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Abstract

To secure a network of small devices using symmetric key cryptography is

a non-trivial task. Nevertheless, it is important because public key cryptog-

raphy is computationally expensive and therefore infeasible to implement on

some small, battery-powered devices with limited memory. We study methods

for allocating symmetric keys to devices before deployment, known as key pre-

distribution schemes. Using combinatorial techniques, we analyse and design

a variety of key predistribution schemes.

We provide a correction to the previously stated formula for calculating the

resilience of certain random key predistribution schemes, presenting instead a

rigorously proved and widely applicable formula. We also present a simplified

formula for calculating the connectivity.

Next, we examine the role of expander graphs in key predistribution schemes.

We demonstrate that good expansion is desirable for robust schemes, and dis-

cuss how this can be achieved. In particular, we examine the expansion of key

predistribution schemes built from expander graph constructions, which pro-

vide perfect resilience. We show that if perfect resilience is not required, key

predistribution schemes with higher connectivity and expansion can be created

from hypergraphs and designs, and we explore the relationships between these

constructions. We argue for the use of hypergraphs to represent and anal-

yse key predistribution schemes, and identify open problems which, if solved,

could lead to further suitable and robust constructions for key predistribution

schemes.

Finally, we study a class of schemes which we call ‘broadcast-enhanced key
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predistribution schemes’. These are schemes which make use of a trusted base

station and a broadcast channel to update and revoke keys in a network whilst

it is operational. We explore the range of benefits which such schemes can

provide, and present and analyse two constructions for particular scenarios: a

scheme which allows efficient revocation of devices, and a scheme which creates

hierarchy amongst the devices for efficient routing and battery consumption.

We demonstrate that our schemes provide effective and flexible trade-offs be-

tween the conflicting parameters of connectivity, resilience, key storage and

broadcast load.

5



Contents

1 Introduction 12

1.1 Chapter overviews . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Preliminaries 17

2.1 Principles of cryptography and information security . . . . . . . 18

2.1.1 Cryptography for secrecy and authentication . . . . . . . 18

2.1.2 Symmetric and asymmetric keys . . . . . . . . . . . . . . 19

2.1.3 Adversary models . . . . . . . . . . . . . . . . . . . . . . 20

2.1.4 Key management . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Key predistribution schemes . . . . . . . . . . . . . . . . . . . . 22

2.2.1 Definition and applications . . . . . . . . . . . . . . . . . 22

2.2.2 Framework . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.3 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.4 Network adversary model . . . . . . . . . . . . . . . . . 27

2.3 Combinatorics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.1 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.2 Graph representations of KPSs . . . . . . . . . . . . . . 31

2.3.3 Combinatorial designs . . . . . . . . . . . . . . . . . . . 32

2.4 Existing schemes and techniques . . . . . . . . . . . . . . . . . . 36

2.4.1 Random KPSs . . . . . . . . . . . . . . . . . . . . . . . 37

2.4.2 Deterministic KPSs . . . . . . . . . . . . . . . . . . . . . 39

2.4.3 Key establishment . . . . . . . . . . . . . . . . . . . . . 40

2.4.4 Communication between non-adjacent nodes . . . . . . . 41

3 Generalised formula for the resilience of random key predis-

tribution schemes 44

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6



CONTENTS

3.2 Background: random key predistribution schemes . . . . . . . . 46

3.2.1 Eschenauer Gligor KPS . . . . . . . . . . . . . . . . . . . 46

3.2.2 The q-composite scheme . . . . . . . . . . . . . . . . . . 50

3.3 Previous formulae for resilience of q-composite scheme . . . . . . 52

3.3.1 Chan, Perrig and Song . . . . . . . . . . . . . . . . . . . 53

3.3.2 Yum and Lee . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4 Generalised resilience for random key predistribution schemes . 55

3.5 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4 Expander graphs and key predistribution schemes 63

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 Expander graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2.1 Boundary properties and expansion . . . . . . . . . . . . 65

4.2.2 The implications of large ε for networks . . . . . . . . . . 67

4.2.3 Spectral expansion . . . . . . . . . . . . . . . . . . . . . 70

4.3 Expansion in product graphs . . . . . . . . . . . . . . . . . . . . 71

4.4 Expansion in intersection graphs . . . . . . . . . . . . . . . . . . 78

4.5 Analysing the expansion of existing KPSs . . . . . . . . . . . . 81

4.5.1 KPSs based on expander graph constructions . . . . . . 82

4.5.2 Random KPSs . . . . . . . . . . . . . . . . . . . . . . . 83

4.5.3 Combinatorial designs . . . . . . . . . . . . . . . . . . . 84

4.6 Using expansion as a metric . . . . . . . . . . . . . . . . . . . . 90

4.6.1 Components . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.6.2 Cut-edges . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.6.3 Cutpoints . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5 Hypergraphs, expansion and key predistribution schemes 98

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.2 Hypergraph representations of KPSs . . . . . . . . . . . . . . . 99

5.2.1 Representing a KPS with a hypergraph . . . . . . . . . . 100

5.2.2 Trivial KPS examples . . . . . . . . . . . . . . . . . . . . 102

5.2.3 Design-based KPS example . . . . . . . . . . . . . . . . 103

5.2.4 Hypergraphs and designs . . . . . . . . . . . . . . . . . . 105

5.3 Expansion in hypergraphs . . . . . . . . . . . . . . . . . . . . . 107

7



CONTENTS

5.3.1 Expansion in KPSs without perfect resilience . . . . . . . 107

5.3.2 Constructions for hypergraphs with good expansion . . . 109

5.3.3 Cayley hypergraphs . . . . . . . . . . . . . . . . . . . . . 110

5.3.4 Comparing Ramanujan expander graphs and Cayley hy-

pergraphs as constructions for KPSs . . . . . . . . . . . 111

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6 Broadcast-enhanced key predistribution schemes 121

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.2 Motivation and definitions . . . . . . . . . . . . . . . . . . . . . 123

6.2.1 Broadcast encryption . . . . . . . . . . . . . . . . . . . . 123

6.2.2 Broadcast-enchanced key predistribution . . . . . . . . . 124

6.2.3 Advantages of BEKPSs over KPSs . . . . . . . . . . . . 125

6.3 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.3.1 BEKPS model . . . . . . . . . . . . . . . . . . . . . . . . 127

6.3.2 Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.3.3 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.3.4 Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . 135
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Chapter 1

Introduction

Many questions in information security can be approached from a combinato-

rial perspective. In this thesis we demonstrate combinatorial, and in particular

graph-theoretical, approaches to the construction and analysis of key predistri-

bution schemes for networks. We use graph theory to suggest new approaches

for the construction of key predistribution schemes, and to draw links between

existing approaches. We also use combinatorial methods to simplify expres-

sions and proofs of existing results, and we give details of certain claims from

the literature which have not been rigorously proven, before providing the

corrected statements and formulae.

Our analysis covers the calculation of resilience in random key predistribution

schemes, the role of expander graphs in key predistribution schemes, designs

and hypergraphs with good expansion, and finally a class of schemes which

unite ideas from broadcast encryption and key predistribution schemes. We

now give an overview of each of the chapters which follow.
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1.1 Chapter overviews

1.1 Chapter overviews

In Chapter 2 we outline the cryptographic principles which form the founda-

tions of all our key predistribution scheme scenarios. Next, we formally define

key predistribution schemes and the relevant combinatorial tools for their con-

struction and analysis. We then provide a brief overview of the literature on

key predistribution schemes, drawing distinctions between deterministic and

random key predistribution schemes, and explaining their connection with key

establishment schemes.

To analyse and compare key predistribution schemes it is helpful to calculate

their resilience, which is a measure of the proportion of the network compro-

mised by an adversary which has learned keys from a small number of nodes.

In Chapter 3 we provide a single formula to express the resilience of a wide

range of random key predistribution schemes. We give details of two previous

statements of this formula: that of Chan et al. [20], which makes an incorrect

assumption of probabilistic independence, and the formula given by Yum and

Lee [75], which is difficult to compute. The chapter also includes a proof of the

commonly-stated formula for the resilience of Eschenauer and Gligor’s seminal

random key predistribution scheme [32], and a simplified expression for the

connectivity of the q-composite scheme from [20].

It is common to represent both key predistribution schemes and networks with

graphs. Chapters 4 and 5 are concerned with graph theory in key predistribu-

tion schemes, and in particular the concept of expansion in graphs.
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1.1 Chapter overviews

A graph which represents the key sharing in a network is known as the key

graph, and a graph which represents the relative locations of distributed de-

vices is known as the communication graph. Vertices represent devices or

‘nodes’, edges in the key graph represent shared keys, and edges in the com-

munication graph correspond to the pairs of nodes which are within wireless

communication range. A pair of devices share an edge in the intersection of

these two graphs exactly when they are within communication range and share

common key(s).

In Chapter 4 we study the use of graph-theoretical tools for the analysis of key

predistribution schemes, and in particular consider the role of expander graphs

in their construction and analysis. We critique the suggestions of Ghosh in [36],

demonstrating that his claim of good expansion being desirable in the product

graph is unsubstantiated. We provide a simple example which demonstrates

that good expansion in the product graph can be achieved even when the

intersection graph is worst-possible.

Instead, we identify that good expansion in the intersection graph is desir-

able for well connected, robust networks, and refer to two key predistribution

schemes [17, 60] which are based on expander graph constructions. These pro-

vide perfect resilience but at the expense of lower connectivity than many other

key predistribution schemes with comparable key storage. In particular, we

show that random key predistribution schemes and many of the combinatorial

designs which have been suggested for use as KPSs have good expansion. This

is a previously unstated advantage of using these constructions for KPSs.
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1.1 Chapter overviews

In Chapter 5 we argue for the use of hypergraphs to represent and construct key

predistribution schemes. We show that a hypergraph representation has ben-

efits over the previously-used graph representations because it clearly demon-

strates the key storage and resilience, as well as the connectivity. Developing

ideas from Chapter 4, we propose that wherever perfect resilience is not re-

quired, higher connectivity can be achieved through the use of expander hyper-

graphs to construct key predistribution schemes. We present a simple exam-

ple of a key predistribution scheme based on a Cayley hypergraph and show

that, whilst far from optimal amongst expanding hypergraph constructions,

it achieves our aims of increasing connectivity and slightly lowering resilience,

whilst maintaining low key storage and good expansion. We argue that further

research into random uniform hypergraph constructions and random strongly

regular graphs would be likely to provide further robust key predistribution

scheme constructions.

For network environments where a trusted base station and broadcast chan-

nel are available, we propose a category of schemes called broadcast-enhanced

key predistribution schemes (BEKPSs) which utilise the extra resources to im-

prove upon standard key predistribution schemes. In Chapter 6 we provide

a simplification of some of the proofs from the scheme of Cichoń et al. [23],

which we classify as a BEKPS. We then study two particular benefits which

BEKPSs can provide over key predistribution schemes where a base station

and broadcast channel are not available, namely the ease of revocation and

the possibility to create a dynamic hierarchy amongst the devices. We pro-

pose families of BEKPSs which are suitable for each of these scenarios, and our

analysis demonstrates that they are effective in their aims, whilst providing

15



1.2 Publications

practical and flexible trade-offs between connectivity, resilience and broadcast

load.

We conclude in Chapter 7 with a summary of our work, and propose further

questions for future consideration.

1.2 Publications

The research in Chapter 3 is joint work with Ed Kendall, Wilfrid S. Kendall

and Keith M. Martin, and appears as a paper on the Cryptology ePrint

Archive [41].

Chapter 4 is largely based on the paper ‘On the role of expander graphs in

key predistribution schemes for wireless sensor networks’ [42] with Keith M.

Martin, which was presented at WEWoRC 2011.

Finally, Chapter 6 is joint work with Keith M. Martin, Siaw-Lynn Ng, Maura

B. Paterson and Douglas R. Stinson and also appears on the Cryptology ePrint

Archive [43].
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In this chapter we present the core principles, definitions and notation on

which the subsequent chapters rely. We begin with an introduction to some of
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2.1 Principles of cryptography and information security

the fundamental principles of cryptography and information security in Sec-

tion 2.1. In Section 2.2 we define key predistribution schemes and explain the

motivation for their study. Next, in Section 2.3, we give an introduction to

the relevant mathematical tools used in the construction of key predistribution

schemes, namely combinatorial designs and graphs. In particular, Section 2.3.2

demonstrates how graphs can be used to represent key predistribution schemes.

Finally, in Section 2.4 we present a brief review of the literature on determin-

istic and random key predistribution schemes, and explain the connection to

a related concept, key establishment schemes.

2.1 Principles of cryptography and information
security

2.1.1 Cryptography for secrecy and authentication

The principle of encrypting information to provide secrecy is reasonably fa-

miliar: we are surrounded by scenarios where information needs to be stored

or transmitted with restrictions on who can access or read it. Encryption

provides a method for ensuring (or, in many cases, ensuring with high proba-

bility) that only an intended recipient is able to decrypt and view the original

data. Encryption and decryption algorithms generally require at least one

cryptographic key ; we will provide further details in Section 2.1.2.

Another important use of cryptographic keys is to provide forms of authen-

tication. For our purposes, it suffices to say that cryptographic keys can be

used to provide entity authentication, an assurance that the message originated

18



2.1 Principles of cryptography and information security

from a specific person or device, and data authentication or data integrity, an

assurance that the message received is identical to the message sent, and has

not been altered in any way. For more details and examples, see [51].

We note that, in the variety of scenarios which we consider, many will have no

particular need for secrecy. For example, if we consider a network of devices

measuring temperature over an area of land, this data may not be confidential,

and indeed, could easily be obtained by anyone visiting the area. However, it

may well be important for the devices to use cryptography when sharing their

measurements in order to provide assurance that each data point really did

originate from the device claiming to have sent it, and that the measurement

has not been altered during transmission. Thus, we note that there is a variety

of reasons why it may be necessary for devices to store cryptographic keys. In

the analysis which follows we will not be concerned with the purpose of the

keys, or the particular algorithms and protocols in which they will be used,

but simply the question of how to distribute the keys to the devices.

2.1.2 Symmetric and asymmetric keys

Before the 1970s, cryptographic keys were symmetric, that is, the same key

was used to encrypt and decrypt the data. In 1973, James Ellis, Clifford

Cocks and Malcolm Williamson developed an asymmetric algorithm, whereby

the keys needed for encryption and decryption were different. Their work at

GCHQ was not publicised, but similar ideas were developed independently

by Whitfield Diffie and Martin Hellman, who in 1976 proposed the idea of

an asymmetric cryptosystem [28] and Ron Rivest, Adi Shamir and Leonard
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2.1 Principles of cryptography and information security

Adleman who proposed the RSA cryptosystem in 1977 [59]. We refer the

interested reader to [61, 63] for further details.

Asymmetric schemes are also known as public key algorithms because the en-

cryption key can be made public. That is, they rely on the idea that it is

computationally infeasible to derive the decryption key from the encryption

key, as long as a particular computational problem (such as factoring or the

discrete logarithm problem) is computationally infeasible. These ideas revolu-

tionised cryptography as they enabled entities to send and receive encrypted

data without having previously agreed a symmetric key. In particular, public

key cryptography is ideal for exchanging encrypted messages between enti-

ties which have no pre-existing relationship. However, public key algorithms

are currently more computationally expensive than symmetric key algorithms.

There remain applications and devices where public key cryptography is in-

feasible, and pre-agreeing a symmetric key is still necessary. It is on such

scenarios that we focus in this thesis.

2.1.3 Adversary models

When considering the strength of a cryptographic algorithm or protocol, it

is important to consider the type of adversary against which one wishes to

be secure. Notice that no cryptographic protocol between users A and B is

secure if A or B tells the adversary all of the keys being used. Similarly,

many cryptographic algorithms would be insecure against an adversary with

infinite time and/or computing power at its disposal. It is therefore important

to specify exactly which threats one is seeking to protect against. We gen-
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erally make worst-case assumptions, so as to provide an upper bound on the

damage caused by an adversary. We will give our detailed adversary model in

Section 2.2.4.

2.1.4 Key management

Key management is an important part of any system which uses cryptography,

and can easily be a weak link in an otherwise well-designed cryptographic

system. Areas of key management include:

• Key generation: the production of ‘good’ keys, that is, keys which

ideally do not conform to any pattern which an adversary could exploit;

• Key distribution: the allocation of keys to devices;

• Key refreshing/update: replacing keys - it may be desirable to define

a ‘lifetime’ for keys, that is, a window of time during which they may be

used, and after which they should be changed;

• Key revocation: removing a key from use - if a key becomes known to

an adversary, we ideally want to be able to stop that key being used for

further communication.

Our focus will be mainly on key distribution, in particular key predistribution,

as defined in Section 2.2.1. In Chapter 6 we will also discuss how revocation

and updates can be achieved in certain scenarios, and present efficient ways of

doing so.
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2.2 Key predistribution schemes

2.2.1 Definition and applications

We consider the distribution of keys to networks of small, resource-constrained

devices, or ‘nodes’. A wireless sensor network (WSN) is an example of such

a network. It is a collection of static, small, battery powered devices called

sensor nodes, which communicate with each other wirelessly. The resulting

network is usually used for monitoring an environment by gathering local data

such as temperature, light or motion. Much of the literature on key predis-

tribution schemes is concerned with wireless (or distributed) sensor networks,

including at least a third of the papers cited in this thesis. However, we will

be considering schemes which are applicable to any distributed, stationary

network of homogeneous, resource-constrained nodes. As we assume that the

nodes are lightweight and battery powered, it is important to consider battery

conservation in order to allow the network to remain effective for the appro-

priate period of time, and to ensure that the storage required of the nodes is

not beyond their memory capacity.

Resource-constrained networks can be deployed in a range of different en-

vironments, including potentially hostile areas such as military or volcanic

zones [71], where it would be dangerous or impractical to carry out the moni-

toring or data gathering by hand. In hostile environments it may be necessary

to encrypt messages for security and/or authentication. Various cryptographic

key management schemes have been proposed for such scenarios. In some cases

there is an online key server or base station to distribute keys to the nodes
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whenever necessary; if not, key predistribution schemes are required.

A key predistribution scheme (KPS) is a method for allocating keys to the

nodes of a network before they are deployed into their chosen environment.

We consider KPSs which assign symmetric keys, since small sensor nodes are

resource-constrained with low storage, communication and computational abil-

ities, and are often unable to support asymmetric cryptography. A major

drawback of KPSs is that once the keys have been predistributed, subsequent

key management operations are challenging to conduct [4]. We will present

examples of KPSs in Section 2.4. In order to make best use of the nodes’ lim-

ited resources, it is usually desirable to minimise the key storage requirement

whilst maximising the connectivity and resilience of a network. We define

these concepts more precisely in Section 2.2.3.

2.2.2 Framework

We identify four aspects of key predistribution which together form a frame-

work in which to categorise and study KPSs. Whilst many papers in the KPS

literature include specifications and/or analysis for each of these stages, others

only briefly mention or omit altogether the details of key generation, shared key

discovery and network alterations, focusing purely on the key predistribution

aspect.

Key generation Before the nodes are deployed, an entity which we call the

trusted base station must create a set of keys. Specifically, a key pool K of
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n symmetric keys {K1, K2, . . . , Kn} is selected from the space of all possible

keys.

Key predistribution The trusted base station allocates to each node a

subset of keys from the key pool. The size of the key pool and the number

of keys allocated to each node are chosen to provide a trade-off between the

conflicting metrics of key storage, connectivity and resilience, as defined in

Section 2.2.3.

Shared key discovery Once the nodes have been deployed, in order for

them to begin secure communication, a shared key discovery protocol such as

one of those given in [17, 73] should be implemented. This ensures that each

node determines the set of other nodes with which it shares keys. If the keys

are assigned in a way known to all the nodes, then a node Ni can broadcast

information about its identity, its node identifier, from which any node Nj

can derive the list of key identifiers which correspond to Ni’s key set. It then

remains for each node to look up whether any of these keys is also known to

them. If keys are not assigned in a deterministic or publicly known way, then

each node has to broadcast its whole list of key identifiers in order to perform

shared key discovery.

Network alterations Some implementations of KPSs will include the ca-

pacity for a network to make alterations after the initial shared key discovery.

Such alterations can include the revoking of keys or nodes, the establishing of
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new keys between nodes, and the updating of old keys. These can be effected

by node voting systems [20, 71] and techniques discussed in Section 2.4.4. If

a trusted base station is able to broadcast instructions to a network as in a

BEKPS (Chapter 6), then a wide range of update and revocation protocols is

possible.

2.2.3 Metrics

The metrics typically used to analyse key predistribution schemes are:

Key storage: the number of keys which each node is required to store.

Unless otherwise stated, the key storage will be constant and denoted by k.

Connectivity: the proportion of nodes which are ‘connected’ by sharing

keys. Connectivity can be measured or estimated both globally and locally [30,

53]. We will refer again to global connectivity in Section 4.6 but in general

we will use the measure of local connectivity Pr1, which is the probability

that a randomly-chosen pair of nodes share at least q ≥ 1 keys, where q is an

intersection threshold dictated by the KPS. Many KPSs only require nodes

to have a single key in common in order to be connected, i.e. q = 1. Where

two nodes share q or more keys, some protocols dictate that they should use a

combination of those keys, such as a hash, to encrypt their communications.
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Resilience: a measure of the network’s susceptibility to compromise by an

adversary. (We define our adversary precisely in Section 2.2.4.) To measure

the resilience we use the parameter fails, which is defined to be the probability

that a randomly-chosen link between a pair of uncompromised nodes is broken

after the adversary has compromised s nodes. By ‘broken’, we mean that the

key or keys securing that link are all known to the adversary. Equivalently,

fails measures the fraction of compromised links between uncompromised nodes

throughout the network, after an adversary has compromised s nodes. Notice

that this is a conditional probability, conditioning on the two nodes in question

being connected.

To the best of our knowledge, the notation ‘Pr1’ and ‘fails’ were first used

in [53] and [45] respectively. They are common measures, and many papers

such as [20, 30] calculate them in the same way but with different notation.

If fails = 0 for all 1 ≤ s ≤ v − 2 (where v is the total number of nodes) then

it is said that the network has perfect resilience. We note that lower values of

fails represent better resilience, and that fails is not defined for s > v − 2.

To illustrate the trade-offs required between these three parameters, we con-

sider some trivial examples of KPSs.

Example 2.1. Every node is assigned the same single key K.

This would require minimal key storage and ensure that any pair of nodes could

communicate securely, so Pr1 = 1 for all pairs of nodes. However, there would

be minimal resilience against an adversary, as the compromise of a single node
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would reveal the key K, rendering all other links insecure. Formally, fails = 1

for all 1 ≤ s ≤ v − 2.

Example 2.2. A unique key Kij is assigned to every pair of nodes Ni, Nj.

That is, for all 1 ≤ i, j ≤ v, nodes Ni and Nj are both preloaded with a key Kij,

with the condition that Kij 6= Klm for all pairs (l,m) 6= (i, j), 1 ≤ l,m ≤ v.

This is called the complete pairwise KPS. Such a KPS has perfect resilience

and maximum connectivity, as Pr1 = 1 for all pairs of nodes. However, each

node has to store v − 1 keys, which is infeasible when v is large.

Example 2.3. Every node Ni is assigned a unique single key Ki.

This example is purely illustrative, since although it provides minimal key stor-

age and perfect resilience, it is an ineffective KPS as there is no connectivity:

Pr1 = 0 for all pairs of nodes.

We see, then, that it is trivial to optimise any two of the three parameters: key

storage, connectivity and resilience. However, in most applications the above

examples are inappropriate, thus we need to consider KPSs which provide

trade-offs between all three of these metrics.

2.2.4 Network adversary model

We will assume that if an adversary has compromised a device and learned

at least one of the keys which it stores, then the adversary knows all of the

keys which it stores. This provides a worst-case analysis of the number of keys

known to the adversary.
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We model our network adversary by assuming that nodes are compromised at

random. It is of course possible in practice that an adversary could employ

a better strategy. For example, the adversary could target two nodes which

appear not to be communicating with each other, in the hope of learning the

maximum 2k keys. (If the nodes were communicating then they must share

at least q keys, and so the adversary would learn at most 2k− q keys by their

compromise.) The random adversary model can therefore be thought of as

calculating a lower bound on fails, hence an upper bound on the resilience,

and is useful as a metric for comparison of KPSs.

We note the distinction between ‘passive’ and ‘active’ adversaries, denoted

in [29] as ‘listening’ and ‘disrupting’ adversaries, respectively. It is usually

assumed that a listening adversary can intercept any message sent through

the network, but can only decrypt a message if he knows all of the keys used

to encrypt it. Thus, if an adversary knows a set of keys KA ⊂ K, any message

sent through the network which is encrypted by a subset of keys from KA can

be intercepted and decrypted by the adversary, regardless of whether or not

the message is routed through compromised nodes.

A disrupting adversary is one which can alter network transmissions. Defensive

measures can be taken against a disrupting adversary, for example in [29],

messages are transmitted in such a way that alterations can be identified, and

the correct message recovered (up to a threshold number of alterations). This

is called fault tolerance, and is useful even in the absence of an adversary to

cope with communication errors and node malfunctions. However, defending

a network against a disrupting adversary is outside of our scope in this thesis:
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we are concerned with efficient methods for distributing keys to devices, rather

than the communication protocols to be used afterwards.

In summary, we make the following assumptions about our adversary:

• on compromising a node, the adversary learns all of its stored keys;

• the adversary compromises nodes at random;

• the adversary can intercept all messages sent through the network;

• the adversary can decrypt a message if and only if he knows the key(s)

used to encrypt that message.

2.3 Combinatorics

2.3.1 Graphs

We now briefly introduce some graph-theoretic terminology and definitions,

collated from [15, 21, 37]. In Section 2.3.2 we explain how graphs are used to

represent and analyse KPSs, and we develop the graph-theoretic understanding

of KPSs in Chapters 4 and 5.

Definition 2.1. A graph G = (V,E) is a set of vertices V = {x1, . . . , xv}

and a set of edges E ⊆ V × V . We use the notation (xi, xj) ∈ E to express

that there is an edge between the vertices xi and xj, and we say that the edge

(xi, xj) is incident to its endpoints xi and xj. Wherever an edge (xi, xj) exists,

xi and xj are said to be adjacent.
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All graphs considered in this thesis will be simple graphs, that is, they are

unweighted, undirected and do not contain self-loops or multiple edges. These

terms respectively mean that we do not assign different weights to vertices or

edges, edges are not directed from one vertex to the other, there are no edges

from a node to itself, and there is at most one edge between any two vertices.

Given subsets of vertices X, Y ⊂ V , the set of edges which connect X and Y

is denoted

E(X, Y ) = {(x, y) : x ∈ X, y ∈ Y and (x, y) ∈ E} .

The complement X of X is the vertices which are not in X, that is, X = V \X.

An ordered set of consecutive edges {(xi1, xi2), (xi2, xi3), . . . , (xi(p−1), xip)} in

which all the vertices xi1, xi2, . . . , xip are distinct is called a path of length

p−1. A cycle is a ‘closed’ path which begins and ends at the same vertex, i.e. a

cycle is a path {(xi1, xi2), (xi2, xi3), . . . , (xi(p−1), xip)} where xi1, xi2, . . . , xi(p−1)

are distinct but xi1 = xip. We say that a graph is connected if there is a path

between every pair of vertices, and complete if there is an edge between every

pair of vertices.

The diameter of a graph is the maximum ‘distance’ between pairs of vertices.

That is, let D(xi, xj) be the length of the shortest path between vertices xi

and xj. Then the diameter of the graph is given by maxxi,xj∈V D(xi, xj).

Finally, the degree d(xi) of a vertex xi is the number of edges incident to that

vertex. If all nodes have the same degree d, the graph is said to be d-regular.
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2.3.2 Graph representations of KPSs

It is common to represent KPSs using simple graphs. We draw a graph of a

network by representing the nodes as vertices and the ‘connections’ as edges.

That is, we associate each node Ni with a vertex xi. From now on, we will

refer to the vertex set using the notation V = {N1, N2, . . . , Nv}.

2.3.2.1 Intersection graphs

To be precise in our analysis, we distinguish between the two possible types

of ‘connection’ and consider the separate constituent graphs of a network:

the communication graph G1 = (V,E1) where (Ni, Nj) ∈ E1 if nodes Ni and

Nj are within communication range, and the key graph G2 = (V,E2) where

(Ni, Nj) ∈ E2 if Ni and Nj share at least q common keys. An example of a

communication graph and a key graph are given in Figures 2.1(a) and 2.1(b)

respectively.

N1 N2

N3 N4

(a) Comm. graph

{K1, K2} {K3, K4}

{K1, K3} {K1, K4}

(b) Key graph

N1 N2

N3 N4

K1 K3

K1

(c) Intersection graph

Figure 2.1: Example of corresponding communication, key and intersection
graphs

If the communication graph is complete, it is often omitted from the analysis

as there is no need to check whether nodes can communicate. However, as we

will explain in more detail in Section 4, the communication graph is commonly
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modelled using a random graph, and it then becomes important to analyse how

the communication and key graphs relate to each other.

We say that two nodes Ni and Nj can communicate securely if (Ni, Nj) ∈

E1 ∩ E2, that is if they are adjacent in the intersection graph G1 ∩ G2 =

(V,E1 ∩ E2). This is illustrated in Figure 2.1(c). Where two nodes are not

adjacent in the intersection graph, there are possible key establishment and

message routing protocols which can be used to allow communication between

them; we give further details in Section 2.4.4.

2.3.3 Combinatorial designs

Many KPS constructions rely on combinatorial designs, and so we provide an

introduction to the theory of designs here. A brief review of existing KPSs con-

structed from designs is given in Section 2.4.2, and we present some examples

in more detail in Chapter 4.

The following definitions are widely accepted throughout the literature, and

were compiled with reference to [10, 11, 15, 68], to which we refer the interested

reader for further details and examples. In particular, [15] explains the links

between design theory and coding theory.

Definition 2.2. The power set of a set X is the set of all subsets of X , and

is denoted P(X ).

Definition 2.3. A set system (on X ) is a pair (X ,B) where X is a set and

B ⊆ P(X ).
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For example,

X = {1, 2, 3, 4, 5},

B = {{4}, {1, 3}, {2, 5}, {3, 4, 5}, {1, 2, 3, 4, 5}}

is a set system.

A combinatorial design (or, when the context is clear, a design) is a general

term used to describe a set system with some specified conditions such as

regularity, uniformity or set intersection, as we shall now explain.

In the context of combinatorial designs, the elements of the set X are called

points and the elements of B are called blocks. The degree of a point x ∈ X is

the number of blocks containing x. We say that (X ,B) is a regular design of

degree r if every point has degree r. The rank is defined to be the size of the

largest block. If all blocks have the same size, k, then the design is said to be

uniform of rank k and is often called a block design.

We usually add a prefix to the word ‘design’ to specify the properties of the

set system in question, for example, we define a t− (v, k, λ) design to be a pair

(X ,B) where |X | = v, uniform of rank k, and every set of t points is contained

in exactly λ blocks.

Example 2.4. (from [56]) Let X = {1, 2, 3, 4, 5, 6, 7, 8, 9} and B = {{123},

{456}, {789}, {147}, {258}, {369}, {159}, {267}, {348}, {168}, {249}, {357}}.

Then (X ,B) is a block design which is regular of degree four and uniform of

rank three. Notice that every pair of points occurs in exactly one block, and so

this is a 2− (9, 3, 1) design.
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Combinatorial designs were first proposed for use in KPSs in [16]. A KPS can

be constructed from a design by associating a key with each point, and a node

with each block. That is, node Nj is given the set of keys {Ki : i ∈ Bj}, where

Bj is a block in B. Thus, Example 2.4 could be used to create a KPS for

twelve nodes N1, N2, . . . , N12 using nine keys, K1, K2, . . . , K9, where the first

node N1 stores keys K1, K2, K3, node N2 stores keys K4, K5, K6, . . ., and node

N12 stores keys K3, K5, K7. Figure 2.2 demonstrates a graph representation

of the KPS associated with Example 2.4. The graph is regular of degree

k(r − 1) = 3× 3 = 9. For ease of notation, we write key Ki simply as ‘i’.

{123}

{456}

{789}

{147}

{258}

{369}

{159}

{267}

{348}

{168}

{249}

{357}

Figure 2.2: Graph representation of KPS from Example 2.4

Finally, we introduce the definitions of some classes of designs which have been

used to construct KPSs. In Section 4.5.3.1 we will discuss some properties of

these designs which make them particularly suitable for constructing KPSs.

Definition 2.4. (from [47, Definition 1.2]) A design (X ,B) with |X | = n,

|B| = v is called a (n, v, r, k)-configuration if it is regular of degree r, uniform
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of rank k and any two points occur in at most one block.

A class of configurations called µ-common intersection designs were defined by

Lee and Stinson in [46, 47].

Definition 2.5. Let (X ,B) be a (n, v, r, k)-configuration. We say that (X ,B)

is a µ-common intersection design if, for blocks Bi and Bj, either

Bi ∩Bj 6= ∅

or

| {Bk ∈ B : Bi ∩Bk 6= ∅ and Bj ∩Bk 6= ∅} | ≥ µ.

In terms of the key graph of a KPS, this means that if nodes Ni and Nj

corresponding to blocks Bi and Bj do not share any keys and so are not

adjacent, then they have at least µ common neighbours, i.e. µ nodes with

which they both share a key.

Strongly regular graphs may be regarded as a special type of µ-common inter-

section design, and are defined as follows.

Definition 2.6. (from [14]) A (v, k(r − 1), λ, µ)-strongly regular graph is a

graph on v vertices which is regular of degree k(r − 1) and has the following

properties:

• any two adjacent vertices have exactly λ common neighbours

• any two nonadjacent vertices have exactly µ common neighbours.
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Equivalently, the design (X ,B) is a strongly regular graph if it is regular of

degree r, uniform of rank k, and for blocks Bi and Bj,

Bi ∩Bj 6= ∅ ⇒ | {Bk ∈ B : Bi ∩Bk 6= ∅ and Bj ∩Bk 6= ∅} | = λ

and

Bi ∩Bj = ∅ ⇒ | {Bk ∈ B : Bi ∩Bk 6= ∅ and Bj ∩Bk 6= ∅} | = µ

Strongly regular graphs have been shown to exist for various combinations of

the parameters v, k and r in [45]. Constructions are given in [14, 67, 47] and

we refer the reader to [13] for a discussion on constructing random strongly

regular graphs.

2.4 Existing schemes and techniques

Having seen trivial examples of KPSs in the preceding sections, we now present

a brief summary of the KPSs which have been proposed in the literature to

provide practical trade-offs between the conflicting metrics of key storage, con-

nectivity and resilience. There are randomised and deterministic constructions

for KPSs, and we give an overview of these in Sections 2.4.1 and 2.4.2 respec-

tively. In Section 2.4.3 we discuss other schemes which are outside of our

scope, but have strong similarities to key predistribution schemes. Finally, in

Section 2.4.4, we outline possible methods for communication between non-

adjacent nodes in a deployed network, which motivates later discussion in

Chapters 4 and 5 about the desirable properties of KPSs.
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2.4.1 Random KPSs

One approach to key predistribution is through randomised allocation of keys.

The seminal paper by Eschenauer and Gligor [32] presented the first ran-

domised approach to key predistribution, as follows:

Scheme 2.1 (Eschenauer Gligor random key predistribution). A key

pool K of n symmetric keys is generated from the space of all possible keys.

Each node is independently assigned a k-subset of keys from the key pool, cho-

sen uniformly at random from the set of all k-subsets of K. (That is, each node

stores k distinct keys; for each node the keys are chosen without replacement.)

Nodes are deployed into the environment and use a shared key discovery pro-

tocol such as those described in [17, 73] to identify the other nodes with which

they share keys.

Two nodes are said to be ‘connected’ if they have at least one key in common.

If they have more than one key in common, they should select a single one of

their common keys at random to use to secure their communications.

This KPS can achieve high connectivity with relatively low key storage by

careful choice of the size of the key pool. We consider the Eschenauer Gligor

scheme in more detail in Chapter 3, where we state and prove the formulae

for calculating its connectivity and resilience, and discuss the resulting key

graph. In the same chapter we also describe some adaptations of the scheme

which provide different trade-offs between the key storage, connectivity and

resilience.
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We mention here two other random key predistribution schemes from [19],

namely the multipath key reinforcement scheme and the random pairwise keys

scheme:

Scheme 2.2 (The multipath key reinforcement scheme [19]). We men-

tion this scheme here as it is presented in [19] as a random key predistri-

bution scheme. However, the key predistribution stage is the same as that

for Scheme 2.1, and so multipath reinforcement should perhaps be regarded

as a protocol for a deployed network, as discussed in depth in Sections 2.4.3

and 2.4.4. Briefly, the multipath key reinforcement protocol allows any nodes

which share a key to update it using any disjoint paths between them in the net-

work, thereby improving the resilience of the network whilst maintaining the

connectivity and key storage. Such a protocol could be used after any initial

key predistribution scheme to improve resilience, as discussed in Section 2.4.4.

Scheme 2.3 (The random pairwise keys scheme [19]). This scheme al-

locates ‘pairwise’ keys to a random subset of all possible pairs of nodes. By

‘pairwise’, we mean that if a pair of nodes share a key, that key is unique.

Graph-theoretically, the scheme achieves the following. Imagine the complete

pairwise key graph, where every node stores v − 1 unique keys. Delete edges

from this graph at random, until the graph is still connected with some accept-

able probability p. Now assign the appropriate keys to each node so that this is

the resulting key graph. This KPS has perfect resilience and is connected with

probability p.

However, most random key predistribution schemes are largely based on the

Eschenauer Gligor scheme. Since the scope of Chapter 3 is to provide a gen-
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eralised formula for the resilience of a class of random KPSs, we will reserve

further discussion of the variety of random KPSs for the next chapter.

2.4.2 Deterministic KPSs

Since 2004, many different deterministic constructions have been proposed for

KPSs such as [16, 46, 70]. Deterministic schemes can provide advantages over

random KPSs such as

• deterministic rather than probabilistic connectivity and resilience metrics

• more efficient shared key discovery

For further details on the benefits of deterministic KPSs over random KPSs,

see [48].

The majority are based on combinatorial designs, error-correcting codes and/or

graph constructions. We refer the reader to [17, 50, 56] for surveys of these

schemes, and in particular we note that [56] unifies various combinatorial ap-

proaches to KPS construction, pointing out that some apparently different

constructions are in fact equivalent.

We will present and analyse examples of deterministic KPSs constructed from

graphs and combinatorial designs in more detail in Chapters 4 and 5. Here we

make some observations which motivate the use of certain classes of designs in

constructing KPSs.
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In [47] it is observed that the diameter of the key graph of a µ-common inter-

section design is two, and that if two nodes are not adjacent then they will have

at least µ common neighbouring nodes. We will examine the various ways in

which common neighbours can be beneficial in Section 2.4.4. For an analysis

of the connectivity and resilience of KPSs based on µ-common intersection

designs, see [45, 56]. In Section 4.5.3.2 we show that their good expansion pro-

vides another reason to support the choice of µ-common intersection designs

for constructing KPSs.

Finally, a KPS constructed from a (v, k(r − 1), λ, µ)-strongly regular graph

which is neither complete (k = v − 1, λ = v − 2) nor disconnected (µ = 0

and k = λ + 1) provides good trade-offs between key storage, connectivity

and resilience [46]. Clearly, the key graph will also have diameter two, and by

proving a lower bound on the expansion in Section 4.5.3.3 we will show that

they provide many desirable properties for use in KPSs.

2.4.3 Key establishment

We note the existence of many schemes which are closely related to key pre-

distribution schemes. Although they do not fall within our definition of key

predistribution schemes, they are closely related, and some authors do refer to

them as key predistribution schemes.

In schemes such as [6, 9] which pre-date the key predistribution schemes litera-

ture, nodes are preloaded not with keys, but with secret information or ‘keying

materials’ from which they can generate or establish keys for pairwise or group
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communication. In common with much of the KPS literature, we categorise

such schemes as ‘key generation schemes’ or ‘key establishment schemes’, and

do not include them in our definition of key predistribution schemes. A self-

contained introduction to key establishment schemes is given in [8].

Finally, we note that key distribution patterns as described in [63, Section 10.4]

can be considered as early KPSs, differing only in that they are concerned with

distributing keys for groups of two or more users, and providing a threshold

level of security ω. That is, typically these schemes have the property that for

some ω ∈ N, fails = 0 for 1 ≤ s ≤ ω.

2.4.4 Communication between non-adjacent nodes

Finally, we discuss possible methods for communication between non-adjacent

nodes. Although we will not focus on such protocols in detail, their existence

motivates some design goals which we shall see in Chapters 4 and 5.

If two nodes are not adjacent in the intersection graph then there are various

techniques which can enable them to securely communicate:

• If Ni and Nj do not share a key but share a single common neighbour

Nk, then a message can be sent from Ni to Nk encrypted by their shared

key(s), decrypted by Nk, and then re-encrypted by Nk and sent to Nj

using their shared key(s). This process of encrypting and decrypting

messages along a path through the network is known as link encryption.

• IfNi andNj share µ common neighboursNk1, . . . , Nkµ (as in a KPS based

41



2.4 Existing schemes and techniques

on a µ-common intersection design, Section 4.5.3.2) then the message M

can be split into µ random-looking bit strings M1, . . . ,Mµ, so that if Nj

receives all µ message strings, it can recover M . For example, this could

be achieved by creating µ− 1 (pseudo)random bit strings of length |M |,

and choosing the final string Mµ so that M1⊕· · ·⊕Mµ = M as described

in [26]. Then Ni can send each message string via one of the common

neighbours Nk1, . . . , Nkµ using link encryption. The larger the number of

common neighbours, the less chance an adversary has of compromising

all the neighbours and recovering M . However, this comes at the cost of

increased communication through the network.

• In a similar way, common neighbours can be used to establish a shared

key between Ni and Nj. Creating a new key will reduce the communica-

tion overheads in the network after the key is established, in comparison

to using common neighbours for every communication. Nodes Ni and

Nj can agree a new key Kij by one node creating a secret key (prefer-

ably using a good pseudo-random number generator) and transmitting

it to the other node by sending a share of it via each of their common

neighbours, in the way described above. More sophisticated methods are

also possible, such as the one given in [29] which additionally provides a

threshold level of fault tolerance.

• Finally, a pair of nodes which already share a key Kij may use any com-

mon neighbours to reinforce their key, by which we mean creating a new

key K ′ij which is less vulnerable to compromise by an adversary. This is

achieved by ensuring that the adversary can only discover K ′ij by com-

promising every node used in the reinforcement, which is comprised of
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2.4 Existing schemes and techniques

a key establishment scheme as above, followed by XORing the newly

established key with the existing key Kij. Such a protocol, called mul-

tipath reinforcement, is presented in [20] and was introduced briefly in

Section 2.4.1.

For all of the above methods, it is clearly preferable in terms of communication

overheads and resilience if the diameter and average path length in the inter-

section graph are small, so that ‘most’ non-adjacent nodes have at least one

common neighbour or only a short path between them. If two nodes do not

share a common neighbour but have multiple short paths between them, then

better resilience is provided for messages routed or keys shared along these

paths if they are disjoint. This is because if the paths are not disjoint, the

adversary could focus on compromising nodes which lie on the intersection of

the paths to minimise the number of nodes which have to be compromised in

order to recover the message or key.

In Chapters 4 and 5 we will see methods for ensuring that the diameter and

average path length of the key graph are small.
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3.1 Introduction

3.1 Introduction

As explained in Section 2.2.3, a commonly used metric for comparing the re-

silience of key predistribution schemes is fails, which measures the proportion

of network connections which are ‘broken’ by an adversary which has com-

promised s nodes. Correct analysis of schemes is fundamental to the proper

assessment of KPSs. In [20], Chan, Perrig and Song present a formula for mea-

suring the resilience in a class of random key predistribution schemes called

q-composite schemes. We explain how this formula makes an incorrect assump-

tion about independence, and present a correction. Our corrected formula fea-

tures an additional parameter which makes it applicable to a wider variety of

random key predistribution schemes, including the original Eschenauer Gligor

scheme [32]. We also present a simplification of their formula for connectivity.

We refer to the paper by Yum and Lee [75] which also claims to correct the

original formula for the q-composite scheme. However the resulting formula

is complicated, computationally demanding, and hard to understand. The

formula which we propose and prove is easily computable and can be applied

to a wider range of schemes.

In Section 3.2 we give the details of two random key predistribution schemes

and provide proofs of their connectivity and resilience parameters. In Sec-

tion 3.3 we state the previously proposed formulae for the resilience of q-

composite schemes and discuss issues arising in their proofs, before presenting

and proving our generalised formula for fails in Section 3.4. Finally, in Sec-

tion 3.5 we analyse the difference between our formula and that given in [20],
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3.2 Background: random key predistribution schemes

which can be considered an upper bound on the true value.

3.2 Background: random key predistribution
schemes

For deterministic schemes, fails can usually be computed using exact knowledge

of how many nodes store each key. In [56], Paterson and Stinson generalise

the fails calculation across a range of deterministic schemes. For random key

predistribution schemes, the number of nodes which store each key is only

known probabilistically, adding another layer of complexity to the calculation.

Here we present two examples of random key predistribution schemes. We

derive their respective connectivity and resilience formulae in order to demon-

strate some of the methods for proving our main result, the generalised formula

for fails in random key predistribution schemes. We also provide a simplified

formula for the probability of two nodes having exactly i keys in common.

3.2.1 Eschenauer Gligor KPS

Recall the Eschenauer Gligor KPS [32] which we presented as Scheme 2.1 in

Section 2.4.1, where each node is allocated a random k-subset of keys from

a key pool K, where |K| = n. We noted that two nodes are connected if

they have at least one key in common. Where nodes share more than one

common key, they should select one of them at random to use to secure their

communications. To be precise, we introduce a parameter Ω which is the
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3.2 Background: random key predistribution schemes

maximum number of common keys which two nodes may use to secure their

communications. For the Eschenauer Gligor scheme, Ω = 1.

3.2.1.1 Connectivity

We now present the probability Pr1 of two nodes being connected in this

scheme. The original paper presents and proves an equivalent expression of

this formula using factorials; we use the binomial coefficient notation for con-

sistency with the majority of the subsequent literature.

Lemma 3.1 (Eschenauer Gligor connectivity). The probability of two nodes

being connected in an Eschenauer Gligor random key predistribution scheme

with key pool size n and key storage k is

Pr1 = 1−
(
n−k
k

)(
n
k

) .

Proof. Suppose that two nodes Ni, Nj store key sets KNi ,KNj respectively.

The probability that they are connected is

1− Pr[they have no keys in common] = 1− Pr[KNi ∩ KNj = ∅].

Fix KNi . Then there are
(
n−k
k

)
ways to pick a k-subset of keys for node Nj so

that KNi ∩ KNj = ∅, out of the total possible
(
n
k

)
ways to pick KNj .

Remark 3.1. We note that it is a common assumption in the literature that

the key graph of the Eschenauer Gligor scheme is equivalent to the Erdös-Rényi

random graph G(v,Pr1) [31], as asserted in the original paper [32] and in [20].

That is, the key graph is a random graph on v vertices, where each edge exists

with probability Pr1, so that there are approximately
(
v
2

)
Pr1 edges. However,
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3.2 Background: random key predistribution schemes

this is not the case, as the edge existence probabilities are interdependent. As a

simple example, suppose that the key storage is k = 1, and that for some nodes

Na, Nb, Nc we have (Na, Nb) ∈ E and (Nb, Nc) ∈ E. Then the probability that

(Na, Nc) ∈ E is 1, and not dependent on n, the size of the key pool.

This observation has also been made in [5, 27, 74]. These papers prove that

the Eschenauer Gligor key graph is different from the Erdös-Rényi graph; in

particular, for large networks the expected number of triangles is orders of

magnitude larger in the key graph [5, 74] and the connectivity threshold is

lower. Using the Erdös-Rényi random graph to model the Eschenauer Gligor

key graph is therefore pessimistic, in the sense that the key storage required for

the graph to be connected is lower than expected by the Erdös-Rényi model [27].

3.2.1.2 Resilience

Eschenauer and Gligor do not calculate the resilience of their scheme in the

way that we have defined. They do, however, make the observation that in a

simulation, only 50% of the keys from the key pool were used to secure links:

30% were used to secure a single link, 10% to secure two links and 5% to

secure three links. Thus the compromise of a single key compromises exactly

one other link with probability 0.1.

The standard metric fails for the Eschenauer Gligor scheme is indirectly stated

within another result in [20]. Here we state and prove it formally.

Lemma 3.2 (Eschenauer Gligor resilience). In an Eschenauer Gligor random

key predistribution scheme with key pool size n and key storage k, the resilience
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3.2 Background: random key predistribution schemes

is given by

fails = 1−
(

1− k

n

)s
. (3.2.1)

Proof. Fix a random link in the network between uncompromised nodes Ni

and Nj, and suppose that they use key Ki to secure their connection.

We begin by considering s = 1, that is, the adversary has compromised a

single node. Let X be a uniformly random k-subset of the key pool K =

{K1, . . . , Kn}, so that it represents the keys known to the adversary after

compromising one node. Then

fail1 = Pr[Ki ∈ X]

= 1− Pr[Ki /∈ X]

= 1−
(
n−1
k

)(
n
k

)
= 1−

(
1− k

n

)
.

Now we generalise for s > 1. Let X1, . . . , Xs be independent uniformly random

subsets of the key pool, each of size k. Then

fails = Pr[Ki ∈ X1 ∪ · · · ∪Xs]

= 1− Pr[Ki /∈ X1 ∪ · · · ∪Xs]

= 1− (Pr[Ki /∈ X1])s

= 1−
(

1− k

n

)s
.
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3.2 Background: random key predistribution schemes

3.2.2 The q-composite scheme

In many key predistribution schemes, it is possible that a pair of nodes Ni and

Nj have more than one key in common. If Ω = k, nodes may use all of their

ω ≤ k common keys KNi ∩ KNj = {Kt1 , Kt2 , . . . , Ktω} to secure the link, for

example by calculating their shared key to be

Kij = h(Kt1 ||Kt2|| · · · ||Ktω) ,

where h is a suitable function such as a hash function (see [63, Chapter 4]

for an introduction), and where there is a well-defined ordering on the keys

t1 < t2 < · · · < tω so that Kij is uniquely defined. Since an adversary would

have to learn all ω keys to compromise the link, such schemes have better

resilience than those where Ω = 1, such as Scheme 2.1. However, changing Ω

does not affect the connectivity.

Chan et al. [20] present a random KPS which requires nodes to have q > 1

keys in common in order to be connected, called the q-composite scheme. We

give the formal details below. Intuitively, for the same key pool size n and key

storage k, nodes are less likely to be connected in the q-composite scheme than

in the Eschenauer Gligor scheme, but the resilience increases with q. Such a

trade-off may be advantageous for some applications, and the sizes of n, k and

q can be adapted to provide a desirable level of connectivity with as high a

resilience as possible.

Scheme 3.1 (q-composite scheme [20]). The q-composite scheme is similar

to Scheme 2.1, except that nodes must share at least q > 1 keys before they are

allowed to compute a common key, and Ω = k. That is, nodes with fewer than
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3.2 Background: random key predistribution schemes

q keys in common will not be able to communicate directly, and nodes with q

or more keys in common should hash all of their common keys to create their

link key.

3.2.2.1 Connectivity

We consider the connectivity of the q-composite scheme, that is, the probability

that a pair of nodes share q or more keys. We omit the full proof here because

it is given in [20] and reproduced in [75]. However, we provide an improvement:

the value of p(i), the probability of a pair of nodes sharing exactly i keys, has

previously been given as

p(i) =

(
n
i

)(
n−i

2(k−i)

)(
2(k−i)
k−i

)(
n
k

)2 ,

but we provide an equivalent, simpler expression in Lemma 3.3. Our formula

for p(i) can be derived from the original by expanding the binomial coefficients

and rearranging, but we provide a direct combinatorial proof:

Lemma 3.3. In a random key distribution scheme where nodes are allocated

a random k-subset of keys from a key pool of size n, the probability that a pair

of nodes shares exactly i keys is given by

p(i) =

(
n−k
k−i

)(
k
i

)(
n
k

) . (3.2.2)

Proof. We consider the probability of two nodes N1 and N2 having exactly i

keys in common. Fix i keys from N1’s set of keys. For N2 to have (k− i) keys

which are unknown to N1, it must have (k − i) keys chosen from the (n − k)

keys unknown to N1. Thus there are
(
n−k
k−i

)
ways to do this, out of the

(
n
k

)
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ways to choose keys for N2. Finally, we multiply by the number of ways to fix

i keys from N1’s set of k keys.

Thus we can see that the connectivity of a q-composite scheme is given by the

following formula:

Theorem 3.4 (from [20]). In a q-composite scheme with key pool size n and

key storage k, the connectivity probability is

Pr1 = 1−
q−1∑
i=0

p(i) . (3.2.3)

Remark 3.2. Notice that (3.2.3) is a generalised formula for the probability

of connectivity, which agrees with that given in Lemma 3.1 for the Eschenauer

Gligor scheme: setting q = 1 into (3.2.3) gives

Pr1 = 1− p(0)

= 1−
(
n−k
k

)(
n
k

) .

3.3 Previous formulae for the resilience of the
q-composite scheme

We now discuss approaches which have been proposed for calculating the re-

silience of the q-composite scheme.
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3.3.1 Chan, Perrig and Song

In [20], Chan et al. give the following formula:

fails =
k∑
i=q

(
1−

(
1− k

n

)s)i
p(i)

Pr1
. (3.3.1)

However, the proof is informal and incorrectly assumes independence between

certain events, as we explain below.

Before we explain why this formula for resilience is incorrect, we first note an

aspect of the notation in the original formula which has caused some confusion

in the subsequent literature. Chan et al. consider a parameter p, defined to be

the minimum node-node connectivity probability needed to make the whole

network connected with some high probability. They then define pconnect =

1 −
∑q−1

i=0 p(i) and state that the key pool size n should be chosen to be the

largest (integer) such that pconnect ≥ p, which is a sensible way to reduce

unnecessary connectivity and keep resilience high. However, in their resilience

formula, they redefine p to equal pconnect. This has caused errors to be made

in its reproduction, for example in [75]. We will always use the notation Pr1

as defined in (3.2.3) to avoid confusion, and for consistency with much of the

deterministic key predistribution literature.

As Yum and Lee point out in [75], the problem with (3.3.1) is an incorrect

assumption of independence. Suppose that, in a 2-composite scheme, a pair

of nodes share keys K1 and K2. For an adversary to break the link between

these nodes requires knowledge of both K1 and K2. Let AKi be the event that

an adversary knows key Ki, and suppose that after compromising s nodes an
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adversary knows x keys. Equation (3.3.1) assumes that

Pr[AK1 ∧ AK2 ] = Pr[AK1 ]Pr[AK2 ] =
(x
n

)2

.

However, this is not true because the events are not independent. Consider

the conditional probability Pr[AK2 |AK1 ]. If the adversary already knows key

K1, then it is slightly less likely that the adversary also knows K2, indeed,

Pr[AK2|AK1 ] = x−1
n

. Thus, the calculation leads to an overestimation of the

true value of fails, as we demonstrate in Section 3.5.

3.3.2 Yum and Lee

In [75], another formula is proposed for the calculation of fails for q-composite

schemes. However, the formula is difficult to compute, as we now demonstrate.

In [75, Theorem 2], Yum and Lee propose that fails for the q-composite scheme

is given by

min{ks,n}∑
τ=k

[(
n

τ

)( k∑
j=q

(
τ
j

)(
n
j

) p(j)
Pr1

)((
τ
k

)s −∑τ−k
λ=1(−1)λ+1

(
τ
λ

)(
τ−λ
k

)s(
n
k

)s
)]

. (3.3.2)

This formula is complicated and computationally laborious to evaluate; in

addition we had difficulty in following the proof. We present a direct proof of

a computationally simpler formula in Corollary 3.7 below. We also note that,

whilst we are able to compute (3.3.2) for small values of n such as n = 17,

our results are different from those given in [75, Table 1]. We are unable to

reproduce any of their sample values, either by interpreting the ‘p’ in (3.3.2)

to mean Pr1 or pconnect. We conclude that there must be a typographical error

somewhere in their formula and/or proof.
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3.4 Generalised resilience for random key predis-
tribution schemes

In order to generalise across many instantiations of random key predistribution

schemes, we have introduced a parameter Ω ≤ k, which acts as an upper

bound on the number of shared keys which nodes can use to compute their

link key. This allows us to derive a formula which describes the resilience of

many different random KPSs, including the schemes described in Section 3.2.

We show in Corollary 3.6 that our formula is equivalent to that of Scheme 2.1

in the special case when q = Ω = 1.

We now present our generalised formula for fails, which applies to any key

predistribution scheme where:

1. each node is allocated k keys, selected independently and uniformly at

random without replacement from a pool of n keys;

2. the intersection threshold is q ≥ 1, that is, nodes may only establish a

link key if they share at least q keys;

3. the upper bound on the number of shared keys a pair of nodes may use

is Ω, where q ≤ Ω ≤ k; if two nodes share more than Ω keys then they

should pick Ω of their keys at random to compute their link key;

4. suppose that a pair of nodes use ω shared keys to create a link key, where

q ≤ ω ≤ Ω. We require that the function (such as hash, XOR, etc.) for

producing the single link key is such that an adversary must know all

of the ω shared keys between a pair of nodes to break the link; if the
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adversary only knows at most ω − 1 of the keys then the link remains

secure.

Theorem 3.5. For any random key predistribution scheme which fulfils con-

ditions (1)–(4) above, the resilience is given by

fails =
1

Pr1

(
Ω∑
ω=q

[
1−

ω∑
i=1

(−1)i−1

(
ω

i

)((n−i
k

)(
n
k

) )s]
p(ω)

)
+

1

Pr1

([
1−

Ω∑
i=1

(−1)i−1

(
Ω

i

)((n−i
k

)(
n
k

) )s] k∑
ω=Ω+1

p(ω)

)
. (3.4.1)

Proof. Consider a randomly-chosen pair of uncompromised nodes which share

ω keys, where q ≤ ω ≤ Ω. For ease of notation and without loss of generality,

we label these keys {1, 2, . . . , ω}. The probability that all of these ω keys are

known to an adversary which has compromised s nodes is

Pr[{1, . . . , ω} ⊆ {X1 ∪ · · · ∪Xs}] = 1− Pr

[
ω⋃
i=1

Bi

]
,

where Bi is the event that key i /∈ {X1 ∪ · · · ∪Xs}. Using inclusion-exclusion,

we have

1− Pr

[
ω⋃
i=1

Bi

]
= 1− ωPr[1 /∈ {X1 ∪ · · · ∪Xs}]

+

(
ω

2

)
Pr[1, 2 /∈ {X1 ∪ · · · ∪Xs}] + · · ·

(−1)i−1

(
ω

i

)
Pr[1, . . . , i /∈ {X1 ∪ · · · ∪Xs}] + · · ·

= 1−
ω∑
i=1

(−1)i−1

(
ω

i

)((n−i
k

)(
n
k

) )s

.

The probability of a randomly-chosen connected pair of uncompromised nodes

sharing exactly ω keys (q ≤ ω ≤ Ω) is p(ω)
Pr1

. Therefore, for q ≤ ω ≤ Ω we have

fails =
1

Pr1

(
Ω∑
ω=q

[
1−

ω∑
i=1

(−1)i−1

(
ω

i

)((n−i
k

)(
n
k

) )s]
p(ω)

)
.
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For Ω < ω ≤ k, the probability of two connected nodes sharing ω keys is again

p(ω)
Pr1

. However, only Ω of these keys will be used to secure the link, and the

choice of these Ω is made a priori, uniformly at random, and so without loss

of generality they can be labelled 1, 2, . . . ,Ω. Therefore the probability of the

adversary knowing all Ω keys is

Pr[{1, . . . ,Ω} ⊆ {X1 ∪ · · · ∪Xs}] = 1−
Ω∑
i=1

(−1)i−1

(
Ω

i

)((n−i
k

)(
n
k

) )s

,

using the result above, and so for Ω < ω ≤ k,

fails =
1

Pr1

([
1−

Ω∑
i=1

(−1)i−1

(
Ω

i

)((n−i
k

)(
n
k

) )s] k∑
ω=Ω+1

p(ω)

)
.

Adding these two results gives the final formula for fails.

We now demonstrate that our formula agrees with that given in Lemma 3.2,

in the case where q = Ω = 1.

Corollary 3.6 (Eschenauer Gligor resilience revisited). The resilience of a

random KPS which fulfils conditions (1)–(4) and where q = Ω = 1 (such as

the Eschenauer Gligor scheme), is given by

fails = 1−
(

1− k

n

)s
.

Proof. Setting q = Ω = 1 in Equation (3.4.1) gives

fails =
1

Pr1

([
1− (−1)0

(
1

1

)((n−1
k

)(
n
k

) )s]
p(1)+[

1− (−1)0

(
1

1

)((n−1
k

)(
n
k

) )s] k∑
ω=2

p(ω)

)

=

∑k
ω=1 p(ω)

Pr1

(
1−

((
n−1
k

)(
n
k

) )s)
.
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Since Pr1 is by definition the sum of the probabilities of having 1, 2, . . . , k keys

in common, the first fraction is equal to 1, and we have

fails = 1−
(

(n− 1)!

(n− 1− k)!k!

/
n!

(n− k)!k!

)s
= 1−

(
1− k

n

)s
,

as required.

It is now straightforward to derive the correct formula for the resilience of

Scheme 3.1 from Theorem 3.5:

Corollary 3.7 (q-composite resilience). The resilience of a random KPS that

fulfils conditions (1)–(4) and where q > 1 and Ω = k (such as the q-composite

scheme from [20]) is given by

fails =
1

Pr1

(
k∑

ω=q

[
1−

ω∑
i=1

(−1)i−1

(
ω

i

)((n−i
k

)(
n
k

) )s]
p(ω)

)
. (3.4.2)

Proof. Using Equation (3.4.1), we observe that when Ω = k the summation

from ω = Ω + 1 to ω = k vanishes, leaving the formula given above.

3.5 Numerical examples

We now compare our corrected formula to the original expression for fails. In

Tables 3.1 and 3.2 we contrast equations (3.3.1) and (3.4.2) for sample values

within the q-composite scheme (Ω = k). We fix n = 1000 and k = 100, and in

Table 3.1 we fix q = 10 and vary s from 1 to 20. In Table 3.2 we fix s = 10
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s (3.3.1) (3.4.2) % difference
1 2.75 ×10−11 1.79 ×10−11 53.532634
2 1.85 ×10−8 1.52 ×10−8 21.345324
3 7.03 ×10−7 6.25 ×10−7 12.472689
4 8.27 ×10−6 7.63 ×10−6 6.037381
5 0.000051 0.000048 6.037381
6 0.000213 0.000204 4.544026
7 0.000669 0.000647 3.517733
8 0.001720 0.001674 2.776871
9 0.003794 0.003711 2.222941
10 0.007423 0.007292 1.797917
11 0.013196 0.013006 1.465379
12 0.021692 0.021434 1.201299
13 0.033414 0.033086 0.989159
14 0.048737 0.048342 0.817219
15 0.067871 0.067415 0.676889
16 0.090850 0.090342 0.561736
17 0.117530 0.116984 0.466844
18 0.147617 0.147046 0.388391
19 0.180696 0.180114 0.323365
20 0.216264 0.215683 0.269363

Table 3.1: Comparison of formulae when n = 1000, k = 100, q = 10, hence
Pr1 = 0.555019

and vary q from 1 to 20. Differences are given as a percentage difference, that

is, the final column is given by (3.3.1)−(3.4.2)
(3.4.2)

× 100.

We find that (3.3.1) gives higher values for fails, that is, it underestimates

the resilience. As the differences are small, (3.3.1) can be thought of as an

upper bound on the correct value. We note that an asymptotic approximation

can be derived by routine approximation of (3.4.2) (using the basic techniques

of Poisson approximation to the Binomial distribution); for example, it is a

simple exercise to show that

fails ≈
k∑

ω=q

ω!

Pr1

(
k

ω

)2

e−
1
n(k2−2kω+

ω(ω+1)
2 )

(
1− e− skn

n

)ω

and numerically this presents as a lower bound. These approximations are

59



3.5 Numerical examples

q Pr1 (3.3.1) (3.4.2) % difference
1 0.999985 0.027080 0.026874 0.765811
2 0.999802 0.026966 0.026760 0.769232
3 0.998681 0.026520 0.026314 0.782573
4 0.994211 0.025397 0.025191 0.816410
5 0.981134 0.023337 0.023133 0.881074
6 0.951193 0.020382 0.020183 0.983376
7 0.895315 0.016889 0.016701 1.126261
8 0.807913 0.013337 0.013164 1.310152
9 0.690967 0.010113 0.009960 1.534359
10 0.555019 0.007423 0.007292 1.797917
11 0.416034 0.005313 0.005204 2.099974
12 0.289839 0.003730 0.003641 2.439908
13 0.187255 0.002580 0.002510 2.817340
14 0.112090 0.001765 0.001710 3.232105
15 0.062167 0.001197 0.001154 3.684213
16 0.031964 0.000806 0.000774 4.173823
17 0.015250 0.000540 0.000516 4.701213
18 0.006759 0.000360 0.000342 5.266761
19 0.002786 0.000240 0.000226 5.870935
20 0.001070 0.000159 0.000149 6.514278

Table 3.2: Comparison of formulae when n = 1000, k = 100, s = 10

weakest when Pr1 is very small (when n is large in comparison to k), but such

low connectivity is unlikely to be used in practice. For more appropriate values

of Pr1 for network connectivity, the approximations become more accurate.

It can be seen that, using either formula, the value of fails increases in s

and decreases in q. Conversely, the percentage difference decreases in s and

increases in q. However, as the largest values of the percentage differences

correspond to the smallest values of fails for both equations, the absolute error

in (3.3.1) remains small.

We therefore conclude that whilst our contribution is of mathematical impor-

tance it has limited impact on applications, as the original formula from [20]
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provides a close approximation to the true value.

Sample values for the formula from [75] are not given in the tables; for ex-

act computation using Maple 15, the calculation did not terminate within an

hour for input numbers of the magnitude given in the tables. By contrast,

our formula can be evaluated within seconds on the same computer (AMD

PhenomTM II X4 970 CPU, 3.5 GHz, 16 GB RAM). Approximate calculation

of (3.3.2) revealed answers appearing to converge to the results given by our

formula, (3.4.2).

3.6 Conclusion

We have described two random key predistribution schemes and explained how

the resilience of the q-composite scheme has been inaccurately presented in the

literature. We have derived a formula for fails which is rigorously proven, prac-

tical to compute, and applicable to a wide range of random key predistribution

schemes because of the parameter Ω. Notice that if we take a scheme with

Ω = k and change Ω to be in the range q ≤ Ω < k, then connectivity remains

unchanged but resilience is reduced. Whilst this may be undesirable for many

applications, setting Ω < k may provide practical benefits such as reduced

computation time, and an obstacle to an adversary in determining exactly

which of the common keys have been hashed to create the key for a given link.

Correctly calculating resilience is important for accurately assessing and com-

paring KPSs; in particular, comparisons are often drawn between the perfor-

mances of random and deterministic key predistribution schemes. It is there-
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3.6 Conclusion

fore reassuring to know that the original equation in [20] produces probabilities

which are similar to those given by the correct formula for fails. However, es-

tablishing the correct formula is of mathematical importance, and expressing

it in a way which is computable is of practical importance.
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Expander graphs and key predistri-
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4.1 Introduction

4.1 Introduction

Since networks may be modelled as graphs, tools from graph theory have been

used in both their design and analysis. In this chapter, we explore the role of

expander graphs in KPSs. The expansion of a graph is a measure of how well

connected it is, and how difficult it is to separate subsets of vertices; we will

see the precise definition in Section 4.2. Roughly speaking, a graph has good

expansion if every ‘small’ subset of vertices has a ‘large’ neighbourhood, and

intuitively, expansion is a desirable property for graphs of networks. The term

‘expander graphs’ is used informally to refer to graphs with good expansion.

In 2006, expander graph theory was introduced to the study of KPSs from

two perspectives. On the one hand, Çamtepe et al. [18] showed that a math-

ematical construction for an expander graph could be used to design a KPS,

resulting in a network which is well connected under certain constraints. On

the other hand, Ghosh [36] claimed that good expansion is a necessary condi-

tion for ‘optimal’ networks. We examine these claims and determine the role

of expander graphs in KPSs for resource-constrained networks.

We show that constructions for KPSs based on expander graphs provide perfect

resilience, but lower connectivity and expansion than many existing compara-

ble KPSs. We argue that expansion is an important metric for assessing KPSs

to be used alongside the other common metrics of key storage, connectivity and

resilience for a given network size. However, we note the difficulty of finding

the expansion coefficient of a graph and so propose estimating the expansion

and using other graph-theoretical techniques to indicate potential weaknesses.
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4.2 Expander graphs

We begin by introducing expander graphs and the relevant terminology in

Section 4.2. In Section 4.3 we outline Ghosh’s claims and show by means

of a counter-example that his conclusion is misdirected towards expansion in

product graphs rather than intersection graphs. In Section 4.4 we discuss how

to maximise the probability of a high expansion coefficient in the intersection

graph, and in Section 4.5 we analyse the extent to which KPSs based on

expander graph constructions achieve this, in comparison to other schemes

from the literature. Finally, in Section 4.6 we suggest practical metrics for

analysing and improving KPSs and the resulting intersection graphs.

4.2 Expander graphs

For a thorough survey of expander graphs and their applications, see [25, 39].

Here we introduce only the aspects of expander graphs which are relevant to

our study, and in particular we restrict our attention to finite graphs.

4.2.1 Boundary properties and expansion

We begin with the definition of a subgraph, before defining boundary properties

and isoperimetric inequalities. Definitions 4.2 and 4.3 are reproduced from [10,

Chapter 16], to which the reader is referred for further details and examples.

Definition 4.1. A subgraph of a graph G = (V,E) is a graph GS = (VS, ES)

in which VS ⊆ V and ES ⊆ E. If VS or ES is a proper subset (that is, VS 6= V

or ES 6= E), then the subgraph is a proper subgraph of G. If VS or ES is empty,

the subgraph is called the null graph. A vertex-induced subgraph is a subset
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4.2 Expander graphs

S ⊆ V together with the edge set ES := {(Ni, Nj) ∈ E : Ni, Nj ∈ S}.

We can consider boundary properties of subgraphs. Two intuitive examples of

boundary properties are the edge boundary and the vertex boundary:

Definition 4.2. For a graph G = (V,E) and a vertex-induced subgraph on

S ⊂ V , the edge boundary, denoted E(S, S), is defined to be the set of edges

incident to both a vertex in S and a vertex in S = G \S. Similarly, the vertex

boundary is the set of vertices in S adjacent to at least one vertex in S, denoted

by δS.

Definition 4.3. An isoperimetric inequality in a graph is a lower bound on

the size of a boundary, in terms of the size of the subgraph. For example, an

isoperimetric inequality for the edge boundary would be an explicit expression

for

min{|E(S, S)| : S ⊂ G, |S| = i}

for some number of interest i ∈ N.

We are now ready to define the expansion of a graph:

Definition 4.4. A finite graph G = (V,E) is an ε-edge expander graph, where

the edge-expansion coefficient ε is defined by

ε = min
S⊂V :|S|≤ v

2

(
|E(S, S)|
|S|

)
.

We will explore this definition and the significance of the edge-expansion coef-

ficient in Section 4.2.2. First we make some remarks about the nomenclature

of expansion, which is not consistent throughout the literature.
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4.2 Expander graphs

Remark 4.1. There is a related definition of an ε-vertex expander graph, which

is defined in the same way but using the vertex boundary for the isoperimetric

inequality. We have chosen to restrict our study here to edge expansion, as it

is perhaps more intuitive for analysing key sharing, and is the measure used in

the related literature on KPSs. Since we will be consistently referring to edge

expansion properties, we will omit the word ‘edge’ when the context is clear,

for ease of notation.

Remark 4.2. Although the expansion coefficient ε is defined for any graph,

the phrase ‘expander graph’ is used informally to refer to graphs with good ex-

pansion, that is, graphs with a high value of ε, as we explain in Section 4.2.2.

Definitions for ε vary slightly across the literature, in particular some defini-

tions use the strict inequality |S| < v
2
. Another name for the edge-expansion

coefficient is the isoperimetric number, which is closely related to the algebraic

connectivity, and in a weighted graph where every vertex has the same weight,

ε is equivalent to the Cheeger constant; see [22] for further details.

4.2.2 The implications of large ε for networks

We now explore what the definition of the edge-expansion coefficient ε means,

and why a high value of ε is desirable, through the following observations:

• If ε = 0 then we see from the definition that there exists a subset of

vertices S ⊂ V which is disconnected from the rest of the graph, ie.

E(S, S) = ∅. This implies that the graph is not connected.

• A graph is connected if and only if ε > 0 (see proof of Lemma 4.1), hence
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4.2 Expander graphs

all connected graphs are ε-expander graphs for some positive value of ε.

• If ε is ‘small’, for example ε = 1
100

, then there exists a set of vertices S

which is only connected to the rest of the graph by one edge per 100

nodes in S. This is undesirable for a resource-constrained network for

the following reasons:

– The set S is vulnerable to being ‘cut off’ from the rest of the net-

work by a small number of attacks or faults. If S contains c× 100

nodes then there are only c edges between S and S. A small num-

ber of compromises or failures amongst the nodes incident to these

edges (of which there can be no more than 2c) will render all com-

munication between S and S insecure.

– Since S is connected to the rest of the network by comparatively

few edges, a higher communication burden is placed on the small

set of ≤ 2c nodes, since a higher proportion of data needs to be

routed through them. This will drain the batteries of the nodes

nearest to the edges between S and S faster than those of an average

node, so that after some period of time they will run out of energy,

disconnecting S from the rest of the network even though many

nodes in S may still have battery power remaining.

– Reliance on a small number of edges to connect large sets of nodes

may create bottlenecks in the transmission of data through the net-

work, making data collection and/or aggregation less efficient.

• If ε is larger, particularly if ε > 1, then there is no ‘easy’ way to disconnect

large sets of nodes, and there is a more even spread of communication
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4.2 Expander graphs

burdens, battery usage and data flow.

We see from these observations that intersection graphs with higher values of

ε are more desirable for resource-constrained networks. A graph with a ‘large’

value of ε is often said to have ‘good expansion’. The size of ε is subject to the

following bounds.

Lemma 4.1. For any connected graph G = (V,E) with |V | ≥ 2,

0 < ε ≤ min
x∈V

d(x) .

Proof. We begin by considering the lower bound. Suppose for a contradiction

that ε = 0. Then there exists a set S ⊂ V such |E(S, S)| = 0. This contradicts

the fact that G is connected. Since ε cannot be negative, we have that ε > 0.

For the upper bound, consider the set S = {x} where x ∈ V . It is clear that

|E(S, S)| = d(x), where d(x) is the degree of x as defined in Section 2.3.1, and

so |E(S,S)|
|S| = d(x)

1
= d(x). Since the definition of the edge-expansion coefficient

ε uses the minimum value over all S ⊂ V with |S| ≤ |V |
2

, we have that

ε ≤ minx∈V d(x).

In addition to the observations made above, graphs with good expansion also

have low diameter, logarithmic in the size of the network [39] and contain

multiple short, disjoint paths between nodes [44], the many benefits of which

we discussed in Section 2.4.4. These properties mean that key graphs with

good expansion are particularly desirable for resource-constrained networks.
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4.2 Expander graphs

The papers by Çamtepe et al. [18] and Shafiei et al. [60] propose KPSs based on

expander graph constructions. These methods of designing a KPS ensure that

the key graph has good expansion, and we further examine these proposals

in Section 4.5. Before we consider the claims made by Ghosh in [36] about

the necessity of good expansion for ‘optimal’ networks, we introduce one more

definition of expansion, to which we will refer briefly in Section 4.5, and which

we will build upon in Chapter 5.

4.2.3 Spectral expansion

For a d-regular graph G, we define the spectral expansion of G using linear

algebra. The following definitions are compiled with reference to [2, 22, 25, 39].

Definition 4.5. The adjacency matrix of a graph G = (V,E) is defined to be

a |V | × |V | matrix A, where each entry aij is the number of edges incident to

both vertex i and vertex j.

It is easy to see that the adjacency matrix of a simple graph is a symmetric 0−1

matrix, with zeroes on the main diagonal. For a d-regular graph, the sum of

the entries in each row or column is d. Since A is a real symmetric v×v matrix,

it has |V | = v real eigenvalues, λ1 ≥ λ2 ≥ · · · ≥ λv, where all λi ∈ [−d, d].

In fact, it can be shown that λ1 = d, corresponding to eigenvector u1 whose

entries are all 1
v
. We also note that λv = −d if and only if G is bipartite

(two-colourable). We can now define the spectral gap as follows.

Definition 4.6. Let λ̃ be the largest eigenvalue in absolute value with |λ̃| 6= d.
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4.3 Expansion in product graphs

Then the spectral gap of a d-regular graph G is defined to be λ1 − λ̃ =

d− λ̃ .

The various definitions of expansion are closely related. Tanner [65] and inde-

pendently Alon and Milman [1] proved that

d− λ̃
2
≤ ε ≤

√
2d(d− λ̃) (4.2.1)

where ε is the edge expansion coefficient defined in Definition 4.4. Thus, the

spectral gap may be used as a measure of the spectral expansion: the larger

the spectral gap, the better the expansion of G.

Finally, Alon and Boppana [55] proved that all large d-regular graphs satisfy

λ̃ ≥ 2
√
d− 1 − o(1). A graph is said to be Ramanujan if this bound is tight,

that is, if λ̃ ≤ 2
√
d− 1, and therefore Ramanujan graphs have asymptotically

smallest possible λ̃, making them very good spectral expanders [25].

4.3 Expansion in product graphs

In [36] Ghosh considers KPSs with large network size, low key storage per

node, high connectivity and high resilience. He considers jointly ‘optimising’

these parameters, although exactly what this means is unclear, since different

applications will prioritise them differently. Nevertheless, he argues that if a

KPS is in some sense ‘optimal’, the product graph (Definition 4.7) of the key

graph and communication graph must have ‘good expansion properties’. We

show by a counterexample that expansion in the product graph is not a helpful
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4.3 Expansion in product graphs

measure because the product graph is almost inevitably an expander graph.

Additionally, we show that the product graph is unable to capture the required

detail to analyse a network, and that it is the intersection graph where such

analysis is relevant.

First, we define what is meant by the product graph in this context.

Definition 4.7. The (Cartesian) product graph of two graphs G = (VG, EG)

and H = (VH , EH) is defined as G.H = (VG × VH , EG.H), where the set of

edges EG.H is defined in the following way: for vertices xy, x′y′ ∈ VG×VH with

xy 6= x′y′, we have (xy, x′y′) ∈ EG.H if

(x = x′ or (x, x′) ∈ EG) and (y = y′ or (y, y′) ∈ EH) .

The definition is perhaps easier to understand through examples. In Figures 4.1

and 4.2 we consider examples of product graphs and examine how they relate

to their constituent communication and key graphs. Figure 4.1 shows a com-

munication and a key graph, and their corresponding intersection and product

graphs. The product graph is represented in Figure 4.1(d) in a way which

demonstrates its construction, and redrawn in Figure 4.1(e) for clarity.

Figure 4.1(d) illustrates that the product graph construction results in four

copies of the key graph, connected to each other in a way which resembles

a large copy of the communication graph. We see that there is an edge in

the product graph (ac, ab) ∈ EG.H because a = a and (c, b) ∈ EH . Simi-

larly, (ca, ba) ∈ EG.H because (c, b) ∈ EG and a = a. However, we find that

(aa, ab) /∈ EG.H because whilst a = a, (a, b) /∈ EH .
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a b

c d

(a) Comm. graph

a b

c d

(b) Key graph

a b

c d

(c) Intersect. graph
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ac ad

ba bb

bc bd

ca cb

cc cd

da db

dc dd

(d) Product graph

aa ab
ac

ad

ba

bb

bc
bdcacb

cc

cd

da

db

dc
dd

(e) Product graph re-drawn

Figure 4.1: A product graph corresponding to an identical communication and
key graph pair.

In Figure 4.1 the communication and key graphs are identical, giving the best

possible case for intersection. We now calculate the expansion coefficient of the

product graph. Consider sets S of 1, 2, . . . , 8 vertices (recall from the definition

that we should consider subsets S with |S| ≤ |V |
2

, and here |V | = 16). We

observe that any single vertex is connected to the rest of the graph by at least

three edges, any set of two vertices is connected to the rest of the graph by at

least six edges, etc., so that

ε = min

{
3

1
,
6

2
,
9

3
,
9

4
,
11

5
,
16

6
,
12

7
,
10

8

}
.

That is, ε = 10
8

= 5
4
, so the product graph of Figure 4.1 has expansion coefficient

ε = 5
4
.
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(b) Key graph
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(d) Product graph
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dd

(e) Product graph re-drawn

Figure 4.2: A product graph corresponding to a communication and key graph
pair with empty intersection.

Now consider Figure 4.2, where we have retained the same key graph but taken

the complement of the communication graph. Thus, the communication graph

has the same number of edges as that in Figure 4.1(a) but the intersection

graph, shown in Figure 4.2(c), has no edges. Clearly, if this were to represent

a network, it would mean that no secure communication would be possible.

However, the product graph does have edges, and indeed appears well con-

nected. By observation, we find that it too has expansion coefficient ε = 5
4
.

Indeed, after some inspection, we find that the product graphs of Figures 4.1

and 4.2 are isomorphic, using a simple bijection to relabel vertices as follows:

Figure 4.1(e) Figure 4.2(e)
(a∗) → (c∗)
(b∗) → (d∗)
(c∗) → (b∗)
(d∗) → (a∗)
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This means that all graph-theoretic properties of connectivity, expansion, de-

gree, diameter etc. are identical between the two product graphs. From this

we see that a product graph with good expansion can occur when the key

and communication graphs intersect ‘fully’, i.e. when EG ∩ EH = EG = EH ,

and when there are no edges in the intersection, i.e. EG ∩ EH = ∅. This

shows that the expansion of the product graph certainly does not correspond

to any degree of ‘optimality’ regarding the intersection graph and therefore

the resulting network. In particular, it strongly suggests that expansion in the

product graph is not a good tool for analysing the connectivity of networks

without reference to the intersection graph. Ghosh’s claim that an ‘optimal’

combination of key and communication graph will result in a product graph

with good expansion tells us very little, since good expansion in the product

graph is almost inevitable, as we will now explain.

Lemma 4.2. A (Cartesian) product graph G.H = (VG×VH , EG.H) is connected

if and only if both G = (VG, EG) and H = (VH , EH) are connected.

Proof. Suppose that the product graph is connected. We want to show that for

any pair of vertices xi, xj ∈ VG there exists a path from xi to xj, and similarly

that there exists a path between every pair of vertices yi, yj ∈ VH .

Pick a pair of vertices xp1, xpn ∈ VG, fix an arbitrary vertex y1 ∈ VH and

consider xp1y1, xpny1 ∈ VG × VH . Since G.H is connected, there exists a path

from xp1y1 to xpny1, say,

(xp1y1, xp2y1), (xp2y1, xp3y1), . . . , (xp(n−1)y1, xpny1) .

By the definition of the product graph, this means that either xpi = xp(i+1) or
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(xpi, xp(i+1)) ∈ EG for each 1 ≤ i ≤ n. Thus we have found a path from xp1 to

xpn in G, and so G is connected. Similarly, H is connected.

Now suppose that G and H are each connected. We can construct a (not

necessarily shortest) path between arbitrary vertices xp1yq1, xpnyqm ∈ VG× VH

in the following way. There is a path in G from xp1 to xpn, say

(xp1, xp2), (xp2, xp3), . . . , (xp(n−1), xpn) .

Then by definition, the following is a path in G.H:

(xp1yq1, xp2yq1), (xp2yq1, xp3yq1), . . . , (xp(n−1)yq1, xpnyq1) . (4.3.1)

Similarly, using a path (yq1, yq2), (yq2, yq3), . . . , (yq(m−1), yqm) in H, we have a

path in G.H:

(xpnyq1, xpnyq2), (xpnyq2, xpnyq3), . . . , (xpnyq(m−1), xpnyqm) . (4.3.2)

Since the path (4.3.2) begins at the vertex where path (4.3.1) ends, we can

concatenate them to give a path from xp1yq1 to xpnyqm in G.H.

Corollary 4.3. If G and H are connected, the product graph G.H has expan-

sion coefficient εG.H > 0.

Proof. Recall from Lemma 4.1 that a connected graph is an expander graph

for some value of ε. Therefore, if G and H are connected, the product graph

will be an expander graph for some value of εG.H > 0.
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We conjecture that with high probability, εG.H > εG, εH and εG.H � 0. We jus-

tify this by considering the comparatively large degrees of nodes in the product

graph, and the product graph’s similarity to an expander graph construction.

For any node xy ∈ VG × VH with degrees dG(x), dH(y) in the communication

and key graphs respectively, we can compute its degree in the product graph

as

dG.H(xy) = dG(x)dH(y) + dG(x) + dH(y) . (4.3.3)

Using Lemma 4.1, we have that

εG.H ≤ min
xy∈VG×VH

(dG(x)dH(y) + dG(x) + dH(y)) ,

a much higher bound than for the constituent graphs. Since, on average, ver-

tices of the product graph have higher degree than vertices in the constituent

graphs, and since the construction of the product graph makes ‘isolated’ sets

of vertices extremely unlikely, we see that εG.H is likely to be large, and in

particular greater than either of εG and εH . By comparison, the expansion

coefficient of the intersection graph εG∩H is forced to be no more than those of

the constituent graphs, εG and εH , as explained in the next section.

Additionally, the construction of the product graph is not dissimilar to that of

the zig-zag product graph presented in [58] as an expander graph construction,

and used by Shafiei et al in [60] to produce key graphs with good expansion.

We see then that expansion in the product graph is inevitable if the constituent

graphs are connected, is likely to be ‘good’, and does not imply anything about

the quality of the connectivity or expansion in the intersection graph, where

it is needed. Ghosh does not justify his choice of using the product graph as a
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4.4 Expansion in intersection graphs

means of studying two graphs simultaneously, and we conclude that there are

no benefits to doing so. In order to capture the relevant interaction between

the key and communication graphs, the intersection graph is the relevant tool,

and it is in the intersection graph where good expansion is desired.

4.4 Expansion in intersection graphs

We claim that when comparing two networks of the same size with identical

key storage, connectivity and resilience parameters, the network represented

by the intersection graph with higher expansion will be the more robust, with

a more evenly distributed flow of data. We justify this using the following

example.

Example 4.1. Consider Figure 4.3 and suppose that these are two intersection

graphs, representing different networks. Each graph is 3-regular on 10 nodes.

We suppose that an Eschenauer Gligor KPS [32] (Scheme 2.1 in Section 2.4.1)

has been used to construct the key graph, where each node stores three keys

chosen randomly from a pool of 25 keys. Recall from Chapter 3 that Ω = 1,

that is, where nodes have more than one key in common, they select just one

of them as their link key.

Using Lemma 3.1, we find that Pr1 = 1− (22
3 )

(25
3 )
≈ 0.33, and from Lemma 3.2 we

have fail1 = 3
25

and fails = 1 −
(
1− 3

25

)s
for both graphs. We observe that in

Figure 4.3(a) the expansion is ε = 1
5
. This minimum value is achieved by (for

example) picking the set of 5 vertices S = {a, b, c, d, e}, which is only connected

to the rest of the graph by the single edge (e, f). However, in Figure 4.3(b) we
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(a) ε =
1

5
(b) ε =

7

5

Figure 4.3: Examples of 3-regular graphs on 10 nodes with different expansion
parameters.

find that ε = 7
5
; any set of 5 vertices is connected by at least 7 edges to the rest

of the graph.

For resource-constrained applications, the network represented by Figure 4.3(a)

is less desirable, because:

• it is more vulnerable to a listening adversary, who could decrypt a high

proportion of communications through the network by the compromise of

a single node e or f ;

• nodes e and f are more vulnerable to battery failure;

• a battery failure or other problem on just one of the two nodes e and f

would disconnect the network;

• communication bottlenecks are likely to occur around nodes e and f , mak-

ing communication through the network less efficient.

Conversely, in Figure 4.3(b) the communication burdens are distributed evenly
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across the nodes so that battery power will be used more evenly and there are

no weak spots for an adversary to target in order to quickly damage the rest

of the network. The graph can only be split into disjoint sets by the removal

of 4 or more nodes, that is, almost half of the network. It is clear then that

Figure 4.3(b) represents the less vulnerable network.

From this example we see that some strengths and weaknesses of the ‘layout’

of the network are hidden if we only consider the size, key storage, connectivity

and resilience, and in Section 4.6 we discuss the practicality of using expansion

as another metric for assessing networks. Before that, we consider how best

to probabilistically maximise the expansion in an intersection graph.

Lemma 4.4. The expansion of an intersection graph G ∩H = (V,EG ∩ EH)

is bounded above:

εG∩H ≤ min{εG, εH} .

Proof. We begin by considering the degree of a vertex in the intersection graph,

which is

dG∩H(x) ≤ min (dG(x), dH(x))

because for each vertex y ∈ V adjacent to x, the edge (x, y) ∈ EG will be

removed in the intersection unless (x, y) ∈ EH also. Using Lemma 4.1, we

have that εG∩H ≤ minx∈V {dG∩H(x)}.

Without loss of generality, suppose that εG ≤ εH . Consider a set S of vertices

in G which achieves the minimum |E(S,S)|
|S| = εG. If every edge of E(S, S)

remains in the intersection then εG∩H ≤ εG, otherwise εG∩H < εG, since no

edges are added elsewhere in the intersection.
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4.5 Analysing the expansion of existing KPSs

We see that it is necessary that G and H have high expansion coefficients for

G∩H to be a good expander. If the communication graph is complete then the

expansion of the key graph will be preserved in the intersection. If information

about the locations of the nodes is known a priori or if there is some control

over the communication graph, then keys can be assigned to nodes in a more

efficient manner; see [52] for a survey of KPSs for such scenarios.

However, we usually assume that there is little or no control over the communi-

cation graph and model it using a random graph such as the random geometric

model, as in [18]. If the communication graph is random, all that can be done

to aid good expansion in the intersection graph is to design the KPS so that

the key graph has as high expansion as possible for a particular network size

and for given levels of key storage, connectivity and resilience.

4.5 Analysing the expansion of existing KPSs

Many KPSs produce key graphs with large expansion coefficients for chosen

levels of key storage and resilience, as we will now demonstrate. In particular,

we will discuss and compare the expansion of KPSs based on expander graph

constructions (Section 4.5.1), random KPSs (Section 4.5.2) and KPSs based

on combinatorial designs (Section 4.5.3).
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4.5.1 KPSs based on expander graph constructions

Çamtepe et al. [18] and Shafiei et al. [60] propose KPSs based on expander

graph constructions and demonstrate that these schemes compare favourably

to other well-regarded KPS approaches. Çamtepe et al. [18] use a construction

for a Ramanujan graph, which, as we saw in Section 4.2, is an asymptotically

optimal spectral expander graph. The construction they use is for network

size v = p+ 1 and key storage k = q + 1, where p and q are primes congruent

to 1 mod 4 (see [39]). Shafiei et al. [60] use the zig-zag construction for an

expander graph, which has the benefit of being more flexible to produce key

graphs for any sizes of v and k. Both papers use the following method:

1. construct an expander graph G for the appropriate network size and

degree (and, in the case of [18], remove any self-loops or multiple edges.

The authors suggest that these be replaced with randomly-selected edges

such that all nodes have the same degree, though they omit this step from

their example.);

2. assign a unique pairwise key to every edge of G;

3. preload each node with the set of keys which correspond to its set of

edges.

The key graph then has good expansion. However, we claim that it is possible

to achieve higher expansion in a KPS for the same network size and key storage,

as we will now demonstrate.
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4.5.2 Random KPSs

Random graphs are good expanders with high probability [39]. As noted in

Remark 3.1, the random KPS of Eschenauer and Gligor [32] gives a key graph

which is more highly connected than the Erdös-Rényi graph G(v,Pr1) [31].

It therefore seems likely that this and other random KPSs (discussed in Sec-

tion 2.4.1 and Chapter 3) produce key graphs with good expansion.

With the exception of the random pairwise scheme (Scheme 2.3) the key graphs

of these random KPSs are also likely to be better expanders than those based on

expander graph constructions, since for comparable key storage, random KPSs

have larger average node degree. That is, in the KPSs based on expander graph

constructions, the node degree is the same as the key storage because unique

pairwise keys are used. In random KPSs we usually expect that d(Ni) > k for

all vertices Ni, as illustrated by the following example.

Example 4.2. In the Eschenauer Gligor random KPS [32], the degree d(Ni)

of each node Ni ∈ V in the key graph is almost certainly larger than the key

storage k. For example, if nodes store 50 keys randomly selected from a pool

of 1000 keys, then the expected degree of any node is

(v − 1)×

(
1−

(
950
50

)(
1000
50

)) .

If the network has 1000 nodes, this means that the expected degree is ≈ 71.905.

This implies that for practical values of k, n and v, the connectivity Pr1 is

greater in the Eschenauer Gligor scheme than in KPSs produced by expander

graph constructions. Random graphs are known to be good expanders with
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4.5 Analysing the expansion of existing KPSs

high probability and so, perhaps contrary to intuition, a key graph based on an

expander graph construction is likely to be a worse expander than a key graph

generated by the Eschenauer Gligor scheme.

It is clear that a benefit of the KPSs based on expander graph constructions is

that each key is only used for one edge, meaning that the graphs have perfect

resilience: fails = 0 for all 1 ≤ s ≤ v − 2. Therefore, in comparison to other

KPSs with perfect resilience, the KPSs based on expander graphs have an

additional benefit of guaranteeing a known expansion parameter. However,

where perfect resilience is not required, for fixed values of k, n and v, random

KPSs exist with slightly lower resilience but much higher connectivity than

the schemes based on expander graphs from [18] and [60], and in many cases

they also have comparable, if not better, expansion.

Similarly, most schemes based on combinatorial designs also reuse keys so

that d(Ni) > k, and therefore produce key graphs with higher average degree

than those based on expander graph constructions. We will now demonstrate

that the key graphs of many combinatorial designs are also likely to be good

expanders.

4.5.3 Combinatorial designs

Many combinatorial designs have been suggested for use as KPSs [56]. We

will now analyse a subset of these constructions and show that they provide

good expansion in the key graph, which is a previously unstated benefit of the

combinatorial design approach to KPSs.
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4.5.3.1 Finding the expansion of a design

Given any particular design, we can find the adjacency matrix of the corre-

sponding key graph, and hence its spectral gap, which provides bounds on the

expansion coefficient. We may even be able to find ε by inspection if v is small.

However, we would like to analyse the expansion of designs in general.

Most of the designs proposed for use in KPSs have the property of being

configurations (Definition 2.4). More information on configurations can be

found in [24, 47]. We note here that the key graph of a configuration is regular:

Lemma 4.5. (from [47, Lemma 1.1]) The key graph of a (n, v, r, k)-config-

uration is regular of degree k(r− 1). This is the maximum possible degree of a

graph of a (n, v, r, k)-design.

We restrict our study of the expansion of designs to configurations, where the

regularity of the key graph will simplify some of the analysis.

The following theorem gives an estimation of the expansion of a regular, uni-

form configuration.

Theorem 4.6. For an (n, v, r, k)-configuration, the edge-expansion coefficient

can be estimated by

ε ≈ k(r − 1)

2
.

Proof. In the key graph of an (n, v, r, k)-configuration, the degree of a node is

k(r − 1) (Lemma 4.5). Thus, for a set of nodes S ⊂ V ,

E(S, S) = |S|k(r − 1)− 2E(S, S),
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where E(S, S) counts the number of edges whose endpoints are both in S. The

factor of two is needed because the ‘|S|k(r−1)’ term has counted each of these

edges twice.

We now need to find an expression for E(S, S). Let Na and Nb be nodes in S,

and let Ka and Kb be their respective key sets, each of size k. For simplicity of

notation, label the keys in Ka as K1, . . . , Kk and define random variables Xi

for 1 ≤ i ≤ k so that

Xi =

{
1 if key Ki ∈ Kb
0 otherwise .

Then X :=
∑k

i=1Xi counts the number of edges between Na and Nb.

The expected value of Xi, which we will write as Ex[Xi] to avoid confusion

with the edge notation, is given by

Ex[Xi] =
r − 1

v − 1
,

since there are r − 1 other nodes which know key Ki, out of a total of v − 1

other nodes in the network. By linearity of expectation,

Ex[X] = kEx[Xi] =
k(r − 1)

v − 1
.

Thus the expected number of edges amongst |S| nodes is(
|S|
2

)
k(r − 1)

v − 1
,

hence

Ex[E(S, S)] = |S|k(r − 1)− 2

(
|S|
2

)
k(r − 1)

v − 1

= |S|k(r − 1)

[
1− |S| − 1

v − 1

]
.
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Finally, since ε = min1≤|S|≤ v
2

|E(S,S)|
|S| , this gives

ε ≈ min
1≤|S|≤ v

2

{
k(r − 1)

[
1− |S| − 1

v − 1

]}
= k(r − 1)

[
1−
bv

2
c − 1

v − 1

]
≈ k(r − 1)

2

for large v.

Theorem 4.6 tells us that the expected value of the expansion of a configuration-

based KPS is ‘good’, since in particular k(r−1)
2

> 1 for practical values of

k and r. However, Theorem 4.6 does not guarantee good expansion. As

a counter example, notice that the design (X ,B) where X = {1, 2, 3, 4, 5, 6},

B = {{1, 2}, {2, 3}, {1, 3}, {4, 5}, {5, 6}, {4, 6}} is a (6, 6, 2, 2)-configuration but

it certainly does not have expansion parameter ε = 1 as estimated by Theo-

rem 4.6; on the contrary, it is disconnected and has expansion ε = 0.

To successfully construct a KPS from a configuration, we clearly require the

graph of the configuration to be connected. In addition to being k-uniform and

r-regular, configurations which are proposed as constructions for KPSs gener-

ally have further properties which guarantee connectedness. We demonstrate

examples of these properties in Sections 4.5.3.2 and 4.5.3.3, where we give a

brief overview of two classes of configurations which have been proposed as

constructions for KPSs, namely µ-common intersection designs and strongly

regular graphs, and we present lower bounds for their expansion parameters.
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4.5.3.2 µ-common intersection designs

Recall from Definition 2.5 that a KPS constructed from a µ-common inter-

section design has the property that any two nodes which are non-adjacent

have at least µ common neighbours. In [47], the motivation given for using

µ-common intersection designs as KPSs is that if two nodes Ni and Nj wish to

communicate but do not share a common key, then they can communicate via

‘two hops’ if they share at least one common neighbour. In Section 2.4.4 we

considered the various ways in which common neighbours can be beneficial.

We now show that expansion provides another reason to support the choice of

µ-common intersection designs for constructing KPSs.

We have already seen in Section 4.2 that a property of expander graphs is

low diameter, which is beneficial for all of the protocols given in Section 2.4.4.

Having good expansion and having low diameter are related concepts, and we

use this to show that in general, a µ-common intersection design has a large

expansion coefficient:

Lemma 4.7. Let G = (V,E) be a graph with diameter 2. Then for any subset

S, where ∅ 6= S ⊂ V ,

|E(S, S)| ≥ min{|S||S|}.

Proof. Without loss of generality, suppose that |S| ≤ |S|. Now, suppose for a

contradiction that |E(S, S)| < min{|S||S|}, that is, suppose |E(S, S)| < |S|.

Then there exists a node Ni ∈ S which is not adjacent to any node in S.

Denote the set of nodes adjacent to Ni by VNi . We have that VNi ⊆ S, and
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so E(VNi , S) ⊆ E(S, S). Thus |E(VNi , S)| ≤ |E(S, S)| < |S| ≤ |S|, and so

there exists a node Nj ∈ S which is not adjacent to any node in VNi . This

contradicts the property that the graph has diameter 2, since Ni and Nj do

not have a common neighbour.

Corollary 4.8. The graph G = (V,E) of a µ-common intersection design is

an ε-expander graph, where ε ≥ 1.

Proof. Since the graph of a µ-common intersection design has diameter 2, this

is a simple consequence of Lemma 4.7. By definition, the expansion coefficient

is given by

ε = min
S⊂V :|S|≤ v

2

{
|E(S, S)|
|S|

}
≥ min

S⊂V :|S|≤ v
2

{
|S|
|S|

}
≥ 1.

Therefore we have shown that µ-common intersection designs are a natural

choice for KPSs, not only because of the ‘two-hop paths’ property mentioned

in [47], but also because they are good expanders, which implies the other

beneficial properties given in Section 4.2.

4.5.3.3 Strongly regular graphs

This bound also holds for strongly regular graphs (Definition 2.6), which may

be regarded as a special type of µ-common intersection design. We also have

89



4.6 Using expansion as a metric

another lower bound:

Lemma 4.9. For a connected (v, k(r − 1), λ, µ) strongly regular graph,

ε ≥ k(r − 1)

2
−
λ− µ+

√
(λ− µ)2 + 4(k(r − 1)− µ)

4
.

Proof. In [12] it is shown that the non-trivial eigenvalues of a strongly regular

graph are the solutions of the equation

x2 − (λ− µ)x+ (k(r − 1)− µ) = 0 .

Thus the larger root is given by

λ̃ =
λ− µ+

√
(λ− µ)2 + 4(k(r − 1)− µ)

2

and, using Equation (4.2.1), we have our result.

In Chapter 5 we will see an example of a strongly regular graph as a KPS,

and we will use Lemma 4.9 to show that its expansion is in fact significantly

greater than 1.

4.6 Using expansion as a metric

We have seen that for two networks with the same size, key storage, connec-

tivity and resilience, the network represented by the intersection graph with

the higher expansion coefficient is the more robust, with the more evenly dis-

tributed flow of data. Therefore we suggest that expansion is an important

metric to be considered alongside the usual metrics of key storage, connectiv-

ity and resilience, when designing KPSs and assessing their suitability for use
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in resource-constrained networks. However, we now state some drawbacks to

the use of expansion as a metric, and explain the extent to which they can be

overcome.

Difficulty of determining the expansion coefficient. Determining the

expansion coefficient of a given graph is known to be co-NP-complete [7], and

so testing KPSs for their expansion coefficient is not an easy task. Additionally,

even if the expansion coefficient of the key graph is known, the expansion of

the intersection graph will not be known a priori if the communication graph

is modelled as a random graph.

Nevertheless, the spectral gap can be used to find upper and lower bounds on

the expansion of the key graph (Lemma 4.2.1). If the intersection graph is

known, that is, if it is possible to determine the locations of the nodes after

deployment by using an online base station or GPS, its expansion coefficient

could also be approximated using the spectral gap. This is likely to be rele-

vant if post-deployment key management protocols are available such as key

refreshing [4] or key redistribution (Chapter 6), for which it could be useful to

know as much as possible about the vulnerability of the network. Some key

management protocols are able to provide targeted improvements to specific

weak areas of the network, and we explain below how best to identify such

weaknesses.

Limitations of the expansion coefficient. We note that the expansion

coefficient alone does not claim to fully describe the structure of the graph,
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giving only a ‘worst case’ assessment. That is, the value of ε only reflects the

weakest point of the graph and tells us nothing about the structure of the

graph elsewhere.

For example, consider an intersection graph on v nodes which is effectively

partitioned into two sets: a set of v − 1 nodes with good expansion, and a

final node which is disconnected from the rest of the graph, as demonstrated

in Figure 4.4(b). We would find that ε = 0, and we would suspect that the

graph is less than desirable for network applications.

(a) ε = 0 (b) ε = 0

(c) ε = 0

Figure 4.4: Distinguishing between cases where ε = 0

However, particularly in a network of thousands of nodes, the disconnection

of one node is unlikely to be severely detrimental to the network; indeed, loss

of some nodes due to poor positioning or battery failure may be expected.

Knowing only that ε = 0 does not distinguish between the following cases:

1. the graph is completely disconnected (Figure 4.4(a));
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2. a single node is disconnected from the rest of the graph, which otherwise

has good expansion (Figure 4.4(b));

3. the disconnected graph is a union of smaller graphs, some with good

expansion (Figure 4.4(c)).

If an intersection graph falls into Case 1 then it is likely that the key graph

has low connectivity, i.e. a low value of Pr1. However, for the same values of

network size, key storage, connectivity and resilience, knowing only that ε = 0

in the intersection graph cannot distinguish between the Cases 2 and 3, though

Case 2 is likely to be much better for network applications.

Therefore, we suggest some graph-theoretic tools which also serve as indicators

of whether the structure of a graph is suitable for a network. These may be

used alone or in conjunction with (an estimate of) the expansion coefficient in

order to analyse a proposed KPS, and where possible to analyse the resulting

intersection graph.

4.6.1 Components

We note that to distinguish between the cases in Figure 4.4 it is relevant to

know the number of components. A component of a graph is a connected

vertex-induced subgraph containing the maximal number of edges [21], that

is, a subset S of one or more vertices of the graph, where the vertices of S

are connected but E(S, S) = ∅. Hence Figure 4.4(a) has nine components,

Figure 4.4(b) has two, and Figure 4.4(c) has three. For applications where
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data must be routed throughout the network, it is desirable to minimise the

number of components.

Unlike finding the expansion coefficient of a graph, calculating the number of

components can be done in linear time using depth-first search, as described

in [40]. The global connectivity of a graph is the number of nodes in its largest

component divided by the total number of nodes. We wish the global connec-

tivity to be as close to one as possible.

4.6.2 Cut-edges

A cut-edge (also known as a bridge) is an edge whose deletion increases the

number of components. Equivalently, an edge is a cut-edge if it is not contained

in any cycle of the graph. This is illustrated in Figure 4.3, where the edge (e, f)

is a cut-edge.

As we have seen, cut-edges in the intersection graph of a network are undesir-

able because they can cause bottlenecks, increase communication burdens on

the nodes at their endpoints, and create weak points in the network where a

small fault or compromise by an adversary creates significant damage. There-

fore, one of the reasons why intersection graphs with high expansion are de-

sirable for networks is because they are less likely to have cut-edges:

• If ε > 1

b v2c
then we know that there is no cut-edge which, if removed,

would separate the graph into two components, each of size v
2

(or bv
2
c

and bv
2
c+ 1 if v is odd).
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• If ε = 1
2

then it is possible that there are cut-edges which, if removed,

would disconnect at most two nodes from the network.

• If ε > 1 then for all S ⊂ V with |S| ≤ v
2
,

|E(S, S)| > |S| ≥ 1 ,

and so there can be no cut-edges in the graph.

Determining whether a graph contains cut-edges can also be achieved by a

linear time algorithm [66].

4.6.3 Cutpoints

There is also a related notion of cutpoints in graphs; here we reproduce the

definition from [21].

Definition 4.8. Consider a simple connected graph G = (V,E), and a vertex-

induced subgraph GS = (S,ES) on a subset of the vertices ∅ 6= S ⊂ V . Let

ES = E\ES, and let VS be the set of vertices which are incident to edges in ES.

Whenever there exists such a subgraph GS so that |S∩VS| = 1, then the single

node v at which they intersect is called a cutpoint of G. In an unconnected

graph, a node is called a cutpoint if it is a cutpoint of one of its components.

Since G has no self-loops, a cutpoint is a node whose removal increases the

number of components by at least one.

We see then that in Figure 4.3(a), nodes e and f are cutpoints, and that graphs

with good expansion will have few cutpoints. If a graph contains no cutpoints
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it is said to be nonseparable or biconnected, which again is clearly desirable for

an intersection graph representing a network.

The website [76] gives examples of Java algorithms which find the nonsep-

arable components of given graphs and can even add edges to make graphs

nonseparable. Tools such as this can provide simple, effective ways to analyse

an intersection graph of a deployed network and indeed, wherever the post-

deployment key management protocols allow, to make improvements to the

structure of the intersection graph.

4.7 Conclusion

We have shown that if we fix levels of key storage, network size, connectivity

and resilience, then the larger the value of the expansion coefficient ε in the

intersection graph, the better suited it will be for resource-constrained net-

works. This is because graphs with good expansion are well connected with

low diameter and do not have the vulnerabilities of cut-edges and cutpoints.

We have shown that the expansion coefficient of the product graph is not a

relevant metric; rather, it is the intersection graph where a high expansion

coefficient is desirable.

In a setting where there is control over the communication graph, the expansion

of the intersection graph should be an important consideration in the design of

the key graph. If there is no control over the communication graph, then after

choosing levels of network size, key storage, connectivity and resilience, the

best choice of KPS is the one with the highest expansion, since it will maximise
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the probability of achieving good expansion in the intersection graph.

The key graphs of the KPSs proposed in [18] and [60] have good expansion, and

the use of unique pairwise keys gives perfect resilience. However, many existing

KPSs, including random KPSs and those based on µ-common intersection

designs and strongly regular graphs, are able to achieve better expansion for

the same key storage and network size, at the cost of lower resilience.

Finally, we have suggested that expansion is an important metric for comparing

KPSs proposed for resource-constrained networks, and a useful parameter for

analysing intersection graphs after deployment in order to improve weak parts

of the network. Determining the expansion of a graph is co-NP-complete and

gives only a worst-case assessment of the graph. Therefore we have proposed

the use of linear time algorithms to estimate the expansion, and introduced

related graph-theoretic properties which could be used to analyse the key and

intersection graphs of networks.
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5.1 Introduction

In this chapter we discuss the role of hypergraphs in the representation and

construction of KPSs. We show that there are benefits to using hypergraphs

rather than graphs to represent KPSs, extend ideas from Chapter 4 to con-
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5.2 Hypergraph representations of KPSs

struct further KPSs with good expansion, and draw connections with the lit-

erature on KPSs based on combinatorial designs.

We begin in Section 5.2 by defining hypergraphs and arguing for their use

in representing KPSs, as they are able to demonstrate key storage and re-

silience as well as connectivity. We present motivating examples, and discuss

the connection between hypergraphs and designs. In Section 5.3 we define ex-

pansion in hypergraphs, explain why hypergraphs with good expansion have

advantages over graphs with good expansion for the construction of KPSs, and

outline various constructions. In particular, we give an example of a Cayley

hypergraph and demonstrate its effectiveness as a basis for a KPS.

5.2 Hypergraph representations of KPSs

We now define hypergraphs, which can be considered as a generalisation of

graphs, where each edge may be incident to more than two vertices.

Definition 5.1. A hypergraph H = (V,E) is a set of vertices V = {N1, . . . , Nv}

and a set of hyperedges E. A hyperedge is a subset of V of cardinality ≥ 2,

written as

(Ni1, . . . , Nir) ∈ E

where r ≥ 2. If every edge contains r vertices, we say that the hypergraph is

r-uniform. Thus, a simple graph can be thought of as a 2-uniform hypergraph.

In Section 2.3.2 we introduced the use of graphs to represent KPSs, which is

common in the literature. As far as we are aware, hypergraphs have not pre-
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5.2 Hypergraph representations of KPSs

viously been used to represent KPSs. We suggest that representing a KPS by

a hypergraph has advantages over a graph representation, namely by demon-

strating the key storage and resilience of the KPS in addition to the connec-

tivity, as we now explain.

5.2.1 Representing a KPS with a hypergraph

We consider again the example key graph from Section 2.3.2.1 which we repli-

cate here in Figure 5.1(a), without the key labels. We can represent the same

KPS with a hypergraph by letting each key correspond to a hyperedge, so the

hyperedge is incident to all the nodes which know the corresponding key.

There are various equivalent ways to draw hyperedges: Figure 5.1(b) demon-

strates perhaps the more intuitive method, where a hyperedge ‘contains’ its

vertices; Figure 5.1(c) uses the convention of drawing a hyperedge as ‘spokes’

from a midpoint between the set of incident vertices. The latter will be used

throughout the remainder of this chapter as it is less likely to lead to ambiguity.

Both graph and hypergraph representations demonstrate the connectivity of

the KPS. The benefit of using a hypergraph representation rather than a graph

representation is two-fold. Without the need to use key labels, we can deduce

the key storage and the resilience of the KPS from the hypergraph using the

following observations:

1. the degree of a node is equal to the number of keys stored by that node,
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(a)

(b) (c)

Figure 5.1: Graph and hypergraph representations of a simple KPS

that is, d = k

2. the number of vertices incident to each hyperedge, r, demonstrates the

number of nodes which store each key, allowing us to calculate the re-

silience.

Without key labels, it is impossible to determine the exact key storage and

resilience from the graph representation.

101



5.2 Hypergraph representations of KPSs

5.2.2 Trivial KPS examples

To take an extreme example, consider Figure 5.2, which shows (with labels)

the key graphs of two of the trivial KPS examples from Section 2.2.3 on four

nodes. That is, Figure 5.2(a) is the KPS where every node stores a single key,

K, and Figure 5.2(b) is the KPS where each pair of nodes is assigned a unique

key. Notice that both key graphs are complete, despite the difference in their

resilience. Without the edge labels (which would be infeasible to draw on a

large graph) the graphs would be isomorphic, and thus the important metrics

of key storage and resilience would not be represented.

K

K

K

K

K

K

(a) Each node is assigned a
single key, K

K1

K2

K3

K4

K5

K6

(b) Every pair of nodes is as-
signed a unique key

Figure 5.2: Trivial key predistribution schemes represented by graphs

By comparison, without the need for key labels, the corresponding hypergraph

representations given in Figure 5.3 clearly show the key storage and the number

of nodes which store each key: we observe from the nodes’ degrees that k = 1

in Figure 5.3(a) and k = 3 in Figure 5.3(b), and from the magnitude of the

hyperedge(s) that r = 4 in Figure 5.3(a) and r = 2 in Figure 5.3(b)), which

immediately tells us that the resilience is worst possible in Figure 5.3(a) and
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5.2 Hypergraph representations of KPSs

(a) Each node is assigned a
single key, K

(b) Every pair of nodes is
assigned a unique key

Figure 5.3: Trivial key predistribution schemes represented by hypergraphs

best possible in Figure 5.3(b).

5.2.3 Design-based KPS example

We now consider another, less extreme example. Recall our 2− (9, 3, 1) design

from Example 2.4 in Section 2.3.3: X = {1, 2, 3, 4, 5, 6, 7, 8, 9} and B = {{123},

{456}, {789}, {147}, {258}, {369}, {159}, {267}, {348}, {168}, {249}, {357}},

which can be considered as a KPS where points represent keys and each block

corresponds to a node’s key set. The graph representation of this KPS is repro-

duced in Figure 5.4(a) and, for comparison, Figure 5.4(b) gives a hypergraph

representation of the same KPS. We show in Section 5.2.4 that it is straight-

forward to construct a hypergraph representation of a design, and indeed that

it is an intuitive representation.

Figure 5.4(a) clearly demonstrates the connectivity: we can see that each node

is connected to nine other nodes, hence Pr1 = 9
11

= 0.8181 . . . . The labels tell

us the set of keys known to each node, and from this we deduce that k = 3.

After a little careful study, we can also observe that r = 4. However, without
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{123}

{456}

{789}

{147}

{258}

{369}

{159}

{267}

{348}

{168}

{249}

{357}

(a) Graph representation of KPS from Example 2.4

N1

N2

N3

N4

N5

N6

N7

N8

N9

N10

N11

N12

1

2

3 4

5

6

7

8

9

(b) Hypergraph representation of KPS from Exam-
ple 2.4

Figure 5.4: Graph and hypergraph representations of a 2− (9, 3, 1) design

the key labels it would not be possible to determine k and r with certainty.

By contrast, Figure 5.4(b) demonstrates clearly that k = 3 (node degree) and

r = 4 (hyperedges uniformly incident to four vertices). A simple calculation of

k(r − 1) = 3× 3 = 9 tells us that each node is connected to nine other nodes,
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and hence the connectivity of the KPS is Pr1 = 9
11

. Key labels are included

in Figure 5.4(b) for clarity later, but notice that they are not needed for these

calculations.

In summary, without key labels, a graph only provides an exact representation

of the connectivity of a KPS, whereas a hypergraph unambiguously represents

the connectivity, key storage and resilience. Even with key labels, it is easier to

observe the re-use of keys (the value of r) from the hypergraph representation.

5.2.4 Hypergraphs and designs

We now demonstrate a method for constructing a hypergraph representation

of a design, and explain how these two combinatorial objects are closely linked

by their incidence matrices.

Definition 5.2. The incidence matrix M of a design is a matrix where the

columns represent blocks, rows represent points, and whose entries are given

by:

mij =

{
1 if point i is in block j

0 otherwise
.

Hence, the incidence matrix of the 2 − (9, 3, 1) design from Example 2.4 in
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Section 2.3.3 is

M =



1 0 0 1 0 0 1 0 0 1 0 0
1 0 0 0 1 0 0 1 0 0 1 0
1 0 0 0 0 1 0 0 1 0 0 1
0 1 0 1 0 0 0 0 1 0 1 0
0 1 0 0 1 0 1 0 0 0 0 1
0 1 0 0 0 1 0 1 0 1 0 0
0 0 1 1 0 0 0 1 0 0 0 1
0 0 1 0 1 0 0 0 1 1 0 0
0 0 1 0 0 1 1 0 0 0 1 0


.

It is then straightforward to see that key K1 is given to nodes N1, N4, N7, N10,

key K2 is given to nodes N1, N5, N8, N11, and so on, and hence to construct a

hypergraph representation, as shown in Figure 5.4(b).

Finally, we make a remark about the relationship between hypergraphs and

designs, to which we will refer in Section 5.3.3.

Remark 5.1. Since a (hyper)graph G = (V,E) is defined by its vertex set V

and (hyper)edge set E, a (hyper)graph is a set system. The two concepts are

equivalent. In particular, a graph is a set system which is uniform of rank 2. An

r-uniform hypergraph is a set system which is uniform of rank r. Further, as

we now demonstrate, the hypergraph representation of a combinatorial design

can be a regular, uniform design itself. The hypergraph H = (V,E) from

Figure 5.4(b) is given by V = {1, 2, . . . , 12}, and

E = {{1, 4, 7, 10}, {1, 5, 8, 11}, {1, 6, 9, 12}, {2, 4, 9, 11}, {2, 5, 7, 12},

{2, 6, 8, 10}, {3, 4, 8, 12}, {3, 5, 9, 10}, {3, 6, 7, 11}}.

Regarding H = (V,E) as a combinatorial design, that is, regarding the hyper-

edges as blocks, we see that this design is regular of degree 3, uniform of rank 4,

and has incidence matrix M t, the transpose of the incidence matrix M above.
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5.3 Expansion in hypergraphs

5.3 Expansion in hypergraphs

In Chapter 4 we noted that good expansion is a desirable property for key

predistribution schemes. That is, it is desirable to have good expansion in the

intersection graph, and therefore in the key graph. However, attempts to create

a key predistribution scheme from known expander graph constructions (as in

[18, 60]) have provided an extreme in the trade-off between connectivity and

resilience: they provide perfect resilience at the expense of low connectivity

(in comparison to KPSs without perfect resilience, given fixed key storage

k). Here, we show how to adapt existing hypergraph constructions which are

known to provide good expansion, to create KPSs with good expansion and

without perfect resilience.

5.3.1 Expansion in KPSs without perfect resilience

The constructions in [18, 60] take an expander graph construction, remove any

self-loops and multi-edges, and then assign a unique key to each edge. Thus,

each key is used to secure exactly one link, and so perfect resilience is achieved.

However, this also means that if a node stores k keys then it only has degree

k in the key graph. Other KPS constructions tend to re-use keys, such that

a node which stores k keys will often have degree significantly greater than k,

and hence the network has higher connectivity.

Therefore, if perfect resilience is the main priority, then these expander graph

constructions are appropriate. However, if perfect resilience is not required,
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then considerably higher connectivity can be achieved. We now address how

to retain the focus of obtaining good expansion in a KPS without perfect

resilience.

A näıve approach would be to take an existing expander graph construction

for KPSs, such as those in [18, 60], and simply assign the same key to multiple

edges. However, it is not entirely clear how best to do this. One way would

be to create the expander graph, pick a node at random, and assign a key K1

to two of its edges, repeat for a key K2, etc. However, such an approach could

lead to unnecessarily high key storage for some nodes, whilst others receive

comparatively few keys. In addition, an expander with higher connectivity

than in [18, 60] should be picked in the first place, as otherwise we are reducing

the resilience whilst maintaining the same connectivity. It is not immediately

obvious how many edges the initial expander construction should have in order

to maintain a similar magnitude of key storage and maintain a desirable trade-

off between connectivity and resilience.

Therefore, whilst this method may have merit, we demonstrate a ‘tidier’ so-

lution, which harnesses the properties of hypergraphs to achieve exactly what

we seek: a KPS with good expansion which has a deterministic construction,

enabling detailed analysis, and where each key is known to r > 2 nodes. We

propose that if we could find a ‘nice’ hypergraph with r > 2 and, in some

sense, good connectivity and expansion, then we could still assign a unique

key per edge, without resulting in having perfect resilience.
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5.3.2 Constructions for hypergraphs with good expansion

The literature on hypergraphs with good expansion (sometimes called ‘expand-

ing hypergraphs’) is limited. In [35], the notion of eigenvalues of a graph is

extended to hypergraphs, and thus Friedman et al. are able to analyse the

second eigenvalue of a hypergraph. This allows them to carry over the concept

from graph theory of a spectral expander graph being one with large spectral

gap (Section 4.2). They prove many theorems about the properties of such ex-

panding hypergraphs, and provide a construction, namely Cayley hypergraphs.

Whilst they demonstrate that Cayley hypergraphs have good expansion, they

also note that the expansion of a general Cayley hypergraph is far from the

optimal bounds which are proven in the paper.

There is currently no known method for generating uniform hypergraphs at

random [39]. If there were, they would likely provide a very promising way of

constructing KPSs, since it is proven in [35] that a random uniform hypergraph

has good expansion with high probability.

In [57] two further approaches to constructions of hypergraphs with good ex-

pansion are given: explicit constructions from Gower’s Theorem, and semi-

explicit constructions from Fourier Analysis. However, in order to provide a

simple demonstration of the method of constructing a KPS from a hypergraph,

we will use the Cayley hypergraph construction, which has good (though far

from optimal) expansion, and we will compare its effectiveness as a construc-

tion for a KPS to the construction from [18] based on a Ramanujan expander

graph.
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5.3.3 Cayley hypergraphs

We use the Cayley expanding hypergraph construction from [34] for our anal-

ysis because it is straightforward to define and construct, whilst noting that

Cayley hypergraphs have far from optimal expansion when considering the

second eigenvalue.

Definition 5.3. Let V be a group, and W ⊂ V . The 3-uniform Cayley

hypergraph on V and W is the hypergraph whose vertices are the elements of

V and whose hyperedge set is given by

E = {(x, y, z) : x, y, z distinct, xyz ∈ W}.

Remark 5.2. We note that, to the best of our knowledge, the earliest definition

of a Cayley hypergraph is given in [34], as an extension of the widely-known

definition of a Cayley graph (or 2-hypergraph). It is stated as the definition of

a ‘3-regular’ Cayley hypergraph on V and W . However, the word ‘regular’ is

more usually used to mean that the number of (hyper)edges incident to each

node is constant. This is not necessarily the case in Cayley hypergraphs (as

we will demonstrate below) and indeed there will generally be more than three

hyperedges incident to each node. We therefore use the word ‘uniform’ for

consistency with the recent literature.

In addition, for the hypergraph to be 3-uniform we require that x 6= y 6= z 6= x.

Otherwise, hyperedges of the form (x, x, z) and (x, x, x) would be included,

which are not usually considered to be 3-edges. This is not stated in the defi-

nition in [34].
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Figure 5.5: KPS from Ramanujan expander graph construction, from [18]

5.3.4 Comparing Ramanujan expander graphs and Cayley
hypergraphs as constructions for KPSs

In the example given in [18], a KPS is created for 18 nodes from a Ramanujan

expander graph. We reproduce their key graph in Figure 5.5.

Each node stores 4, 5 or 6 keys, and there are 46 different keys used in total,

each securing exactly one link. Thus we have fails = 0 for all s ≤ 16 and

Pr1 =
46(
18
2

) =
46

153
≈ 0.3.

For a direct comparison, we now construct a KPS for 18 nodes using a 3-

uniform Cayley hypergraph. The Cayley hypergraph H = (V,E) where V =
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{0, 1, . . . , 17} and

E = {(x, y, z) : x, y, z distinct, x+ y + z ≡ 0 mod 18}

also has 46 hyperedges, but each hyperedge connects three nodes. Thus there

are 46× 3 = 138 ‘pairs’ of links, and so

Pr1 =
138(
18
2

) =≈ 0.902 ; (5.3.1)

we have tripled the connectivity. This has not been at the cost of a large

reduction in resilience:

fail1 =
1

3

7

124
+

2

3

8

122
≈ 0.0625 (5.3.2)

because:

• One third of the nodes store 7 keys. On compromising one of these nodes,

the adversary learns 7 keys. There are then 138−(7×2) uncompromised

links remaining, of which 7 use a key known to the adversary.

• Similarly, two thirds of the nodes store 8 keys, and compromising one of

these leaves 138−(8×2) uncompromised links, of which 8 are vulnerable.

We will provide a general formula for fails at the end of this section, after

making a simplifying assumption.

We also note that there is a more equal spread of key storage per node in this

construction than in the Ramanujan construction from [18], that is, the key

storage for node Ni is kNi ∈ {7, 8}, whereas in the Ramanujan construction

kNi ∈ {4, 5, 6}. However, for large networks the Cayley construction does not
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Figure 5.6: Cayley hypergraph on 18 nodes

scale well: the key storage is ≈ v−1
2

. Nevertheless, it serves as a simple example

of the use of a hypergraph to construct a KPS.

We consider the expansion of our Cayley hypergraph. By inspection, we can

find a subset of vertices S with |S| = 9, and |E(S, S)| = 72, giving

ε ≤ 8 . (5.3.3)

After making some further observations we will show that, in fact, the addition

of two hyperedges gives ε = 8.
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Although our particular choice of Cayley hypergraph is far from optimal, it

serves as a simple comparison to the Ramanujan construction, and the com-

parison is favourable: it seems that KPSs with practical trade-offs between

connectivity and resilience, as well as the benefits of good expansion, can be

constructed from hypergraphs with good expansion.

But of course this is not entirely surprising. Recall from Remark 5.1 in Sec-

tion 5.2.4 that a hypergraph is a set system, and that an r-uniform, k-regular

hypergraph H = (V,E) can be regarded as an r-uniform, k-regular design in

itself, or as the representation of a k-uniform, r-regular design, whose incidence

matrix is the transpose of the incidence matrix of H. Thus, our construction

bears a strong resemblance to a combinatorial design, and the effectiveness of

designs as constructions for KPSs is well established.

To recover the set system to which our Cayley hypergraph on 18 nodes cor-

responds, we generate the 46 × 18 incidence matrix M , where each row cor-

responds to a hyperedge and each column corresponds to a key, as shown in

Figure 5.7.

Now, by reading down each column, we find the key set of each node and

recover the set system (X ,B) where X = {01, 02, . . . , 46} and the blocks of B

are:

{01, 02, 03, 04, 05, 06, 07, 08}, {01, 09, 10, 11, 12, 13, 14, 15}, {02, 09, 16, 17, 18, 19, 20},
{03, 10, 16, 21, 22, 23, 24, 25}, {04, 11, 17, 21, 26, 27, 28}, {05, 12, 18, 22, 26, 29, 30, 31},
{06, 13, 19, 23, 27, 29, 32, 33}, {07, 14, 20, 24, 29, 34, 35, 36}, {08, 15, 24, 27, 37, 38, 39},
{15, 20, 23, 26, 40, 41, 42, 43}, {08, 14, 19, 22, 40, 44, 45}, {07, 13, 18, 21, 37, 41, 44, 46},
{06, 12, 17, 34, 38, 42, 45, 46}, {05, 11, 16, 32, 35, 39, 43, 46}, {04, 10, 30, 33, 36, 43, 45},
{03, 09, 28, 31, 36, 39, 42, 44}, {02, 25, 31, 33, 35, 38, 41}, {01, 25, 28, 30, 32, 34, 37, 40}.

Then (X ,B) is a design, regular of degree three, with rank eight. Notice that it
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M =



1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0
1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0


Figure 5.7: Incidence matrix for Cayley hypergraph on 18 nodes
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is not uniform, as some blocks have seven points. However, if we simply added

the hyperedges {2, 8, 14} and {4, 10, 16} to our Cayley hypergraph, we would

then have a 3-uniform, 8-regular hypergraph, corresponding to an 8-uniform,

3-regular design. (These additional hyperedges are picked using the six nodes

which have degree seven, and assigning hyperedges so that no pair of nodes is

incident to more than one hyperedge.) Explicitly, we would have the design

(X ,B) where X = {01, 02, . . . , 48} and the blocks of B are:

{01, 02, 03, 04, 05, 06, 07, 08}, {01, 09, 10, 11, 12, 13, 14, 15}, {02, 09, 16, 17, 18, 19, 20, 47},
{03, 10, 16, 21, 22, 23, 24, 25}, {04, 11, 17, 21, 26, 27, 28, 48}, {05, 12, 18, 22, 26, 29, 30, 31},
{06, 13, 19, 23, 27, 29, 32, 33}, {07, 14, 20, 24, 29, 34, 35, 36}, {08, 15, 24, 27, 37, 38, 39, 47},
{15, 20, 23, 26, 40, 41, 42, 43}, {08, 14, 19, 22, 40, 44, 45, 48}, {07, 13, 18, 21, 37, 41, 44, 46},
{06, 12, 17, 34, 38, 42, 45, 46}, {05, 11, 16, 32, 35, 39, 43, 46}, {04, 10, 30, 33, 36, 43, 45, 47},
{03, 09, 28, 31, 36, 39, 42, 44}, {02, 25, 31, 33, 35, 38, 41, 48}, {01, 25, 28, 30, 32, 34, 37, 40}.

Notice that this is not a 2−(48, 8, 1) design, since, for example, it can easily be

checked that points 1 and 16 do not appear in the same block. However, this

design is a configuration (Definition 2.4). Notice that for each block Bi there

is exactly one block Bj with which it does not share any keys, i.e. Bi∩Bj = ∅.

Thus, Bi and Bj have 16 common neighbours, and so this is a 16-common

intersection design. Further, for every Bi and Bj with Bi ∩ Bj 6= ∅, there are

λ = 14 common neighbours, and thus this is a (18, 16, 14, 16) strongly regular

graph. We have already established that strongly regular graphs make good

constructions for KPSs in Section 4.5.3.3, and in particular, Lemma 4.9 gives

ε ≥ 8−
(−2) +

√
(−2)2 + 4× 0

4
= 8 .

Together with Equation (5.3.3), this gives ε = 8, which shows that our pro-

posed KPS construction does have good expansion.

Finally, we can find the connectivity and resilience of this KPS based on an
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extended Cayley hypergraph. By observation,

Pr1 =
144(
18
2

) ≈ 0.941, (5.3.4)

and

fail1 =
8

128
=

1

16
= 0.0625. (5.3.5)

Thus, by adding the extra two edges, the connectivity has increased from

approximately 0.902 to 0.941 (Equations (5.3.1) and Equation (5.3.4)), and the

resilience has fractionally improved: the difference between Equation (5.3.2)

and Equation (5.3.5) is ≈ 0.000033.

Calculating fail2 using conditional probabilities, we find that

fail2 =
1

17

(
8

128
+

8

112

)
+

16

17

(
8

128
+

7

113

)
= 0.125005 (5.3.6)

because: suppose the adversary has compromised one node, which without

loss of generality we will call N1, and so the adversary has learned key set

KN1 . Now there is one node Ni out of the remaining 17 nodes for which

KN1

⋂
KNi = ∅, that is, one node which would reveal 8 further keys to the

adversary. Compromising any of the other 16 nodes reveals exactly 7 new

keys, as |KN1

⋂
KNj | = 1 for all 2 ≤ j ≤ 18, j 6= i.

In [46] the following formula is given as an estimate for the resilience of a KPS

composed of l copies of a strongly regular graph:

fails = 1−
(
v−l−2
s

)(
v−2
s

) . (5.3.7)

Table 5.1 gives the exact values of Equation (5.3.7) for our extended Cayley

hypergraph (l = 1) for s = 1, . . . , 15, and we see that it agrees exactly with

Equation (5.3.5) and approximately with Equation (5.3.6).
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s 1 2 3 4 5 6 7 8
fails 0.0625 0.125 0.1875 0.25 0.3125 0.375 0.4375 0.5

s 9 10 11 12 13 14 15
fails 0.5625 0.625 0.6875 0.75 0.8125 0.875 0.9375

Table 5.1: Resilience of the extended Cayley hypergraph

Table 5.1 shows that fails increases steadily with s. In particular, fails = 0.5

when s = v
2
− 1. As a point of comparison, recall from Lemma 3.2 that the

resilience of an Eschenauer Gligor scheme is given by fails = 1 −
(
1− k

n

)s
.

Thus an Eschenauer Gligor scheme which also has fail1 = 0.0625 has param-

eters k
n

= 1
16

, and this proportion gives fails > 0.5 for s ≥ 11. Indeed, for

each s, the Eschenauer Gligor value of fails with k
n

= 1
16

is smaller than the

approximate value of fails for the extended Cayley hypergraph KPS given by

Equation (5.3.7).

However, if we make a comparison based on key storage and size of key pool,

that is, fixing k = 8 and n = 48, we find that the KPS based on an extended

Cayley hypergraph performs better, since the Eschenauer Gligor KPS has lower

connectivity: Pr1 ≈ 0.796, and poorer resilience: fail1 ≈ 0.167 and fails > 0.5

for s ≥ 4.

In summary, although the extended Cayley hypergraph construction for a KPS

does not scale well, it does provide good expansion, a lower bound for which

can be easily found, and there are combinations of parameters k and n for

which it outperforms the Eschenauer Gligor KPS.
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5.4 Conclusion

Our exploration of hypergraphs and their expansion has led to some conclu-

sions and some further questions.

Firstly, we have shown that using hypergraphs rather than graphs to repre-

sent KPSs has the benefits of demonstrating the key storage and resilience

in addition to the connectivity, and we have therefore recommended using

hypergraphs for representing and analysing KPSs.

After noting that existing expander graph constructions for KPSs have perfect

resilience, we have demonstrated that, where perfect resilience is not required,

connectivity and expansion can be improved by re-using keys. A hypergraph

is a natural tool for constructing such schemes, where each key is known to

more than two nodes. We therefore propose looking to the literature on hy-

pergraphs with good expansion for KPS constructions with low key storage,

good connectivity, high expansion and good - though not perfect - resilience.

There are currently few constructions for hypergraphs which approach the opti-

mal proven bounds for expansion. We have reasoned that any future construc-

tions proposed for hypergraphs with good expansion are likely to correspond

to good constructions for KPSs since they would have the following properties:

• Re-use of keys, providing a trade-off between connectivity and resilience

which is more suitable for many applications than the low connectivity

given by a scheme with perfect resilience (and equal key storage).
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• The benefits of good expansion: low diameter and average path length,

more equal sharing of communication burdens, efficient data flow due to

lack of bottlenecks, and few vulnerabilities (cutpoints and cut-edges).

• If the construction is deterministic, the KPS will also benefit from non-

probabilistic metrics for key storage, connectivity and resilience, and,

typically, more efficient shared key discovery.

However, we have noted that hypergraphs are set systems, and it is possible

that any such construction may already be established in the literature as a

combinatorial design. Indeed, since combinatorial designs are hypergraphs,

our results in Section 4.5 about the expansion of configurations, µ-common

intersection designs and strongly regular graphs support the claims of this

chapter.

We used a Cayley hypergraph as an example of constructing a KPS from a

hypergraph. Although far from optimal in terms of hypergraph expansion, we

demonstrated that a hypergraph approach such as this could be used to con-

struct a KPS with low key storage, good resilience and considerably higher con-

nectivity and expansion than that of the Ramanujan expander graph from [18].

We also showed that the (extended) construction is equivalent to a strongly

regular graph with expansion ε = 8. It seems possible that the problem of

finding a construction for random uniform hypergraphs with good expansion

may be related to the problem of finding random strongly regular graphs, as

discussed in [34] and [13] respectively, and that solving either problem may

lead to a good construction for a KPS.
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B. Paterson and Douglas R. Stinson, and appears as a paper on the Cryptology

ePrint Archive [43].

6.1 Introduction

We present a formalisation of a category of schemes which we call broadcast-

enhanced key predistribution schemes (BEKPSs). These schemes are suitable

for networks with access to a trusted base station and an authenticated broad-

cast channel. We demonstrate that the access to these extra resources allows

for the creation of BEKPSs with advantages over key predistribution schemes

such as flexibility and more efficient revocation. There are many possible

ways to implement BEKPSs, and we propose a framework for describing and

analysing them.

We begin in Section 6.2 by introducing the ideas and terminology of a closely-

related concept, namely broadcast encryption, before defining BEKPSs them-

selves and suggesting motivations for their study. In Section 6.3 we then give

an example of a BEKPS and present in more detail the model, setting and

metrics for analysing BEKPSs.

In [23], Cichoń, Go lȩbiewski and Kuty lowski propose a scheme for ‘redistribut-
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ing’ keys to a wireless sensor network using a broadcast channel after an initial

key predistribution. We classify this as a BEKPS and analyse it in that con-

text. Section 6.4 provides some simpler versions of proofs from [23] and dis-

cusses modifications of the Cichoń et al. BEKPS based on defining a suitable

intersection threshold.

Finally, we present two families of BEKPSs designed for particular scenarios:

in Section 6.5 we propose a construction for BEKPSs designed for efficient re-

vocation of nodes, and in Section 6.6 we propose BEKPSs which harness some

of the advantages of hierarchical networks in a homogeneous network of nodes.

We include these two families of schemes as examples of the many applications

of BEKPSs, and to demonstrate that explicit formulae can be derived for the

connectivity, resilience and broadcast cost, allowing for precise and efficient

analysis of BEKPSs. Our analysis demonstrates their effectiveness in achiev-

ing their aims in resource-constrained networks. We conclude in Section 6.7

and present ideas for future work.

6.2 Motivation and definitions

6.2.1 Broadcast encryption

There are many applications where it is possible for a trusted base station

to use a broadcast channel to communicate with nodes during the operational

phase of the network. This broadcast channel can be used not only to distribute

content, but also to conduct key management operations. Such applications
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have been widely studied in the context of broadcast encryption. The first

broadcast encryption schemes were given in [3, 33]. A classic example of a

broadcast encryption application is pay-TV systems, where a key predistribu-

tion scheme is used to install keys into set-top boxes during the initialisation

phase. The access to content is then managed by broadcasting the encrypted

content along with a key management ‘header’ whose purpose is to provide an

additional key ‘layer’ of content keys. The combined use of the predistributed

keys and content keys defines the set of users that are able to decrypt and

hence view the content. Note that whilst a pair of users may at times share

keys, there is no motivation in the design of the scheme for users to be able to

communicate with each other; the purpose of a broadcast encryption scheme

is to control access to content.

6.2.2 Broadcast-enchanced key predistribution

Recall that key predistribution is a technique particularly suited to resource-

constrained environments where public key cryptography is infeasible and there

is no method for distributing symmetric keys once the network is operational,

in particular for networks where a secure channel cannot be established be-

tween the network and base station after deployment. A major drawback of

KPSs is that once the keys have been predistributed, subsequent key manage-

ment operations are challenging to conduct [4]. We define a broadcast-enhanced

key predistribution scheme to be a key distribution scheme designed for a net-

work where a trusted base station and an authenticated broadcast channel

will be available. We distinguish between the underlying keys which are pre-
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distributed to the nodes, and the temporal keys which are broadcast by the

base station and which the nodes may use for communication until the next

broadcast. The base station broadcasts the temporal keys by encrypting them

using underlying keys, as we will describe in Section 6.3.

Broadcast encryption can be regarded as a type of BEKPS, but with funda-

mentally different design goals: in broadcast encryption, temporal key sharing

between nodes is incidental. In this paper we consider BEKPSs for applications

where communication between nodes is important, for example in networks of

data-gathering nodes, and so temporal key sharing is one of the primary design

goals. Such differences of purpose create substantial differences between the

designs of typical BE schemes and BEKPSs; in Section 6.5 we see how a näıve

approach to designing a BEKPS from an LKH broadcast encryption scheme

would not provide sufficient resilience.

6.2.3 Advantages of BEKPSs over KPSs

Where a base station and broadcast channel are available, there are several

advantages of deploying broadcast-enhanced key predistribution as opposed to

the use of a basic KPS, including:

• Flexibility: Underlying keys may be allocated in a way which is unde-

sirable, either because there was a lack of control over the initial deploy-

ment, or because the purpose or priorities of the network have changed

over time. For example, as node batteries become drained, it may be de-

sirable to reduce the burdens on remaining nodes by distributing fewer
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temporal keys and maintaining a connected network. A BEKPS enables

the base station flexibility to ensure that some undesirable properties of

the underlying key predistribution do not persist in the temporal key

distribution. This is clear when we consider that the number of tem-

poral keys shared by two nodes can be greater than, equal to, or less

than the number of underlying keys which they share. Changes may be

temporary, and hence only effective between a small number of updates,

or permenantly sustained by future updates.

• Ease of revocation: In any BEKPS it is possible to revoke a node by

ensuring it does not receive any future temporal keys. This can be done

simply by omitting that node’s underlying keys from the set of underlying

keys used to encrypt all future temporal key broadcasts. This straight-

forward approach benefits from reducing the size of future broadcasts

for the base station. However, it has the potential to reduce the connec-

tivity and resilience of the remaining network (we define these terms in

Section 6.3), and repeated revocations may lead to rapid degeneration

of the remaining network [23]. In Section 6.5 we discuss a practical way

to design a BEKPS for efficient revocation, where repeated revocations

increase the broadcast cost but do not lead to network degeneration.

• Creating hierarchy in the temporal key distribution: The distri-

bution of the temporal keys may coincidentally or deliberately feature

‘imbalances’, for example, certain nodes may store more keys than aver-

age. Nodes which store extra keys may be desirable for efficient routing

of information through the network, and indeed KPSs have been pro-

posed for heterogenous networks; see [17, 49] for a brief survey. In ho-
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mogeneous networks (where all nodes have identical hardware), having

comparatively more keys brings with it the disadvantages of increased

communication burdens and quicker battery drainage. One way to re-

duce the damage that this causes to the network is to change at regular

intervals the nodes which are required to store extra keys, as in the elec-

tion of cluster heads in a network - see [62].

In any network where some nodes store extra keys, the compromise of

such a node will be more detrimental to the resilience of the network

than the compromise of the average node. In Section 6.6 we propose a

family of BEKPSs which provide the benefits of efficient routing found in

hierarchical networks, whilst frequent temporal key updates reduce the

resilience risks and battery drainage.

6.3 Framework

In this section we propose the framework for a BEKPS protocol by describ-

ing our model and setting, defining the relevant notation and metrics for our

analysis, and providing examples.

6.3.1 BEKPS model

We propose BEKPSs for networks of v nodes, N1, N2, . . . , Nv, a trusted author-

ity that preloads the underlying keys onto the nodes, and a (not necessarily

distinct) trusted base station that can broadcast to all nodes using a broadcast

channel.
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A BEKPS protocol is comprised of the following phases:

1. Underlying key predistribution: Each node Ni is allocated a set of

underlying keys from the underlying key pool Kυ = {u1, u2, . . . , un} be-

fore deployment, according to a key predistribution scheme. Underlying

keys are solely for the purpose of encrypting and decrypting temporal

keys, and should not be used for node to node communication. Once

the nodes are deployed, we assume that the underlying keys are fixed

and cannot be altered by the base station or overwritten by the nodes.

(We justify this assumption by noting that if it were possible to securely

supply nodes with new underlying keys, then the resulting system could

simply be considered as an entirely new BEKPS and analysed within our

model.)

2. Temporal key distribution: After the nodes are deployed, the base

station broadcasts temporal keys to them in order for them to commu-

nicate. Each node is allocated a set of temporal keys from a temporal

key pool Kτ = {t1, t2, . . . , tm}. The temporal keys are broadcast to the

nodes encrypted by underlying keys, so that a node learns a temporal

key if and only if the temporal key is encrypted by an underlying key

known to that node.

3. Shared key discovery: Once the temporal keys have been broadcast,

a shared key discovery protocol such as one of those given in [17, 73]

can be used so that each node establishes the set of other nodes with

which it shares keys. As in KPSs, this can be executed more efficiently if

the temporal keys are assigned in a deterministic or publicly known way,
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such that the broadcast of a node identifier is sufficient for other nodes

to deduce that node’s key identifiers.

All BEKPSs described in this chapter use variations on the Eschenauer

Gligor KPS [32], as described in Scheme 2.1, Section 2.4.1. Shared key

discovery therefore requires all nodes to broadcast their key identifiers,

unless the assignment of keys is made public. Since this does not vary

throughout the chapter, we will generally omit a description of this phase

when defining our BEKPSs.

4. Temporal key update: A new temporal key pool may be generated

and new sets of temporal keys broadcast as often as desired, according

to the constraints of the network.

We now present an example of a BEKPS: the ‘key redistribution’ scheme of

Cichoń et al. [23].

Scheme 6.1. Underlying keys are distributed randomly, as in an Eschenauer

Gligor KPS [32]: a key pool of underlying keys Kυ = {u1, u2, . . . , un} is gen-

erated, and each node is allocated a random k-subset of Kυ. A temporal key

pool Kτ = {t1, t2, . . . , tm} of m = n/c temporal keys is generated, where c is a

small constant. Each temporal key is encrypted using c underlying keys, and

the base station then broadcasts the encrypted temporal keys to the network.

In general, the choice of which underlying keys should encrypt each temporal

key can be made randomly or deterministically. In the Cichoń et al. scheme,

the underlying keys which should be used to encrypt each temporal key are

chosen in a pseudorandom way. That is, we take a pseudorandom bijec-
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tion π between {1, . . . ,m} × {1, . . . , c} and {1, . . . , n} and encrypt ti using

uπ(i,1), . . . , uπ(i,c). Presumably, a new π is chosen before each update. To sim-

plify the notation, we relabel the underlying keys so that u1 = uπ(1,1), u2 =

uπ(1,2), . . . , un = uπ(n/c,c) so that the first c underlying keys encrypt t1 and so

on. Then the base station broadcasts:

Eu1(t1), Eu2(t1), . . . , Euc(t1)
Eu(c+1)

(t2), Eu(c+2)
(t2), . . . , Eu2c(t2)

...
Eu(n−c)(tn/c), Eu(n−c+1)

(tn/c), . . . , Eun(tn/c)

6.3.2 Setting

We now describe in more detail the setting for which we design BEKPSs.

Communication range: We consider static, homogeneous networks, as in-

troduced in Section 2.2.1. As described in Sections 2.3.2 and 4.4, in many

applications the nodes will not all be within communication range of each

other, and therefore to fully analyse the deployed network we must consider

the intersection of the key graph and the communication graph. However, our

contributions in this chapter relate to the properties of the key graph, and so

this is where we perform our analysis. Our results can be applied to a partic-

ular scenario with its corresponding communication graph in the same way as

for any key predistribution scheme; for an example, see [18] where a random

geometric graph is used to model the nodes’ locations.
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Adversary model: We assume the existence of a strong adversary who is

able to compromise nodes to learn both temporal and underlying keys, and to

keep records of all previous transmissions. It should be noted that a BEKPS

does not provide backwards and forwards security against such an adversary,

that is, exposure of an underlying key reveals all future and past temporal

keys. It would be possible to provide such security against a weaker adversary

who was only able to obtain temporal keys, for example in networks where

underlying keys are stored in tamper-resistant hardware.

We suppose that the adversary compromises each node with equal probabil-

ity. As discussed in Section 2.2.4, it is credible to imagine an adversary which

compromises nodes in a carefully-targetted order so as to expose the greatest

possible number of keys through the smallest number of compromises. How-

ever, the random node compromise model which we use allows us to compare

many different schemes by providing a lower bound on fails.

Resource constraints: As with KPSs, we consider BEKPSs for resource-

constrained environments where asymmetric cryptography is infeasible. If

there were no other constraints on resources then it would be trivial to de-

sign a BEKPS with almost any properties:

• If there were no limit to the number of keys a node could store, then

every pair of nodes could share a unique underlying key, or indeed ev-

ery possible subset of nodes could share a unique underlying key. This

would make it possible to achieve temporal key sharing across any ar-
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bitrary group of nodes, though with the potential for high broadcast

requirements.

• If the broadcast size were unlimited, each node could store a single,

unique underlying key. The base station could then individually target

nodes when broadcasting temporal keys, and achieve any desired combi-

nation of shared temporal keys amongst the nodes.

However, such a high use of resources will not always be feasible. Our focus in

this chapter will be on BEKPSs for resource-constrained networks, where key

storage and broadcast capability are limited, and where it is desirable for the

longevity of the network to minimise the communication and computational

requirements of the nodes.

6.3.3 Metrics

As in KPSs, the resource constraints dictate that there is a trade-off to be made

between minimising key storage and maximising connectivity and resilience.

For BEKPSs these metrics need to be defined in a little more detail, and we

identify two further metrics to consider.

Key storage: We have previously denoted the number of keys that a node

can store by k. When considering BEKPSs, we will use k to denote the number

of underlying keys which nodes are required to store, and we will use κ to

denote the number of temporal keys broadcast to each node. We denote the

total number of keys which each node stores by σ, where σ = k + κ. As in
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KPSs, key storage should be minimised. We note that in BEKPSs the number

of temporal keys κ that a node is required to store is not necessarily constant

over time.

Connectivity: As with KPSs, we measure connectivity by Pr1, the probabil-

ity that a randomly picked pair of nodes is connected. That is, the probability

that they share at least q temporal keys, where q is the number of temporal

keys required to compute a link key, as specified by the scheme. It is usually

desirable to maximise Pr1 in BEKPSs. Connectivity in the underlying key

predistribution is not necessarily required.

Resilience: As with KPSs, resilience is measured by fails, the probability

that a temporal link between two uncompromised nodes Ni, Nj is insecure

after s other nodes are compromised. In this chapter we confine our analysis

to the computation of fail1 for the ease of comparing schemes.

Broadcast cost: We define the broadcast cost b to be the number of en-

crypted temporal keys broadcast by the base station at each update. That

is, b gives the number of temporal keys being broadcast, multiplied by the

number of underlying keys used to encrypt each temporal key. For example,

in Scheme 6.1 we have b = cn/c = n. We consider ways to minimise the

broadcast cost.
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Revocation efficiency: Since nodes may develop faults and we assume the

presence of an adversary, the ability to revoke keys and/or nodes adds robust-

ness to a network. We will describe nodes which are to be revoked, that is,

nodes suspected to be compromised by an adversary, displaying irregularities,

or otherwise weakening the network, as ‘compromised nodes’. We will refer to

the remaining nodes which (as far as the base station can tell) have not been

compromised and are functioning as they should, as ‘uncompromised’.

We analyse a BEKPS’s capability to revoke compromised nodes by the metrics:

• broadcast cost br for the revocation of r nodes during a temporal key

update;

• number of uncompromised nodes which lose keys because of the revoca-

tion of r compromised nodes.

We note that for many subsets of these metrics it is trivial to devise a BEKPS

which optimises them. For example, storage, connectivity and broadcast cost

can be optimised by all nodes storing a single underlying key u1, with which a

single temporal key t1 is encrypted and broadcast. Nodes would be connected

with probability Pr1 = 1, but resilience would be minimised and revocation of

a strict subset of nodes would be impossible. Therefore we are interested in

schemes which provide suitable trade-offs between all of these metrics.
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6.3.4 Expansion

We note that we have not listed expansion as a metric for analysing BEKPSs.

This is because for some BEKPSs it is not an important design goal: in partic-

ular, the hierarchical BEKPS proposed in Section 6.6 deliberately creates a key

graph where ‘secondary’ nodes are not well connected to the rest of the graph.

In Chapter 4 we explained that such a key graph is undesirable for a KPS,

creating unnecessary burdens on certain, more connected nodes. In contrast,

in a BEKPS we can exploit the flexibility provided by the base station and

broadcast channel to regularly redistribute these burdens and create a more

efficient network in the long-term.

6.4 The BEKPS of Cichoń et al.

Much of the work in this section was conducted by Douglas R. Stinson and

appeared in the preprint [64]. It was later incorporated into the paper [43],

and we include our interpretation of it here for completeness in the discussion

of BEKPSs.

We noted in Section 6.1 that Cichoń, Go lȩbiewski and Kuty lowski present a

technique for ‘key redistribution’ in sensor networks [23], which we classify as

a BEKPS. The details of their scheme are given in Scheme 6.1. In this section

we provide simpler proofs of some of their results (Section 6.4.1), refine the

estimates for the expected number of shared underlying and temporal keys

between two nodes (Section 6.4.2) and give a precise analysis of the resilience
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(Section 6.4.3). In Section 6.4.4 we present some numerical values of our

formulae, and finally in Section 6.4.5 we discuss a modification to the scheme

based on defining a suitable intersection threshold.

6.4.1 Simplifying proofs from [Cichoń et al. 2010]

In this section we give some simplified proofs of results from [23]. We begin

by establishing a combinatorial framework.

We have noted that each node is assigned a k-subset of underlying keys from

Kυ. The indices of these keys form a k-subset of X = {1, . . . , n} that we

term a block. For the purposes of our analysis, each node can be identified

with its corresponding key block; henceforth we will use the terms ‘node’ and

‘block’ interchangeably. Note that every block is a k-subset of {1, . . . , n} that is

chosen independently and uniformly at random from the set of all
(
n
k

)
possible

k-subsets.

In [23, Theorem 1], formulae are proven for the expected number of shared

underlying keys and the expected number of shared temporal keys between a

pair of nodes. The proofs given in [23] use some heavy machinery involving

generating functions. However, this theorem has a quick, simple proof based

on the linearity of expectation of random variables.

First we consider [23, Theorem 1 (part 2)], which asserts that the expected

number of temporal keys shared by two nodes is n
c

(
1− (n−ck )

(nk)

)2

. Suppose that

G1, . . . , Gn/c partition the n-set {1, . . . , n} into m = n/c disjoint c-sets. Let A
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and B be random blocks. The number of temporal keys shared by A and B is

ωA,B = |{i : A ∩Gi 6= ∅ and B ∩Gi 6= ∅}|.

For 1 ≤ i ≤ n/m, define a random variable X̃i = 1 if A∩Gi 6= ∅ and B∩Gi 6= ∅,

and define X̃i = 0, otherwise. Let X̃ =
∑n/c

i=1 X̃i. Then X̃ computes ωA,B and

E[X̃] is the expected value of ωA,B. It is obvious that

Pr[A ∩Gi 6= ∅] = Pr[B ∩Gi 6= ∅] = 1−
(
n−c
k

)(
n
k

)
and hence

E[X̃i] = Pr[A ∩Gi 6= ∅ and B ∩Gi 6= ∅] =

(
1−

(
n−c
k

)(
n
k

) )2

.

By linearity of expectation,

E[X̃] =
n

c

(
1−

(
n−c
k

)(
n
k

) )2

, (6.4.1)

which proves [23, Theorem 1 (part 2)].

To prove [23, Theorem 1 (part 1)] which states that the expected number of

underlying keys shared between two nodes is k2

n
, we just set c = 1 in the

formula derived above. We have

E[number of shared underlying keys] =
n

1

(
1−

(
n−1
k

)(
n
k

) )2

= n

(
1− n− k

n

)2

=
k2

n
,

which proves the desired result.
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6.4.2 Refining estimates

We have reproved the exact formula for the expected number of shared tempo-

ral keys. In [23, Corollary 1], an estimate for Equation (6.4.1) is given when k

is roughly
√
n. However, we can also estimate Equation (6.4.1) when k 6=

√
n.

First, we estimate (
n−c
k

)(
n
k

) ≈ (n− c)k

nk
=
(

1− c

n

)k
,

so

E[X̃] ≈ n

c

(
1−

(
1− c

n

)k)2

.

Next, (
1− c

n

)k
≈ 1− kc

n
+
k2c2

2n2
,

so

E[X̃] ≈ n

c

(
kc

n
− k2c2

2n2

)2

=
k2c

n

(
1− kc

2n

)2

.

Finally, if we expand the square and ignore the last term, we get

E[X̃] ≈ k2c

n

(
1− kc

n

)
. (6.4.2)

If k =
√
n, then our estimate (6.4.2) is

k2c

n
− k3c2

n2
=
k2c

n
− c2

√
n
.

The estimate given in [23] is

k2c

n
+O

(
1√
n

)
.

However, in [23], c is assumed to be fixed and the big-oh hides an unspecified

constant that depends on c. To demonstrate this, we provide some example
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values of the estimates:

n k c exact E[X̃] estimate (6.4.2) estimate from [23]
10000 50 8 1.933 1.920 2.000
10000 50 16 3.718 3.680 4.000
10000 100 8 7.466 7.360 8.000
10000 100 16 13.810 13.440 16.000
10000 150 16 28.876 27.360 36.000

6.4.3 Refining the calculation of resilience

For the analysis in this section we consider the resilience of the Cichoń et al.

BEKPS during a single broadcast phase, that is, during a time period where

each node’s set of temporal keys is not updated. Thus we are concerned with

the compromise of temporal keys; an adversary’s knowledge of underlying keys

is irrelevant to the analysis.

Cichoń et al. [23] study the resilience of their BEKPS but they make several

simplifying assumptions. Here we give a much more general analysis and we

derive general formulae for resilience. In [23, Theorem 2], it is assumed that

two nodes A and B have exactly c temporal keys in common. In view of the

estimates provided in the last section, this is roughly the expected number of

common temporal keys when k =
√
n. Under this assumption, [23, Theorem

2] estimates the probability that a random node C contains these c common

temporal keys to be (kc/n)c. We calculate the resilience when k 6=
√
n.
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6.4.3.1 Temporal key sets

As before, suppose that G1, . . . , Gn/c partition an n-set X = {1, . . . , n} into

m = n/c disjoint c-sets. Suppose A is a random block (i.e., a k-subset of X)

and define

I(A) = {i : A ∩Gi 6= ∅}.

I(A) is the set of indices of the temporal keys held by A. Then let

κA = |I(A)|;

κA is the number of temporal keys held by A.

Fix any i-subset I ⊆ {1, . . . ,m}. Define

M(i) = |{A : I(A) = I}|.

Note that M(i) counts the number of possible nodes whose set of temporal

keys is equal to I. The value M(i) does not depend on the particular i-subset

I that was chosen.

It is easy to see that

|{A : I(A) ⊆ I}| =
(
ic

k

)
. (6.4.3)

We can derive a formula for M(i) from (6.4.3) by applying the principle of

inclusion-exclusion.

Lemma 6.1. For i ≥ 1, we have

M(i) =
i−1∑
j=0

(−1)j
(

(i− j)c
k

)(
i

j

)
. (6.4.4)
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Next, define

N(i) = |{A : κA = i}|.

N(i) is the number of possible nodes holding exactly i temporal keys. The

following is an immediate consequence of (6.4.4).

Lemma 6.2. For i ≥ 1, we have

N(i) =

(
m

i

)
M(i) =

i−1∑
j=0

(−1)j
(
m

i

)(
(i− j)c

k

)(
i

j

)
. (6.4.5)

6.4.3.2 Intersection of two blocks

Next, we consider intersections of two blocks. For ω ≥ 1, define a ω-link to be

an ordered pair of two nodes that contain exactly ω common temporal keys.

Let P (ω) denote the number of possible ω-links; then

P (ω) = |{(A,B) : |I(A) ∩ I(B)| = ω}|.

We have the following formula for P (ω):

Lemma 6.3. For ω ≥ 1, we have

P (ω) =
k∑
i=ω

k∑
j=ω

(
m− i
j − ω

)(
i

ω

)
N(i)M(j). (6.4.6)

For ω = 0, we have

P (0) =
k∑
i=1

k∑
j=1

(
m− i
j

)
N(i)M(j). (6.4.7)

Proof. Let i = κA and j = κB. We can choose A in N(i) ways. For each choice

of A, choose ω indices in I(A) and choose j − ω indices in {1, . . . ,m}\I(A).
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Let the set of the j chosen indices be denoted by J . Then choose B such that

I(B) = J ; there are M(j) ways to do this.

Remark 6.1. We can verify the formulae (6.4.6) and (6.4.7) by checking that

the following equations hold for various values of n, c and k:

k∑
ω=0

P (ω) =

(
n

k

)2

and ∑k
ω=1 ωP (ω)(

n
k

)2 =
n

c

(
1−

(
n−c
k

)(
n
k

) )2

.

6.4.3.3 Compromised links and resilience

We can now find expressions for the number of nodes which will compromise

a given link, and derive the formula for fail1. Suppose that (A,B) is a ω-link.

Then define

S(ω) = |{C : I(A) ∩ I(B) ⊆ I(C)}|.

S(ω) denotes the number of possible nodes that will compromise the ω-link

(A,B), and it does not depend on the particular choices of A and B.

Lemma 6.4. For any ω > 0, we have

S(ω) =
k∑
i=ω

(
m− ω
i− ω

)
M(i). (6.4.8)

Proof. Let i = κC . Choose i− ω indices in

{1, . . . ,m}\(I(A) ∩ I(B)).

Let J denote the i-set consisting of the i−ω chosen indices along with I(A)∩

I(B). Then choose C such that I(C) = J ; there are M(i) ways to do this.
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Finally, define

T (ω) = |{(A,B,C) : |I(A) ∩ I(B)| = ω and I(A) ∩ I(B) ⊆ I(C)}|.

T (ω) counts triples (A,B,C) where (A,B) is a ω-link compromised by C. It

is clear, applying (6.4.8), that the following formula holds.

Lemma 6.5. For any ω > 0, we have

T (ω) = P (ω)S(ω) =
k∑
i=ω

(
m− ω
i− ω

)
M(i)P (ω).

Now we are in a position to compute some resilience parameters. Recall that

fail1 denotes the probability that a random link (A,B) is compromised by a

random node C.

Theorem 6.6. The resilience after the compromise of one node is given by

fail1 =

∑k
ω=1 T (ω)∑k

ω=1 P (ω)
(
n
k

) . (6.4.9)

Proof. The total number of possible ω-links with ω ≥ 1 is

k∑
ω=1

P (ω),

so the total number of triples (A,B,C) where (A,B) is a link is

k∑
ω=1

P (ω)

(
n

k

)
.

The total number of triples (A,B,C) where (A,B) is a link and C compromises

this link is
k∑

ω=1

T (ω).

The resilience is just the quotient of these two quantities.
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Define fail1(ω) to denote the probability that a random ω-link (A,B) is com-

promised by a random node C. We have the following obvious result.

Lemma 6.7. For any ω ≥ 1, we have

fail1(ω) =
S(ω)(
n
k

) . (6.4.10)

Lemma 6.7 provides another way to derive the formula (6.4.9) for fail1. Let λω

denote the probability that a random link is a ω-link. It is clear that

λω =
P (ω)∑k
i=1 P (i)

(6.4.11)

and

fail1 =
k∑

ω=1

λωfail1(ω). (6.4.12)

Then, from (6.4.10), (6.4.11) and (6.4.12), we have

fail1 =
k∑

ω=1

λωfail1(ω)

=
k∑

ω=1

P (ω)S(ω)∑k
i=1 P (i)

(
n
k

)
=

∑k
ω=1 T (ω)∑k

ω=1 P (ω)
(
n
k

) ,
agreeing with (6.4.9).

6.4.4 Numerical examples

We now provide some numerical examples of our formulae. First, we give an

example to illustrate the computation of resilience parameters.
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Example 6.1. Suppose n = 1000, c = 4 and k = 31. Then the expected

number of temporal keys shared by a pair of nodes, given by (6.4.1), is ω =

3.511857771, which is a bit less than ω = 4.

[23, Theorem 2] estimates fail1(4) by computing the quantity(
kc

n

)c
= 0.0002364213760.

A more accurate estimate for fail1(4) based on the analysis in [23], would be(
m−c
k−c

)(
m
k

) = 0.0001980391200.

However, from (6.4.10), the exact value of fail1(4) = 0.0001651542962.

We find that the overall resilience of the scheme determined from (6.4.9) is

fail1 = 0.01330121549. This is quite a bit higher than fail1(4), primarily because

links consisting of fewer than four temporal keys (which occur frequently) are

compromised with higher probability. This can be seen in the following tabula-

tion of values λω and fail1(ω):

ω λω fail1(ω)
1 0.08756777557 0.1185218591
2 0.1843995070 0.01364696407
3 0.2407996311 0.001524883082
4 0.2188569817 0.0001651542962
5 0.1472998707 0.00001731603382
6 0.07626527018 0.000001755184555

Our next example considers the effect of varying the parameter k.

Example 6.2. Suppose n = 1000 and c = 4. We compute the values of fail1
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for various choices of k:

k fail1
5 0.01925413575
10 0.03349126556
15 0.03904935504
20 0.03548705708
25 0.02588255435
30 0.01518790238
35 0.007187785428
40 0.002776219702
45 0.0008938567010
50 0.0002464139425

It is interesting to observe that fail1 at first increases, and then decreases, as

k increases. The higher values of fail1 for small values of k reflect the fact

that the network has fewer links and the links that do exist are more easily

compromised.

Our next example considers the effect of varying the parameter c.

Example 6.3. Suppose n = 1000 and k = 25. We compute the values of fail1

for various choices of c:

c fail1
2 0.02636458442
3 0.02785890369
4 0.02588255435
5 0.02240961738
6 0.01861362594
7 0.01509874645
8 0.01211001320
9 0.009692483706
10 0.007795858957

The interesting thing to note here is that fail1 decreases as c increases beyond

3, but the decrease is gradual and not very dramatic.
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6.4.5 Intersection thresholds

We introduced the idea of an intersection threshold in the q-composite scheme

(Scheme 3.1, Section 3.2). As q increases, the resilience increases and the con-

nectivity decreases. We now develop formulae for these metrics which depend

on the intersection threshold of the scheme.

Theorem 6.8. For a scheme with intersection threshold q, we have that

Pr1 = 1−
∑q−1

i=0 P (i)(
n
k

)2 . (6.4.13)

Proof. There are
(
n
k

)2
possible pairs of nodes, of which

∑q−1
i=0 P (i) are not

connected.

The formula for resilience (6.4.9) is generalised as follows.

Theorem 6.9. For a scheme with intersection threshold q, the resilience is

given by

fail1 =

∑k
ω=q T (ω)∑k

ω=q P (ω)
(
n
k

) . (6.4.14)

Proof. The proof is a straightforward modification of the proof of Theorem

6.6.

We now revisit Example 6.1.

Example 6.4. Suppose n = 1000, c = 4 and k = 31, as in Example 6.1. We

147



6.5 Revocation

compute the connectivity and resilience for various values of q.

q Pr1 fail1
1 0.9809852766 0.01330121549
2 0.8950825780 0.003202999469
3 0.7141893766 0.0005577036219
4 0.4779684839 0.00007970558807
5 0.2632730072 0.00001002335465

The use of an intersection threshold allows us to choose a suitable trade-off

between connectivity and resilience. Observe that resilience increases substan-

tially as q increases; however, connectivity decreases at the same time. For

q > 5, the connectivity is too low to be practical. In this example, q = 2 or 3

provides a good way to ‘balance’ connectivity and resilience.

6.5 Revocation

In this section we consider how to design a BEKPS for a resource-constrained

network where it is a high priority to be able to revoke nodes efficiently. As

noted in Section 6.3.3, revocation of compromised nodes can be achieved in

any BEKPS simply by avoiding using their underlying keys to encrypt new

temporal keys. However, this can have the undesired effect of reducing the

connectivity amongst uncompromised nodes, because they will receive fewer

temporal keys if some of their underlying keys are no longer used. In general, it

is possible to recover the level of connectivity Pr1 after revocation by selecting

future temporal keys from a smaller pool, so that each temporal key will be

known to a higher proportion of the nodes. However, this lowers the resilience.

We therefore design a BEKPS which enables the revocation of compromised

nodes whilst retaining the connectivity and resilience in the remaining network,
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and keeping key storage and broadcast cost low.

Clearly, the most precise way to be able to revoke individual nodes without

causing any damage to the rest of the network is to assign a unique underlying

key to each node of the network. If each node is given a single, unique under-

lying key, then this also has the benefit of achieving minimum key storage per

node. However, an update requires a broadcast of (v−r)κ temporal keys when

r nodes have been revoked, which is infeasibly large for many applications.

If it is not the case that each node stores a unique underlying key, then revoca-

tion cannot be precise: uncompromised nodes will also be increasingly affected

as the number of revocations increases. For example, if each node stores k un-

derlying keys, then when a single node is revoked, k underlying keys are taken

out of use by the base station. We denote this as R(1) = k and derive a gen-

eral formula for the number of redundant underlying keys after i revocations,

when underlying keys are distributed using Scheme 2.1, the Eschenauer Gligor

random KPS [32].

Lemma 6.10. Suppose that each node stores k underlying keys, selected ran-

domly from a key pool of n underlying keys. Let R(i) denote the expected

number of underlying keys removed from use when i nodes have been revoked.

Then

R(i) = n

(
1−

(
1− k

n

)i)
. (6.5.1)

Proof. Let the i nodes which have been revoked be denoted by N1, . . . , Ni. For
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1 ≤ j ≤ n define a random variable

Xj =

{
1 if key kj is known to at least one of N1, . . . , Ni

0 otherwise

and let X =
∑n

j=1Xj. We want to find R(i) = E[X].

The expected value of X1 is E[X1] = 1− Pr[k1 is in none of N1, . . . , Ni], so

E[X1] = 1−
(

1− k

n

)i
.

Linearity of expectation gives E[X] = nE[X1], which gives the result.

This means that an uncompromised node is unintentionally revoked with prob-

ability

(
R(i)
k

)(
n
k

) as it can no longer learn any temporal keys in future broadcasts,

and so after i ≥ 1 revocations the network size v(i) is

v(i) = (v − i)

(
1−

(
R(i)
k

)(
n
k

) ) , (6.5.2)

where v is the original network size.

We propose a BEKPS where precise revocation is possible, that is, v(i) = v−i,

and which provides a choice of trade-offs between key storage and broadcast

cost which are likely to be suitable for a wide range of network scenarios. To

achieve this, we use LKH schemes (Section (6.5.1)) for the underlying key

distribution and random key predistribution for the temporal keys.

Figure 6.1 shows the deterioration of the size of the network, v(i) from Equa-

tion (6.5.2), in comparison to the straight line (v − i), after i revocations. We

see that for a small number of revocations, i ≤ 0.05v, we have v(i) ≈ v − i.

However, there is then a rapid deterioration in the size of the network for
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Figure 6.1: Plot of the deterioration of v(i) (Equation (6.5.2)) in comparison
to the straight line (v − i) for an example network of v = 1000 nodes, where
n = 1000 and k = 30.

0.05v ≤ i ≤ 0.2v, by which stage there are very few nodes remaining in the

network. This demonstrates that, if only a small proportion of revocations

are anticipated, a näıve approach using Scheme 2.1 for the underlying layer

may be sufficient. However, for larger numbers of revocations, it highlights

the importance of our proposed BEKPS for revocation, where the size of the

network is always v − i after i revocations.

6.5.1 LKH

Logical key hierarchy (LKH) schemes [38, 69, 72] are used in the literature

of broadcast encryption for effective revocation. Each of the v = 2d−1 nodes

is allocated d keys, one of which is unique, and the other keys are known to

21, 22, . . . , 2d−1 nodes respectively. In Figure 6.2 we demonstrate this on a
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network of v = 16 = 25−1 nodes. Each node stores five keys: a unique key, a

key δi shared with another node, a key γi shared with 3 other nodes, a key βi

shared with 7 other nodes, and the key α known to all nodes, called the root

key.

If a message is to be broadcast to all nodes it can be encrypted using the root

key. If a set of r nodes is to be revoked, then the message should be broadcast

using the smallest set of keys known only to the v − r uncompromised nodes.

The size of a broadcast is then logarithmic in the size of the network.

α

β1 β2

γ1 γ2 γ3 γ4

δ1 δ2 δ3 δ4 δ5 δ6 δ7 δ8

N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12 N13 N14 N15 N16

Figure 6.2: LKH tree on 16 nodes

6.5.2 BEKPS for revocation

We use LKH for the underlying layer of our BEKPS because it allows fine-

grained revocation with low key storage and logarithmic broadcast cost. Other

revocation schemes may also be adapted to form the underlying layer for spe-

cific BEKPS scenarios, however, to prevent our analysis from becoming un-

wieldy, we restrict our focus to using LKH as a basis for a BEKPS and varying

the distribution of LKH trees in the underlying layer. For other broadcast

encryption or revocation schemes the analysis will remain broadly similar to
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that given here, and any benefits they provide over LKH would likely be re-

flected in the resulting BEKPS. For example, subset-cover revocation schemes

such as the two proposed in [54] require r log v and 2r broadcasts, respectively,

for the revocation of r nodes, whereas LKH requires 2r log v broadcasts. The

second of these schemes also reduces the key storage from log v (as in LKH)

to 1
2

log2 v, and they additionally provide traitor tracing mechanisms. It seems

likely, therefore, that similar improvements would be reflected in a BEKPS

based on these schemes.

Similarly, we demonstrate a distribution of temporal keys which is broadly

based on the Eschenauer Gligor random KPS, but in theory any KPS could

be adapted for the temporal key distribution. We have chosen random key

distribution because it is defined for any size of temporal key storage κ and

key pool Kτ , making it highly adaptable, and it provides a relatively simple

platform upon which to perform our analysis.

In Section 6.5.2.2 we will define exactly how the temporal keys are distributed.

However, to motivate our choice of underlying key distribution, we note here

that before any nodes are revoked, temporal keys will be broadcast using the

root key of the LKH tree. Since the compromise of a node therefore exposes

the temporal keys known to all other nodes, we propose using multiple, smaller

trees to lessen this resilience risk. In this way our BEKPS is fundamentally

different from an LKH broadcast encryption scheme, where a single LKH tree

is used, but the base station may broadcast temporal keys to any chosen subset

of nodes.
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We propose the following BEKPS for scenarios where revocation is a high

priority.

6.5.2.1 Underlying key predistribution

We assume that for a given application, each node can store σ keys in total,

where σ is constant. To distribute underlying keys, we partition the v nodes

into sets of size λ = 2d−1, and we do this µ times. For ease of analysis, we will

assume that λ|v and that these partitions are chosen such that any tree from

partition Πi intersects any tree from partition Πj in at most one node.

Within each set in each partition, nodes are allocated keys according to an

LKH scheme, where the LKH tree has depth d. Thus each node belongs to

µ different LKH trees of depth d and therefore must store k = µd underlying

keys, where µ and d are chosen so that k < σ. The total number of LKH trees

is L = µv
λ

.

Example 6.5. Figure 6.3 illustrates an example of allocating v = 16 nodes

into v
λ

= 4 trees in each of µ = 2 partitions. That is, each tree of λ = 4 nodes

is represented by a shaded loop around the nodes; partition Π1 is represented by

the vertical loops, and partition Π2 is represented by the horizontal loops. Each

tree has been labelled Ti,j, where i denotes the partition to which it belongs, and

j denotes the tree number within the partition. There are L = µv
λ

= 8 trees in

total, and each pair of trees intersects in at most one node.

To construct a partition into µλ trees which fulfills the above conditions will

only be possible for certain values of the parameters v, k, λ and µ. This is a
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1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

T1,1 T1,2 T1,3 T1,4

T2,1

T2,2

T2,3

T2,4

Figure 6.3: Example of partitioning nodes into L = µv
λ

trees

well-studied problem in the literature on resolvable designs [26, 53]. Briefly, a

design is said to be resolvable if the blocks can be partitioned into µ sets or

parallel classes, each of which forms a partition of the set of points. Thus, a

resolvable (v, µλ, µ, λ)−configuration provides a suitable construction for our

underlying key predistribution. Resolvable designs have been widely studied;

see [24] for existence results and constructions.

6.5.2.2 Temporal key distribution

From our assumption that total key storage is constant, it follows that each

node can store at most κ = σ − µd temporal keys. For each partition Πi

(1 ≤ i ≤ µ), a temporal key pool Kτi of m keys is generated. We require that

these key pools are disjoint, that is Kτi ∩Kτj = ∅ for all 1 ≤ i < j ≤ µ, so that

we have µ independent Eschenauer Gligor schemes. Relaxing this requirement

would allow for improvements in connectivity at the cost of decreased resilience.
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A random set of temporal keys is allocated to every tree in the following

way. For each partition i and each underlying LKH tree Ti,j belonging to that

partition (where 1 ≤ i ≤ µ and 1 ≤ j ≤ v
λ
), a set of bκ

µ
c temporal keys is

chosen at random from the key pool Kτi and encrypted using the underlying

root key for Ti,j.

We assume that nodes require only one temporal key in common in order to

establish a link, that is, the intersection threshold is q = 1, and a pair of nodes

should use a single key to encrypt their communications, that is, Ω = 1. For

ease of analysis, we also create the following rules:

• If two nodes are in the same tree Ti,j in any partition Πi then they will

share the set of temporal keys broadcast to Ti,j. The single temporal

key which they use for communication should be randomly selected from

this set. Any other keys which they may coincidentally share should be

ignored. Note that there is no ambiguity because it is not possible for

two nodes to be in more than one common tree.

• If two nodes are not in the same tree in any partition, they may form a

link if they have at least one key in common; they should select just one

of these keys at random to secure the link.

For example, we consider the possible connections between pairs of nodes in

Figure 6.3:

• Nodes 1 and 9 both belong to the tree T1,1 in partition Π1. This means

that they will share the set of temporal keys from key pool Kτ1 which
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are broadcast to tree T1,1. They must pick one of these keys at random

to encrypt their communications.

• Nodes 1 and 11 are not in a common tree in any partition. However,

they may have one or more keys in common if

– the set of keys broadcast to T1,1 has non-empty intersection with

the set of keys broadcast to T1,3,

and/or

– the set of keys broadcast to T2,1 has non-empty intersection with

the set of keys broadcast to T2,3.

They should pick a single one of these keys at random with which to

encrypt their communications.

Notice that if the set of keys broadcast to T2,1 has non-empty intersection with

the set of keys broadcast to T2,3 then nodes 1 and 9 will have keys in common

from key pool Kτ2 . However, they must use a key from key pool Kτ1 to encrypt

their communications because they belong to a common tree in partition Π1.

In summary, if a pair of nodes are in the same tree then they have probability

Pr1 = 1 of being connected. If not, the probability of them being connected is

proportional to the Eschenauer Gligor connectivity probability (Lemma 3.1),

as we explain below. If these rules were relaxed and a pair of nodes could

use any combination of their shared temporal keys to secure their link, the

connectivity and resilience of the network would increase, and so our analysis

produces lower bounds.
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6.5.2.3 Temporal key update

New temporal keys may be broadcast to the network as often as desired. To

revoke a node Ni, the base station should broadcast new temporal keys to all

nodes that are not in a common tree to Ni. For any nodes that are in a common

tree to Ni, the base station can broadcast new temporal keys encrypted using

the smallest set of LKH keys so that all uncompromised nodes receive the

new temporal keys but Ni is unable to decrypt any temporal keys from the

broadcast.

For example, to revoke the single node 6 in Figure 6.3, the base station should

do the following:

• for each tree other than T1,2 and T2,2, broadcast a new set of temporal

keys using the tree’s root key;

• for tree T1,2 broadcast a new set of temporal keys using the smallest

number of underlying keys known to nodes 2, 10 and 14 but unknown to

node 6;

• for tree T2,2 broadcast a new set of temporal keys using the smallest

number of underlying keys known to nodes 5, 7 and 8 but unknown to

node 6.

To later revoke another node Nj the base station must repeat this process

whilst continuing to ensure that node 6 receives no further temporal keys. Thus

it can be seen that the broadcast load for the second revocation is greatest if
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node Nj is not in either tree T1,2 or T2,2, and the broadcast load is actually

lessened for the second revocation if node Nj is in either tree T1,2 or T2,2 and

was receiving keys using its unique underlying key after the first revocation.

6.5.3 Analysis

We begin by calculating br, the broadcast cost of revoking r nodes.

Lemma 6.11. For all µ, r ≥ 1, the broadcast cost of revoking r nodes is given

by

br ≤ (σ − µd)
(v
λ

+ rd− 2r
)
. (6.5.3)

Proof. We begin by calculating b1, the broadcast cost required to revoke a

single node Ni. Notice that Ni belongs to µ trees. Calculating b1 requires

the number of temporal keys per tree σ
µ
− d, the broadcast to the L− µ trees

of uncompromised nodes, and the LKH revocation for the µ trees containing

the compromised node, which requires d − 1 broadcasts per tree. Thus if the

number of nodes per tree is greater than 1,

b1 =

(
σ

µ
− d
)

(L− µ+ µ(d− 1)) = (σ − µd)
(v
λ

+ d− 2
)
.

If the number of nodes per tree is 1 (i.e. d = 1) then we assume that µ = 1

so that the number of trees L equals the number of nodes v. Then b1 =

(σ − 1)(L− 1).

The value of br for r > 1 will depend upon whether any of the r nodes are in

the same tree(s). However, we have observed that the broadcast cost is largest
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when each of the nodes to be revoked is in a different tree, hence

br ≤
(
σ

µ
− d
)

(L− rµ+ rµ(d− 1)) = (σ − µd)
(v
λ

+ rd− 2r
)
.

To analyse the connectivity and resilience of this BEKPS for revocation, we

study separately the cases µ = 1 and µ = 2, and consider the effect of varying

d and hence λ, the size of each LKH tree.

6.5.3.1 LKH trees where µ = 1

We begin by considering µ = 1, that is each node is in exactly 1 tree, and the

total number of LKH trees is L = v
λ
.

Lemma 6.12. When µ = 1, the connectivity is given by

Pr1 =
λ− 1

v − 1
.1 +

v − λ
v − 1

(
1−

(
m−(σ−d)
σ−d

)(
m
σ−d

) )
.

Proof. Fix a single node Ni, belonging to a single LKH tree Tj (since µ = 1).

We consider the probability of Ni being connected to another of the v − 1

nodes, which fall into two categories:

• Ni will share temporal keys with the other λ−1 nodes of its tree Tj with

probability 1

• Ni will share at least one key with the remaining v − λ nodes with the

Eschenauer Gligor connectivity probability (Lemma 3.1), and κ = σ−d.
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We now calculate the resilience metric fail1. We must consider the probability

of a random link being compromised when it is a link between nodes of the

same tree, and when it is a link between nodes which are not in a common

tree.

Lemma 6.13. When µ = 1, the resilience is given by

fail1 =
f1

[
λ−2
v−2

.1 + v−λ
v−2

(
σ−d
m

)]
+ f2

[
2λ−2
v−2

.1 + v−2λ
v−2

(
σ−d
m

)]
f1 + f2

,

where f1 =
(
λ
2

)
v
λ

and f2 =

(
1− (m−(σ−d)

σ−d )
( m
σ−d)

)((
v
2

)
−
(
λ
2

)
v
λ

)
.

Proof. There are f1 =
(
λ
2

)
v
λ

pairs of nodes in the network where both nodes

are in the same tree. After compromising a single node, the adversary can

break a link between one of these pairs with probability

fail1,f1 =
λ− 2

v − 2
.1 +

v − λ
v − 2

(
σ − d
m

)
,

since for a given link, there are λ−2 nodes which, if compromised, would break

that link with certainty by virtue of being in the same tree. A compromise of

one of the remaining v−λ nodes would reveal the desired key with probability

σ−d
m

.

The total number of pairs of nodes which are in different trees is
(
v
2

)
−
(
λ
2

)
v
λ
,

and each pair is connected with the Eschenauer Gligor connectivity probability

(Lemma 3.1). Therefore we have that the expected number of links between

pairs of nodes from different trees is

f2 =

(
1−

(
m−(σ−d)
σ−d

)(
m
σ−d

) )((
v

2

)
−
(
λ

2

)
v

λ

)
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and for these,

fail1,f2 =
2λ− 2

v − 2
.1 +

v − 2λ

v − 2

(
σ − d
m

)
.

This is because, if we fix a link between uncompromised nodes Ni and Nj from

different trees, there are 2(λ−1) nodes which are in a common tree with either

Ni or Nj and therefore know their shared key with certainty. This leaves v−2λ

nodes which each have a probability of κ
m

of knowing their shared key.

Figure 6.4: Plot of the values of Pr1, fail1 and b′1 when µ = 1 and there are
1, 2, 22, . . . , 28 nodes per tree for key storage σ = 25, 50 and 100 respectively

We demonstrate these formulae in Figure 6.4. For comparison, we consider a

fixed network size of v = 1024 nodes, and temporal key pool size of m = 1000

keys. We consider nodes which can store 25, 50 or 100 keys respectively,

and plot the corresponding values of Pr1 and fail1 for underlying LKH layers

of 1, 2, 4, . . . , 256 nodes per tree. In order to plot the broadcast cost (Equa-

tion (6.5.3)) on the same axes, we plot b1 as a fraction of the number of keys

to be broadcast when there is only one node per tree (d = 1), i.e. we plot

b′1 = b1
(σ−µ)( vλ−1)

.

We see that if nodes can store 100 keys then Pr1 ≈ 1. If nodes can store
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only 50 or 25 keys then the connectivity decreases significantly, but this has

the advantage of lowering fail1. Finally, we note that the broadcast cost b′1

decreases exponentially as the number of nodes per tree increases. That is, for

fixed network size v and key storage σ, the broadcast cost can be decreased

by increasing the number of nodes per tree. The plots show that b′1 is almost

identical across different values of σ, however, as we know from the formula,

the actual broadcast size b1 increases with σ. For example, when there are 8

nodes per tree, the broadcast to revoke one node is b1 = 2730 when σ = 25,

b1 = 5980 when σ = 50 and b1 = 12480 when σ = 100.

We make some final remarks to justify the design of our BEKPS for revocation.

The plot does not include the case where there is exactly one underlying LKH

tree (λ = v), as in LKH broadcast encryption. It is clear from the formulae that

whilst the broadcast cost would be minimised and the connectivity maximised,

the resilience would be minimised, making it inadvisable for use as a BEKPS.

Whilst a single LKH scheme is appropriate for many broadcast encryption

applications, it is not appropriate for BEKPS because of the different design

goals, and the fact that the base station always broadcasts temporal keys

encrypted by the root key (or the smallest set of keys unknown to revoked

nodes). Notice that if this restriction on the base station were removed and a

single LKH tree were used for the underlying layer, this would be similar to

our BEKPS except that nodes would have to store more underlying keys and

therefore fewer temporal keys, restricting connectivity.
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6.5.3.2 LKH trees where µ = 2

We now consider the case where µ = 2, that is, each node is a member of

two trees, one from each partition. Each node therefore stores 2d underlying

LKH keys, leaving space for it to store σ−2d temporal keys. The base station

may broadcast a set of at most bσ
2
c − d temporal keys to each tree. Indeed,

in general the base station may broadcast at most bσ
µ
c − d to the root of each

tree. For ease of notation we will omit the floor symbols.

Lemma 6.14. When µ = 2, the connectivity is given by

Pr1 =
2(λ− 1)

v − 1
.1 +

v − 1− 2(λ− 1)

v − 1

1−

(m−(σ
2
−d)

σ
2
−d

)(
m
σ
2
−d

)
2 .

The proof follows in the same way as that of Lemma 6.12. The Eschenauer

Gligor probability contains a squared term because the probability of two nodes

from different trees not being connected is the probability of them not sharing

any keys from partition Π1 multiplied by the probability of them not sharing

any keys from partition Π2.

Lemma 6.15. When µ = 2, the resilience is given by

fail1 =
f1

[
λ−2
v−2

.1 + v−λ
v−2

(
σ
2
−d
m

)]
+ f2

[
2λ−2
v−2

.1 + v−2λ
v−2

(
σ
2
−d
m

)]
f1 + f2

,

where f1 =
(
λ
2

)
L and f2 =

1−

[
(m−(σ2 −d)

σ
2 −d )

( m
σ
2 −d)

]2
((v

2

)
−
(
λ

2

)
L

)
.

Proof. As in the proof of Lemma 6.13, we calculate fail1 by considering the

two cases:
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1. If the link is between two nodes in a common tree in partition Πi, λ− 2

other nodes from that tree can break the link with probability 1, and

v − λ nodes can each break the link with probability
σ
2
−d
m

using their

knowledge of keys from the key pool Kτi . There are f1 =
(
λ
2

)
L such

links.

2. If the link is between two nodes which are not in a common tree, 2λ− 2

other nodes in their respective trees can break the link, and v− 2λ other

nodes can break the link with probability
σ
2
−d
m

. The expected number of

such links is f2 =

1−

[
(m−(σ2 −d)

σ
2 −d )

( m
σ
2 −d)

]2
((v

2

)
−
(
λ

2

)
L

)
.

Figure 6.5: Plot of the values of Pr1, fail1 and b′1 when µ = 2 and there are
1, 2, 22, . . . , 28 nodes per tree for key storage σ = 25, 50 and 100 respectively

In Figure 6.5 we demonstrate some numerical values using these formulae. As

in Figure 6.4, we set v = 1024 and m = 1000 for each of the key pools. Again,

we see that Pr1 is highest when 100 keys are stored per node, at the cost of a

slightly increased value of fail1. Comparing Figures 6.4 and 6.5 we find that,
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when all other variables are fixed, the higher value of µ gives lower values of

Pr1 and fail1, with little effect on b′1. For comparison, we note that when there

are 8 nodes per tree, the broadcast cost to revoke one node is b1 = 2080 when

σ = 25, b1 = 5460 when σ = 50 and b1 = 11960 when σ = 100, that is, a little

lower than when µ = 1. We therefore suggest that if the lower value of Pr1

can be tolerated for the network’s purposes, then µ = 2 should be chosen to

give higher resilience and lower broadcast for revocation.

When µ > 2 the analysis for the connectivity and resilience becomes increas-

ingly complex, and it remains an open problem to determine whether there are

any advantages to higher values of µ. It seems likely that as µ increases Pr1 will

decrease, because nodes within the same tree will always be connected (unless

revoked), but nodes which are not in a common tree can only be connected if

they know keys from the same Eschenauer Gligor scheme, of which there are

µ different schemes. Since each node can only store a fixed number of keys

σ, as µ increases the number of temporal keys per Eschenauer Gligor scheme

will decrease, and so Pr1 will decrease accordingly. By the same argument, it

seems likely that fail1 would also decrease, giving higher resilience against an

adversary

We have thus constructed an effective BEKPS protocol which allows efficient

revocation and where, given key storage σ, there is some freedom to choose

an appropriate trade-off between the parameters br, Pr1 and fail1, not only by

varying the size of the key pool (as with any KPS), but also by varying the

size λ of LKH trees in the underlying layer, and the number of trees µ to which

each node belongs.
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6.6 Hierarchical temporal key distribution

In Section 6.2.3 we introduced the idea of using a BEKPS to create hierarchy

in the temporal layer, by broadcasting extra keys to certain nodes. This can

provide more efficient routing of information through a network. The flexibility

which a BEKPS provides to change which nodes have the extra keys reduces

both the damage caused by extra battery usage and the risk posed to the

resilience of the network. We will refer to nodes which are allocated extra keys

as primary nodes, whilst the remaining secondary nodes have fewer keys.

Regularly changing the set of nodes that are primary will mean that the bur-

dens of being a primary node are spread across the network over time. Random

allocation of primary nodes reduces the risk of an adversary launching a tar-

geted attack to reveal a high number of keys through a small number of node

compromises.

6.6.1 BEKPS for hierarchical temporal key distribution

We now consider the question of how to create a BEKPS so that any node

can be chosen as a primary node, and so that at any time period between

broadcasts there should be p primary nodes and v− p secondary nodes. (Note

that the number of primary nodes p may be changed at any broadcast, so that

there are pi primary nodes after update i. However, since each update can be

analysed without reference to the number of primary nodes which have gone

before, we simply write p in the analysis which follows, for ease of notation.)
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6.6.1.1 Underlying key predistribution

We propose that the best choice of KPS for the underlying keys is again one

based on a revocation scheme such as LKH. We justify this with the following

observations. Suppose that a node Ni with underlying key set Ui is to be chosen

as a primary node. The base station must broadcast a higher proportion of

temporal keys to it than to secondary nodes.

1. If at least one of the underlying keys in Ui is known uniquely to node

Ni, then the base station can simply use this key to encrypt the extra

temporal keys.

2. If none of Ni’s underlying keys is known uniquely to Ni, that is, for each

uj ∈ Ui there exists a node Nk with uj ∈ Uk, then in broadcasting extra

temporal keys, it will happen that some other nodes learn some extra

temporal keys too. This will have the effect of creating a multiple-layered

hierarchical network, where p nodes are primary nodes but amongst the

remaining v − p nodes there is variety in how many temporal keys are

received. Whilst this may be desirable for some applications, in others it

would cause some unnecessary battery drainage amongst the v−p nodes

and complicate routing protocols. We therefore restrict our study to a

strictly two-layer hierarchy of primary and secondary nodes.

We conclude that to efficiently create primary and secondary nodes and to

avoid burdening non-primary nodes unnecessarily, it is desirable that each

node stores a unique underlying key. For similar reasons to those given in
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Section 6.5.1, we propose an underlying layer based on LKH. As in Section 6.5,

using a single LKH scheme minimises broadcast cost but maximises underlying

key storage, and so we partition the nodes into several underlying LKH trees,

each of size λ = 2d−1.

6.6.1.2 Temporal key distribution

A straightforward way to allocate temporal keys in order to create p primary

nodes is to use a slight modification of the Eschenauer Gligor KPS [32], where

each primary node is allocated κ1 temporal keys and each secondary node is

allocated κ2 temporal keys from a key pool Kτ of m temporal keys. We will

demonstrate that this allows the connectivity and resilience parameters to be

easily altered with each broadcast, though of course many other KPSs would

be suitable. For ease of analysis, we choose an intersection threshold of q = 1,

that is, two nodes may form a link if they have one key in common. We will

also assume that if two nodes have more than one key in common then they

randomly select one of those keys to secure the link, that is, Ω = 1. Relaxing

this assumption would increase the resilience of the scheme.

The choice of primary nodes could be made deterministically or randomly, as

desired. The benefits of choosing them deterministically are:

• more efficient shared key discovery

• the possibility of node identity authentication

• a node will not be required to be a primary node twice until necessary,
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i.e. when all other nodes have been used as primary nodes at least once.

On the other hand, choosing the primary nodes at random may increase the

difficulty for an adversary to target them for compromise. Given the increased

risk to the resilience of the network which primary nodes cause, the unpre-

dictability of the choice of primary nodes is an important security consider-

ation. In our analysis we assume that the adversary compromises nodes at

random, and therefore our analysis is applicable to deterministic and random

allocations of primary nodes.

The base station may choose how to broadcast the temporal keys to secondary

nodes in order to achieve a particular trade-off between connectivity, resilience

and broadcast cost. We consider this in more detail in Section 6.6.2.2.

6.6.2 Analysis

6.6.2.1 Connectivity

We now derive formulae for the connectivity probabilities in terms of the size

m of the temporal key pool and the number of temporal keys assigned to

primary and secondary nodes, κ1 and κ2 respectively. We use Pr1,1 to denote

the probability of two primary nodes being connected, Pr1,2 for the probability

of a primary node and secondary node being connected, and finally Pr2,2 for

the connectivity probability between a pair of secondary nodes.

Using the Eschenauer Gligor probability of connectivity given in Scheme 2.1,
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we have that

Pr1,1 = 1−
(
m−κ1
κ1

)(
m
κ1

)
and

Pr1,2 = 1−
(
m−κ1
κ2

)(
m
κ2

) .

Similarly, it can be seen that

Pr2,2 ≥ 1−
(
m−κ2
κ2

)(
m
κ2

)
when we consider that 1 −

(
m−κ2
κ2

)
/
(
m
κ2

)
is the probability that two secondary

nodes with different temporal key sets are connected. Two secondary nodes

which are given the same set of temporal keys because they were encrypted

with a shared LKH key will certainly be connected, and this is why a lower

bound for Pr2,2 is given. The exact value of Pr2,2 will depend on choices which

the base station makes regarding how to use the LKH tree(s) to distribute the

temporal keys, as we describe in Section 6.6.2.2. In Section 6.6.2.3 we derive

an estimate for Pr2,2 using an assumption about the temporal key distribution.

m κ1 κ2 Pr1,1 Pr1,2 Pr2,2
500 50 10 0.9962 0.6548 ≥ 0.1844
500 50 15 0.9962 0.7990 ≥ 0.3709
1000 85 15 0.9996 0.7388 ≥ 0.2041
1000 85 25 0.9996 0.8945 ≥ 0.4731
1000 60 30 0.9783 0.8481 ≥ 0.6045
5000 100 50 0.8701 0.6377 ≥ 0.3965

Table 6.1: Examples of connectivity parameters (to four decimal places) for
different key pool sizes m and the number of temporal keys given to primary
and secondary nodes, κ1 and κ2 respectively.

Thus the base station can choose the parameters m, κ1 and κ2 to achieve differ-

ent levels of the connectivity probabilities. Some example values are given in
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Table 6.1; the values were chosen to demonstrate a variety of achievable trade-

offs between the three connectivity parameters. Observe that connectivity

between secondary nodes may not be necessary or even desirable; for exam-

ple, to conserve resources whilst maintaining a connected network, it may be

preferable to have a very low value of Pr2,2 as long as Pr1,2 is high enough to

ensure that almost every secondary node is connected to at least one primary

node, and Pr1,1 is high enough to ensure that almost every primary node is

connected to all other primary nodes. Finally, we note that m, κ1 and κ2 are

independent of the network size v, and can be changed at each broadcast if

desired.

As with any random KPS, higher connectivity in this BEKPS results in lower

resilience. In particular, the compromise of a primary node will reveal κ1 of

the total m keys. This risk will be reduced by dynamically changing the choice

of primary nodes to lower the risk of their compromise, and by choosing Pr2,2,

Pr1,2 and Pr1,1 to be as small as possible whilst retaining functional connectivity

across the network. We calculate fail1 in Section 6.6.2.3 after considering the

different options available for the base station for the broadcast.

6.6.2.2 Broadcast cost

The following example considers how the temporal keys could be distributed

to the secondary nodes.

Example 6.6. Suppose we have a network of v = 16 = 25−1 nodes arranged in

an LKH tree so that each node has to store d = 5 keys, as illustrated in Figure

6.6.
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α

β1 β2

γ1 γ2 γ3 γ4

δ1 δ2 δ3 δ4 δ5 δ6 δ7 δ8

N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12 N13 N14 N15 N16

Figure 6.6: LKH tree on 16 nodes

Suppose that we wish to create p = 3 primary nodes, and at random we pick

these to be nodes N1, N11 and N12 (underlined in Figure 6.6). The base station

would broadcast κ1 temporal keys to each of these primary nodes, using their

unique underlying keys. For the secondary nodes, there is a choice to be made

about the temporal key broadcast.

1. The key centre could broadcast a separate temporal key set to each of the

secondary nodes using their underlying keys. This creates the maximum

broadcast cost, the highest resilience, and Pr2,2 achieves its lower bound:

Pr2,2 = 1−
(
m−κ2
κ2

)(
m
κ2

) .

2. The key centre could minimise the broadcast by using the smallest set of

LKH keys not known to the primary nodes, that is, by using the LKH

keys associated with the minimal covering set of the secondary nodes.

In this example, temporal keys would be broadcast to N5, N6, N7, and N8

encrypted by their shared key γ2; to nodes N3 and N4 using δ2; and to

N2 using its unique underlying key. Similarly, the broadcast to nodes

N13, N14, N15 and N16 would be encrypted by their shared key γ4, and
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6.6 Hierarchical temporal key distribution

nodes N9 and N10 would be broadcast temporal keys encrypted by under-

lying key δ5. The number of temporal key sets to be broadcast is then

reduced from 16 to 8. The probability that a pair of secondary nodes have

at least one common key is then

Pr2,2 =

2
(

4
2

)
+ 2
(

2
2

)
+ (1× 2× 4× 2× 4)

(
1− (m−κ2

κ2
)

(mκ2)

)
(

13
2

) ,

which is greater than if unique underlying keys were used, at the cost of

reduced resilience.

3. In order to find a trade-off between the above options, the key centre could

choose not to use the smallest set of LKH keys unknown to the primary

nodes, for example by using the six δi keys with i ∈ {1, 2, . . . , 8} \ {1, 6},

plus the unique key known to N2. Then

Pr2,2 =

6
(

2
2

)
+ (1× 12 + 2× (10 + 8 + 6 + 4 + 2))

(
1− (m−κ2

κ2
)

(mκ2)

)
(

13
2

) .

This example illustrates that there are choices to be made about the broadcast

within each LKH tree, as well as about the number of underlying LKH trees

v
λ
. In our analysis we will assume that, on average, each set of temporal keys

is broadcast to x secondary nodes, where x < λ and x → λ as p → 0 if the

base station is using the minimum broadcast cost. Then to broadcast a set of

κ1 temporal keys to each primary node and κ2-sets of keys to each secondary

node requires a broadcast of size

b ≈ κ1p+ κ2
(v − p)
x

.

Using our assumption that each set of temporal keys is broadcast to x sec-

ondary nodes, we can revisit the expression we derived for Pr2,2 and use

174



6.6 Hierarchical temporal key distribution

weighted probability to derive the estimate

Pr2,2 ≈
x− 1

v − p− 1
+
v − p− x
v − p− 1

(
1−

(
m−κ2
κ2

)(
m
κ2

) ) .

6.6.2.3 Resilience

We can make an estimate of fail1 using Equation 3.2.1 from Section 3.2 with a

weighted probability for primary and secondary nodes: the expected number of

keys known to an adversary after the compromise of one node is κ1
p
v

+κ2
(v−p)
v

,

and so we have that

fail1,est =
κ1p+ κ2(v − p)

vm
,

since there is exactly one key securing each link. However, this method does

not take into account the proportions of the three different types of links.

We now extend the definition of fail1 to the hierarchical network setting. We

retain our assumption that the adversary compromises all nodes with equal

probability, and give each type of link in the network the same weight. In

Table 6.2 we see comparisons between the approximation fail1,est and our more

detailed calculation of fail1.

Lemma 6.16. The resilience of a hierarchical BEKPS is given by

fail1 =
1

T

[(
p

2

)
Pr1,1fail1,1

+ p(v − p)Pr1,2fail1,2

+

(
v − p

2

)
Pr2,2

[
v − p− x
v − p− 1

fail2,2,a +
x− 1

v − p− 1
fail2,2,b

]]
,
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where Pr1,1,Pr1,2 and Pr2,2 are as given above, and where

fail1,1 =
κ1(p− 2) + κ2(v − p)

m(v − 2)
,

fail1,2 ≈
1

v − 2

(
κ1(p− 1) + κ2(v − p− x)

m
+ x− 1

)
,

fail2,2,a ≈
1

v − 2

(
κ1p+ κ2(v − p− 2x)

m
+ 2(x− 1)

)
,

fail2,2,b ≈
1

v − 2

(
κ1p+ κ2(v − p− x)

m
+ x− 2

)
,

and

T =

(
p

2

)
Pr1,1 + p(v − p)Pr1,2 +

(
v − p

2

)
Pr2,2 .

Proof. We begin by finding the total number of links in the network, before

any compromise, which is

T =

(
p

2

)
Pr1,1 + p(v − p)Pr1,2 +

(
v − p

2

)
Pr2,2 .

Now we consider each type of link and its resilience.

1. Primary-primary links

There are
(
p
2

)
Pr1,1 primary node to primary node links. Fix such a link

between some primary nodes Ni and Nj, and consider the advantage to

an adversary of compromising a single node Nk /∈ {Ni, Nj}. If Nk is a

primary node, the adversary will learn κ1 keys; if Nk is secondary it will

reveal κ2 keys. Thus the adversary breaks the link with probability

fail1,1 =
1

m

(
κ1
p− 2

v − 2
+ κ2

v − p
v − 2

)
=

κ1(p− 2) + κ2(v − p)
m(v − 2)

.
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2. Primary-secondary links

The number of primary node to secondary node links is p(v−p)Pr1,2. Fix

such a link between primary node Ni and secondary node Nj. Suppose

that the base station is using less than the maximum broadcast cost.

Then the adversary can certainly break the link if it compromises a

secondary node which is ‘near’ to Nj in the LKH tree, such that it stores

the same set of temporal keys as Nj. That is, if we assume that on

average, each set of temporal keys is broadcast to x secondary nodes,

then an adversary who compromised a secondary node Nk will certainly

be able to break the p(x− 1) links between primary nodes and the x− 1

secondary nodes with which Nk shares the underlying LKH key used for

the broadcast. Therefore, we have that a primary-secondary node link

is broken with probability

fail1,2 ≈
1

v − 2

(
κ1(p− 1) + κ2(v − p− x)

m
+ x− 1

)
,

where the approximation comes from x being an average value.

3. Secondary-secondary links

There are
(
v−p

2

)
Pr2,2 secondary node to secondary node links. Fix such

a link between secondary nodes Ni and Nj. As with primary-secondary

links, the adversary can break the link with certainty if the broadcast cost

is less than the maximum and the adversary compromises a secondary

node Nk which has received the same temporal key set as one (or both)

of Ni and Nj. Suppose that Ni and Nj have different temporal key sets

KNi and KNj . Then the probability of the link being broken after the
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x p m κ1 κ2 Pr1,1 Pr1,2 Pr2,2 fail1 b
22 50 500 50 10 0.9962 0.6548 0.1870 0.0290 4875
23 50 500 50 10 0.9962 0.6548 0.1905 0.0357 3687.5
24 50 500 50 10 0.9962 0.6548 0.1973 0.0492 3093.75
23 100 500 50 10 0.9962 0.6548 0.1908 0.0383 6125
23 250 500 50 10 0.9962 0.6548 0.1921 0.0476 13437.5
23 50 1000 50 10 0.9280 0.4027 0.1027 0.0236 3687.5
23 50 500 80 10 0.9999 0.8281 0.1905 0.0384 5187.5
23 50 500 50 20 0.9962 0.8835 0.5683 0.0554 4875
23 50 500 50 30 0.9962 0.9617 0.8536 0.0744 6062.5

Table 6.2: Examples of connectivity and resilience metrics (to four decimal
places) and broadcast cost for fixed network size v = 1000 and varying: the
average number of secondary nodes to which a single temporal key set is sent,
x; the number of primary nodes p; the number of keys in the key pool m;
and the number of keys given to primary and secondary nodes, κ1 and κ2

respectively.

compromise of a single node is

fail2,2,a ≈
1

v − 2

(
κ1p+ κ2(v − p− 2x)

m
+ 2(x− 1)

)
,

and finally, if KNi = KNj , then the probability of breaking the link is

fail2,2,b ≈
1

v − 2

(
κ1p+ κ2(v − p− x)

m
+ x− 2

)
.

Combining these results gives the stated formula.

We illustrate some example values of fail1 in Table 6.2.

We observe that:

• Increasing x reduces the broadcast cost and creates a marginal increase in

Pr2,2, leaving the other connectivities unchanged. However, it noticeably

increases fail1, that is, it substantially reduces the resilience.
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• For most applications the number of primary nodes need not be large;

Pr1,1 and Pr1,2 can be set to be high independently of p, whilst increasing

p reduces the resilience and significantly increases the broadcast cost.

• As we would expect, increasing m lowers the connectivity probabilities

and fail1, increasing the resilience. The broadcast cost is unaffected.

• Increasing κ2 substantially increases the connectivity Pr2,2, whilst in-

creasing the broadcast cost and reducing the resilience to a lesser extent.

It may seem, therefore, that a comparatively high value of κ2 will be

desirable for most network applications. However, secondary node to

secondary node communication may be unnecessary as long as Pr1,2 is

high enough to ensure that most secondary nodes are connected to at

least one primary node. It may therefore be desirable to keep κ2 very low

in order to increase resilience, reduce broadcast cost and conserve bat-

tery power in anticipation of secondary nodes becoming primary nodes

in the future.

6.7 Conclusion

We have introduced the term broadcast-enhanced key predistribution schemes

(BEKPS) in order to describe schemes which combine key predistribution with

a trusted base station and broadcast channel, and discussed some of the many

motivations for using BEKPSs. We developed a framework for the design and

analysis of BEKPSs, and demonstrated its use throughout our paper. In Sec-

tion 6.4 we provided simpler proofs for some of the results given by Cichoń
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6.7 Conclusion

et al. in [23] for their scheme, which we classify as a BEKPS. We derived

more general formulae to calculate the resilience and explained how intersec-

tion thresholds can be used to increase resilience at the cost of decreasing

connectivity.

In Sections 6.5 and 6.6 we proposed appropriate BEKPS protocols for specific

applications. In Section 6.5, we demonstrated a practical BEKPS where revo-

cation can be performed without any uncompromised nodes losing keys. We

showed that for a given key storage parameter σ, suitable trade-offs can be

found between the connectivity, resilience and broadcast cost by varying the

size of the temporal key pool, and the number and size of LKH trees used to

distribute underlying keys. In Section 6.6 we demonstrated a BEKPS which

creates a network with two-layer hierarchy. This brings the benefit of more

efficient data routing. The ability to dynamically change the connectivity

probabilities and the allocation of primary nodes reduces the risks of battery

drainage and lowered resilience from which other hierarchical networks suffer.
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Chapter 7

Concluding remarks

We have used a variety of combinatorial approaches and techniques to analyse

and construct KPSs and BEKPSs for resource-constrained networks.

In Chapter 3 we saw how an unjustified assumption of independence led to an

incorrect formula for calculating the resilience of q-composite random KPSs.

We stated and proved, using combinatorial probability, the connectivity and

resilience parameters for the seminal Eschenauer Gligor scheme [32], and pro-

vided a simpler formula for the connectivity of q-composite schemes [20]. We

also noted that the graph of a random KPS is not equivalent to an Erdös-Rényi

graph [31], as commonly asserted. The papers [27, 5, 74] study the connectiv-

ity threshold of the key graph for the Eschenauer Gligor scheme. It remains

an open problem to study the key graph of other random KPSs such as the

q-composite scheme.

Finally, we presented and proved a generalised resilience formula which applies

to these schemes and to a wider class of random KPSs. We showed that

the original formula slightly overestimates fails, that is, it underestimates the

resilience. Although our contribution is of mathematical importance it has
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limited impact on applications, as the original formula from [20] provides a

close approximation to the true value.

In Chapter 4 we corrected some erroneous claims about the use of expander

graphs in KPSs. We showed that expansion is a useful metric, amongst others,

for analysing the key graph and intersection graph of a KPS. Exisiting KPSs

which are directly based on expander graph constructions have good expansion

and perfect resilience. However, we noted that whilst this may be appropriate

for some applications, it is often desirable to have slightly lower resilience,

with the benefit of much greater connectivity and expansion. We showed

that random KPSs and various deterministic schemes based on combinatorial

designs have good expansion; this is a previously unstated advantage of using

these approaches to construct KPSs.

In Chapter 5 we argued that hypergraph representations of KPSs demonstrate

the key storage and resilience, as well as the connectivity, which is the only met-

ric demonstrated by an ordinary (unlabelled) graph representation. Building

upon work in Chapter 4, we suggested using expanding hypergraph construc-

tions to produce KPSs with good expansion and without perfect resilience.

We gave an explicit example of a Cayley hypergraph, before noting its equiv-

alence to a strongly regular graph. We described in general the relationship

between hypergraphs and designs, and discussed the possibility that expand-

ing hypergraph constructions may be related, or even equivalent, to existing

constructions for combinatorial designs. In future work we will explore the

potential relationship between random uniform hypergraph constructions, and

constructions for random strongly regular graphs.
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It seems likely that the expansion of other KPS constructions can be analysed,

alongside various other graph-theoretic properties, in order to better under-

stand their suitability (or otherwise) for practical applications. In particular,

we would like to study the expansion of transversal designs, since these have

an additional benefit of providing efficient shared key discovery [48].

Finally, in Chapter 6 we categorised a class of schemes as broadcast-enhanced

key predistribution schemes (BEKPSs). We noted that the scheme of Cichoń

et al. [23] is a BEKPS, and provided simplified proofs and further analysis of its

connectivity and resilience metrics. We then proposed two families of BEKPS

for particular purposes: one which allows efficient revocation, the other which

allows nodes to act as a dynamically changing, hierarchical network. Our

analysis showed that these schemes are effective in achieving their aims and

provide flexible trade-offs between the conflicting parameters of key storage,

connectivity, resilience and broadcast load. For future work, there are many

variations of BEKPSs which can be studied. We note the following open

questions:

• Can other revocation schemes provide advantages over LKH in the un-

derlying key predistribution of some BEKPSs?

• Are there advantages to assigning temporal keys deterministically (other

than aiding shared key discovery)?

• How can a BEKPS design be adapted to be more efficient if the locations

of nodes are known to the base station?
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