170 research outputs found

    An efficient algorithm for computing exact system and survival signatures of K-terminal network reliability

    Get PDF
    An efficient algorithm is presented for computing exact system and survival signatures of K-terminal reliability in undirected networks with unreliable edges. K-terminal reliability is defined as the probability that a subset K of the network nodes can communicate with each other. Signatures have several advantages over direct reliability calculation such as enabling certain stochastic comparisons of reliability between competing network topology designs, extremely fast repeat computation of network reliability for different edge reliabilities and computation of network reliability when failures of edges are exchangeable but not independent. Existing methods for computation of signatures for K-terminal network reliability require derivation of cut-sets or path-sets which is only feasible for small networks due to the computational expense. The new algorithm utilises binary decision diagrams, boundary set partition sets and simple array operations to efficiently compute signatures through a factorisation of the network edges. The performance and advantages of the algorithm are demonstrated through application to a set of benchmark networks and a sensor network from an underground mine

    Reliability-aware zonotopic tube-based model predictive control of a drinking water network

    Get PDF
    A robust economic model predictive control approach that takes into account the reliabilityof actuators in a network ispresented for the control of a drinking water network in the presence of uncertainties in the forecasted demands required forthe predictive control design. The uncertain forecasted demand on the nominal MPC may make the optimization processintractable or, to a lesser extent, degrade the controller performance. Thus, the uncertainty on demand is taken into accountand considered unknown but bounded in a zonotopic set. Based on this uncertainty description, a robust MPC is formulatedto ensure robust constraint satisfaction, performance, stability as well as recursive feasibility throughthe formulation ofan online tube-based MPC and an accompanying appropriate terminal set. Reliability is thenmodelled based on Bayesiannetworks, such that the resulting nonlinear function accommodated in the optimization setup is presented in a pseudo-linearform by means of a linear parameter varying representation, mitigating any additional computational expense thanks to theformulation as a quadratic optimization problem. With the inclusion of a reliability index to the economic dominant cost ofthe MPC, the network users’ requirements are met whilst ensuring improved reliability, therefore decreasing short and longterm operational costs for water utility operators. Capabilities of the designed controller are demonstrated with simulatedscenarios on the Barcelona drinking water networkPeer ReviewedPostprint (published version

    Reliability Analysis of Social Networks

    Get PDF
    The primary focus of this dissertation is on the quantification of actor interaction and the dissemination of information through Social networks. Social networks have long been used to model the interactions between people in various Social and professional contexts. These networks allow for the explicit modeling of the complex interrelations between relevant individuals within an organization and the role they play in the decision making process. This dissertation considers Social networks represented as network flow models in which actors have the ability to provide some level of influence over other actors within the network. The models developed incorporate performance metrics and reliability analysis established in the multi-state reliability literature to gain insights into organizational behavior. After a brief introduction, Chapter 2 provides a survey of the relevant literature on several topics of interest within this dissertation. In Chapter 3, actor criticality findings using traditional Social network analysis are compared to those obtained via multi-state reliability importance measures. Chapter 4 extends the model developed in Chapter 3 to consider that an actor\u27s Social interaction and level of influence within the organization are not only multi-valued and stochastic in nature but also a function of the interactions with its neighbors. A Monte Carlo simulation model is presented to evaluate the reliability of the network, and network reliability is evaluated under various influence communication rules. In Chapter 5, a hierarchical network structure is investigated where actors are arranged in layers and communication exists between layers. A probability mass function is developed to compute the expected level of influence at the target nodes as a function of the existing communication paths within the network. An illustrative example is used to demonstrate the effects on expected influence at the target as connections are either added or removed and when the uncertainty associated with an actor\u27s influence level is removed. Finally, in Chapter 6, a methodology is developed for eliciting the probabilities associated with the influence levels used in the network analysis of Chapters 3 - 5

    Iterative Approximate Byzantine Consensus under a Generalized Fault Model

    Full text link
    In this work, we consider a generalized fault model that can be used to represent a wide range of failure scenarios, including correlated failures and non-uniform node reliabilities. This fault model is general in the sense that fault models studied in prior related work, such as f -total and f -local models, are special cases of the generalized fault model. Under the generalized fault model, we explore iterative approximate Byzantine consensus (IABC) algorithms in arbitrary directed networks. We prove a necessary and sufficient condition for the existence of IABC algorithms. The use of the generalized fault model helps to gain a better understanding of IABC algorithms.Comment: arXiv admin note: text overlap with arXiv:1203.188

    Optimal Design and Synthesis of MEA Power System Architectures considering Reliability Specifications

    Get PDF
    IEEE Aircraft electrification requires novel designs to supply the growing demand for electric power on-board through efficient and reliable production and distribution of electrical energy. Moreover, the aircraft power system will be a key enabler for the integration of future technologies. Pledging to these intentions, we propose a formulation to synthesize a power system architecture that complies with safety specifications following a Platform Based Design methodology that optimizes the main aerospace drivers. Due to the non-linear nature of the design problem, this paper presents reliability based MILP network design formulations for topology synthesis. The novelty of this approach relies in the adoption of network design optimization for MEA power system construction that allows explicit design formulations as MILP problems. This approach will provide an effective way to include safety specifications by introducing reliability and resiliency constraints

    Development of a Parallel BAT and Its Applications in Binary-state Network Reliability Problems

    Full text link
    Various networks are broadly and deeply applied in real-life applications. Reliability is the most important index for measuring the performance of all network types. Among the various algorithms, only implicit enumeration algorithms, such as depth-first-search, breadth-search-first, universal generating function methodology, binary-decision diagram, and binary-addition-tree algorithm (BAT), can be used to calculate the exact network reliability. However, implicit enumeration algorithms can only be used to solve small-scale network reliability problems. The BAT was recently proposed as a simple, fast, easy-to-code, and flexible make-to-fit exact-solution algorithm. Based on the experimental results, the BAT and its variants outperformed other implicit enumeration algorithms. Hence, to overcome the above-mentioned obstacle as a result of the size problem, a new parallel BAT (PBAT) was proposed to improve the BAT based on compute multithread architecture to calculate the binary-state network reliability problem, which is fundamental for all types of network reliability problems. From the analysis of the time complexity and experiments conducted on 20 benchmarks of binary-state network reliability problems, PBAT was able to efficiently solve medium-scale network reliability problems

    A contribution to the evaluation and optimization of networks reliability

    Get PDF
    L’évaluation de la fiabilité des réseaux est un problème combinatoire très complexe qui nécessite des moyens de calcul très puissants. Plusieurs méthodes ont été proposées dans la littérature pour apporter des solutions. Certaines ont été programmées dont notamment les méthodes d’énumération des ensembles minimaux et la factorisation, et d’autres sont restées à l’état de simples théories. Cette thèse traite le cas de l’évaluation et l’optimisation de la fiabilité des réseaux. Plusieurs problèmes ont été abordés dont notamment la mise au point d’une méthodologie pour la modélisation des réseaux en vue de l’évaluation de leur fiabilités. Cette méthodologie a été validée dans le cadre d’un réseau de radio communication étendu implanté récemment pour couvrir les besoins de toute la province québécoise. Plusieurs algorithmes ont aussi été établis pour générer les chemins et les coupes minimales pour un réseau donné. La génération des chemins et des coupes constitue une contribution importante dans le processus d’évaluation et d’optimisation de la fiabilité. Ces algorithmes ont permis de traiter de manière rapide et efficace plusieurs réseaux tests ainsi que le réseau de radio communication provincial. Ils ont été par la suite exploités pour évaluer la fiabilité grâce à une méthode basée sur les diagrammes de décision binaire. Plusieurs contributions théoriques ont aussi permis de mettre en place une solution exacte de la fiabilité des réseaux stochastiques imparfaits dans le cadre des méthodes de factorisation. A partir de cette recherche plusieurs outils ont été programmés pour évaluer et optimiser la fiabilité des réseaux. Les résultats obtenus montrent clairement un gain significatif en temps d’exécution et en espace de mémoire utilisé par rapport à beaucoup d’autres implémentations. Mots-clés: Fiabilité, réseaux, optimisation, diagrammes de décision binaire, ensembles des chemins et coupes minimales, algorithmes, indicateur de Birnbaum, systèmes de radio télécommunication, programmes.Efficient computation of systems reliability is required in many sensitive networks. Despite the increased efficiency of computers and the proliferation of algorithms, the problem of finding good and quickly solutions in the case of large systems remains open. Recently, efficient computation techniques have been recognized as significant advances to solve the problem during a reasonable period of time. However, they are applicable to a special category of networks and more efforts still necessary to generalize a unified method giving exact solution. Assessing the reliability of networks is a very complex combinatorial problem which requires powerful computing resources. Several methods have been proposed in the literature. Some have been implemented including minimal sets enumeration and factoring methods, and others remained as simple theories. This thesis treats the case of networks reliability evaluation and optimization. Several issues were discussed including the development of a methodology for modeling networks and evaluating their reliabilities. This methodology was validated as part of a radio communication network project. In this work, some algorithms have been developed to generate minimal paths and cuts for a given network. The generation of paths and cuts is an important contribution in the process of networks reliability and optimization. These algorithms have been subsequently used to assess reliability by a method based on binary decision diagrams. Several theoretical contributions have been proposed and helped to establish an exact solution of the stochastic networks reliability in which edges and nodes are subject to failure using factoring decomposition theorem. From this research activity, several tools have been implemented and results clearly show a significant gain in time execution and memory space used by comparison to many other implementations. Key-words: Reliability, Networks, optimization, binary decision diagrams, minimal paths set and cuts set, algorithms, Birnbaum performance index, Networks, radio-telecommunication systems, programs

    Reliability Guided Resource Allocation for Large-scale Supercomputing Systems

    Get PDF
    In high performance computing systems, parallel applications request a large number of resources for long time periods. In this scenario, if a resource fails during the application runtime, it would cause all applications using this resource to fail. The probability of application failure is tied to the inherent reliability of resources used by the application. Our investigation of high performance computing systems operating in the field has revealed a significant difference in the measured operational reliability of individual computing nodes. By adding awareness of the individual system nodes\u27 reliability to the scheduler along with the predicted reliability needs of parallel applications, reliable resources can be matched with the most demanding applications to reduce the probability of application failure arising from resource failure. In this thesis, the researcher describes a new approach developed for resource allocation that can enhance the reliability and reduce the costs of failures of large-scale parallel applications that use high performance computing systems. This approach is based on a multi-class Erlang loss system that allows us to partition system resources based on predicted resource reliability, and to size each of these partitions to bound the probability of blocking requests to each partition while simultaneously improving the reliability of the most demanding parallel applications running on the system. Using this model, the partition mean time to failure (MTTF) is maximized and the probability of blocking of resource requests directed to each partition by a scheduling system can be controlled. This new technique can be used to determine the size of the system, to service peak loads with a bounded probability of blocking to resource requests. This approach would be useful for high performance computing system operators seeking to improve the reliability, efficiency and cost-effectiveness of their systems
    • …
    corecore