constant and denoted by k.

Connectivity: the proportion of nodes which are ‘connected’ by sharing
keys. Connectivity can be measured or estimated both globally and locally [30,
53]. We will refer again to global connectivity in Section 4.6 but in general
we will use the measure of local connectivity Pry, which is the probability
that a randomly-chosen pair of nodes share at least ¢ > 1 keys, where ¢ is an
intersection threshold dictated by the KPS. Many KPSs only require nodes
to have a single key in common in order to be connected, i.e. ¢ = 1. Where
two nodes share g or more keys, some protocols dictate that they should use a

combination of those keys, such as a hash, to encrypt their communications.

25

2.2 Key predistribution schemes

Resilience: a measure of the network’s susceptibility to compromise by an
adversary. (We define our adversary precisely in Section 2.2.4.) To measure
the resilience we use the parameter fail,, which is defined to be the probability
that a randomly-chosen link between a pair of uncompromised nodes is broken
after the adversary has compromised s nodes. By ‘broken’, we mean that the
key or keys securing that link are all known to the adversary. Equivalently,
faily measures the fraction of compromised links between uncompromised nodes
throughout the network, after an adversary has compromised s nodes. Notice
that this is a conditional probability, conditioning on the two nodes in question

being connected.

To the best of our knowledge, the notation ‘Pr;’ and ‘fail,” were first used
in [53] and [45] respectively. They are common measures, and many papers

such as [20, 30| calculate them in the same way but with different notation.

If faily = 0 for all 1 < s < v — 2 (where v is the total number of nodes) then
it is said that the network has perfect resilience. We note that lower values of

fail; represent better resilience, and that failg is not defined for s > v — 2.

To illustrate the trade-offs required between these three parameters, we con-

sider some trivial examples of KPSs.

Example 2.1. Every node is assigned the same single key K.

This would require minimal key storage and ensure that any pair of nodes could
communicate securely, so Pry =1 for all pairs of nodes. However, there would

be minimal resilience against an adversary, as the compromise of a single node

26

2.2 Key predistribution schemes

would reveal the key K, rendering all other links insecure. Formally, fail;, = 1

foralll <s<wv-—2.

Example 2.2. A unique key K;; is assigned to every pair of nodes N;, N;.

That is, for all1 < 4,7 < v, nodes N; and N; are both preloaded with a key K;;,
with the condition that K;; # Ky, for all pairs (I,m) # (i,7), 1 < l,m < v.
This is called the complete pairwise KPS. Such a KPS has perfect resilience
and maximum connectivity, as Pry = 1 for all pairs of nodes. However, each

node has to store v — 1 keys, which is infeasible when v s large.

Example 2.3. Fvery node N; is assigned a unique single key K;.

This example is purely illustrative, since although it provides minimal key stor-
age and perfect resilience, it is an ineffective KPS as there is no connectivity:

Pri = 0 for all pairs of nodes.

We see, then, that it is trivial to optimise any two of the three parameters: key
storage, connectivity and resilience. However, in most applications the above
examples are inappropriate, thus we need to consider KPSs which provide

trade-offs between all three of these metrics.

2.2.4 Network adversary model

We will assume that if an adversary has compromised a device and learned
at least one of the keys which it stores, then the adversary knows all of the
keys which it stores. This provides a worst-case analysis of the number of keys

known to the adversary.

27

2.2 Key predistribution schemes

We model our network adversary by assuming that nodes are compromised at
random. It is of course possible in practice that an adversary could employ
a better strategy. For example, the adversary could target two nodes which
appear not to be communicating with each other, in the hope of learning the
maximum 2k keys. (If the nodes were communicating then they must share
at least ¢ keys, and so the adversary would learn at most 2k — ¢ keys by their
compromise.) The random adversary model can therefore be thought of as
calculating a lower bound on failg, hence an upper bound on the resilience,

and is useful as a metric for comparison of KPSs.

We note the distinction between ‘passive’ and ‘active’ adversaries, denoted
in [29] as ‘listening’ and ‘disrupting’ adversaries, respectively. It is usually
assumed that a listening adversary can intercept any message sent through
the network, but can only decrypt a message if he knows all of the keys used
to encrypt it. Thus, if an adversary knows a set of keys K4 C K, any message
sent through the network which is encrypted by a subset of keys from K4 can
be intercepted and decrypted by the adversary, regardless of whether or not

the message is routed through compromised nodes.

A disrupting adversary is one which can alter network transmissions. Defensive
measures can be taken against a disrupting adversary, for example in [29],
messages are transmitted in such a way that alterations can be identified, and
the correct message recovered (up to a threshold number of alterations). This
is called fault tolerance, and is useful even in the absence of an adversary to
cope with communication errors and node malfunctions. However, defending

a network against a disrupting adversary is outside of our scope in this thesis:

28

2.3 Combinatorics

we are concerned with efficient methods for distributing keys to devices, rather

than the communication protocols to be used afterwards.

In summary, we make the following assumptions about our adversary:

e on compromising a node, the adversary learns all of its stored keys;

the adversary compromises nodes at random;

the adversary can intercept all messages sent through the network;

the adversary can decrypt a message if and only if he knows the key(s)

used to encrypt that message.

2.3 Combinatorics

2.3.1 Graphs

We now briefly introduce some graph-theoretic terminology and definitions,
collated from [15, 21, 37]. In Section 2.3.2 we explain how graphs are used to
represent and analyse KPSs, and we develop the graph-theoretic understanding

of KPSs in Chapters 4 and 5.

Definition 2.1. A graph G = (V, E) is a set of vertices V = {x1,...,2,}
and a set of edges £ C V x V. We use the notation (z;,z;) € E to express
that there is an edge between the vertices x; and z;, and we say that the edge
(x;, x;) is incident to its endpoints z; and x;. Wherever an edge (z;, z;) exists,

x; and x; are said to be adjacent.

29

2.3 Combinatorics

All graphs considered in this thesis will be simple graphs, that is, they are
unweighted, undirected and do not contain self-loops or multiple edges. These
terms respectively mean that we do not assign different weights to vertices or
edges, edges are not directed from one vertex to the other, there are no edges

from a node to itself, and there is at most one edge between any two vertices.

Given subsets of vertices X, Y C V, the set of edges which connect X and Y

is denoted
EX,)Y)={(z,y) ;e e X,y Y and (x,y) € E} .

The complement X of X is the vertices which are not in X, that is, X = V'\ X.

An ordered set of consecutive edges {(%i1, Zi2), (Ti2, Ti3), - - -, (Tip—1), Tip) } IN
which all the vertices x;1,%;2,. .., are distinct is called a path of length
p—1. A cycle is a ‘closed’” path which begins and ends at the same vertex, i.e. a
cycle is a path {(2i1, Zi2), (Ti2, Ti3), - - -, (Tip—1), Tip) } Where @1, Xia, .. ., Tip—1)
are distinct but x;; = z;,. We say that a graph is connected if there is a path
between every pair of vertices, and complete if there is an edge between every

pair of vertices.

The diameter of a graph is the maximum ‘distance’ between pairs of vertices.
That is, let D(z;,z;) be the length of the shortest path between vertices z;
and x;. Then the diameter of the graph is given by max,, . ev D(zi, ;).
Finally, the degree d(x;) of a vertex x; is the number of edges incident to that

vertex. If all nodes have the same degree d, the graph is said to be d-reqular.

30

2.3 Combinatorics

2.3.2 Graph representations of KPSs

It is common to represent KPSs using simple graphs. We draw a graph of a
network by representing the nodes as vertices and the ‘connections’ as edges.
That is, we associate each node N; with a vertex z;. From now on, we will

refer to the vertex set using the notation V= {Ny, No, ..., N, }.

2.3.2.1 Intersection graphs

To be precise in our analysis, we distinguish between the two possible types
of ‘connection’ and consider the separate constituent graphs of a network:
the communication graph G1 = (V, Ey) where (N;, N;) € Ej if nodes N; and
N; are within communication range, and the key graph G, = (V, E3) where
(N;, N;) € Ey if N; and N; share at least ¢ common keys. An example of a

communication graph and a key graph are given in Figures 2.1(a) and 2.1(b)

respectively.
Nl' N2 {Kl,KQ} {K3,K4} Nl N2
K| K
Ky
N3' N4 {KlaKS} {KlaK4} N3 N4
(a) Comm. graph (b) Key graph (¢) Intersection graph

Figure 2.1: Example of corresponding communication, key and intersection
graphs

If the communication graph is complete, it is often omitted from the analysis
as there is no need to check whether nodes can communicate. However, as we

will explain in more detail in Section 4, the communication graph is commonly

31

2.3 Combinatorics

modelled using a random graph, and it then becomes important to analyse how

the communication and key graphs relate to each other.

We say that two nodes N; and N; can communicate securely if (N;, N;) €
E, N E,, that is if they are adjacent in the intersection graph G; N Gy =
(V,Ey N E,). This is illustrated in Figure 2.1(c). Where two nodes are not
adjacent in the intersection graph, there are possible key establishment and
message routing protocols which can be used to allow communication between

them; we give further details in Section 2.4.4.

2.3.3 Combinatorial designs

Many KPS constructions rely on combinatorial designs, and so we provide an
introduction to the theory of designs here. A brief review of existing KPSs con-
structed from designs is given in Section 2.4.2, and we present some examples

in more detail in Chapter 4.

The following definitions are widely accepted throughout the literature, and
were compiled with reference to [10, 11, 15, 68], to which we refer the interested
reader for further details and examples. In particular, [15] explains the links

between design theory and coding theory.

Definition 2.2. The power set of a set X is the set of all subsets of X', and

is denoted P(X).

Definition 2.3. A set system (on X) is a pair (X, B) where X is a set and

B CP(X).

32

2.3 Combinatorics

For example,
X = {1,2,3,4,5},
= {{4}7{173}7{2’5}’{37475}7{172a37475}}

is a set system.

A combinatorial design (or, when the context is clear, a design) is a general
term used to describe a set system with some specified conditions such as

regularity, uniformity or set intersection, as we shall now explain.

In the context of combinatorial designs, the elements of the set X are called
points and the elements of B are called blocks. The degree of a point x € X is
the number of blocks containing . We say that (X, B) is a regular design of
degree r if every point has degree r. The rank is defined to be the size of the
largest block. If all blocks have the same size, k, then the design is said to be

uniform of rank k and is often called a block design.

We usually add a prefix to the word ‘design’ to specify the properties of the
set system in question, for example, we define a t — (v, k, \) design to be a pair
(X, B) where |X| = v, uniform of rank k, and every set of ¢ points is contained

in exactly A\ blocks.

Example 2.4. (from [56]) Let X = {1,2,3,4,5,6,7,8,9} and B = {{123},

{456}, {789}, {147}, {258}, {369}, {159}, {267}, {348}, {168}, {249}, {357} }.

Then (X, B) is a block design which is regular of degree four and uniform of
rank three. Notice that every pair of points occurs in exactly one block, and so

this is a 2 — (9,3,1) design.

33

2.3 Combinatorics

Combinatorial designs were first proposed for use in KPSs in [16]. A KPS can
be constructed from a design by associating a key with each point, and a node
with each block. That is, node N; is given the set of keys {K; : i € B;}, where
B; is a block in B. Thus, Example 2.4 could be used to create a KPS for
twelve nodes Ny, Ns, ..., Nio using nine keys, Ky, Ko, ..., Ko, where the first
node N; stores keys K7, Ky, K3, node N, stores keys Ky, K5, K, ..., and node
Nio stores keys K3, K5, K7. Figure 2.2 demonstrates a graph representation
of the KPS associated with Example 2.4. The graph is regular of degree

k(r—1) =3 x 3 =29. For ease of notation, we write key K; simply as ‘’.

{123}
{357} {456}

{249} {789}
{168} {147}
{348} {258}
{267} {369}

{159}

Figure 2.2: Graph representation of KPS from Example 2.4

Finally, we introduce the definitions of some classes of designs which have been
used to construct KPSs. In Section 4.5.3.1 we will discuss some properties of

these designs which make them particularly suitable for constructing KPSs.

Definition 2.4. (from [47, Definition 1.2]) A design (X, B) with |X| = n,

|B| = v is called a (n,v,r, k)-configuration if it is regular of degree r, uniform

34

2.3 Combinatorics

of rank £ and any two points occur in at most one block.

A class of configurations called p-common intersection designs were defined by

Lee and Stinson in [46, 47].

Definition 2.5. Let (X, B) be a (n, v, r, k)-configuration. We say that (X, B)

is a p-common intersection design if, for blocks B; and B;, either
BiNB; #10

or

|{Br, € B:B;NB,#0and B;N B, #0}| > p.

In terms of the key graph of a KPS, this means that if nodes NN; and N;
corresponding to blocks B; and B; do not share any keys and so are not
adjacent, then they have at least p common neighbours, i.e. p© nodes with

which they both share a key.

Strongly regular graphs may be regarded as a special type of y-common inter-

section design, and are defined as follows.

Definition 2.6. (from [14]) A (v, k(r — 1), \, p)-strongly regular graph is a
graph on v vertices which is regular of degree k(r — 1) and has the following

properties:

e any two adjacent vertices have exactly A common neighbours

e any two nonadjacent vertices have exactly p common neighbours.

35

2.4 Existing schemes and techniques

Equivalently, the design (X, B) is a strongly regular graph if it is regular of

degree 7, uniform of rank k, and for blocks B; and B},
and

BiNnBj=0 = |{Br,eB:BNBy#0and BN B, #0}|=p

Strongly regular graphs have been shown to exist for various combinations of
the parameters v, k and r in [45]. Constructions are given in [14, 67, 47] and
we refer the reader to [13] for a discussion on constructing random strongly

regular graphs.

2.4 Existing schemes and techniques

Having seen trivial examples of KPSs in the preceding sections, we now present
a brief summary of the KPSs which have been proposed in the literature to
provide practical trade-offs between the conflicting metrics of key storage, con-
nectivity and resilience. There are randomised and deterministic constructions
for KPSs, and we give an overview of these in Sections 2.4.1 and 2.4.2 respec-
tively. In Section 2.4.3 we discuss other schemes which are outside of our
scope, but have strong similarities to key predistribution schemes. Finally, in
Section 2.4.4, we outline possible methods for communication between non-
adjacent nodes in a deployed network, which motivates later discussion in

Chapters 4 and 5 about the desirable properties of KPSs.

36

2.4 Existing schemes and techniques

2.4.1 Random KPSs

One approach to key predistribution is through randomised allocation of keys.
The seminal paper by Eschenauer and Gligor [32] presented the first ran-

domised approach to key predistribution, as follows:

Scheme 2.1 (Eschenauer Gligor random key predistribution). A key
pool K of n symmetric keys is generated from the space of all possible keys.
FEach node is independently assigned a k-subset of keys from the key pool, cho-
sen uniformly at random from the set of all k-subsets of IC. (That is, each node
stores k distinct keys; for each node the keys are chosen without replacement.)
Nodes are deployed into the environment and use a shared key discovery pro-
tocol such as those described in [17, 73] to identify the other nodes with which

they share keys.

Two nodes are said to be ‘connected’ if they have at least one key in common.
If they have more than one key in common, they should select a single one of

their common keys at random to use to secure their communications.

This KPS can achieve high connectivity with relatively low key storage by
careful choice of the size of the key pool. We consider the Eschenauer Gligor
scheme in more detail in Chapter 3, where we state and prove the formulae
for calculating its connectivity and resilience, and discuss the resulting key
graph. In the same chapter we also describe some adaptations of the scheme
which provide different trade-offs between the key storage, connectivity and

resilience.

37

2.4 Existing schemes and techniques

We mention here two other random key predistribution schemes from [19],
namely the multipath key reinforcement scheme and the random pairwise keys

scheme:

Scheme 2.2 (The multipath key reinforcement scheme [19]). We men-
tion this scheme here as it is presented in [19] as a random key predistri-
bution scheme. However, the key predistribution stage is the same as that
for Scheme 2.1, and so multipath reinforcement should perhaps be regarded
as a protocol for a deployed network, as discussed in depth in Sections 2.4.3
and 2.4.4. Briefly, the multipath key reinforcement protocol allows any nodes
which share a key to update it using any disjoint paths between them in the net-
work, thereby improving the resilience of the network whilst maintaining the
connectivity and key storage. Such a protocol could be used after any initial

key predistribution scheme to improve resilience, as discussed in Section 2.4.4.

Scheme 2.3 (The random pairwise keys scheme [19]). This scheme al-
locates ‘pairwise’ keys to a random subset of all possible pairs of nodes. By
‘pairwise’, we mean that if a pair of nodes share a key, that key is unique.
Graph-theoretically, the scheme achieves the following. Imagine the complete
pairwise key graph, where every node stores v — 1 unique keys. Delete edges
from this graph at random, until the graph is still connected with some accept-
able probability p. Now assign the appropriate keys to each node so that this is
the resulting key graph. This KPS has perfect resilience and is connected with

probability p.

However, most random key predistribution schemes are largely based on the

Eschenauer Gligor scheme. Since the scope of Chapter 3 is to provide a gen-

38

2.4 Existing schemes and techniques

eralised formula for the resilience of a class of random KPSs, we will reserve

further discussion of the variety of random KPSs for the next chapter.

2.4.2 Deterministic KPSs

Since 2004, many different deterministic constructions have been proposed for
KPSs such as [16, 46, 70]. Deterministic schemes can provide advantages over

random KPSs such as

e deterministic rather than probabilistic connectivity and resilience metrics

e more efficient shared key discovery

For further details on the benefits of deterministic KPSs over random KPSs,

see [48].

The majority are based on combinatorial designs, error-correcting codes and/or
graph constructions. We refer the reader to [17, 50, 56] for surveys of these
schemes, and in particular we note that [56] unifies various combinatorial ap-
proaches to KPS construction, pointing out that some apparently different

constructions are in fact equivalent.

We will present and analyse examples of deterministic KPSs constructed from
graphs and combinatorial designs in more detail in Chapters 4 and 5. Here we
make some observations which motivate the use of certain classes of designs in

constructing KPSs.

39

2.4 Existing schemes and techniques

In [47] it is observed that the diameter of the key graph of a g-common inter-
section design is two, and that if two nodes are not adjacent then they will have
at least © common neighbouring nodes. We will examine the various ways in
which common neighbours can be beneficial in Section 2.4.4. For an analysis
of the connectivity and resilience of KPSs based on p-common intersection
designs, see [45, 56]. In Section 4.5.3.2 we show that their good expansion pro-
vides another reason to support the choice of y-common intersection designs

for constructing KPSs.

Finally, a KPS constructed from a (v, k(r — 1), A, u)-strongly regular graph
which is neither complete (k = v — 1, A = v — 2) nor disconnected (u = 0
and k& = A+ 1) provides good trade-offs between key storage, connectivity
and resilience [46]. Clearly, the key graph will also have diameter two, and by
proving a lower bound on the expansion in Section 4.5.3.3 we will show that

they provide many desirable properties for use in KPSs.

2.4.3 Key establishment

We note the existence of many schemes which are closely related to key pre-
distribution schemes. Although they do not fall within our definition of key
predistribution schemes, they are closely related, and some authors do refer to

them as key predistribution schemes.

In schemes such as [6, 9] which pre-date the key predistribution schemes litera-
ture, nodes are preloaded not with keys, but with secret information or ‘keying

materials’ from which they can generate or establish keys for pairwise or group

40

2.4 Existing schemes and techniques

communication. In common with much of the KPS literature, we categorise
such schemes as ‘key generation schemes’ or ‘key establishment schemes’, and
do not include them in our definition of key predistribution schemes. A self-

contained introduction to key establishment schemes is given in [8].

Finally, we note that key distribution patterns as described in [63, Section 10.4]
can be considered as early KPSs, differing only in that they are concerned with
distributing keys for groups of two or more users, and providing a threshold
level of security w. That is, typically these schemes have the property that for

some w € N, faily, =0 for 1 < s < w.

2.4.4 Communication between non-adjacent nodes

Finally, we discuss possible methods for communication between non-adjacent
nodes. Although we will not focus on such protocols in detail, their existence

motivates some design goals which we shall see in Chapters 4 and 5.

If two nodes are not adjacent in the intersection graph then there are various

techniques which can enable them to securely communicate:

o If N; and IV; do not share a key but share a single common neighbour
N, then a message can be sent from N; to N, encrypted by their shared
key(s), decrypted by Nj, and then re-encrypted by Ny and sent to NV
using their shared key(s). This process of encrypting and decrypting

messages along a path through the network is known as link encryption.

e If N; and N; share ;1 common neighbours Ny, ..., Ni, (as in a KPS based

41

2.4 Existing schemes and techniques

on a pg-common intersection design, Section 4.5.3.2) then the message M
can be split into p random-looking bit strings M;, ..., M, so that if N;
receives all p message strings, it can recover M. For example, this could
be achieved by creating p — 1 (pseudo)random bit strings of length |M|,
and choosing the final string M, so that M, ®---® M, = M as described
in [26]. Then N; can send each message string via one of the common
neighbours Ny, ..., Nj, using link encryption. The larger the number of
common neighbours, the less chance an adversary has of compromising
all the neighbours and recovering M. However, this comes at the cost of

increased communication through the network.

e In a similar way, common neighbours can be used to establish a shared
key between INV; and N;. Creating a new key will reduce the communica-
tion overheads in the network after the key is established, in comparison
to using common neighbours for every communication. Nodes N; and
N; can agree a new key K;; by one node creating a secret key (prefer-
ably using a good pseudo-random number generator) and transmitting
it to the other node by sending a share of it via each of their common
neighbours, in the way described above. More sophisticated methods are
also possible, such as the one given in [29] which additionally provides a

threshold level of fault tolerance.

e Finally, a pair of nodes which already share a key K;; may use any com-
mon neighbours to reinforce their key, by which we mean creating a new
key K}; which is less vulnerable to compromise by an adversary. This is
achieved by ensuring that the adversary can only discover Kj; by com-

promising every node used in the reinforcement, which is comprised of

42

2.4 Existing schemes and techniques

a key establishment scheme as above, followed by XORing the newly
established key with the existing key K;;. Such a protocol, called mul-
tipath reinforcement, is presented in [20] and was introduced briefly in

Section 2.4.1.

For all of the above methods, it is clearly preferable in terms of communication
overheads and resilience if the diameter and average path length in the inter-
section graph are small, so that ‘most’ non-adjacent nodes have at least one
common neighbour or only a short path between them. If two nodes do not
share a common neighbour but have multiple short paths between them, then
better resilience is provided for messages routed or keys shared along these
paths if they are disjoint. This is because if the paths are not disjoint, the
adversary could focus on compromising nodes which lie on the intersection of
the paths to minimise the number of nodes which have to be compromised in

order to recover the message or key.

In Chapters 4 and 5 we will see methods for ensuring that the diameter and

average path length of the key graph are small.

43

CHAPTER 3

Generalised formula for the

resilience of random key
predistribution schemes

Contents

3.1 Introductionc0..... 45
3.2 Background: random key predistribution schemes 46
3.2.1 Eschenauer Gligor KPS 46
3.2.2 The g-composite scheme 50

3.3 Previous formulae for resilience of ¢-composite
scheme i it 52
3.3.1 Chan, Perrigand Song 53
332 YumandLee 54

3.4 Generalised resilience for random key predistri-
butionschemes 55
3.5 Numerical examples 58
3.6 Conclusion00000.... 61

This work, joint with Ed Kendall, Wilfrid S. Kendall and Keith M. Martin,

appears as a paper on the Cryptology ePrint Archive [41].

44

3.1 Introduction

3.1 Introduction

As explained in Section 2.2.3, a commonly used metric for comparing the re-
silience of key predistribution schemes is fails, which measures the proportion
of network connections which are ‘broken’ by an adversary which has com-
promised s nodes. Correct analysis of schemes is fundamental to the proper
assessment of KPSs. In [20], Chan, Perrig and Song present a formula for mea-
suring the resilience in a class of random key predistribution schemes called
g-composite schemes. We explain how this formula makes an incorrect assump-
tion about independence, and present a correction. Our corrected formula fea-
tures an additional parameter which makes it applicable to a wider variety of
random key predistribution schemes, including the original Eschenauer Gligor

scheme [32]. We also present a simplification of their formula for connectivity.

We refer to the paper by Yum and Lee [75] which also claims to correct the
original formula for the g-composite scheme. However the resulting formula
is complicated, computationally demanding, and hard to understand. The
formula which we propose and prove is easily computable and can be applied

to a wider range of schemes.

In Section 3.2 we give the details of two random key predistribution schemes
and provide proofs of their connectivity and resilience parameters. In Sec-
tion 3.3 we state the previously proposed formulae for the resilience of ¢-
composite schemes and discuss issues arising in their proofs, before presenting
and proving our generalised formula for faily in Section 3.4. Finally, in Sec-

tion 3.5 we analyse the difference between our formula and that given in [20],

45

3.2 Background: random key predistribution schemes

which can be considered an upper bound on the true value.

3.2 Background: random key predistribution
schemes

For deterministic schemes, fail, can usually be computed using exact knowledge
of how many nodes store each key. In [56], Paterson and Stinson generalise
the fail, calculation across a range of deterministic schemes. For random key
predistribution schemes, the number of nodes which store each key is only

known probabilistically, adding another layer of complexity to the calculation.

Here we present two examples of random key predistribution schemes. We
derive their respective connectivity and resilience formulae in order to demon-
strate some of the methods for proving our main result, the generalised formula
for fail; in random key predistribution schemes. We also provide a simplified

formula for the probability of two nodes having exactly ¢ keys in common.

3.2.1 Eschenauer Gligor KPS

Recall the Eschenauer Gligor KPS [32] which we presented as Scheme 2.1 in
Section 2.4.1, where each node is allocated a random k-subset of keys from
a key pool I, where || = n. We noted that two nodes are connected if
they have at least one key in common. Where nodes share more than one
common key, they should select one of them at random to use to secure their

communications. To be precise, we introduce a parameter {2 which is the

46

3.2 Background: random key predistribution schemes

maximum number of common keys which two nodes may use to secure their

communications. For the Eschenauer Gligor scheme, €2 = 1.

3.2.1.1 Connectivity

We now present the probability Pr; of two nodes being connected in this
scheme. The original paper presents and proves an equivalent expression of
this formula using factorials; we use the binomial coefficient notation for con-

sistency with the majority of the subsequent literature.

Lemma 3.1 (Eschenauer Gligor connectivity). The probability of two nodes
being connected in an FEschenauer Gligor random key predistribution scheme
with key pool size n and key storage k is

n—k

)

(+)

Pr1:1—

Proof. Suppose that two nodes N;, N; store key sets Ky,, Ky, respectively.

The probability that they are connected is
1 — Pr[they have no keys in common] = 1 — Pr[Cy, N Ky, = 0].

Fix KCu,. Then there are (";k) ways to pick a k-subset of keys for node N; so

that ICn, N Ky, = 0, out of the total possible (Z) ways to pick Ky;. n

Remark 3.1. We note that it is a common assumption in the literature that
the key graph of the Eschenauer Gligor scheme is equivalent to the Erdos-Rényi
random graph G(v, Pry) [31], as asserted in the original paper [32] and in [20].
That is, the key graph is a random graph on v vertices, where each edge exists

with probability Pry, so that there are approrimately (;)Prl edges. However,

47

3.2 Background: random key predistribution schemes

this is not the case, as the edge existence probabilities are interdependent. As a
simple example, suppose that the key storage is k = 1, and that for some nodes
Ny, Ny, N. we have (N,, Ny) € E and (Ny, N.) € E. Then the probability that

(Ng, N.) € E is 1, and not dependent on n, the size of the key pool.

This observation has also been made in [5, 27, 74]. These papers prove that
the Eschenauer Gligor key graph is different from the Erdos-Rényi graph; in
particular, for large networks the expected number of triangles is orders of
magnitude larger in the key graph [5, 74] and the connectivity threshold is
lower. Using the Erdos-Rényi random graph to model the Eschenauer Gligor
key graph is therefore pessimistic, in the sense that the key storage required for

the graph to be connected is lower than expected by the Erdds-Rényi model [27].

3.2.1.2 Resilience

Eschenauer and Gligor do not calculate the resilience of their scheme in the
way that we have defined. They do, however, make the observation that in a
simulation, only 50% of the keys from the key pool were used to secure links:
30% were used to secure a single link, 10% to secure two links and 5% to
secure three links. Thus the compromise of a single key compromises exactly

one other link with probability 0.1.
The standard metric fail; for the Eschenauer Gligor scheme is indirectly stated

within another result in [20]. Here we state and prove it formally.

Lemma 3.2 (Eschenauer Gligor resilience). In an Eschenauer Gligor random

key predistribution scheme with key pool size n and key storage k, the resilience

48

3.2 Background: random key predistribution schemes

1s given by

fail, = 1 — (1 - E)S . (3.2.1)

Proof. Fix a random link in the network between uncompromised nodes N;

and NN;, and suppose that they use key K; to secure their connection.

We begin by considering s = 1, that is, the adversary has compromised a
single node. Let X be a uniformly random k-subset of the key pool K =
{Ki,...,K,}, so that it represents the keys known to the adversary after
compromising one node. Then
fail;, = Pr[K; € X]
= 1-Pr[K; ¢ X]
(")
(%)

(-

Now we generalise for s > 1. Let X1, ..., X, be independent uniformly random

- 1-

subsets of the key pool, each of size k. Then

fail, = Pr[KiEXlLJ"'UXS]
1 —P{Ki ¢ X U UX,]

= 1—(PrlK; ¢ Xi])°

(-

49

3.2 Background: random key predistribution schemes

3.2.2 The g-composite scheme

In many key predistribution schemes, it is possible that a pair of nodes N; and
N; have more than one key in common. If 2 = £, nodes may use all of their
w < k common keys Ky, N Ky, = {Ky,, Ky,, ..., Ky} to secure the link, for

example by calculating their shared key to be
Kij = h(Kt1||Kt2|| T ||Ktw>)

where h is a suitable function such as a hash function (see [63, Chapter 4]
for an introduction), and where there is a well-defined ordering on the keys
t1 <ty <--- <t, sothat K;; is uniquely defined. Since an adversary would
have to learn all w keys to compromise the link, such schemes have better
resilience than those where {2 = 1, such as Scheme 2.1. However, changing (2

does not affect the connectivity.

Chan et al. [20] present a random KPS which requires nodes to have ¢ > 1
keys in common in order to be connected, called the g-composite scheme. We
give the formal details below. Intuitively, for the same key pool size n and key
storage k, nodes are less likely to be connected in the g-composite scheme than
in the Eschenauer Gligor scheme, but the resilience increases with ¢q. Such a
trade-off may be advantageous for some applications, and the sizes of n, k and
q can be adapted to provide a desirable level of connectivity with as high a

resilience as possible.

Scheme 3.1 (g-composite scheme [20]). The q-composite scheme is similar
to Scheme 2.1, except that nodes must share at least ¢ > 1 keys before they are

allowed to compute a common key, and Q2 = k. That is, nodes with fewer than

20

3.2 Background: random key predistribution schemes

q keys i common will not be able to communicate directly, and nodes with q
or more keys in common should hash all of their common keys to create their

link key.
3.2.2.1 Connectivity

We consider the connectivity of the g-composite scheme, that is, the probability
that a pair of nodes share g or more keys. We omit the full proof here because
it is given in [20] and reproduced in [75]. However, we provide an improvement:
the value of p(7), the probability of a pair of nodes sharing exactly ¢ keys, has
previously been given as
(1) (i) (i)

©

but we provide an equivalent, simpler expression in Lemma 3.3. Our formula

p(i) =

for p(7) can be derived from the original by expanding the binomial coefficients

and rearranging, but we provide a direct combinatorial proof:

Lemma 3.3. In a random key distribution scheme where nodes are allocated
a random k-subset of keys from a key pool of size n, the probability that a pair
of nodes shares exactly i keys is given by
(i) ()

pli) = 2= (3.2.2)
(%)
Proof. We consider the probability of two nodes N; and N, having exactly ¢
keys in common. Fix i keys from N;’s set of keys. For Nj to have (k —) keys

which are unknown to Ni, it must have (k — ¢) keys chosen from the (n — k)

keys unknown to N;. Thus there are (T]i:l:) ways to do this, out of the (Z)

51

3.3 Previous formulae for resilience of ¢-composite scheme

ways to choose keys for N,. Finally, we multiply by the number of ways to fix

1 keys from Np’s set of k keys. O

Thus we can see that the connectivity of a g-composite scheme is given by the

following formula:

Theorem 3.4 (from [20]). In a g-composite scheme with key pool size n and

key storage k, the connectivity probability is

Pri=1- Zp(z) : (3.2.3)

Remark 3.2. Notice that (3.2.3) is a generalised formula for the probability
of connectivity, which agrees with that given in Lemma 3.1 for the Eschenauer

Gligor scheme: setting ¢ = 1 into (3.2.3) gives

Prp = 1—p(0)

3.3 Previous formulae for the resilience of the
g-composite scheme

We now discuss approaches which have been proposed for calculating the re-

silience of the g-composite scheme.

52

3.3 Previous formulae for resilience of ¢-composite scheme

3.3.1 Chan, Perrig and Song

In [20], Chan et al. give the following formula:
- ARWI0
fail, = 1—(1-—-— — . 3.3.1
X)) o
However, the proof is informal and incorrectly assumes independence between

certain events, as we explain below.

Before we explain why this formula for resilience is incorrect, we first note an
aspect of the notation in the original formula which has caused some confusion
in the subsequent literature. Chan et al. consider a parameter p, defined to be
the minimum node-node connectivity probability needed to make the whole
network connected with some high probability. They then define peonnect =
1 - Z;};& p(i) and state that the key pool size n should be chosen to be the
largest (integer) such that peonnect = p, which is a sensible way to reduce
unnecessary connectivity and keep resilience high. However, in their resilience
formula, they redefine p to equal peopnect- This has caused errors to be made
in its reproduction, for example in [75]. We will always use the notation Pr;
as defined in (3.2.3) to avoid confusion, and for consistency with much of the

deterministic key predistribution literature.

As Yum and Lee point out in [75], the problem with (3.3.1) is an incorrect
assumption of independence. Suppose that, in a 2-composite scheme, a pair
of nodes share keys K; and K,. For an adversary to break the link between
these nodes requires knowledge of both K; and Ks. Let Ak, be the event that

an adversary knows key K;, and suppose that after compromising s nodes an

23

3.3 Previous formulae for resilience of ¢-composite scheme

adversary knows z keys. Equation (3.3.1) assumes that
N 2
PriAs, A A, = PrlAi Pridi] = (5) .

However, this is not true because the events are not independent. Consider
the conditional probability Pr[Ag,|Ak,]. If the adversary already knows key
K, then it is slightly less likely that the adversary also knows K5, indeed,
PrlAk,|Ak,] = 1. Thus, the calculation leads to an overestimation of the

true value of fail,, as we demonstrate in Section 3.5.
3.3.2 Yum and Lee

In [75], another formula is proposed for the calculation of fail; for g-composite

schemes. However, the formula is difficult to compute, as we now demonstrate.

In [75, Theorem 2], Yum and Lee propose that fail, for the g-composite scheme

is given by
e Y (= O pi)) (B = TR Y
2 [@ <_>P>< B)] 552

This formula is complicated and computationally laborious to evaluate; in
addition we had difficulty in following the proof. We present a direct proof of
a computationally simpler formula in Corollary 3.7 below. We also note that,
whilst we are able to compute (3.3.2) for small values of n such as n = 17,
our results are different from those given in [75, Table 1]. We are unable to
reproduce any of their sample values, either by interpreting the ‘p’ in (3.3.2)
to mean Pry or peonnect- We conclude that there must be a typographical error

somewhere in their formula and/or proof.

o4

3.4 Generalised resilience for random key predistribution schemes

3.4 Generalised resilience for random key predis-
tribution schemes

In order to generalise across many instantiations of random key predistribution
schemes, we have introduced a parameter 2 < k, which acts as an upper
bound on the number of shared keys which nodes can use to compute their
link key. This allows us to derive a formula which describes the resilience of
many different random KPSs, including the schemes described in Section 3.2.
We show in Corollary 3.6 that our formula is equivalent to that of Scheme 2.1

in the special case when ¢ = 2 = 1.

We now present our generalised formula for fail;, which applies to any key

predistribution scheme where:

1. each node is allocated k keys, selected independently and uniformly at

random without replacement from a pool of n keys;

2. the intersection threshold is ¢ > 1, that is, nodes may only establish a

link key if they share at least ¢ keys;

3. the upper bound on the number of shared keys a pair of nodes may use
is €2, where ¢ < Q < k; if two nodes share more than 2 keys then they

should pick €2 of their keys at random to compute their link key;

4. suppose that a pair of nodes use w shared keys to create a link key, where
g < w < . We require that the function (such as hash, XOR, etc.) for
producing the single link key is such that an adversary must know all

of the w shared keys between a pair of nodes to break the link; if the

95

3.4 Generalised resilience for random key predistribution schemes

adversary only knows at most w — 1 of the keys then the link remains

secure.

Theorem 3.5. For any random key predistribution scheme which fulfils con-

ditions (1)-(4) above, the resilience is given by

il = 5 (Zﬂf [1 - g“”i_l (c;> <((Z_))>] pw) ’

2 for @) (@

Proof. Consider a randomly-chosen pair of uncompromised nodes which share

w keys, where ¢ < w < €). For ease of notation and without loss of generality,
we label these keys {1,2,...,w}. The probability that all of these w keys are

known to an adversary which has compromised s nodes is

Pri{l,...,w} C{X,U---UX,}]=1—Pr

9

=1

where B; is the event that key ¢ ¢ {X; U---U X }. Using inclusion-exclusion,

we have

1—Pr = 1-wPrll ¢ {X;U---UX}|

+<‘2”)Pr[1,2¢{Xlu-..qu}]+--~
(—1)i—1(°‘f>Pr[1,...,¢¢{Xlu--.uXS}H---

| ("))

- 1‘?‘1)"‘1 () (®

The probability of a randomly-chosen connected pair of uncompromised nodes

sharing exactly w keys (¢ <w < Q) is 1;3(—:11). Therefore, for ¢ < w < € we have
Q w n—i $
1 (@ ()
fail, = § 1— E —1)t k
) Pry (w=q [i1<) <Z) ((%))]MW)

26

3.4 Generalised resilience for random key predistribution schemes

For Q) < w < k, the probability of two connected nodes sharing w keys is again

. However, only Q2 of these keys will be used to secure the link, and the
choice of these {2 is made a priori, uniformly at random, and so without loss
of generality they can be labelled 1,2,...,€). Therefore the probability of the

adversary knowing all {2 keys is
© e (@) (Y
Prift o € (oo =1- 30 o () (S
t ()
using the result above, and so for 2 < w <k,
(")

g (2o O(%)] 2)

Adding these two results gives the final formula for fail,. O

We now demonstrate that our formula agrees with that given in Lemma 3.2,

in the case where ¢ = Q2 = 1.

Corollary 3.6 (Eschenauer Gligor resilience revisited). The resilience of a
random KPS which fulfils conditions (1)-(4) and where ¢ = Q =1 (such as

the Eschenauer Gligor scheme), is given by

failszl—(l—ﬁ) :
n

Proof. Setting ¢ = Q2 = 1 in Equation (3.4.1) gives

fail, = Pirl <_1_ (_1)0(D ((’é;)) p(1)+
(

3.5 Numerical examples

Since Pry is by definition the sum of the probabilities of having 1,2, ...,k keys

in common, the first fraction is equal to 1, and we have

s 1_((ninl_—ll)f!)!k!/(n—nl!f)!k;!)s
= 1- (1 — S)S 7

as required. O

It is now straightforward to derive the correct formula for the resilience of

Scheme 3.1 from Theorem 3.5:

Corollary 3.7 (g-composite resilience). The resilience of a random KPS that

fulfils conditions (1)-(4) and where ¢ > 1 and Q = k (such as the q-composite

)]p(w)) . (3.4.2)

Proof. Using Equation (3.4.1), we observe that when 2 = k the summation

scheme from [20]) is given by

fail, = Pirl <i [1 - i (—1)i! (‘;’) (

w=q =1

(")
(%)

from w = 2 + 1 to w = k vanishes, leaving the formula given above. O]

3.5 Numerical examples

We now compare our corrected formula to the original expression for fail;. In
Tables 3.1 and 3.2 we contrast equations (3.3.1) and (3.4.2) for sample values
within the g-composite scheme (2 = k). We fix n = 1000 and k& = 100, and in

Table 3.1 we fix ¢ = 10 and vary s from 1 to 20. In Table 3.2 we fix s = 10

o8

3.5 Numerical examples

(3.3.1) (3.4.2) % difference
2.75 x1071 | 1.79 x10711 | 53.532634
1.85 x107% | 1.52 x1078 21.345324
7.03 x1077 | 6.25 x1077 12.472689
8.27 x107¢ | 7.63 x107° 6.037381

0.000051 0.000048 6.037381
0.000213 0.000204 4.544026
0.000669 0.000647 3.517733
0.001720 0.001674 2.776871
0.003794 0.003711 2.222941
0.007423 0.007292 1.797917
0.013196 0.013006 1.465379
0.021692 0.021434 1.201299
0.033414 0.033086 0.989159
0.048737 0.048342 0.817219
0.067871 0.067415 0.676889
0.090850 0.090342 0.561736
0.117530 0.116984 0.466844
0.147617 0.147046 0.388391
0.180696 0.180114 0.323365
0.216264 0.215683 0.269363

S S e O gy
SO0 T W, © 0D WN = ®

Table 3.1: Comparison of formulae when n = 1000, £ = 100, ¢ = 10, hence
Pr; = 0.555019

and vary ¢ from 1 to 20. Differences are given as a percentage difference, that

is, the final column is given by % x 100.

We find that (3.3.1) gives higher values for fail,, that is, it underestimates
the resilience. As the differences are small, (3.3.1) can be thought of as an
upper bound on the correct value. We note that an asymptotic approximation
can be derived by routine approximation of (3.4.2) (using the basic techniques
of Poisson approximation to the Binomial distribution); for example, it is a

simple exercise to show that

k

fail. A W' k 2 —L(k2—2kw+%) 1—6_% v

w=q

and numerically this presents as a lower bound. These approximations are

29

3.5 Numerical examples

q Pry (3.3.1) (3.4.2) | % difference
1 10.999985 | 0.027080 | 0.026874 | 0.765811
2 1 0.999802 | 0.026966 | 0.026760 | 0.769232
3 1 0.998681 | 0.026520 | 0.026314 | 0.782573
4 10.994211 | 0.025397 | 0.025191 | 0.816410
5 | 0.981134 | 0.023337 | 0.023133 | 0.881074
6 | 0.951193 | 0.020382 | 0.020183 | 0.983376
7 1 0.895315 | 0.016889 | 0.016701 1.126261
8 1 0.807913 | 0.013337 | 0.013164 1.310152
9 | 0.690967 | 0.010113 | 0.009960 | 1.534359
10 | 0.555019 | 0.007423 | 0.007292 1.797917
11 | 0.416034 | 0.005313 | 0.005204 | 2.099974
121 0.289839 | 0.003730 | 0.003641 2.439908
13 | 0.187255 | 0.002580 | 0.002510 2.817340
14 | 0.112090 | 0.001765 | 0.001710 | 3.232105
15 | 0.062167 | 0.001197 | 0.001154 | 3.684213
16 | 0.031964 | 0.000806 | 0.000774 | 4.173823
17 | 0.015250 | 0.000540 | 0.000516 | 4.701213
18 1 0.006759 | 0.000360 | 0.000342 2.266761
19 | 0.002786 | 0.000240 | 0.000226 | 5.870935
20 | 0.001070 | 0.000159 | 0.000149 | 6.514278

Table 3.2: Comparison of formulae when n = 1000, £ = 100, s = 10

weakest when Pry is very small (when n is large in comparison to k), but such
low connectivity is unlikely to be used in practice. For more appropriate values

of Pr; for network connectivity, the approximations become more accurate.

It can be seen that, using either formula, the value of faily increases in s
and decreases in q. Conversely, the percentage difference decreases in s and
increases in q. However, as the largest values of the percentage differences
correspond to the smallest values of failg for both equations, the absolute error

in (3.3.1) remains small.

We therefore conclude that whilst our contribution is of mathematical impor-

tance it has limited impact on applications, as the original formula from [20]

60

3.6 Conclusion

provides a close approximation to the true value.

Sample values for the formula from [75] are not given in the tables; for ex-
act computation using Maple 15, the calculation did not terminate within an
hour for input numbers of the magnitude given in the tables. By contrast,
our formula can be evaluated within seconds on the same computer (AMD
Phenom™ II X4 970 CPU, 3.5 GHz, 16 GB RAM). Approximate calculation
of (3.3.2) revealed answers appearing to converge to the results given by our

formula, (3.4.2).

3.6 Conclusion

We have described two random key predistribution schemes and explained how
the resilience of the g-composite scheme has been inaccurately presented in the
literature. We have derived a formula for fail, which is rigorously proven, prac-
tical to compute, and applicable to a wide range of random key predistribution
schemes because of the parameter (). Notice that if we take a scheme with
2 = k and change € to be in the range ¢ < €} < k, then connectivity remains
unchanged but resilience is reduced. Whilst this may be undesirable for many
applications, setting () < k may provide practical benefits such as reduced
computation time, and an obstacle to an adversary in determining exactly

which of the common keys have been hashed to create the key for a given link.

Correctly calculating resilience is important for accurately assessing and com-
paring KPSs; in particular, comparisons are often drawn between the perfor-

mances of random and deterministic key predistribution schemes. It is there-

61

3.6 Conclusion

fore reassuring to know that the original equation in [20] produces probabilities
which are similar to those given by the correct formula for fail,. However, es-
tablishing the correct formula is of mathematical importance, and expressing

it in a way which is computable is of practical importance.

62

CHAPTER 4

Expander graphs and key predistri-
bution schemes

Contents
4.1 Introduction 000000 64
4.2 Expander graphs 65
4.2.1 Boundary properties and expansion 65
4.2.2 The implications of large € for networks 67
4.2.3 Spectral expansion 70
4.3 Expansion in product graphs 71
4.4 Expansion in intersection graphs 78

4.5 Analysing the expansion of existing KPSs 81

4.5.1 KPSs based on expander graph constructions 82
452 Random KPSs 83
4.5.3 Combinatorial designs 84
4.6 Using expansion as a metric 90
4.6.1 Components 93
4.6.2 Cut-edges o 94
4.6.3 Cutpointso 95
4.7 Conclusion i 96

The content of this chapter is largely based on the paper [42].

63

4.1 Introduction

4.1 Introduction

Since networks may be modelled as graphs, tools from graph theory have been
used in both their design and analysis. In this chapter, we explore the role of
expander graphs in KPSs. The expansion of a graph is a measure of how well
connected it is, and how difficult it is to separate subsets of vertices; we will
see the precise definition in Section 4.2. Roughly speaking, a graph has good
expansion if every ‘small’ subset of vertices has a ‘large’ neighbourhood, and
intuitively, expansion is a desirable property for graphs of networks. The term

‘expander graphs’ is used informally to refer to graphs with good expansion.

In 2006, expander graph theory was introduced to the study of KPSs from
two perspectives. On the one hand, Camtepe et al. [18] showed that a math-
ematical construction for an expander graph could be used to design a KPS,
resulting in a network which is well connected under certain constraints. On
the other hand, Ghosh [36] claimed that good expansion is a necessary condi-
tion for ‘optimal’ networks. We examine these claims and determine the role

of expander graphs in KPSs for resource-constrained networks.

We show that constructions for KPSs based on expander graphs provide perfect
resilience, but lower connectivity and expansion than many existing compara-
ble KPSs. We argue that expansion is an important metric for assessing KPSs
to be used alongside the other common metrics of key storage, connectivity and
resilience for a given network size. However, we note the difficulty of finding
the expansion coefficient of a graph and so propose estimating the expansion

and using other graph-theoretical techniques to indicate potential weaknesses.

64

4.2 Expander graphs

We begin by introducing expander graphs and the relevant terminology in
Section 4.2. In Section 4.3 we outline Ghosh’s claims and show by means
of a counter-example that his conclusion is misdirected towards expansion in
product graphs rather than intersection graphs. In Section 4.4 we discuss how
to maximise the probability of a high expansion coefficient in the intersection
graph, and in Section 4.5 we analyse the extent to which KPSs based on
expander graph constructions achieve this, in comparison to other schemes
from the literature. Finally, in Section 4.6 we suggest practical metrics for

analysing and improving KPSs and the resulting intersection graphs.

4.2 Expander graphs

For a thorough survey of expander graphs and their applications, see [25, 39].
Here we introduce only the aspects of expander graphs which are relevant to

our study, and in particular we restrict our attention to finite graphs.

4.2.1 Boundary properties and expansion

We begin with the definition of a subgraph, before defining boundary properties
and isoperimetric inequalities. Definitions 4.2 and 4.3 are reproduced from [10,

Chapter 16|, to which the reader is referred for further details and examples.
Definition 4.1. A subgraph of a graph G = (V, E) is a graph Gg = (Vg, Es)
in which Vs CV and Eg C E. If Vg or Es is a proper subset (that is, Vs # V
or Es # E), then the subgraph is a proper subgraph of G. If Vs or Eg is empty,

the subgraph is called the null graph. A vertex-induced subgraph is a subset

65

4.2 Expander graphs

S C V together with the edge set Eg := {(N;, N;) € E: N;, N; <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>