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GLOSSARY

MTBF In the case of repairable systems, ”MTBF” stands for ”mean

time between failures.” This average time excludes the time

spent waiting for repair, being repaired, being re-qualified,

and other downing events such as inspections and preventive

maintenances and so on; it is intended to measure only the

time a system is available and operating. Whereas, in the case

of non-repairable systems, MTBF stands for mean time before

failure and is represented by the mean life value for a failure

distribution of non-repairable units. (Weibull.com, 2013)

MTTF MTTF stands for ”mean time to failure” and is represented by

the mean life value for a failure distribution of non-repairable

units. (Weibull.com, 2013)

MTTR MTTR stands for ”mean time to repair” and is represented

by the mean life value for a distribution of repair times.

(Weibull.com, 2013)

System Reliability The reliability of an entire system, as opposed to the reliability

of its components. The system reliability is defined by the

reliability of the components as well as the way the components

are arranged reliability-wise. (Weibull.com, 2013)



xi

Erlang O↵ered tra�c in Erlangs can be determined by computing the

product of the call arrival rate, �, and the average call-holding

time, h , E = � ⇤ h. Erlang is a dimensionless unit since it is

the product of average call arrival rate (T�1) and average call

holding time (T 1). Traditionally, it was used to compute the

number of switching elements for the carried load. (Kobayashi

& Mark, 2009)
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ABSTRACT

Shruti Umamaheshwaran M.S., Purdue University, May 2014. Reliability Guided
Resource Allocation for Large-scale Supercomputing Systems. Major Professor:
Thomas J. Hacker.

In high performance computing systems, parallel applications request a large

number of resources for long time periods. In this scenario, if a resource fails during

the application runtime, it would cause all applications using this resource to fail.

The probability of application failure is tied to the inherent reliability of resources

used by the application. Our investigation of high performance computing systems

operating in the field has revealed a significant di↵erence in the measured operational

reliability of individual computing nodes. By adding awareness of the individual

system nodes’ reliability to the scheduler along with the predicted reliability needs

of parallel applications, reliable resources can be matched with the most demanding

applications to reduce the probability of application failure arising from resource

failure. In this thesis, the researcher describes a new approach developed for resource

allocation that can enhance the reliability and reduce the costs of failures of large-scale

parallel applications that use high performance computing systems. This approach is

based on a multi-class Erlang loss system that allows us to partition system resources

based on predicted resource reliability, and to size each of these partitions to bound

the probability of blocking requests to each partition while simultaneously improving

the reliability of the most demanding parallel applications running on the system.

Using this model, the partition mean time to failure (MTTF) is maximized and the

probability of blocking of resource requests directed to each partition by a scheduling

system can be controlled. This new technique can be used to determine the size of

the system, to service peak loads with a bounded probability of blocking to resource



xiii

requests. This approach would be useful for high performance computing system

operators seeking to improve the reliability, e�ciency and cost-e↵ectiveness of their

systems.
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CHAPTER 1. INTRODUCTION

1.1 Background

Large-scale high performance computing systems built from tens of thousands

of processors are reaching into the peta- and exascale in terms of raw performance

and capability. These systems are built up from electrical and software components,

any of which may fail and consequently cause the failure of jobs that depend on the

reliable operation of all of these elements.

To avoid and react to faults when they occur, there are several proactive and

reactive fault tolerance strategies that have been devised that seek to reduce the

probability of failures, the costs of failures, or to recover from failures when they occur.

One common reactive strategy is checkpointing, in which a parallel application saves

the current computational state so that if the computation is restarted, work can

progress from the last saved state. Reactive reliability operations such as checkpointing,

however, are failing to scale as system sizes increase, and themselves can place a

tremendous burden on the system, inducing further failures and decreasing the fraction

of productive time spent on performing useful work rather than defensive operations

for the eventuality of a failure (Hacker & Mahadik, 2011).

As an alternative to reactive operations such as checkpointing, proactive fault

tolerance strategies can help prevent failures in the first place. By avoiding a failure,

a system can significantly increase the useful work extracted from the system by

avoiding the need for frequent defensive operations.

Scheduling systems for large-scale supercomputing systems in use today o↵er

an excellent place to introduce proactive fault tolerance strategies. Since the scheduler

actively manages the work allocation to nodes, it acts as a control system that can be
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easily modified to actively manage the reliability profile of a system and to modulate

the flow of resource requests and jobs that use those systems.

Scheduling systems in use today, such as Torque (Adaptive Computing, 2013),

SLURM (SLURM,2013), PBS (Henderson, 1995), and LoadLeveler (Kannan et al.,

2001), do not take into account the inherent reliability characteristics of the systems

they manage - they treat all computational resources as homogeneous and replaceable

elements. Consequently, they do not attempt to guide jobs to reliable resources based

on the reliability needs of those jobs. As a result, specific jobs using large number

of processors or having long runtimes that would benefit by using high reliability

resources may have to su↵er from the assignment of poor reliability system resources

when in fact there are high reliability resources idle in the cluster. This underutilization

of reliable resources is wasteful and ine�cient, and leads to unnecessary low jobs and

system reliability.

To improve this situation, this research presents a new proactive fault tolerance

approach that the researcher has developed, which exploits the available information,

that includes: 1) predicted node reliability; 2) historic resource use patterns from the

workload o↵ered to the system; 3) information about jobs waiting for resources in

a system queue; and 4) the desired reliability and queuing characteristics of these

systems provided by system administrators.

1.2 Scope

This research focuses on studying the impact of node reliability on the overall

reliability and e�ciency of jobs in high performance computing systems. This study

also concentrates on determining the number of nodes to be provisioned in a cluster

to service workloads at busy periods by o↵ering a minimum probability of blocking or

queuing to the incoming resource requests.

Another aim of this research work is to develop a partition strategy by

determining the number of partitions and the size of each partition, such that the
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overall reliability of partition in terms of partition MTTF (Mean Time to Failure)

can be improved. The scope of this research involves implementing this analysis

methodology on an open-source scheduler Haizea, which is an infrastructure manager

used for scheduling resources in an Open Nebula cluster (Sotomayor, 2009).

1.3 Significance

This reliability analysis approach can improve scheduling decisions for large

parallel jobs submitted to the system, improve hardware reliability experienced by

the parallel applications, and improve the overall system reliability. In this thesis, the

researcher shows that through the use of this new approach, the overall reliability and

e�ciency of jobs in the system can be increased.

The benefits of this new approach can be immediately realized without the

need to purchase additional hardware or to reconfigure the system architecture.

This approach simply exploits information already available on the system and

synthesizes this information to manage the scheduling process to significantly improve

the reliability of jobs, especially those that su↵er the most from the inherent poor

reliability of components that make up most petascale systems today and exascale

systems tomorrow.

As most systems today are moving towards the era of cloud and cluster-based

computing, it is essential for cluster providers to provide reliable resources and make

systems more available by keeping the blocking probability and queue wait times

as low as possible. The methodology developed in this study is generic and can be

applied to any system irrespective of the platform, scheduling policy implemented in

the cluster and type of incoming workload.
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1.4 Problem Statement

Given the observed reliability features of a system, how can the system resources

be allocated to resource requests such that the reliability of the jobs is maximized and

at the same time specify a bound on blocking probability of resource requests, for a

given workload at peak periods?

1.5 Assumptions

The assumptions for this study include:

• The request site nodes are logically classified into R resource classes, where the

number of nodes n
i

in each class r
i

is 2i�1 where i✏{1, ..., R}

• The system is an asymptotically large network thus allowing us to use approximations

for Erlang Loss function

• The simulation uses a hypothetical cluster with all uni-processor nodes and each

node has an associated reliability in terms of MTTF in hours

• The reliability need of every resource request is mentioned as an attribute of

every request in the lease workload file

• The terms MTBF and MTTF are used interchangeably in this research and the

MTBF is considered the observed reliability of nodes

• The ANL Intrepid BlueGene workload logs and system failure logs of the Coates

cluster are accurate and not corrupt

• The reliability pattern of the system nodes follows a Weibull distribution

• The Haizea scheduler, which is the scheduler of the OpenNebula toolkit, functions

properly and emulates a real scheduler
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1.6 Limitations

The limitations for this study include:

• Network characteristics (like bandwidth, switch latencies, etc.) and memory

factors, though vital are not considered in determining the resource occupancy

in the cluster

• The Haizea simulation workload consists of tasks submitted only during the

busy period

• The system logs have been filtered to remove false alarms and warnings before

computing mean time between failures

1.7 Delimitations

The delimitations for this study include:

• The simulation results are based on only Haizea simulator

• The model and scheduling policies framework have been tested on workloads

from ANL Intrepid BlueGene supercomputer only

• The simulation is developed only for Type I scheduling policy

• The system logs for determining the observed node reliability have been obtained

from the Coates Cluster at Purdue University

1.8 Summary

Chapter 1 gives an overview of the research project by explaining the problem

statement, scope, significance and other background information related to this

research. The next chapter provides a review of literature, outlining the motivation

for this research.
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CHAPTER 2. REVIEW OF LITERATURE

The primary issue faced by most large-scale supercomputing and cloud computing

systems is the occurrence of numerous system failures. Too many system failures

in large datacenters can adversely a↵ect the overall reliability of the applications

running on them, culminating in low system utilization and low e�ciency of the

computing system. Poor usage of system resources would hamper not only the speeds

and performance of user jobs, but also draw umpteen monetary and energy resources.

There are two ways to tackle this problem, one is the hardware approach and

the other is a less expensive software approach. The hardware approach considers

replacement or addition of new components to existing system hardware when system

failures occur. The hardware method is generally not feasible and would certainly be

worth its weight in gold! Considering the second approach - the software approach -

is comparatively a practical solution and can be used by almost all large-scale cluster

system administrators. In this method the system administrators neither have to

modify their existing system hardware nor do they have to pay a pretty penny.

The software method, which is developed in this research, adjusts and refines

specific attributes in the configuration files and adds reliability determinants in task

schedulers of the computing systems, thus enhancing a reliability guided scheduling

decision. These reliability determinants are ’machine learned’, from observed reliability

characteristics from historic system logs and failure trends in service logs.

In order to propose the new reliability guided approach described in this

research, an in depth understanding of the following points is essential. They are:

• Types of resource allocation policies in use today

• Resource Availability in large-scale systems

• System Reliability
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2.1 Resource Allocation Policies

In the most general case of resource allocation, all resource requests are admitted

simply if resources are available at the time a connection is requested. This is commonly

called a complete sharing (CS) admission policy where the only constraint on the

system is the overall system capacity. In a CS policy, connections that request fewer

resource units are more likely to be admitted. A CS policy does not consider the

importance of a connection when resources are allocated (Beard, 2001). In a complete

partitioning (CP) policy, every class of resource is allocated a set of resources that

can only be used by that class. An upper limit (UL) policy places upper limits on the

numbers of connections possible from each class to ensure that no one class dominates

the system resources.

The study of resource allocation policies is one of the primary steps to develop

the new approach described in this research work. The selection of the resource

allocation policy is important as it determines the partitioning strategy to be used

for distributing system nodes, which is directly linked with the reliability of system.

Every node in the system has a reliability characteristic associated with it usually

measured in Mean Time to Failure (MTTF). MTTF is a basic measure of reliability

for nodes in the system and is the mean time expected until the first failure of a node.

This is a statistical value and is meant to be the mean over a long period of time.

The right selection of resource allocation policy should ensure that the combination

of nodes in a partition does not deteriorate the partition reliability, thus improving the

overall reliability of the partition as well as the jobs running in that partition. Selection

of the resource allocation policy will help us determine the number of partitions and

the size of each partition, such that the probability of blocking of resource requests

during the busy period is minimum thus eliminating resource wastage issues due to

overprovisioning. The stochastic knapsack approach would be used in this research to

distribute nodes into system partition based on node reliability.
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2.2 Availability in Large-scale Systems

The previous work by Hacker and Mahadik (Hacker & Mahadik, 2011), models

availability of resources in a cloud computing system based on an o↵ered workload.

Their work presents a model for predicting probability of blocking service requests

of an N node cloud computing service during the busy period, and also provides a

technique to determine the number of hot-spare nodes needed to provide a reliable

cloud computing service. This research is an extension to the work mentioned above

and focuses on the reliability aspect in a cluster computing system. In the approach

described in this research, the researcher concentrates on studying the e↵ect of number

of nodes per resource class on the overall job and partition reliability. In this thesis

the selected resource allocation policy uses system node reliability as a criterion for

resource allocation.

The analysis model used for understanding the impact of scheduling policies is

based on the tele-tra�c theory called Erlang theory (Rappaport, 1996). The Erlang

computations are calculated using the two Erlang formulas - Erlang B (loss function)

and Erlang C (queuing model). Erlang calculations are widely used in circuit switched

telephone networks to measure the o↵ered load to provide adequate service trunks/call

lines, to minimize the number of blocked calls. However due to high time complexity

of computing the blocking probability by the traditional Erlang formula, the analysis

model that this research uses is an approximation of the Erlang formula. Beard (Beard,

2001) described the approximation to the Erlang formula for stressed ATM networks,

and the results of the approximations are almost exact to the actual computations at

peak/busy periods.

In a related article by Beard (Beard, 2001) , Beard derived a linear approximation

equation for estimating probability of blocking for a class of network tra�c. His

work uses the method of upper limit policy to impose limits on the highest and

lowest blocking probability influenced by each class of tra�c, thus guaranteeing a

minimum bandwidth during the busy period. This reserach uses this tele-tra�c theory

approximation equation for cluster computing systems to partition the system nodes
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based on node reliability characteristics, such that most of the resource classes in the

system are serviced with a minimum blocking probability during busy periods.

2.3 System Reliability

The importance of cloud computing and cluster based systems is significantly

increasing. There have been articles on improving reliability in distributed and

cluster-based systems. The articles on improving reliability in heterogeneous distributed

systems by Tang et.al (Tang, 2010) and Shatz et.al (Shatz, 1992), uses the concept

of duplicating task modules on multiple components during task allocation. Their

reliability analysis of the scheduling attributes keeps the hardware resources fixed and

computes task paths and completion metrics.

Another related article by Tang et.al, (Tang, 2012) describes a hierarchical

reliability driven scheduling approach in grid systems by implementing a local and a

global scheduling algorithm in combination. The significant improvement in terms of

system reliability, schedule length and speedup are depicted in graphs and the data for

their analysis has been taken from real-time applications. This article measures task

reliability by a reliability probability metric equal to the probability of all its data

that successfully transfers from its immediate parent tasks and successful executions

on the processor it is assigned to (Tang, 2012). The three articles listed above explains

the e↵ect of scheduling policy in terms of task scheduling modules, which includes

Directed Acyclic Graphs (DAG), scheduling path, schedule length etc., but in this

thesis the resource allocation policies and its e↵ects on reliability are discussed.

Running tasks on high reliability nodes can save time and compute power,

by minimizing checkpointing. Checkpointing is a fault tolerance strategy, where the

progress and current state of the system is regularly saved at fixed intervals, called the

checkpointing interval, so that the system is resilient to system failures. The optimal

check pointing interval is given by Daly’s checkpointing formula (Daly, 2003). This

formula helps to measure the failure rates in the system and is a powerful factor for
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determining system reliability. High reliability nodes are usually assigned to long

running tasks or tasks using large number of processors, so that the impact of system

failure and overhead due to checkpointing can be minimized.

2.4 Summary

The review of literature has been able to raise probing questions, facilitating a

deeper understanding of existing schedulers and the policies they follow along with

their advantages and disadvantages. The study of previously published relevant articles

have led to the following research questions:

• Does the resource allocation policy have a significant impact on reliability of

jobs submitted to the system?

• Does blocking probability a↵ect the reliability of jobs?

• What should be the ideal number of partitions and partition size for a system

with a given workload to maximize reliability?

• Can awareness of node reliability be added in a scheduler to aid node selection

decision?

With these questions in mind, the researcher provides an insight into the research

framework and research methodology in the next chapter.



11

CHAPTER 3. PROCEDURES AND METHODOLOGY

This chapter discusses the theoretical framework and emphasizes the research

methodology and design. The nature of research, hypothesis, sample set, variables

and approach are also detailed in this chapter.

3.1 Research Methodology

The purpose of this research is to improve the overall reliability of jobs in the

system by understanding the impact of scheduling and resource allocation policies

when specified the observed reliability of nodes in the system. This research focuses

on determining the e↵ect of size of the provisioned cluster system on the probability

of blocking and queue wait time for resource requests. This research also aims to

estimate the optimal size of a system partition by selecting the best partitioning

strategy, which is decided based on the o↵ered workload during the peak/busy period

and resource allocation policy used.

The goal of this developed methodology is to ensure that the overall reliability

of the partition in terms of the partition MTTF (Mean Time To Failure) and reliability

of jobs submitted to the system (especially the large and long-running jobs) increases

significantly. This reliability guided scheduling approach is based on machine learning

by analyzing historic workload and system failure log data. The improvement of

this new methodology would be evaluated by comparing the results obtained from

analysis and simulations. Simulations can help us understand the methodology in

a controlled environment where parameters can be modified and the e↵ect of the

independent variables on the dependent ones can be studied. The nature of this

research is quantitative, thus this research follows a systematic empirical investigation
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of the methodology using statistical, mathematical or computational techniques (Given,

2008).

3.2 Research Framework

In this section, the researcher describes the system and a few assumptions,

which are used in this research. The total number of nodes in the system is N . On the

request site the nodes are logically classified into R resource classes, where number of

nodes n
i

contained in each class is 2i�1 (Hacker & Mahadik, 2011). Each resource class

can have a range of nodes bounded by a minimum C
r

min

and maximum C
r

max

number

of nodes to service the o↵ered incoming load during the busy period of system use.

This range of the number of nodes that will need to be allocated to each resource class

is computed based on a range of blocking probability values B
p

in the interval [0, 1].

Every class has an associated average arrival rate �
i

and average service time per

resource class is t
i

. On the system side, the system can be divided into S partitions

with the number of nodes in each partition C
s

.

Most of the work on estimating blocking probabilities for connection admission

control (CAC) policies is based on the Erlang loss function, which allows the researcher

to exactly compute blocking for di↵erent policies under Markov connection arrival

assumptions (Key, 1990), but this can be used only when networks are of medium

size (less than 1000 units of capacity) (Beard, 2001). As systems grow large and

powerful, approximations for the Erlang loss function are more helpful. In such large

networks, load and capacity asymptotically approach infinity at a constant ratio of

load to capacity greater than 1 (i.e., an overloaded condition). Beard’s derivation

(Beard, 2001) for approximating blocking probability, uses the complete partitioning

(CP) policy, where every resource request can use the group of resources that have

been rationed explicitly for that class.

As per Kelly’s derivation (Kelly, 1986), the CP policy is considered to be

equivalent to the complete sharing (CS) policy- where all system resources are
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completely shared among all resource classes- at overloaded conditions as the most

likely state of the two policies coincide with each other at peak times. Kelly’s derivation

(Kelly, 1986) also justifies their equivalence by stating that the state space of the

CP policy is a subset of the CS policy. Therefore, considering an asymptotically

large network and using a combination of complete partitioning and complete sharing

resource allocation policies, the results from Beard’s derivation of Erlang loss function

approximation to estimate probability of blocking resource requests are used in this

research.

As derived by Beard (Beard, 2001) the blocking probability of each class r
i

in the system is denoted as Bp
i

, and can be represented by the following linear

approximation

Bp
r

= 1� C
r

�
r

b
r

(3.1)

subject to

0  C
r

 �
r

b
r

(3.2)

and

N =
RX

i=1

C
i

(3.3)

where C
r

is number of nodes per resource class r. The average arrival rate for each

resource class is denoted by �
r

and b
r

is a constant such that

An  C
2

6666664

b1 0 . . . 0

0 b2 . . . 0
...

...
...

...

0 0 . . . b
r

3

7777775

2

6666664

n1

n2

...

n
r

3

7777775


2

6666664

c1

c2
...

c
r

3

7777775

where the matrix A is defined by thresholds from complete partitioning policy (Beard,

2001).

The product �
r

b
r

denotes the o↵ered workload during busy period for resource

class r, where b
r

is computed by the product of the number of processors per resource
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class n
i

and the average service time t
r

. Thus the o↵ered load ↵
r

per resource class r,

measured in Erlangs, is given by n
i

⇤ �
i

⇤ t
i

. The average service time t
r

and average

arrival rate �
r

for every resource class r can be obtained easily from the analysis of

computational workload logs. In order to completely satisfy the resource requests of a

resource class, the number of nodes in that resource class r (C
r

) must be equal to the

o↵ered load of that resource class. Using this approximation equation, the researcher

determines the capacity of the system, for di↵erent values of blocking probability and

for the same given workload.

For the reliability analysis, the expected reliability for every resource class is

determined using the Weibull distribution described by Hacker (Hacker, 2010), as

listed below. The probability of node failure is given by,

F (�t, �, ⌧) = 1� e�(
�t

⌧

)
�

(3.4)

The reliability equation is complementary to the equation to compute probability

of failure, thus reliability for any resource class i is given by

R(�t, �, ⌧) = e�(
�t

⌧

)
�

(3.5)

where ⌧ is the scale parameter which is computed using,

⌧ =
MTTF

�
⇣
1 +

⇣
1
�

⌘⌘ (3.6)

� is the shape parameter, and [0, T ] is the time interval over which the value is

computed. In this research analysis this value is the measured node reliability for each

resource class r, where 1  r  R.

Substituting Equation 3.6 in Equation 3.5,

R(T, �, ⌧) = e
�
 
T⇤
 

�(1+( 1
�

))
MTTF

!!
�

(3.7)

Here, R(T, �, ⌧) is the reliability probability and is a real value between 0 and

1. For simplicity, this term is denoted as R
p

.
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By solving the Equation 3.7, an equation to compute the expected reliability

is obtained as follows,

0

@
T ⇤ �

⇣
1 +

⇣
1
�

⌘⌘

MTTF

1

A

�

= ln

✓
1

R
p

◆

0

@
T ⇤ �

⇣
1 +

⇣
1
�

⌘⌘

MTTF

1

A = ln

✓
1

R
p

◆ 1
�

MTTF =
T ⇤ �

⇣
1 +

⇣
1
�

⌘⌘

⇣
ln

⇣
1
R

p

⌘⌘ 1
�

(3.8)

To obtain the observed reliability of nodes in the system in terms of Mean

Time To Failure (MTTF), the system logs collected from the Coates compute cluster

at Purdue University is used, by measuring the time between reboots of each node

of the cluster as a proxy for time to failure for each node. Most system logs may

not have failure information from the start of system installation. This makes the

determination of MTTF over the operational lifetime of the system complex. The

MTTF is usually the sum of the mean time between failures (MTBF) and mean time

to repair (MTTR).

As many system logs fail to provide the MTTR information, the only information

that is available from most real-time system logs is the MTBF. Therefore, this reliability

analysis uses MTBF and MTTF interchangeably and considers the MTBF as the

observed reliability of nodes.

3.3 Analysis Methodology

The first step of this analysis begins with the selection of a resource allocation

policy to guide the allocation of nodes to job resource requests that suit most cluster

and cloud systems. Some of the resource allocation policies common today are complete

sharing, complete partitioning, upper limit policy and guaranteed minimum (Beard,
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2001). The researcher explores each of these four policies to select a suitable policy

for further analysis.

The complete sharing policy treats the entire system as a single common pool

of computing resources, where any resource request submitted to the system can be

admitted as long as there are free nodes available. Though this policy is simple to

implement, this policy makes it di�cult to limit the allocation of low reliability nodes

to tasks that require high reliability. Thus this policy is not e↵ective in managing the

allocation of reliable nodes to jobs.

Next, the researcher evaluates the complete partitioning policy. In this policy,

the entire system is divided into non-overlapping partitions. A partition is dedicated

to each resource class, so that a submitted resource request is admitted into the system

only if there are free nodes available in the partition dedicated to its resource class.

The drawback of this policy is that if the partition becomes full, the incoming tasks

are blocked or queued even if there are idle nodes available in other partitions. Thus,

the blocking probability of tasks seeking resources or queue lengths for some resource

classes increases significantly, which is not an agreeable situation, especially during

peak workloads.

The researcher next evaluates the upper limit policy and guaranteed minima

policies. In these policies, an upper and lower bound is placed on the number of

resources that can be allocated to tasks admitted into the system. Once these bounds

are reached, requests are blocked or queued even though there are idle nodes available

in the system. Unfortunately, these two policies would force reservation of high

reliability resources in the hope of admitting jobs demanding high reliability to those

partitions, in which case, these nodes could have otherwise been used to improve

overall reliability of lower reliability tasks.

After analyzing these resource allocation policies as discussed above, the

researcher selected a combination of the complete sharing policy and the complete

partitioning policy to take advantage of the benefits of both these allocation policies.

Here, using the complete partitioning policy, one partition per resource class is allocated
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for the high reliability demanding resource classes, with each partition having enough

nodes so as to minimize the probability of blocking resource requests. The other

resource classes which do not have dedicated partitions of their own are first directed

towards the low reliability partition and based on availability of nodes are allocated

to the higher reliability partitions. Within each partition, the nodes can be shared

and are allocated to resource requests using the complete sharing policy.

Conversely if a task requesting the highest reliability nodes finds the partition

full, the task is blocked or queued until the high reliability nodes are available, even

if there are low reliability nodes idle at that time. Using this approach, one ensures

that the jobs that need high reliability nodes will be allocated nodes with comparable

or greater reliability and at the same time the jobs with low reliability demand can

also be allocated the high reliable system nodes if those nodes are idle. Using this

approach improves the overall reliability of all jobs submitted to the system.

Once the resource allocation policy is selected, the second step is to compute the

reliability need of every resource class based on the service time and resource class size.

The researcher determines an expected reliability range (in MTTF, units in hours) for

every resource class in the system, using the reliability equation (Equation 3.6). This

is the reliability range for every task submitted to the corresponding resource class

within a range of reliability a minimum reliability of R
p

min

to a maximum reliability

of R
p

max

In the third step, using Beard’s approximation of the Erlang loss function in

Equation 3.1, the minimum number of nodes C
r

min

and maximum number of nodes

C
r

max

required to satisfy a given workload is derived. This range of number of nodes

per resource class depends on a range of blocking probability values that can be set

by the system administrator based on the incoming o↵ered workload. The minimum

value for blocking probability is 0 (i.e. no job requests are blocked), and maximum

value is B
p

which can be a real number between 0 and 1 (i.e. (B
p

⇤ 100)% of tasks are

blocked due to insu�cient resources).
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The ideal system size is the total number of nodes per resource class C
r

max

when blocking probability is 0. There will be adequate resources in the system to

satisfy all resource requests at peak load at this system size. Therefore, this equation

is an important tool to help cluster-based and cloud system providers decide the

maximum system size that should be provisioned to handle large incoming workloads

at peak periods.

Fourth, after determining C
r

max

and the expected reliability for each resource

class, the resource classes are then sorted in descending order of their reliability need.

To determine the resource class ranking, a cost function for each resource class is

computed, which is the product of service time t and resource class size (n
i

t
i

). The

classes with higher computed cost are the classes whose jobs have higher service time

and require large number of nodes to execute. In other words, the resource classes

with higher rankings are a↵ected the most when node failures occur.

Fifth, the equations used to determine the number of nodes per resource class

C
r

, can be generalized to a set of four di↵erent scheduling policies. Most cluster-based

computing systems today use one of these four scheduling techniques depending on

the applications they execute and the number of resources that they can provide.

These policies, described in detail by Hacker (Hacker & Mahadik, 2011), use blocking

or queuing techniques to allocate resources in the system based on node availability.

The sum of the number of resources for each partition represent the entire system

size needed to provide the desired probability of blocking for each resource partition.

These scheduling strategies are-

• Type I - All or nothing allocation policy

The Type I scheduling model uses the ‘all or nothing’ policy, to allocate resources.

The resources are either allocated immediately or completely blocked if resources

are not available in the system. Most cloud computing systems that provide

on demand software and infrastructure as a service use this policy (Hacker &

Mahadik, 2011). The number of nodes that would be required per resource
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class for a system using the Type I scheduling is given by rearranging the terms

Equation 3.1,

B
p

r

= 1� C
r

n
r

�
r

t
r

(3.9)

To determine the range of the number of nodes required to service a request

of resource class r, where 1  r  R, a probability of blocking B
p

= 0 is used

to compute the ideal number of nodes needed to satisfy all requests within a

resource class,

B
p

r

= 1� C
r

n
r

�
r

t
r

= 0

Thus,

C
r

= n
r

�
r

t
r

(3.10)

where C
r

is the total number of nodes needed by resource class r, n
r

is the

resource class size, t
r

is the average service time for class r, and �
r

is the average

arrival rate for each resource class.

To compute the number of nodes in any other case where blocking probability

B
p

is non-zero, using

B
p

r

= 1� C
r

n
r

�
r

t
r

= B
p

Thus,

C
r

= (1� B
p

) ⇤ n
r

�
r

t
r

(3.11)

From Equation 3.10 and Equation 3.11 the range of the number of nodes for all

resource classes r is obtained, where 1  r  R, which can be the generalized

representation for Type I scheduling policy for resource class capacity which is

o↵ered a blocking probability B
p

,

C
r

min

 C
r

 C
r

max

(1� B
p

)n
r

�
r

t
r

 C
r

 n
r

�
r

t
r

(3.12)



20

Using Equation 3.12 di↵erent values of C
r

min

for di↵erent values of blocking

probabilities B
p

are computed. This equation can be used to determine the

maximum number of nodes required in every resource class during peak load,

needed to service all job requests as well as the number of nodes required with a

non-zero blocking probability B
p

associated with each resource class.

• Type II - Partial allocation with blocking

A Type II scheduling strategy allows complete or partial allocation. This means

that a partial set of requested resources are satisfied while the remaining fraction

of resource requests are denied (Hacker & Mahadik, 2011).

A Type II scheduling policy allocates a fraction of requested resources and denies

the remainder without queuing. The equations used in Type I scheduling model

can be extended for Type II schedulers. In the event that a resource request is

blocked with a blocking probability B
p

r

for a class r, then the task may respond

with request for a smaller allocation satisfied with lower reliability nodes.

The resource classes are ranked in the descending order of computed expected

reliability, where each resource class’s reliability need depends on the service time

and the size of resource request. Thus, when a resource request for a resource

class r is denied, the request is directed to the next resource class (r � 1) in the

ranked list, which has lower expected reliability than nodes in resource class

r. The resource class (r � 1) may have same or di↵erent blocking probability

Bp
r�1.

Using Beard’s linear approximation (Beard, 2001) of Erlang B formula for

computing the blocking probability, the o↵ered load ↵
r

for every class is the

sum of the o↵ered load of the class r and load that was blocked by the previous

resource class. To compute the o↵ered load for each of the resource classes

1  r  R following equation is derived,
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↵
r

= n
r

�
r

t
r

+Bp
r�1(nr�1�r�1tr�1 +Bp

r�2

(n
r�2�r�2tr�2 · · ·+Bp2(n2�2t2 +Bp1n1�1t1)))

(3.13)

Once the o↵ered load for each class is obtained, the number of nodes required

per resource class C
r

for each resource class is computed iteratively using,

C
r

= (1� Bp
r

) ⇤
✓
n
r

�
r

t
r

+
Bp

r�1

(1� Bp
r�1)

C
r�1

◆
(3.14)

where 1  r  R and initial condition for the iteration C0 = 0.

For each resource class r, the number of nodes required when blocking probabilities

are 0 is computed using the following equation.

C
r

= n
r

�
r

t
r

(3.15)

This equation is similar to the linear approximation equation for Type I

scheduling policy (Equation 3.10), which infers that the maximum number

of nodes for each resource class, at blocking probability B
p

= 0, is same for all

the four scheduling policies, implying that system administrators can use this

value to determine the maximum capacity of a system that can be provisioned

to service busy periods for a given workload.

• Type III - Partial allocation and waiting

The scheduling model of Type III provides the option to partially fulfill the

request immediately and add the remaining part of a resource request to a queue

instead of blocking the resource requests (Hacker & Mahadik, 2011). As the

Type III scheduling policy maintains a queue for partially allocated resources,

the probability of queuing P
c

, the queue waiting time W and the length of queue

F for this policy are also computed.
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The Type II scheduling policy equations for computing number of nodes per

resource class can be extended to Type III scheduling policy as both these

policies use the concept of partial request allocation.

C
r

= (1� Bp
r

) ⇤
✓
n
r

�
r

t
r

+
Bp

r�1

(1� Bp
r�1)

C
r�1

◆
(3.16)

where 1  r  R and C0 = 0.

Using Equation 3.16 iteratively (which is the same as Equation 3.14), the number

of nodes for each resource class C
r

is computed. Further, using the Erlang C

formula and considering ↵
r

= �
r

t
r

, the equation to compute the probability of

queuing is derived using,

P
c

r

=
Bp

r

1�
⇣

↵

r

C

r

⌘
(1� Bp

r

)
=

C
r

Bp
r

(C
r

� ↵
r

) + (↵
r

Bp
r

)
(3.17)

where ↵
r

is the tra�c intensity of resource class r and C
r

is the number of system

nodes required per resource class, computed from Equation 3.16. Statistical

equilibrium is obtained only for ↵
r

< n, else the queue increases towards infinity

(Hacker & Mahadik, 2011).

Once the probability of queuing for each resource class is obtained using Equation

3.17, the average queue length F described by Zeng (Zeng, 2003) is obtained

using the following equation,

F
r

=
↵
r

(C
r

� ↵
r

)
Pc

r

(3.18)

The mean waiting time W for the jobs in queue is computed after the probability

of queuing Pc
r

is obtained by Little’s Law,

W
r

= Pc
r

t

(C
r

� ↵
r

)
(3.19)

where t is the mean service time for the resource class r and ↵
r

is the tra�c

intensity of each resource class.

• Type IV- Queue based allocation
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The Type IV scheduling strategy uses the complete queuing model where all

requests that require complete or partial allocation of resources are added to

queues. Most traditional HPC systems use this strategy for their resource

allocations where the entire request is queued until resources are made available.

The equations derived for Type IV use equations derived for Type I and Type

III scheduling policies. In this scheduling policy, the job requests that do not

have resources available immediately are added to a queue.

Following the derivation of Mahadik and Hacker (Hacker & Mahadik, 2011),

the number of nodes per resource class C
r

using the Erlang B approximation

formula derived for Type I scheduling policy is determined.

C
r

= (1� B
p

) ⇤ n
r

�
r

t
r

(3.20)

Further, using the Erlang C formula and considering ↵
r

= �
r

t
r

, the equation to

compute the probability of queuing is derived.

Pc
r
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Bp

r
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⇣
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r

C

r

⌘
(1� Bp
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)
=
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r
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r
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(3.21)

where ↵
r

is the tra�c intensity of resource class r and C
r

is the number of system

nodes required per resource class, computed from Equation 3.20. Statistical

equilibrium is obtained only for ↵
r

< n, else the queue increases towards infinity

(Hacker & Mahadik, 2011). The queue length and the mean wait time can be

computed using Equations 3.18 and 3.19.

The next step in this analysis determines the size and number of partitions

in the system. The number of partitions in the system S is the number of higher

ranking resource classes which have been assigned C
s

number of nodes, where C
s

is

the maximum of C
r

max

and resource class size n. When job requests of these higher

ranking resource classes are submitted to the system, the scheduler directs these

requests to the partition dedicated to them for resource allocation. For resource

requests of other resource classes with lower expected node reliability that have not
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been allocated partitions of their own, the resource requests will first be directed to

the lowest reliability partition in the system. If the requested partition is full then

the scheduler directs their request to the immediately next resource partition with

higher reliability. The scheduler checks for idle nodes in the subsequent partitions

with higher reliability, until the scheduler finds available resources in higher reliability

partitions or finds all partitions full. If all the high reliability partitions are full, the

request is blocked or queued until the high reliability nodes are available, even though

there are few low reliability nodes idle. This strategy ensures that resource requests

of every class are scheduled on nodes that have comparable or higher reliability than

requested, thus improving overall job reliability.

The next step is to determine the sorted list of physical nodes, ranked by their

observed reliability. For this, the researcher assesses the reliability of nodes based

on observations of node reliability derived from historic system logs. These values

are the mean time between failures for each system node. The nodes are ranked in

the descending order of this measured MTBF (in hours). Based on node reliability

history, Hacker and Romero (Hacker & Romero, 2009) describe an e�cient reliability

estimation approach based on a discrete semi-markov model that can also be used to

estimate node MTTF.

The final step in this analysis is to map each physical node to a resource class.

Based on the resource class ranking computed using the resource cost function, C
s

system nodes are distributed to each partition starting from highest ranking resource

class, moving down the ranks as long as nodes exist in the reliability-wise sorted pool

of resources.

In this analysis, there are S system partitions, each partition s where 0  s  S

has an associated weight W
s

, which is the total number of nodes in the partition

needed to service the given workload at a specified blocking probability B
p

. Each

system partition has an associated rank based on the reliability need of resource classes

submitted to the partition. The goal is to maximize the average reliability of the

partition using the maximizing condition given in Equation 3.22.



25

Thus the problem is to maximize

MTTF
s

=

P
C

s

i=1 Mr

C
s

Subject to the constraint

0  W
s

 C
s

(3.22)

An algorithm has been formulated that distributes N system nodes into S

system partitions with each partition s of size C
s

, such that the average partition

reliability (in MTTF) is maximized.

This algorithm takes as input a set of N system nodes and an array LIST of

size N, which stores the associated reliability Mi of each node. The system is divided

into S partitions. An array SIZE of size S stores the desired size of each partition.

Cs computed using Equation 3.11, 3.14 or is selected by an administrator (depending

on the desired allocation policy for each resource class). The output of the algorithm

is a list MTTF of size S, representing the computed average mean time to failure of

each partition, sorted in descending order of computed average partition reliability

such that

MTTF [1] �MTTF [2] � ... �MTTF [S]

where partition 1 corresponds to the highest reliability partition and partition S

corresponds to the least reliability partition.

TEMPORARY VARIABLES: i (iteration variable) , j (iteration variable) ,

temp (temporary assignment for swapping values), Crem (the current number of

system available nodes), o↵set (marker variable to indicate first node of each partition),

sum (stores the sum of reliabilities of all nodes in a partition)

1. begin pseudocode

2. //sort the list of node reliabilities in descending order

3. for i = 1 to N do

4. for j = i to N do

5. if LIST[ i ]  LIST[ j ] then
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6. temp  LIST[ i ]

7. LIST[ i ]  LIST[ j ]

8. LIST[ j ]  temp

9. end if

10. end for

11. end for

12. //compute the average reliability of each partition

13. Crem  N

15. o↵set  0

16. for i = 1 to S do

17. if Crem � SIZE[ i ] then

18. sum  0

19. for j = 1 to SIZE[ i ]

20. sum  sum + LIST[ j + o↵set ]

21. end for

22. MTTF[ i ]  sum / SIZE[ i ]

23. o↵set  o↵set + SIZE[ i ]

24. Crem  Crem - SIZE[ i ]

25. end if

26. end for

27. end pseudocode

This algorithm has a total time complexity O(N2) + O(N), where N is the

total number of nodes in the system. This is the total time required to sort all system

nodes N in the descending order of their associated node reliabilities, assign C
s

nodes

to each partition and then compute the average mean time to failure for each of the S

partitions.
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3.4 Variables

To assess the e↵ects of probability of blocking requests for each resource

class, the researcher uses a set of blocking probability values such that B
p

✏[0, 1], i.e.

B
p

= {0, 0.1, 0.2, 0.3, 0.4}, to compute the number of nodes per resource class C
r

for

each resource classes and for all scheduling policies. The maximum number of nodes

needed per resource class C
r

max

is computed for a blocking probability B
p

= 0. In

addition, the probability of queuing, queue waiting time, queue length is computed for

scheduling policies Type III and Type IV using the same set of blocking probability

values. Here the blocking probability B
p

is an independent variable used to compute

dependent variables the number of nodes per resource class C
r

, probability of queuing

P
c

r

, the average queue wait time W
r

, and queue length F
r

.

The o↵ered workload for the analysis is the computational workload log

submitted to the ANL BlueGene Intrepid supercomputer. These job submission

logs help derive the arrival times and mean service times of the submitted jobs for

each resource class.

The mean time to failure information for the system nodes, is the observed

reliability obtained from system logs. The scheduler attempts to assign hardware

based on the expected reliability need of jobs submitted to the system. The expected

reliability for every resource class is a dependent variable computed based on the

average service time t
r

and the size n of each resource class.

3.4.1 Hypothesis

The null and alternate hypothesis for this research is as follows:

H1
o

: There is no improvement in reliability for large and long-running jobs by

shifting assignment of high reliability nodes to these resource requests.

H1
a

: There is an increase in reliability of jobs with high reliability need by

assignment of high reliability nodes to these resource requests.
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H2
o

: There is no change in system e�ciency, as the total checkpointing

operation cost of the system nodes does not change after using the new methodology.

H2
a

: There is an increase in system e�ciency due to decrease in total

checkpointing operation cost of all system nodes after using the new methodology.

The statistical analyses to validate these hypotheses are shown in Appendix A.

3.4.2 Measure of Success

For the first hypothesis there would be an increase in reliability of jobs with

high reliability need by assignment of high reliability nodes to these resource requests.

To measure the success of this hypothesis, the reliability of jobs of these high

reliability-demanding jobs is measured in MTTF (in hours). If the reliability of

jobs after using the new node assignment is greater than the job reliability before

using this approach, the null hypothesis can be rejected. The acceptance of the first

alternate hypothesis indicates that the new resource allocation policy described in this

research is successful in improving reliability of the jobs with high reliability demand.

For the second alternate hypothesis to be true, the total cost of checkpointing

operation before using the new approach should be greater than the total cost of

checkpointing operation after using reliability guided resource allocation. To measure

this cost, the frequency of checkpointing operations is computed using Daly’s optimal

checkpointing interval, before and after applying the new methodology. Then the

total time spent in checkpointing, the checkpointing operation cost, is calculated for

all system nodes in units node-min.). If the computed cost before using reliability

awareness is greater than the computed cost after using this methodology, the new

technique described in this research is successful in improving overall system reliability.
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3.5 Summary

This chapter explained the framework, design methods, approach and the

assessment instruments useful for this research. The next chapter details the evaluation

results from the analytical model.
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CHAPTER 4. EVALUATION OF ANALYSIS METHODOLOGY

4.1 The System and Workload Description

In order to understand the e↵ect of this developed methodology on reliability

and probability of blocking, the researcher evaluated this approach on a hypothetical

cluster using historic logs from large-scale supercomputers to study the overall impact

of this approach on real systems. To keep this analysis as real as possible, the

computation workload and Reliability Availability and Serviceability (RAS) logs used

in this research are of the ANL Blue Gene/P system Intrepid (ANL Intrepid Log,

2009). To understand the observed system node reliability pattern, the system failure

logs of the Coates cluster at Purdue University are analyzed.

The reference system in this research is comprised of a 40960 uni-processor

cluster with 2TB total memory. The computation workload used in this analysis

contains 8 months of accounting records of all jobs submitted to the Intrepid from

January 1, 2009 and finished before September 1, 2009. These logs mainly consist of

jobs for scientific and engineering computing applications. As the minimal partition

size on the system Intrepid is 64 nodes, the smallest resource class in this reference

system is used as 64 (ANL Intrepid Log, 2009).

The fields of interest observed from the log file are:

• Job number

• Submit time (in seconds)

• Running time (in seconds)

• Requested number of processors
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Figure 4.1.: Load distribution based on resource requests

Analyzing the values in the log, a graph of the number of processors requested

versus the number of jobs submitted (these values are derived from the log) as shown

in Figure 4.1 is plotted based on the data shown in Table 4.1. The researcher observed

that 95.89% of the 68936 resource requests submitted to the system obey the pattern

of powers of two, which verifies one of our fundamental assumptions, thus enabling us

to make logical partitions called resource classes as powers of two.

The computed parameters shown in Table 4.2 include the average arrival rate �,

the average service time t per resource class and the total number of jobs J submitted

to the resource class. Table 4.2 represents the stochastic workload parameters derived

from Intrepid’s scheduling logs. The parameters computed here are for the period

from 1st April, 2009 to 15th June, 2009. This peak load period has been provided in

the documentation on the Parallel Workloads Archive website (ANL Intrepid Log,

2009) in the graph of o↵ered load (on y-axis) versus time in months (on x-axis).

4.2 Reliability Computation

After computing the workload parameters for the resource classes, the expected

reliability for each class is computed using (Hacker & Meglicki, 2007)

MTTF =
T ⇤ �

⇣
1 +

⇣
1
�

⌘⌘

(ln(1/R
p

))(1/�)
(4.1)
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Table 4.1: Distribution of Number of Requested Processors from ANL-Intrepid logs

Number of Processors Number of Jobs Percentage of

Requested Submitted total jobs

1 1749 2.54

2 179 0.26

4 821 1.19

8 684 0.99

16 1558 2.26

32 647 0.94

64 2464 3.57

128 1242 1.80

256 10381 15.06

512 11284 16.37

1024 3686 5.35

2048 15239 22.11

4096 10540 15.29

8192 1882 2.73

16384 1981 2.87

32768 1268 1.84

65536 328 0.48

131072 171 0.25

Total 66104 95.89
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Table 4.2: Workload parameters

Resource Resource Average Average Number of

Class Class Service Time Arrival Rate Jobs

Size t (hrs) � (1/hrs.) Submitted

(n) (J)

1 64 0.476 4.327 8102

2 128 0.257 0.936 1242

3 256 0.347 0.699 10381

4 512 2.074 3.912 11284

5 1024 1.608 2.239 3686

6 2048 2.152 1.238 15239

7 4096 1.679 0.726 10540

8 8192 1.999 0.690 1882

9 16385 1.207 0.549 1981

10 32768 0.896 0.510 1268

11 40960 0.504 0.625 499
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where MTTF is the mean time to failure, � is the shape parameter of the Weibull

reliability distribution, R
p

is the reliability probability and T is the service time of

95% of the jobs of each resource class.

The value of � is obtained from field data and taken as 0.7 (Hacker, 2010).

The expected reliability MTTF is computed for a range of reliability probabilities

R
p

✏ {0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95, 0.99}, as shown in Table 4.3. This

computed value is the reliability needed for any node in the system to execute a job

completely, across N nodes to achieve a reliability of R
p

. This also implies that the

average MTTF of the nodes that could be allocated to the job (across all the nodes in

the partition) need to be greater than or equal to the computed MTTF for a given

reliability R
p

.

In the next step the resource classes are sorted based on the resource cost

function, which is the product of service time T and the resource class size n. This

ranking represents the relative reliability need of the resource classes based on the

number of processors and running time needed for jobs assigned to each resource

class. Table 4.4 lists the computed resource cost and the resource class ranks. Higher

resource costs indicate greater reliability need for the resource class.

Next, the number of nodes needed per resource class to satisfy the o↵ered

workload is determined as described in Table 4.2 constrained by a blocking probability

B
p

for the four scheduling policies using Equation 3.11 for Type I and Type IV and

using Equation 3.14 for Type III and Type IV. In all these computations a range of

blocking probabilities B
p

✏{0, 0.1, 0.2, 0.3, 0.4} respectively is used to understand the

minimum and maximum capacity of the system.

Figure 4.2 depicts the number of nodes per resource class needed to achieve the

blocking probability B
p

for the Type I and Type IV scheduling policies. This graph

also displays the maximum system capacity required at di↵erent blocking probabilities

(B
p

). Similarly Figure 4.3 shows the number of nodes per resource class for the Type

II and Type III scheduling policies along with the maximum system capacity for the

specified blocking probability.
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Table 4.4: Reliability cost function

Resource Resource Service Cost New Class

Class Class Time T Function Rank

Size (in hrs.) (node hrs.)

1 64 1.007 64.448 11

2 128 0.878 112.384 10

3 256 1.014 259.584 9

4 512 8.37 4285.440 8

5 1024 7.139 7310.336 7

6 2048 7.727 15824.896 6

7 4096 7.041 28839.936 5

8 8192 10.701 87662.592 3

9 16384 6.013 98516.992 1

10 32768 3.005 98467.840 2

11 40960 1.274 52183.040 4
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Figure 4.2.: Number of nodes for each resource class for Type I and Type IV needed

to achieve blocking probability B
p

Figure 4.3.: Number of nodes for each resource class for Type II and Type III needed

to achieve blocking probability B
p
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An important inference from Figures 4.2 and 4.3 is that, as the probability of

blocking requests increases for a resource class, the number of nodes required by the

resource class decreases. This observation leads to infer that the blocking probability

B
p

and the number of nodes per resource class C
r

have an inverse relationship. This is

also verified by observing the minus sign in Equations 3.11 and 3.14, which represents

a linear relation between B
p

and C
r

with a negative slope. In systems having di↵erent

blocking probabilities for di↵erent resource classes, an increase in blocking probability

in a higher ranking resource class increases the job reliability in lower resource classes,

because the higher reliability nodes in the system will now be available and can be

assigned to resource requests from lower resource classes.

Once the number of nodes per resource class C
r

is obtained for all the four

scheduling policies, the queuing characteristics for Type III and Type IV scheduling

policies are computed. The three main queuing characteristics include probability of

queuing P
c

, the queue length F and the queue waiting time W . The graphs in Figure

4.4 and Figure 4.5 show that the e↵ect of blocking probability on the probability of

queuing a task in the queue, the queue length and the queue waiting time for a range

of blocking probabilities are directly related. This indicates that, as the blocking

probability B
p

of a resource class increases, the number of resource requests that

would be satisfied decreases and forces job requests to be added to the system queue.

Further, more jobs in the queue results in larger queue lengths and consequently

impacts the waiting time of jobs in the queue.

The next step is to determine the number of system partitions S and the size

of each partition C
s

. To find the size of each partition, the number of nodes needed

per resource class is computed at a specified blocking probability B
p

. Table 4.5 lists

the maximum number of nodes C
r

max

i.e. C
r

at blocking probability B
p

= 0, the total

number of nodes needed per resource class C
r

for blocking probabilities 0.1 and 0.2

for the four scheduling policies and the new class ranking based on computed resource

cost. For Type I and Type IV scheduling policies, using Equation 3.11 the number of
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Figure 4.4.: E↵ect of Blocking Probability on Queue Characteristics for Type III
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Figure 4.5.: E↵ect of Blocking Probability on Queue Characteristics for Type IV
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resources per resource class C
r

is computed and for Type II and Type III Equation

3.14 are used.

The C
r

values in Table 4.5 are the number of nodes required by a resource

class in a system using a pure complete sharing resource allocation policy, in which

case all resources are shared and resource requests can be accepted into the system as

long as there are system nodes available. In this research, the new resource allocation

policy is used which is a combination of complete sharing and complete partitioning

policy. Thus the number of nodes in each partition C
s

is the maximum of number of

nodes required by the resource class C
r

at the specified blocking probability B
p

or

the resource class size n. Hence, the total number of partitions in the system S is the

total number of resource classes that have been assigned nodes. As the total number

of nodes per system partition C
s

varies based on blocking probability B
p

, the number

of system partitions S also varies.

Note that the allocation in Table 4.5 is based on a reference system size of

40960 with an o↵ered workload during the busy period distilled from a system. In

some cases, the o↵ered workload for some of the partitions is low and the partition

size is less than the resource class size. These partition sizes can be scaled up as a

function of the overall system size, assuming that the aggregate stochastic reliability

characteristics of the increased node population are similar. If there is a need to

increase the partition size for a resource class, the overall system size can be scaled up

by the same fraction to provide a larger population of nodes to assign to the resource

class. Since the added nodes (assuming a su�ciently large number of new nodes) are

samples from a large population, the distribution of node MTTFs should follow the

distribution of the entire system. Thus, as the overall system size increased, partition

sizes can be scaled up, and if the sum of the partition sizes is less than overall system

size, the scheduler will be able to avoid scheduling the worst nodes to any partition.

Next, the analysis proceeds to the mapping of resource classes to the actual

physical nodes. The larger resource classes and long-running jobs usually demand high

reliability nodes in the system, as the impact of system failures on these applications is
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drastic. System failures can increase overall runtime and checkpointing e↵ort needed

for long running jobs. Therefore, it is preferable to assign nodes with higher inherent

reliability to the higher ranked resource classes. The node failure patterns from the

system logs of the Coates Cluster at Purdue University is observed and the researcher

assumes that the node failure pattern for the reference system of 40960 nodes follows

that of Coates. As the average Mean Time to Failure obtained from the system logs

is 10250.67 hours, the hypothetical cluster is also considered to have system MTTF as

10250.67 hours.

To understand the e↵ect of blocking probability on partition reliability, the

assigned reliability of each partition at blocking probability B
p

= 0.1 and B
p

= 0.2 is

observed. Using the algorithm described in the analysis section of this reserach, the

40960 cluster nodes are distributed among each resource class such that each resource

class is assigned C
s

system nodes. Tables 4.6 and 4.7 list the system partitions, the

partition sizes and their corresponding average mean time to failure for the four

scheduling policies at blocking probability B
p

= 0, B
p

= 0.1 and B
p

= 0.2. Separate

partitions are not assigned for the two largest resource classes of size 32768 and 40960

as they require a minimum of all system nodes for each job. Since these two large

partitions would select from the entire system, the node assignment begins with the

most reliable node in the system for the 16384-resource class size.

From these tables it is evident that as the probability of blocking increases

the reliability of resource classes also increases. However, in further analysis and

computations the partition size and the assigned reliability corresponding to a blocking

probability B
p

= 0 is used, so that the minimum reliability improvement this

methodology can guarantee for the given workload can be observed.

4.3 Analysis Results

After the new assigned reliability for every resource class is obtained, which is

achieved by directing the resource classes to reliable partitions, the overall reliability
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improvement achieved when using this methodology is measured. For this, the

reliability probability R
p

for the old approach, using Equation 3.7, at time T , which

is the service time of 95% of jobs submitted per resource class, � is 0.7 and using

MTTF as 10250.67 hours is computed first. Then, the reliability probability R
p

for

the new approach using the same equation and parameters but with the new MTTF

obtained by directing resource requests with high reliability need to the nodes with

high reliability is computed.

Table 4.8 lists the reliability probability R
p

values for the current complete

sharing policy (old) and the new mixed approach (new). From this table, it can be

observed that in the old approach, resource classes demanding higher reliability su↵ered

reduced average node reliability due to the assignment of lower reliability nodes to

the resource classes. Using the new approach, the resource classes demanding higher

reliability have a resulting higher R
p

value from avoiding relatively low reliability

nodes. This verifies that the researcher’s approach has been successful in improving

the reliability of resource classes with higher reliability requirement. Although these

percentages seem small, recall that this di↵erence reflects a di↵erence in two power

functions. Thus, a small percentage di↵erence can make a significant impact on actual

reliability experienced by a parallel application.

To understand the impact of this di↵erence on the running costs of large parallel

applications, this methodology is evaluated using the e↵ects on Daly’s checkpoint

interval (Daly, 2003). The process of checkpointing involves taking snapshots of

applications that run on large systems to help fault tolerance and system recovery.

Low reliability increases checkpointing frequency especially when the task is large,

making this an expensive and time-consuming operation (Naksinehaboon et.al, 2008).

Using this new approach of reliability guided resource allocation policy, the reliability

of these large tasks can be improved by spending less time on checkpointing operations.

To understand the e↵ects of the reliability change in this analysis, the researcher
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to analyzed the impact on the optimal checkpoint interval (Daly, 2003), (Hacker &

Meglicki, 2007)

⌧
opt

=
p
2�MTTF � � (4.2)

where � is checkpoint latency and MTTF is the mean time to failure.

To determine the improvement achievable using this allocation strategy, the

optimal time interval between checkpointing operations is computed using a system

of equations with the expected reliability (MTTF 1) and the new assigned reliability

(MTTF 2) possible from selecting a node from any node in the system. In the equations

�1 and �2 is the checkpointing latency using the expected and assigned reliability.

⌧1 =
p

2�1MTTF 1 � �1

⌧2 =
p

2�2MTTF 2 � �2

The di↵erence between the two equations above gives the improvement in

optimal checkpointing interval. Assuming �1 = �2 = �, as the same workload is being

used and the checkpoint interval is being computed for the same resource classes, the

change in checkpointing interval is computed as follows,

⌧2 � ⌧1 =
p
2�MTTF 2 �

p
2�MTTF 1 (4.3)

Using Equation 4.3 to measure reliability improvement in this analysis, this

methodology is tested if it has succeeded in increasing the interval between two

checkpointing operations thus minimizing time to perform expensive checkpointing

operations. A decrease in checkpointing intervals indicate significant improvement in

reliability of jobs and saves precious computation time.

For a positive improvement in overall reliability,

⌧2 � ⌧1 > 0

p
2�MTTF 2 >

p
2�MTTF 1

MTTF 2 > MTTF 1
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MTTF 2

MTTF 1
> 1 (4.4)

Using Equation 4.4 for comparing reliabilities before and after using this new

methodology, the overall reliability improvement of our methodology is measured. The

reliability improvement is represented as a scale factor by computing the ratio of new

assigned reliability (MTTF 2) from the approach to the reliability assigned to each

resource class (MTTF 1) prior to using the new strategy. The assigned reliability for

each resource class without reliability guidance, i.e. MTTF1 is the system MTTF value

10250.67 hours. Ratios greater than one indicate a significant increase in reliability by

using our approach, ratios equal to one indicate no significant change in reliability and

ratios less than one do not benefit much from this methodology. Table 4.9 lists the

ratio of assigned reliability MTTI2 for blocking probability B
p

values 0, 0.1 and 0.2.

In this table, the higher resource classes have ratios greater than one, implying that

the large and long-running jobs benefit from our reliability guided node assignment.

However, this reliability improvement is achieved at the cost of decreased reliability in

the lower resource classes.

After the improvement in optimal checkpointing interval by using our methodology

is computed, the actual cost or gain to parallel applications from this change needs to

be computed. If an optimal checkpoint interval ⌧ (in minutes) is computed, which is

the time elapsed between two checkpointing events for a resource class, with a given

checkpointing latency � (in minutes), which is the time required to save a checkpoint,

over N nodes, then the cost of a checkpoint operation can be quantified as � ⇤ N ,

which would be the overall work required for one checkpoint operation. Given a fixed

�, the change in the optimal checkpoint interval ⌧ that results from a change in the

MTTF experienced by a parallel application can be computed.

If checkpointing occurs several times per day (or per hour), the overall cost

di↵erence for checkpointing using the new approach would then be

�Cost =
(60min.)

⌧2
�N � (60min.)

⌧1
�N

�Cost = 60�N

✓
1

⌧2
� 1

⌧1

◆
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Thus, as N or � increases, the cost of a single checkpoint operation increases.

If ⌧ decreases, which means more frequent checkpoint operations, the cost increases.

Now, if the checkpoint interval ⌧ increases by some fraction Q, the corresponding

work and costs for the checkpoint operation also decreases by a proportional amount.

To compute this checkpointing cost the value of � and ⌧ is to be obtained. For

all practical purposes, the value of the checkpointing latency � should be less than the

service time of the job, so that the computing power of the processors is spent in doing

useful work than in checkpointing operations. In most large cluster-based computing

systems in use today, the checkpointing latency is of the order of 4 to 5 minutes.

Considering an upper bound for � as 10 minutes in this analysis, the checkpointing

interval ⌧ is computed using Equation 4.2.

Table 4.10 highlights the change in the optimal checkpoint interval using

Equation 4.3 and the change in time required for a checkpointing operation for each

resource class computed using Equation 4.5. From this table, a significant increase

in the optimal checkpointing interval and the total node time saved by minimizing

checkpointing frequency for higher resource classes is observed. The total time spent

on checkpointing operations for the highest ranking resource class decreases by 1806.09

node-min. per hour, but at the cost of increasing the total checkpointing time for all

lower resource classes by 1428.67 node-min. per hour. From these two values, the

total time saved by reducing frequency of checkpointing operations of higher resource

classes is approximately 377.42 node-min. per hour. This precious computation time

can be used by the system to perform useful work.

Using these evaluation techniques it can be observed that by using our

methodology, it is possible to achieve a significant improvement in reliability of jobs

requesting large number of resources and having long service times. This methodology
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also helps cluster providers to determine the maximum capacity of their systems that

should be provisioned to have negligible probability of blocking resource requests,

especially at busy periods.

4.4 Summary

This chapter explained the steps and e↵ects of the researcher’s methodology on

a computational workload from the ANL BlueGene supercomputer Intrepid. The next

chapter simulates this analysis on a hypothetical cluster using the Haizea scheduler

for resource allocation.
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CHAPTER 5. SIMULATION

5.1 Simulation Approach

To measure the benefit of the new methodology from simulation, the e↵ect of

system failures on jobs of each resource class were observed. The simulated cluster

consisted on 40960 uniprocessor nodes, each node having reliability similar to the

reliability characteristics observed in the system logs from the Coates Cluster.

To ensure consistency and comparability, the same o↵ered workload logs used

in the analysis phase of this research is used in the simulation. For the simulation

the new partitioning policy, which is a combination of complete sharing and complete

partitioning policy is implemented. Thus, a total of five system partitions was used,

with each partition size corresponding to blocking probability B
p

= 0 as shown in

Table 4.6.

To measure the e↵ect of failures on resource classes, the researcher generated

these simulated failures. For this purpose, the discrete-event simulation to model

the operation of the system as a discrete sequence of events in time was used. Each

event occurs at a particular instant in time and marks a change of state in the system

(Robinson, 2004). Between consecutive events, no change in the system is assumed to

occur; thus the simulation can directly jump in time from one event to the next.

5.2 Simulation Software

In order to simulate the scheduling decisions of a real-time computing system,

the Haizea (Sotomayor, 2009) scheduler was used. It is an open-source virtual

infrastructure manager to control resource requests in cluster-based systems, in the
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simulated mode. In Haizea, resources are allocated through protocols called leases for

a wide range of resource class sizes in the system.

Haizea’s architecture is comprised of (Hacker & Mahadik, 2011):

• Request frontend, that is responsible for accepting lease requests, be it from

Open Nebula (Milojicic et.al, 2011) , interactively from a command-line interface,

or from a trace file

• Scheduling core, for processing leases and scheduling decisions

• Enactment module which communicates with the cluster by providing sequence

of instructions that are generated by the scheduler

In this simulation, the unattended mode of Haizea was used for which we

converted the computational workload logs of the ANL Blue Gene system Intrepid

into a trace file using a Perl script. The trace file is an XML file containing a list of

job requests written in the form of leases, where each lease contains information about

the number of nodes required, the start time, the duration of the task and lease id as

XML elements. The Haizea scheduler requires the Haizea configuration file (specifying

the configuration options for the simulation) and the request trace file as inputs to

generate scheduling decisions for the given workload as an output.

The source code was modified to add simulated node failure by altering the list

of available resources in the resource pool during the simulation run at discrete time

steps to give an illusion of an increase or decrease in node availability. As a result,

the scheduler alters scheduling decision of resource requests submitted to the system,

which is studied by the researcher.

To simulate node failures, the first task was to determine the system nodes

that were going to fail. Based on the understanding of node reliabilities of each system

node from the analysis phase of this research, a file containing the list of system nodes

with least node reliability was created. By storing the failure prone node list in a file,

this experiment guaranteed persistence, repeatability of experiment and ensured that

same nodes fail in all simulation runs.
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After creating this list, the researcher determined the time between these

simulated failures. In real systems, node failures usually show spatial and temporal

clustering and the time between system failures follows a Weibull distribution. However,

due to limitations in Haizea to run large simulations, the researcher used a time interval

of one simulated hour between simulated system failures to ensure that our simulation

completes within reasonable time. Hence the node failures in our simulation do not

show temporal clustering. If we used a Weibull distribution of time between failures

within the limitations of the Haizea simulation, the failure density over time would be

much less and the simulation would take excessively long time to compute. Hence the

node failures in this simulation do not show temporal clustering.

Using the node failure information file, the simulation was run two times -

once without using reliability guided scheduling, and the second time after adding

reliability mappers in the code. In the first simulation run, as the scheduler was not

aware of system reliability information the simulator treated all nodes as identical

and replaceable components, hence selected system nodes randomly from the resource

pool for resource allocation.

For the second simulation run (using our methodology), the trace file was

modified to add the reliability characteristics of every node as well as added the

reliability requirement of every resource request. The second simulation used the same

node failure distribution file used in the previous run, but this time along with the

node reliability information of each node. This information was given to the scheduler

in the form of a node map as shown in Table 5.1. This table contains the system node

information along with their reliability range (which groups system nodes based on

reliability in bins of 500 hours), the total number of system nodes in each reliability

range and the actual mapping of system nodes based on reliability. This reliability

node classification helps the scheduler to assign the reliable nodes to jobs with high

reliability demand.

The scheduler’s source code was modified to add reliability constraints to ensure

that though lower reliability nodes are idle, the resource requests are satisfied by
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Table 5.1: Reliability Range and Site Node mapping for simulation to facilitate

reliability guided approach

Reliability Range Number of nodes Physical System Nodes

in each range in reliability range

(in hours)

1 14000-13500 1470 40960-39490

2 13500-13000 2520 39489-36970

3 13000-12500 1995 36969-34975

4 12500-12000 2940 34974-32035

5 12000-11500 1785 32034-30250

6 11500-11000 2625 30249-27625

7 11000-10500 3255 27624-24370

8 10500-10000 4200 24369-20170

9 10000-9500 4305 20169-15865

10 9500-9000 4620 15864-11245

11 9000-8500 3237 11244-8008

12 8500-8000 3536 8007-4472

13 8000-7500 3640 4471-832

14 7500-7000 832 831-1

Total 40960

allocation of only those nodes with comparable or higher reliability. This allowed

the scheduler to assign reliable system nodes to resource requests that have a high

reliability need, thus ensuring reliability guided scheduling decision. Figure 5.1 shows

the frequency histogram for each reliability ranges of system nodes.
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Figure 5.1.: Frequency histogram for reliability range of system nodes
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5.3 Simulation Results

After the simulation runs as per the simulation methodology discussed above,

the scheduling decision and failure summary report stored in the log files of the first

and second simulation run were analyzed. As the total number of node failures for

both simulation runs were kept the same, the only di↵erence observed between the

two log files was a di↵erent failure pattern in resource requests or job failures. Table

5.2 summarizes the total number of failures using the old and new strategies.

From Table 5.2, the researcher observed that number of node failures occurring

during the lifetime of higher resource class jobs is higher when using the old approach.

The results for the simulation run after using our methodology improves reliability

of higher resource classes by enabling scheduling decisions taking into account the

reliability need of resource classes as well as the node reliability on which these requests

are scheduled.

From the simulation runs the researcher observed several characteristics. First,

the researcher observed a decrease in the total number of jobs failed for higher resource

classes on using the new methodology as compared to the number of job failures

for the same resource classes without our approach. Secondly, the total number of

node failures in partitions have shifted from large long running resource classes to

lower resource classes by using our new partitioning strategy, that is a combination

of complete sharing and complete partitioning policy. Thirdly, a significant positive

impact was observed in higher resource classes that have very high cost of application

failure, by noticing a considerable decrease in failure rate for these resource classes,

however at the cost of an increased failure rate in the lower resource classes.

Thus from these observations it is evident that this methodology is successful in

improving the reliability of large and long-running jobs by adding reliability awareness.
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5.4 Summary

This chapter justifies that this methodology can be implemented on a scheduler

and highlights reliability improvement based on simulation results. The next chapter

concludes this research thesis and explains the major benefits of using this newly

developed methodology.
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CHAPTER 6. CONCLUSION

Resource allocation in cluster computing systems with node reliability awareness

can improve overall system reliability by making clusters resilient to system failures.

Adding reliability-based resource mappers in schedulers, taking into account the

reliability need of admitted jobs as well as the hardware reliability of the resources on

which these jobs are scheduled, can have a significant impact in improving the overall

reliability and e�ciency of the cluster computing system.

This research has developed a new approach that uses a combination of complete

sharing policy and a selective complete partitioning strategy. This strategy gives

the advantage of high system utilization - a characteristic of complete sharing policy

- and the minimized blocking probability benefit of complete partitioning policy.

This partitioning policy ensures that resource requests of classes with high reliability

need are assigned to system nodes with comparable or higher reliability value, thus

guaranteeing them an improvement in job reliability, however at the cost of increased

failure rate for lower resource classes. This scheduling policy provides flexibility.

Resource requests of di↵erent resource classes can be combined from a combined

partition to improve overall job reliability for the lower resource classes and to provide

a large pool of resources. However such combinations should be selected carefully,

since the average reliability may be reduced.

This approach has shown significant improvement in the reliability of jobs,

especially the large and long running jobs, and resulting in an increase in the optimal

checkpoint interval for these jobs. It is important to note that all our results have

been determined for a system size of 40960 nodes, for a larger system size there will

be greater improvement in reliability. Large-scale computing system providers to

determine the size of the system that should be provisioned to service job requests

at busy periods can use this methodology. This new algorithm can be immediately
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incorporated into existing schedulers without the need to invest in new hardware or

architecture modifications.
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CHAPTER A. STATISTICAL ANALYSIS

Table A.1: Expected and observed assigned reliability from analysis for each resource

class at blocking probability B
p

= 0

Resource Resource Observed Expected

Class Class reliability from reliability from

Size analysis analysis

1 16384 12102.93 10250.67

2 32768 10250.67 10250.67

3 8192 9826.9 10250.67

4 40960 10250.67 10250.67

5 4096 8907.62 10250.67

6 2048 8168.4 10250.67

7 1024 7669.14 10250.67

8 512 7669.14 10250.67

9 256 7669.14 10250.67

10 128 7669.14 10250.67

11 64 7669.14 10250.67
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Table A.2: Expected and observed assigned reliability from simulation for each

resource class at blocking probability B
p

= 0

Resource Resource Observed Expected

Class Class reliability from reliability from

Size simulation simulation

1 16384 12174.33 10255.04

2 32768 10255.04 10255.04

3 8192 9841.57 10255.04

4 40960 10255.04 10255.04

5 4096 9101.44 10255.04

6 2048 8123.67 10255.04

7 1024 7602.69 10255.04

8 512 7602.69 10255.04

9 256 7602.69 10255.04

10 128 7602.69 10255.04

11 64 7602.69 10255.04
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Table A.3: Checkpointing operation cost di↵erence from analysis and simulation for

each resource class at blocking probability B
p

= 0

Resource Resource Checkpointing Checkpointing

Class Class Operation Operation

Size Cost Cost

Simulation Analysis

(in node-minute) (in node-minute)

1 16384 1862.38 1806.09

2 32768 0.00 0.00

3 8192 -236.06 -242.29

4 40960 0.00 0.00

5 4096 -349.37 -413.54

6 2048 -351.52 -342.13

7 1024 -229.81 -222.31

8 512 -114.91 -111.15

9 256 -57.45 -55.58

10 128 -28.73 -27.79

11 64 -14.36 -13.89

Table A.1 lists the observed and expected reliability from analysis and the

Table A.2 lists the observed and expected reliability from simulation. The P value for

the analysis data is 0.003775 and for simulation data the p-value is 0.004358, which

makes both these results significant at p <0.05. As the p-values for the analysis

and simulation are less than 0.05, we can reject the null hypothesis, and accept the

alternate hypothesis that there is an increase in reliability of jobs with high reliability

need by shifting assignment of high reliability system nodes to these resource classes.
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Table A.3 lists the checkpointing operation cost for each resource class from

simulation and analysis. The total cost benefit i.e. the total time saved in by reducing

checkpointing operations is 481.18 node-minute per hour from simulation and 377.42

node-minute per hour from analysis data. These results show a significant improvement

in system e�ciency, thus we reject the second null hypothesis and accept the alternate

hypothesis that our methodology is successful in increasing system e�ciency by

decreasing total checkpointing operation cost.
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CHAPTER B. DATA PROCESSING SCRIPTS

First the computational workload input file ANL-Intrepid-2009-1.swf from

the ANL BlueGene Intrepid supercomputer is converted to job log.txt using the awk

command on the terminal. The contents of this job log.txt file are shown in Figure

B.1.

This file is formatted to represent the time fields in suitable format (time in

seconds is converted to DD: HH:MM:SS format) using the Perl script - log to lwf.pl,

as shown below,

#!/usr/bin/perl

open SOURCE, "< job_log.txt" or die "Could not open sample data input file";

open OUTPUT, "> data_in_lwf.txt" or die "Could not open sample output file";

while(<SOURCE>)

{

($JOB_ID,$ARR_TIME, $SER_TIME,$NUM_NODES) = split (/ \s/,$_);

printf OUTPUT "%d ",$JOB_ID;

$sec = $ARR_TIME;

$d = int(($sec/3600)/24);

$h = ($sec/3600)%24;

$m = ($sec/60)%60;

$s = $sec%60;

printf OUTPUT "%.2d:%.2d:%.2d:%.2d ",$d,$h,$m,$s;

$sec = $SER_TIME;

$d = int(($sec/3600)/24);
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Figure B.1.: Input computational workload file with job id, submitted time, service

time and job size (job log.txt file)

$h = ($sec/3600)%24;

$m = ($sec/60)%60;

$s = $sec%60;

printf OUTPUT "%.2d:%.2d:%.2d:%.2d ",$d,$h,$m,$s;

$num = $NUM_NODES ;

printf OUTPUT "%d\n",int($num/4);

}

close SOURCE;

close OUTPUT;

The above script generates the output file data in lwf.txt, shown in Figure B.2.

This file is the lease workload format (LWF) and is converted into a trace file using

the Perl script lwf in xml.pl, shown below.
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Figure B.2.: Lease Workload Format file created using a Perl script having job id,

submitted time in human timestamp format, job duration and job size

(data in lwf.txt)
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#!/usr/bin/perl

use XML::Writer;

use IO::File;

my $output = new IO::File("> lwf_to_xml.xml");

open(FILE, "< data_in_lwf.txt ") || die("Can’t open text file");

my $writer = new XML::Writer(OUTPUT => $output,NEWLINES => 1);

$writer->xmlDecl("UTF-8");

$writer->startTag("lease-workload","name"=>"sample");

$writer->startTag("description");

$writer->characters("This is a trial conversion of .txt to .xml");

$writer->endTag("description");

#Site Information tags

$writer->startTag("site");

$writer->startTag("resource-types","names"=>"CPU Memory Reliability");

$writer->endTag("resource-types");

$writer->startTag("nodes");

$writer->startTag("node-set","numnodes"=>"40960");

$writer->startTag("res","type"=>"CPU","amount"=>"4");

$writer->endTag("res");

$writer->startTag("res","type"=>"Memory","amount"=>"2");

$writer->endTag("res");

$writer->startTag("res","type"=>"Reliability","amount"=>"95");

$writer->endTag("res");

$writer->endTag("node-set");
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$writer->endTag("nodes");

$writer->endTag("site");

#Lease Requests

$writer->startTag("lease-requests");

while (<FILE>)

{

# ANL Intrepid Logs (69436 job requests)

($JOB_ID,$ARR_TIME, $SER_TIME, $NUM_NODES) = split(/ /, $_);

($myduration,$tchr)=split(/\n/,$SER_TIME);

$writer->startTag("lease-request","arrival"=>$ARR_TIME);

$writer->startTag("lease","preemptible"=>"true");

$writer->startTag("nodes");

$writer->startTag("node-set","numnodes"=>int($NUM_NODES));

$writer->startTag("res","type"=>"CPU","amount"=>"4");

$writer->endTag("res");

$writer->startTag("res","type"=>"Memory","amount"=>"2");

$writer->endTag("res");

$writer->startTag("res","type"=>"Reliability","amount"=>"3");

$writer->endTag("res");

$writer->endTag("node-set");

$writer->endTag("nodes");

$writer->startTag("start");

$writer->endTag("start");

$writer->startTag("duration","time"=>$myduration);

$writer->endTag("duration");

$writer->startTag("software");

$writer->startTag("disk-image","id"=>"foobar.img","size"=>"1024");

$writer->endTag("disk-image");
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$writer->endTag("software");

$writer->endTag("lease");

$writer->endTag("lease-request");

}

$writer->endTag("lease-requests");

$writer->endTag("lease-workload");

$writer->end();

$output->close();

close FILE;

exit;

The generated trace file - lwf to xml.xml, is an XML document containing all

resource requests in the form of leases. The next appendix explains the contents of a

trace file.
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CHAPTER C. SAMPLE TRACE FILE

The trace file is an important document submitted to the Haizea scheduler,

while running simulations in the unattended simulation mode. The trace file contains

information about every resource request, in the form of leases. The following trace

file lwf to xml.xml, is used in the first run of our simulation i.e. without reliability

guided scheduling.

<?xml version="1.0" encoding="UTF-8"?>

<lease-workload name="sample">

<description>This is a conversion of .txt to .xml</description>

<site>

<resource-types names="CPU Memory Reliability"></resource-types>

<nodes>

<node-set numnodes="40960">

<res type="CPU" amount="4"></res>

<res type="Memory" amount="2"></res>

</node-set>

</nodes>

</site>

<lease-requests>

<lease-request arrival="00:07:56:57">

<lease preemptible="true">

<nodes>

<node-set numnodes="512">

<res type="CPU" amount="4"></res>

<res type="Memory" amount="2"></res>
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</node-set>

</nodes>

<start></start>

<duration time="00:02:06:06"></duration>

<software>

<disk-image id="foobar.img" size="1024"></disk-image>

</software>

</lease>

</lease-request>

<lease-request arrival="00:08:02:29">

<lease preemptible="true">

<nodes>

<node-set numnodes="64">

<res type="CPU" amount="4"></res>

<res type="Memory" amount="2"></res>

</node-set>

</nodes>

<start></start>

<duration time="00:00:05:35"></duration>

<software>

<disk-image id="foobar.img" size="1024"></disk-image>

</software>

</lease>

</lease-request>

</lease-requests>

The above sample trace file shows the site configuration information in the site

element, and describes the resource request requirements for two resource requests.

The resource requests submitted to the system are called leases in Haizea. A lease id
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(assigned by the scheduler), the amount of memory, number of nodes, and amount

of CPU needed for its execution, describes each lease. Each lease has an associated

arrival time and time duration for which the lease will be holding resources. The

following trace file is used for the second simulation, i.e. when using reliability guided

scheduling.

<?xml version="1.0" encoding="UTF-8"?>

<lease-workload name="sample">

<description>This is a conversion of .txt to .xml</description>

<site>

<resource-types names="CPU Memory Reliability"></resource-types>

<nodes>

<node-set numnodes="16384">

<res type="CPU" amount="4"></res>

<res type="Memory" amount="2"></res>

<res type="Reliability" amount="1"></res>

</node-set>

</nodes>

<nodes>

<node-set numnodes="11305">

<res type="CPU" amount="4"></res>

<res type="Memory" amount="2"></res>

<res type="Reliability" amount="2"></res>

</node-set>

</nodes>

<nodes>

<node-set numnodes="4993">

<res type="CPU" amount="4"></res>

<res type="Memory" amount="2"></res>

<res type="Reliability" amount="3"></res>
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</node-set>

</nodes>

<nodes>

<node-set numnodes="5454">

<res type="CPU" amount="4"></res>

<res type="Memory" amount="2"></res>

<res type="Reliability" amount="4"></res>

</node-set>

</nodes>

<nodes>

<node-set numnodes="2824">

<res type="CPU" amount="4"></res>

<res type="Memory" amount="2"></res>

<res type="Reliability" amount="5"></res>

</node-set>

</nodes>

</site>

<lease-requests>

<lease-request arrival="00:07:56:57">

<lease preemptible="true">

<nodes>

<node-set numnodes="512">

<res type="CPU" amount="4"></res>

<res type="Memory" amount="2"></res>

<res type="Reliability" amount="5"></res>

</node-set>

</nodes>

<start></start>

<duration time="00:02:06:06"></duration>
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<software>

<disk-image id="foobar.img" size="1024"></disk-image>

</software>

</lease>

</lease-request>

<lease-request arrival="00:08:02:29">

<lease preemptible="true">

<nodes>

<node-set numnodes="16384">

<res type="CPU" amount="4"></res>

<res type="Memory" amount="2"></res>

<res type="Reliability" amount="1"></res>

</node-set>

</nodes>

<start></start>

<duration time="00:00:05:35"></duration>

<software>

<disk-image id="foobar.img" size="1024"></disk-image>

</software>

</lease>

</lease-request>

</lease-requests>

The contents of this file are the same as the trace file for the first run, but the

only di↵erence is that, this file contains reliability information of system nodes as well

as the expected reliability of leases.
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CHAPTER D. SIMULATION CONFIGURATION FILE

To run the simulation we must provide a configuration file to the scheduler

so that the scheduler can run in simulated time instead of using real time. The

configuration file also sets parameters like log location, trace file location, wake-up

interval etc. The following code shows the contents of the configuration file used in

this simulation.

[general]

loglevel: INFO

logfile: simulation_log.log

mode: simulated

lease-preparation: unmanaged

persistence-file: none

[scheduling]

wakeup-interval: 10

backfilling: aggressive

suspension: all

suspend-rate: 32

resume-rate: 32

migration: yes

[simulation]

clock: simulated

starttime: 2014-02-01 00:00:00

resources: in-tracefile
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imagetransfer-bandwidth: 100

status-message-interval: 30

[accounting]

datafile: /var/tmp/haizea/results.dat

probes: immediate cpu-utilization

[deploy-imagetransfer]

transfer-mechanism: multicast

avoid-redundant-transfers: True

diskimage-reuse: none

diskimage-cache-size: 20480

[tracefile]

tracefile: lwf_to_xml.xml
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CHAPTER E. HAIZEA SOURCE CODE MODIFICATIONS

E.1 Reliability Mappers

The site tag in the trace file describes the entire system using the XML elements

node-sets. By using multiple node sets, the researcher adds node reliability information

so that the scheduler can consider the node reliability before scheduling a lease that

has a higher reliability demand. To add this reliability information, the researcher

added the a res tag with two attributes type and amount. The type attribute takes the

value res to indicate that this is a reliability characteristic of the node. The amount

attribute is an integer between 1 and 10 that specifies the reliability need, where 1

indicates highest reliability and 10 indicates least reliability. The following example

explains a node-set with CPU, memory and reliability as three characteristics that

define a system node.

Example-

<nodes>

<node-set numnodes="3">

<res type="CPU" amount="512"/>

<res type="Memory" amount="2"/>

<res type="Reliability" amount="1"/>

</node-set>

</nodes>

The researcher modified the scheduler’s source code to add reliability awareness

of system nodes. The code modifications are as shown below.
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1. [core/enacted/simulated.py in line 30]

if not ("CPU" in site. resource_ types and "Memory" in site. resource_ types

and "Reliability" in site. resource_ types):

# CPU and Memory must be specified

raise

2. [core/enacted/simulated.py in line 81]

#action.vnodes[vnode].resources.get_by_type(constants.RES_MEM)

rel = 3 #action.vnodes[vnode].resources.get_by_type(constants.RES_REL)

self.logger.debug("Received request to start VM for L%iV%i on host %i,

image=%s, cpu=%i, mem=%i, reliability=%i" %

(action.lease_haizea_id, vnode, pnode, image, cpu, memory, rel))

3. [common/constants.py in line 22]

RES_MEM = "Memory"

RES_REL = "Reliability"

RES_NETIN = "Net-in"

4. [cli/commands.py in line 385]

cpu = int(fields[5])

mem = int(fields[6])

rel = int(fields[7])

disk = int(fields[8])

vm_image = fields[9]

5. [cli/commands.py in line 415]

res = ET.SubElement(node_set, "res")

res.set("type", "Reliability")

res.set("amount", ‘rel‘)
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E.2 Failure Generator

This code was added in the simulator clock class, run function in themanager.py

file of the Haizea scheduler. At line 745 the following lines were added:

f = open(’node_list.txt’)

lines = f.readlines()

f.close()

i=0

start_flag= 0

At line 751 following lines were added:

if self.time.minutes == 0:

if start_flag==1:

prev_failed_node = self.manager.scheduler.vm_scheduler.

resourcepool.get_node(self, val[i-1])

prev_failed_node.capacity = stored_cap

self.logger.status("Node repaired: "+prev_failed_node.id)

failed_node = self.manager.scheduler.vm_scheduler.resourcepool.

get_node(self, val[i])

stored_cap= self.manager.scheduler.vm_scheduler.

resourcepoolnode.get_capacity(failed_node)

failed_node.capacity=0

self.logger.status("Node failed: "+failed_node.id)

i=i+1

start_flag=1;
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