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A robust economic model predictive control approach that takes into account the reliability of actuators in a network is
presented for the control of a drinking water network in the presence of uncertainties in the forecasted demands required for
the predictive control design. The uncertain forecasted demand on the nominal MPC may make the optimization process
intractable or, to a lesser extent, degrade the controller performance. Thus, the uncertainty on demand is taken into account
and considered unknown but bounded in a zonotopic set. Based on this uncertainty description, a robust MPC is formulated
to ensure robust constraint satisfaction, performance, stability as well as recursive feasibility through the formulation of
an online tube-based MPC and an accompanying appropriate terminal set. Reliability is then modelled based on Bayesian
networks, such that the resulting nonlinear function accommodated in the optimization setup is presented in a pseudo-linear
form by means of a linear parameter varying representation, mitigating any additional computational expense thanks to the
formulation as a quadratic optimization problem. With the inclusion of a reliability index to the economic dominant cost of
the MPC, the network users’ requirements are met whilst ensuring improved reliability, therefore decreasing short and long
term operational costs for water utility operators. Capabilities of the designed controller are demonstrated with simulated
scenarios on the Barcelona drinking water network.
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1. Introduction

Performance deterioration and faults occurring as a
result of systems’ component degradation has piqued
the interest of researchers over the years, mainly due
to its importance in maintenance planning, production
scheduling and recently in the design of control laws that
account for degradation. The pursuit of these interests
has become more essential when dealing with critical
infrastructure such as drinking water networks (DWNs),
power distribution networks, among other things, that
require a high level of supervision to ensure a hypothetical
perpetual supply of service.

According to Zagórowska et al. (2020), control
approaches that consider the tolerance or mitigation of
degradation can be classified into two main groups: (i)
control systems aware of degradation and (ii) control
systems mitigating degradation. In the first group,
controllers are designed with the ability to compensate
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for the degradation of a controlled system. For example,
Zagórowska et al. (2020) consider faults as a consequence
of component degradation, thus classifying fault tolerant
controllers as control systems aware of degradation, where
there is a prerequisite for knowledge of the fault process
(Isermann, 2006; Mejdi et al., 2020). However, the
latter involves control frameworks that seek to mitigate
the extent of degradation over a component’s life time.
This basically involves the integration of models of
degradation in the design of controllers, predominantly
linear-quadratic or model-predictive controllers. This,
in turn, implies a manipulation of system variables
arriving at a trade-off between satisfying primary control
objectives and the mitigation of degradation.

The incorporated model may not necessarily directly
include degradation models as done in numerous
works (Ray and Caplin, 2000; Salazar et al., 2020;
Sanchez-Sardi et al., 2018) but involve the use of
characteristic quantities such as the reliability of
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the components reflecting a trend in degradation
when minimized over time. For reliability-oriented
applications, control allocation of an aircraft based
on actuators’ reliability was done by Khelassi et al.
(2010) using an LQR control. The results show an
improved actuator health and thus an overall system
reliability. Similarly, in the work of Chamseddine
et al. (2014) control allocation was used based on an
MIT-based reliability rule for an over-actuated octocopter
helicopter testbed to maximize global reliability. In the
area of DWNs, Salazar et al. (2017) and Pour et al.
(2018) used the interconnections between the system
components to model a cumulative reliability of the
system, using different statistical methods (Bayesian and
Markov chains). Using an MPC, the health of the
actuators was included as an objective criterion. But the
works on DWNs fail to consider the real life applicability
of the designed controller as demands are assumed to
be known a priori without considering the uncertainty
derived from this assumption.

For reliability modelling of interconnected
components, there exist methods based on statistical
inference that constitute desirable mathematical
representations of such stochastic processes. Popular
amongst these are Markov chain processes, stochastic
Petri nets and the use of Bayesian networks. Bayesian
networks are by far the most common method applied
in the literature mainly due to the fact that Markov
chains lead to a combinatorial explosion of the number of
states required when the number of model components
increases. This makes such a method undesirable
for evaluating the cumulative reliability of complex
large networks such as a DWN, which contains many
interacting components (Zeller and Montrone, 2018).
Since stochastic Petri nets depend on Monte Carlo
simulations, they may demand massive simulations
for very low probability evaluations (Philippe and
Lionel, 2006). Therefore, for reliability tests on a
complex interconnected system of a power network,
Haghifam (2015) opted for Bayesian networks leading to
improved system efficiency evaluations compared with
other methods. Philippe and Lionel (2006) go a step
further by applying the concept of a dynamical object
oriented Bayesian network (DOOBN) modelling on a
moderately complex system, a water heater process. A
comparison with a Markov chain method shows that
DOOBNs yield good results for reliability evaluation,
which is also deemed to be more compact and readable
than Markov chains.

Model-based controllers such as MPC offer a
suitable platform to include in its multi-objective
optimization framework, a reliability index and/or
reliability constraint function with the purpose of
alleviating degradation against another competing
criterion. Recently, the concept of incorporating directly

an economic stage cost of the industrial process in an
MPC design termed economic MPC (eMPC) has attracted
interest. This procedure involves an update of the
generic cost function which normally involves tracking
a set-point to one which explicitly involves economic
terms such as energy, cost of production, etc. eMPC
allows an improvement during transients and the ability to
manipulate control variables to satisfy various economic
requirements (Müller et al., 2013). eMPC in the area of
water supply has been extensively studied (Cembrano
et al., 2011; Grosso et al., 2016).

As the name suggests, the formulated control
problem constituted by economic variables (e.g., cost,
price or demand) which are mostly exogenous. Some of
these variables are undoubtedly subject to stochastic
variations, which requires further control design
considerations for a suitable operation. For example
and in relation to our case, in the design of an eMPC for
a DWN with variable demand as done by Grosso et al.
(2016), a forecast of water demands is required to enable
future predictions of states in an MPC optimization loop.
But the forecasted demand as a variable is subject to
human behaviour which can be described as uncertain at
best. Therefore, there is a need to ensure that controllers
are built robust considering these design variations,
which are inevitable in real life situations. Methods of
stochastic MPC (Wang et al., 2017), the min-max robust
formulation (Löfberg, 2003), the tree-based method
(Velarde et al., 2016) and other proposed concepts have
been successfully applied to problems of uncertainties
in MPC. Bemporad and Morari (2007) provide a
comprehensive overview of robust MPC, highlighting
recent trends and limitations, and propose future research
directions.

In this paper, a robust eMPC that takes into
account the reliability modelled with Bayesian networks
is proposed. The topology of the network showing
flow relationships between actuators linked by pipes is
utilized in the Bayesian probability formulations. The
reliable robust eMPC is applied to a DWN, specifically
in the Barcelona drinking water network, taking into
account uncertainties in the forecasted demand. The
variations in demands are considered unknown but
bounded in zonotopic sets. Zonotopic sets show desirable
characteristics of lower complexity, flexibility and reliable
computation of linear transformations and Minkowski
sums compared with other geometric counterparts such
as interval or ellipsoidal sets (Le et al., 2013). It must
be noted that even though a robust MPC (RMPC) is
achieved after this procedure, there is a certain degree
of robustness for some magnitude of uncertainty beyond
which the optimization problem fails to be feasible.

The rest of this paper is structured as follows:
A problem formulation and preliminaries featuring the
model of the DWN, some concepts of zonotopes and
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sets are given in Section 2. Fundamentals of tube-based
MPC are then discussed in Section 3. Subsequently,
in Section 4, the reliability modelling of the network is
discussed. In Section 5, considering all the works in the
preceding sections, the controller is presented. Finally, the
paper ends with simulation results and conclusions.

2. Problem formulation and preliminaries

In this section, a brief description of the selected DWN
model and its condensed version will be discussed. Then
an account of the primary predictive control for DWNs
is given. Finally, as a prerequisite to the sequel, some
important mathematical preliminaries are introduced.

2.1. General description of a control oriented DWN
model. There exist in the literature some models of
DWNs that seek to capture key dynamics at different
levels of a DWN’s architecture. There are however
two predominant models that are commonly used in
controller design with numerous successful outcomes.
Through graph theory, flow directions of water at network
nodes as well as interactions at the tanks leading to
a simple flow-based model description of the network
were studied by Grosso et al. (2014), while Wang
et al. (2017) considered both the network flow and
pressure characteristics, specifically taking into account
the interactions when flow and hydraulic head equations
are considered in the modelling process.

Considering only the transport sub-level, the
flow-based model offers an easier option to work with,
largely due to its linearity, but fails to capture key pressure
dynamics which is important to present a complete
mathematical behaviour of the network. Inclusion of
pressure in the DWN dynamics introduces non-linearity
from the pressure-flow affine equality into the constrained
formulation of the optimization problem, which results
in a non-convex problem. Some works have been
successful in designing nonlinear MPC (Wang et al.,
2017); for the control of these nonlinear models. Wang
et al. (2018) consider a nonlinear constraint relaxation to
produce a set of linear inequality constraints for a linear
eMPC formulation. Despite its complexity, the nonlinear
pressure-flow model offers a more realistic case to work
with. The purpose of this paper is primarily to illustrate
the ability of a control law to enhance the reliability
of DWNs while considering the real life scenario of
demand uncertainties via a set-based method (zonotopes)
of robust MPC, henceforth a comparatively less complex
flow based model will be used.

Puig et al. (2015) presented a flow-based model
of the Barcelona water network, which has been
extensively used in the literature, primarily for control
design purposes. Basic relationships between elements
considering the mass balance in tanks and equilibria

of flow directions at nodes give rise to the following
discrete-time invariant system:

x(k + 1) = Ax(k) +Buu(k) +Bdd(k), (1a)

0 = Euu(k) + Edd(k), (1b)

where x(k) ∈ R
nx
+ is the vector of system states, denoting

tank volumes at each time instant k; u(k) ∈ R
nu denotes

the manipulated input from actuators affecting changes
in states in combination with the non-negative model
disturbance d(k) ∈ R+

nd , the consumer demand; A, Bu,
Bd, Eu and Ed are time-invariant matrices of suitable
dimensions. From (1b), it can be inferred that the control
variable u(k) does not take its value in the whole of
R

nu , but in a linear variety. This inference enables an
affine parameterisation of the control variables in terms
of a minimum set of disturbance, mapping the control
problem to a space with a smaller decision vector and with
less computational burden due to the elimination of the
equality constraint (1b).

Proposition 1. (Grosso et al., 2016) If there are more
control variables than algebraic equations (i.e., nq <
nu), the matrix Eu in (1b) has a maximal rank. Assuming
that the equation has a solution, it can be expressed in a
reduced staggered form using the Gauss-Jordan elimina-
tion.

From Preposition 1, the control variable is
parameterized such that

u(k) = P̃ M̃1û(k) + P̃ M̃2d(k). (2)

The model can be represented as (3) by substituting (2)
into (1a),

x(k + 1) = Ax(k) + B̂û(k) + B̂dd(k), (3)

where B̂ = BP̃M̃1 and B̂d = BP̃M̃2 +Bd.

From (2), û(k) ∈ R
nû ⊆ R

nu can be expressed as a
function of the demand variable d(k) and u(k). Then the
control invariant set from the affine relationship between
the input and demand can be evaluated. The reader is
referred to Grosso et al. (2016) for an in-depth description
of how (3) is formulated from Proposition 1.

2.2. Conventional eMPC as applied to DWNs. The
operation of a DWN is such that network elements,
active (pumps and valves) or passive (pipes and tanks)
interact to satisfy operational network objectives. Thus,
the MPC paradigm offers a platform to introduce in
a multi-objective framework, a control scheme that
encompasses all these objectives whilst respecting
system constraints. These control objectives include the
following components.
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Minimization of the operational cost (the economic term):
The dominant objective index in the MPC optimization
problem is the minimization of the cost of operation
in relation to constant water production and a variable
electricity cost used for pumping water between a source
and a demand. The MPC is designed such that an optimal
cost is achieved while servicing demand under process
constraints. Thus, the function is given as

JE(k) = (α1 + α2(k))
Tu(k), (4)

where α1 ∈ R
nu and α2(k) ∈ R

nu represent respectively
the constant water production costs and variable daily
electricity costs; u(k) is the actuator activity at each
sample time k.

Guarantee of safe water storage: For operational security,
it is imperative to maintain a safe level of water in tanks
to ensure a consistent supply of water to demand nodes
between two consecutive time instants of the MPC and
also to keep a safe stock of water in the event of any
uncertainties related to supply availability. A penalty
equal to the sum of the squares of the deviation of the
volume in each tank from a predefined safety threshold is
therefore formulated as

Js(k) =

⎧
⎨

⎩

‖x(k)− xs‖2 if x(k) ≤ xs,

0 otherwise.
(5)

A vector of safety levels of each tank is denoted by xs.
The cost function is reformulated as (6) with the inclusion
of a slack variable ε(k) and an introduction of constraint
(7) in a bid to circumvent the occurrence of a problematic
piece-wise affine cost

Js(k) = ‖ε(k)‖2, (6)

x(k) ≥ xs − ε(k). (7)

Penalization of the actuator slew rate: For purposes of
increasing the lifespan of actuators (pumps and valves)
which is generic in MPC formulations, the deviation
between two consecutive time instants of control actions
is penalized for a smooth operation of control:

J�U (k) = ||�u(k)||2, (8)

where �u(k) = u(k)− u(k − 1).
The volume of water in the tanks, x(k), and the

actuator actions, u(k), are constrained to be in compact
polyhedral sets U and X defined by

x(k) ∈ X = {x(k) ∈ R
nx |x ≤ x(k) ≤ x}, (9a)

u(k) ∈ U = {u(k) ∈ R
nu |u ≤ u(k) ≤ u}, (9b)

respectively.

With the aforementioned objectives and constraints,
a finite horizon optimal control problem which minimizes
the cost

L(k, û, x) = Λ1Js(k) + Λ2J�Û (k) + Λ3JE(k), (10)

where L(k, û(k), x(k)) ∈ N+ × R
nû × R

nx → R+ is
formulated taking into account that Λ1, Λ2 and Λ3 (Λi >
0 ∀i) are design weights for each objective criterion that
can be tuned following the procedure presented by Toro
et al. (2011). Thus, at each time instant k, considering
the condensed dynamic equation (3), the optimization
problem to be solved is

min
û(k),x(k)

Np−1∑

i=0

L(k, û(k), x(k))

subject to

x(i + 1|k) = Ax(i|k) + B̂û(i|k) + B̂dd(i|k),
û(i|k) ⊆ U(i|k), (11)

x(i + 1|k) ⊆ X,

x(i|k) ≥ xs − ε(i|k),
Remark 1. Assume that the control variable û ∈ U ⊆ U

is mapped to a reduced space from Proposition 1. For
the inclusion of an input constraint, a novel time-varying
input domain set U(k + i|k) is introduced such that

{û(k) ∈ R
nû |

u− P̃ M̃2d(k) ≤ P̃ M̃1û(k) ≤ u− P̃ M̃2d(k)}
under the assumption that the optimization problem
(2.2) is feasible, i.e., there exists a non-empty solution
given by the optimal sequence of control inputs
(û∗(0), û∗(1), . . . , û∗(Np − 1)), where Np is the
prediction horizon. From the principles of receding
horizon, only the first control action û∗(0|k) of the
sequence of Np values obtained from the solution of the
MPC optimization problem is applied to the plant,

û(k) = û∗(0|k),
disregarding the rest of control actions. At the next time
instant k, the optimization problem is solved again using
the current measurements of states and disturbances, with
the most recent new forecast over the next future horizon.

2.3. Mathematical preliminaries.

Definition 1. A zonotope can be defined as a class of
geometric sets with a center p and a generator matrix H ∈
R

n×r in a linear affine image as

Z � 〈p,H〉 = p⊕HBr,

where ⊕ is the Minkowski sum, and Br = [−1, 1]r is the
r-dimensional unit box.

The zonotopes possess the following properties:
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1. The Minkowski sum of zonotopes Z1 = 〈p1, H1〉
and Z2 = 〈p2, H2〉 is

Z1 ⊕ Z2 � 〈p1, H1〉 ⊕ 〈p2, H2〉
= 〈p1 + p2, [H1H2]〉,

where [H1, H2] is the concatenation of the generator
matrices.

2. The linear mapping of a zonotopic set, Z by a vector
or a matrix K is given by

K  〈p,H〉 = 〈Kp,KH〉.

3. The smallest box (interval hull) containing the
zonotope is described by �Z = p⊕ rs(H)Br, where
rs(H) is a diagonal matrix such that rs(H)i,j =∑r

j=1 |Hi,j |. Hence Z ⊂ �Z.

Definition 2. (Robust positive invariant (RPI) set)
Assume that a solution ϕ(x0, k) exists for a discrete
time-invariant system x(k+1) = Ax(k)+Bu(k)+w(k),
∀w(k) ∈ W. Ω ⊆ X is defined as an RPI set if
ϕ(x0, k) ∈ Ω ∀x0 ∈ Ω for all k = N[1,...,∞), such that
(A+BK)Ω⊕W ⊆ Ω.

Definition 3. (Minimal RPI (mRPI) set) An mRPI set Ω∞
is the set contained in all possible RPI sets of a system as
described in Definition 2.

3. Tube-based MPC

The fundamental intent of designing a robust MPC
controller must be such that the designed controller
satisfies the tenets of robust stability and recursive fea-
sibility, robust constraint satisfaction and robust per-
formance for all realizations of the system behaviour
Σ = f(k, x(k), u(k), d(k)), subjected to unaccounted
variations in function variables; in essence, the system
must operate near normal in the event of some extent of
uncertainties.

Assuming an additive demand uncertainty in (3), the
effects of unknown uncertainties on the exogenous known
demand variable d(k), Δd(k) ⊆ δD result in a subsequent
variation in the state Δx(k) ⊆ δX and input variables
Δu(k) ⊆ δU as evidenced from the affine relationships of
the variables in Eqns. (2) and (3). These variations may
result in feasibility as well as stability issues. The model
variables can therefore be thought of as a composition of
an uncertainty-free component and an unknown uncertain
component dependent on the demand uncertainty, with
the latter involving a realization of variables at each time
instant from bounded uncertainty sets (δX, δU, δD) with
the assumption that the uncertain demand is unknown but
bounded. State and input uncertainty sets (δX, δU) are

accordingly described as zonotopes generated from the
known zonotopic bounded set of the demand uncertainty
δD. RPI sets are subsequently utilized in the tightening
of original state and input constraints. In addition to that,
assuming that in the presence of uncertainty, asymptotic
stability to an equilibrium point cannot be achieved like
the nominal case, robust asymptotic stability is guaranteed
with a terminal set Ω∞. Here Ω∞ signifies a suitable
region of attraction for the perturbed system ensuring
stability and recursive feasibility.

Assumption 1. The states x(k) and demands d(k) are
considered known at each time instant k and the pair
(A, B̂) is controllable.

δD(k) is generated from a symmetric interval set
considering a bounded demand uncertainty under additive
uncertainty assumptions at each time instant k such
that δd(k)l ∈ [−δd(k)l, δd(k)l], where l denotes a
particular demand node in the network. The description
of the set δD(k) is chosen appropriately to ensure that
δX(k) ⊂ interior(X) and δU(k) ⊂ interior(U) (Mayne
et al., 2005). The uncertain set δD(k) can therefore be
represented in a zonotopic form as

δD(k) � [0]nd ⊕Hd(k)B
nd , (12)

where [0]nd is a column vector of dimension nd (nd is
the number of demand nodes), considered as the centre of
the zonotope and Hd(k) is a time-varying diagonal matrix
of the generators representing the bounds of variations at
each demand node j at each time instant k ∈ N≥0: Bnd ;
B = [−1, 1].

Consider x̃, ˜̂u and d̃ as the real dynamic state,
input and demand, respectively. Taking into account
the uncertainty effects, the appropriate decomposition of
model variables is therefore given as x̃ = x + Δx, ˜̂u =
û+Δû and d̃ = d+Δd.

Δ(·) is the uncertain component of each variable.
From (2) and (3), the DWN model taking account of the
uncertainty in the demand variable is therefore given as

x̃(k + 1) � Ax̃(k) + B̂ ˜̂u(k) + B̂dd̃(k), (13a)

0 � Eu
˜̂u(k) + Edd̃(k). (13b)

Nominal states and inputs, x ∈ R
nx
+ , û ∈ R

nu
+ are

assumed to be bounded in a compact polyhedron X and
U, containing the origin in their interiors, with û ⊆ U

and x ⊆ X. In the presence of uncertainty, it is desirable
to generate a tube of trajectories, meaning a sequence
of RPI reachable sets such that for every transition of
states and inputs of the nominal system, the resulting
states and inputs after the effect of uncertainty remain
in a closed and bounded set of the system constraints
(X,U) as well as is asymptotically stable with respect
to an approximate equilibrium set Ω̃; with RPI sets
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(δX(k) ⊆ X, δU(k) ⊆ U, Ω̃ ⊂ X). A state RPI tube,
X̃ = {X̃0, X̃1, . . . , X̃N}, ∀ X̃k = x(k) ⊕ δX(k) and
an accompanying control tube Ũ = {Ũ0, Ũ1, . . . , ŨN}, ∀
Ũk = û(k)⊕ δU(k), is constructed online taking account
of the bounded uncertainty description and the centre of
measured demands at k. Here x(k) and û(k) are the
centres of the respective propagated state and control RPI
tubes.

The mismatches between nominal and real states
influenced by uncertainties are mitigated by a local
feedback controller K , in our case an LQR controller,
such that the selection of this feedback gain, K satisfies
the system equations on the assumption that d̃(k) = 0,

Δx(k + 1) � (A+ B̂K)Δx(k), (14)

with Δx(k) ⊆ δX(k). The local controller ensures that
the deviation of the system dynamics in the closed-loop
with system matrix A + B̂K is asymptotically stable.
The primary aim is to have an optimal control problem,
which keeps trajectories around the neighbourhood of
the nominal optimal trajectory in the presence of
uncertainties, for x̃(0) ∈ x(0)+δX, therefore minimizing
the spread of trajectories.

Remark 2. Assume that A + B̂K is strictly stable and
x̃ = x + Δx, with an uncertain dynamic part Δx(k +
1) � (A + B̂K)Δx(k) + B̂dΔd(k). Since δX is an RPI,
(A+ B̂K)δX⊕ B̂dδD ⊆ δX ⊂ X, it can be inferred that
the transition of states from one time instant to another
with any control law π(u(x)) depends on the dynamics of
the centres, x(k + 1) = Ax(k) + B̂û(k) + B̂dd(k).

3.1. Online computation of zonotopic reachable sets.
The feedback gain K is computed and kept constant at
each time instant k throughout the prediction horizon
of the MPC controller to minimize the deviation of
the perturbed state and ensures asymptotic stability to a
predefined terminal set. An optimal local controller for
state error minimization,

J[˜̂u0,..., ˜̂u∞) =

∞∑

i=0

(x̃(k)− x(k))TQ(x̃(k)− x(k))

+ ˜̂u(k)TR˜̂u(k),

(15)

where Q is semi-positive definite and R positive definite,
is proposed. Here x̃(k) is the actual state at time k from
the plant under uncertainty and ˜̂u, the actual inputs, with
x(k) as the nominal state prediction from the MPC at time
instant k. From the actual state, x̃(k) (i.e., x̃(k) = x(k)+
Δx(k)), the uncertain dynamic part is

Δx(k + 1) � (A+ B̂K)Δx(k) + B̂dΔd(k),

where Δû = KΔx.

From the uncertain component, the corresponding
length of the tube Np ∈ N>0 is computed at every k,
where Np is the selected prediction horizon of the MPC
controller. Therefore, the set δX corresponding to the
realization of the error Δx assuming that Δx(0) = 0 can
be described as

δX(k + i) ⊆
i⊕

j=1

(A+ B̂K)i−jB̂dδD(i). (16)

From δD(i) = 0⊕Hd(i)B
nd and Properties 1 and 2

of zonotopes, it follows that

δX(k + i) ⊆ 0⊕Ψ[1,i](i)B
nd , (17)

Ψ[1,i](i) =

i⊕

j=1

(A+ B̂K)i−jB̂dHd(i). (18)

The control variable ˜̂u at each time instant can be
described as

˜̂uk = ûk +KΔxk, (19)

where û(k) is the certain control variable obtained from
the nominal MPC at time instant k. From (2), and under
decomposition into certain and uncertain parts, given that
the actual control variable ˜̂uk, ˜̂u ∈ δU, the uncertain
control RPI set is

δU(k + i) ⊆ P̃ M̃1KδX(k + i)⊕ P̃ M̃2δD(k + i). (20)

The sequence of cross-sections of the control tube can
therefore be described in a zonotopic form as

δU(k + i) ⊆ 0⊕ [P̃ M̃1KΨ[1,i](K + i),

P̃ M̃2Hd(k + i)]B2nd .
(21)

3.2. Terminal state constraint set. For robust stability
and recursive feasibility, a terminal constraint set is
formulated considering an mRPI as done by Raković et al.
(2005). A terminal mRPI set Ω̃, which is compact and
convex, is constructed as an outer approximation of the
exact equilibrium state set

Ω∞ �
∞⊕

j=0

(A+ B̂K)jB̂dδD, (22)

where Ω∞ ⊆ Ω̃. (A + B̂K) = Â and B̂dδD ⊆ W ,
under the assumption that Â is strictly stable. An outer set
approximation of Ω∞ is defined if there exist a certain k
∈ N>0 such that, (Â)k W ⊆ αW , ∀α = [0, 1).

The infinite Minkowski sum of sets (22) under
strict stability conditions ensures that convergence is
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guaranteed. Considering the infinite Minkowski sum,

∞⊕

j=0

(Â)jW ⊆
k−1⊕

j=0

(Â)jW ⊕
2k−1⊕

j=k

(Â)jW

⊕
3k−1⊕

j=2k

(Â)jW ⊕ . . . ,

(23)

(23) can be simplified to achieve the condition (Â)k W ⊆
αW as follows:

∞⊕

j=0

(Â)jW ⊆
k−1⊕

j=0

(Â)jW ⊕
k−1⊕

j=0

(Â)j(Â)kW

⊕
k−1⊕

j=0

(Â)j(Â)2kW ⊕ . . .

(24)

From (Â)kW ⊆ αW , it can be stated that (Â)nkW ⊆
αnW .

⊕k−1
j=0 (Â)

jW is thus convex and compact since
δD is assumed to have the same properties. Writing
⊕k−1

j=0 (Â)
jW as ζ, Ω∞ is approximated from a truncation

of (24) as
Ω̃ ⊆ (1 + α+ α2 + . . . )ζ, (25)

which results in an approximated set

Ω̃ ⊆ 1

1− α
ζ. (26)

The set in a zonotopic form is given as

Ω̃ ⊆ 0⊕ (1− α)−1Ψ[0,k]B
nd , (27)

where

Ψ[0,k] =

k−1⊕

j=0

(Â)jB̂dĤd.

Fig. 1. State transition in RMPC, showing the constraint set
(solid box), the mRPI (dash black lines) and RPIs (in-
terior polygons)

Ĥd is taken as the worst-case demand uncertainty in
reference to the demand profile of each node. The size
of the set is therefore dependent on the design parameter
α, the description of the uncertainty set δD and the
appropriate selection of k.

Remark 3. The constructed approximated mRPI
approaches the actual mRPI if, for a significantly small
α ∈ (0, 1], there exists a finite k chosen large enough,
such that (Â)kW ⊆ αW . The appropriate selection of α
and k is discussed by Raković et al. (2005).

The constructed sequence of uncertain zonotopic sets
and the terminal set will then be used in the the design of
the robust eMPC by considering only alterations in the
constraints and inclusion of the terminal set.

4. Evaluation of a DWN reliability

Definition 4. Reliability is defined as the capability
of an item to perform a required function, under given
environmental and operational conditions and for a stated
period of time (ISO8402).

Evaluating the reliability of a system is a complex
stochastic undertaking that calls for the application of
appropriate statistical inference techniques in order to
model such a phenomenon (Cai et al., 2020). In
this section, the concept of Bayesian networks (BNs),
fundamentally based on the structure of the DWN using
graph theory, taking account of conditional dependencies
between graph nodes (i.e., actuators in the network)
related through arcs (flow in pipes) is considered.

For a BN parameter, we make use of a quantitative
index of failure rate, λ(t), which makes it possible to
evaluate individual reliabilities of components, that is, the
probability of each function component for a specified
time. This information is then used in the broad BN
modelling according to the structure of the network.
Keeping in mind that the ultimate goal is to introduce the
reliability in the performance index and the constraints,
the dynamic nonlinear network reliability model from
a dynamic BN is represented in a pseudo-linear form,
avoiding any additional computational burden, basically
escaping a laborious nonconvex problem.

4.1. Reliability based on the component failure rate.
Consider a continuous random variable T denoting the
time to failure having a distribution function F (t), where
F (t) signifies the probability of a component to fail within
the time interval (0, t] (Rausand and Hoyland, 2004).
Then with an associated probability density function,
f(t), F (t) can be described as

F (t) = Pr(T ≤ t) =

∫ t

0

f(u) du, ∀t ≥ 0, (28)
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Conversely, the reliability of the component R(t) is
accordingly represented as the probability of survival in
time interval (0, t] and subsequently functioning at t,

R(t) = Pr(T ≥ t) = 1−
∫ t

0

f(u) du

=

∫ ∞

t

f(u) du ∀t ≥ 0.

(29)

Similarly, to evaluate the failure rate, the instance of
an element functioning at t is considered, such that the
probability of failing in the interval [t, t + Δt] having
survived to t is represented with a conditional probability
as

Pr(t < T ≤ t+Δt|T > t)

=
Pr(t < T ≤ t+Δt)

Pr(T > t)

=
F (t+Δt)− F (t)

R(t)

(30)

dividing both sides by Δt. As Δt → 0, the failure rate of
the component is thus

λ(t) = lim
Δt→0

F (t+Δt)− F (t)

Δt

1

R(t)
=

f(t)

R(t)
. (31)

A relationship can therefore be established between the
failure rate λ(t) and the reliability functionR(t) from (31)
considering the probability density function of the failure
distribution in (28) as

f(t) =
dF (t)

dt
=

d(1−R(t))

dt
=

−d(R(t))

dt
. (32)

From the formula for the failure rate (31) it follows
that

λ(t) =
dR(t)

dt
· 1

R(t)
= − d

dt
lnR(t) (33)

Note that R(0) = 1. Therefore,

∫ t

0

λ(t) dt = − lnR(t), (34)

R(t) = e−
∫ t
0
λ(u) du, (35)

where (35) provides a relationship between the reliability
of a component and the failure rate.

A plethora of methods have been proposed for
finding a suitable function for failure rates that
approximately represents a component’s functional
property decay over time. In this paper, we consider
the effect of loadings on the failure rate as done by
Karimi Pour et al. (2019) and establish a load versus
failure rate relationship, such that an exponential function

establishing the relationship between each actuator, the
i-th failure rate and their corresponding loadings is

λi(t) = λ0
i e

βiui(t), (36)

where λ0
i is the baseline failure rate, ui(t), the control

effort of each actuator and βi is a constant parameter
that depends on the actuator characteristics. Therefore,
under nominal operating conditions, the reliability is
characterized as

R0,i(t) = e−λ0
i (t). (37)

The following equation therefore holds for the
probability of a component avoiding failure within the
time interval (0, t] considering the failure rate: and the
nominal failure rate:

Ri(t) = R0,ie
− ∫

t
0
λi(u) du. (38)

Consequently, the discrete-time representation, taking
into account loading at different time instances, k,
sampled at Ts is

Ri(k) = R0,ie
−Ts

k∑

s=0
λi(u(s))

. (39)

4.2. Bayesian network theory. Consider the triple,
BN = (P,AB , NB) representing a BN. BN is therefore
a Bayesian network, essentially a directed acyclic graph
(DAG) composed of a set of nodes NB , with the
corresponding set of arcs, AB , accounting for direct
dependencies between nodes. Each node ni ∈ NB is
subsequently associated with a probability distribution
from the set P . From Fig. 2, the relationship between
nodes n1 and n2 is such that (n1, n2) ∈ AB; n1 is
therefore defined as the parent of n2. Hence n2 possesses
a direct dependency to n1. The set of parent nodes of
each node ni in the network is denoted by Pa(ni). The
direct dependencies of each node with its parents Pa(ni)
is consequently computed considering the conditional
probability distribution, Pr(ni|Pa(ni)), Pa(ni) �= ∅.

Assigning a discrete random variable Yi to each
node ni ⊂ NB , a finite number of m states set, Sn,
can be established for each node such that Sn �
{sn1 , sn2 , . . . , snm}, under trivial Bayesian assumptions of
sni ∩ snj = , ∀i �= j, Pr(sni ) ≥ 0 and Pr(

⋃m
i=1 s

n
i ) =

1, where Pr(Yi = sni ) is the marginal probability that
the state of node ni is sni . Therefore for an acyclic
graph BN (P,AB , NB), ∀n(NB) = N with designated
probability distributions Pr(Y1, Y2, . . . , YN ), the joint
probabilities of the nodes under conditional probability
assumptions and using the chain rule is simplified as

Pr(ni, n2, . . . , nN ) = Pr(n1)

N∏

i=2

Pr(ni|Pa(ni)), (40)

where, n1 is considered a root node, ∴ Pa(n1) = ∅. Note
that only prior probabilities are assigned to these nodes.
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Fig. 2. Two nodes in a simple acyclic graph, showing direct de-
pendencies between nodes.

4.2.1. Dynamic Bayesian network. The Bayesian
representation thus far presented in (40) is static;
therefore, to successfully include the reliability dynamics
in the MPC, a temporal dimension that describes the
time connection between two time instances of actuator
loadings is added. Thus, temporal dependencies in the
modelling are introduced. For temporal dependencies
in BNs, the assumption is made that the system
is a first-order Markov model, that is, (i) the arcs
between nodes are located in the same time period
between instances or two neighbouring ones, (ii) time
homogeneous parameters of the conditional probability
are time invariant. Hence, the transition probability of a
random variableXi of the reliability of each nodeni ∈ Nb

between two time instances, say, k + 1 and k, with two
states, F as a failed state and A as active, is given as

Pr(Xi(k + 1)) = (A|Xi(k) = A)

= R0,ie
−Ts

k∑

s=0
λi(u)

,

(41a)

Pr(Xi(k + 1)) = (F |Xi(k) = A)

= 1−R0,ie
−Ts

k∑

s=0
λi(u)

.

(41b)

4.3. Bayesian network structure modelling of a DWN.
The procedure of BN representation of a system primarily
depends on the structuring and parameter definition
stages, with the latter dependent on the acyclic graphical
representation of the system under study. The DWN
with its modelling, as discussed in Section 2, involves
a graphical representation of actuators as nodes that are
linked by unidirectional flows through pipes as arcs; hence
an acyclic graph is duly presented. From the graph,
based on minimum path sets in the network, that is, the
set of successful paths from the source to the demand,
a series-parallel arrangement is attained for the network
reliability model. The BN parameter definition however
is defined on the pair of probabilities of the root nodes
and the conditional probabilities of nodes and their parents
in individual minimum paths of the network. Therefore,

the network reliability with the conditions prescribed at
a certain time instant k according to the structure of the
network is

Rs(k) = 1−
s∏

j=1

(1−
∏

i∈Pj

Ri(k)), (42)

where Pj is a minimum path set and Ri is the reliability
of each node in the set taking account of prior and
conditional probabilities.

The reliability term Ri from (37) includes
exponential terms from the failure rate, introducing
nonlinearities. To aid in including the reliability term
in the MPC, the logarithm of both sides is taken and
subsequently represented in a pseudo-linear form such
that

log(Rs(k)) = log(
s∏

j=1

(1−
∏

i∈Pj

Ri(k)). (43)

Setting
1−

∏

i∈Pj

Ri(k)

as ϕj(k), we get

log(Rs(k)) =

s∑

j=1

logϕj(k), (44)

where

log(ϕj(k)) =
log(ϕj(k))

log(1− ϕj(k))

∑

i∈Pj

log(Ri(k)). (45)

Thus, with log(ϕj(k))
log(1−ϕj(k))

as ϑj(k), the reliability of
the network is given as

log(Rs(k)) =

s∑

i∈Pj

ϑj(k)
∑

i∈Pj

logRi(k). (46)

Therefore, for the DBN formulation in (41) and the
baseline reliability, the dynamic model is

log(Rs(k + 1)) = log(Rs(k))

+

s∑

i∈Pj

ϑj(k)
∑

i∈Pj

logRi(k).
(47)

5. Reliability-aware eMPC of the DWN

In this section, the reliability-aware robust control
problem is discussed taking account of all procedures
in the preceding sections. Since the reliability model
in (47) is nonlinear, a quasi-LPV (qLPV) nonlinear
representation of the nonlinear model through the
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embedding of nonlinearities in scheduling parameters
(θ(k)) is formulated. The time-varying matrices
of appropriate dimensions representing the qLPV
approximate model are hence

Ar(θ(k)) =

[
1

∑s
i∈Pj

ϑj(k)

0nu×1 Inu×nu

]

,

Br(θ(k)) =

[
01×nu

−λi(k).Inu×nu ,

]

where

Ar(θ(k)) ∈ R
(nu+1)×(nu+1),

Br(θ(k)) ∈ R
(nu+1)×nu ,

and with states

xr = [log(Rs), log(R1), . . . , log(Rnu)] ∈ R
nu+1.

Therefore, the reliability model (41) is included
as additional dynamics in the constraints with a
new performance index for the network reliability
enhancement, JR. The MPC is robustified by only
updating the constraints considering U ⊕ δU ⊆ U and
X ⊕ δX ⊆ X and robust asymptotic stability with the
terminal set Ω̃. Thus, the complexity is similar to that for
the nominal case.

The cost function with the additional term of
reliability, L(k, û, x) ∈ N+ × R

nû × R
nx → R+

L(k, û, x) = Λ1Js(k) + Λ2J�Û (k) + Λ3JE(k)

− Λ4JR(k).

The reliable ReMPC controller is therefore defined as
follows:

min
û(k),x(k),xr(k)

Np−1∑

i=0

L(k, û(k), x(k))

subject to

x(i + 1|k) = Ax(i|k) + B̂û(i|k) + B̂dd(i|k),
û(i|k) ⊆ U(i|k)��δU(i|k), (48)

x(i + 1|k) ⊆ X��δX(i|k),
x(i|k) ≥ xs − ε(i|k),

x(Np − 1|k) ⊆ Ω̃,

xr(i + 1|k) = Ar(θ(k))xr(i|k) +Br(θ(k))u(i|k)
xr(i|k) ⊆ (0, 1].

where � is the Pontryagin difference of the sets. From the
control parameterization, the control input to the plant at
every time instance k is given by

u∗(0|k) = P̃ M̃1û
∗(0|k) + P̃ M̃2d̃(k) +KΔx(k), (49)

where d̃(k) is the forecasted demand.

6. Application example

To demonstrate the capabilities of the proposed controller,
first for robustness, an additive demand uncertainty taken
as the variation around the demand profile is considered
as shown in Fig. 3. This scenario of actual demand is
assumed to test the level of robustness of the controller.
With a prediction horizon of 24 h (a day of water
supply) and a sampling time of 1 h, the robust MPC
optimization problem considering reliability (5) is solved
with CPLEX R© QP solver using Matlab R© R2019b (64
bits) and a PC with an Intel Core i7 of 8 GB RAM. An
aggregate network of the Barcelona water network, Fig. 4,
composed of 17 tanks, 61 actuators and 25 demand nodes
is used as a case study. Tanks store water during off peak
hours and supply water when demand is at peak or in
the occasions of unexpected demand and supply scarcity.
This presents a cyclic actuator behaviour in relation to
the peak-off peak demand profile. An acyclic graph
of the network showing relationships between nodes
(actuators) linked by unidirectional pipes (arcs) is used
for the network and reliability models. The following
assumptions are made: (i) sources supply the required
amount of water to demands; (ii) the pipes and tanks of
the network are always reliable, and (iii) the actuators at
the start of simulation correspond to a perfectly reliable
value of 1.

The minimum paths Pj , which is the set of successful
paths from source to demand, through an ensemble
of components (pipes, valves and tanks) evaluates the
reliability of each path, considering only the actuators.
The various paths are then lumped for a network reliability
measure, considering their series-parallel arrangement,
taking each path as a single entity. Table 1 shows
some traced minimal paths in the network; there are 607
minimal paths in total.

The robustness of the designed controller is tested
taking Tank 1 (d125PAL) and its associated elements
as reference, as shown in the WDN network (Fig. 3).
Tank 1 is directly connected to demand node c125PAL
and the nearest supply actuators are CPIV and bMS. These
actuators are chosen since they show major changes when
there are demand alternations.

An eight-day demand profile, subdivided into an 80

Table 1. Examples of minimum cost paths in the network.
Path Component sets

1 {aMs, bMs, c125PAL}
2 {AportA, VALVA, VALVA45, c70PAL}
3 {AportA, VALVA, CPII, C110PAP}
4 {AportA, VALVA, VALVA45, CPIV, C125PAL}
...

...
607 {AportT, VALVA312, c135SCG}
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Fig. 3. 24-Hour demand profile of node C129PAL with a symmetric bounded uncertainty.

Fig. 4. Barcelona drinking water network.

hour test scenario, is used for the simulations as shown
in Fig. 5. In the first two regions, the extremities of the
controller are tested. Additive uncertainty is added until
the nominal controller ceases to be feasible, thus labelled
as real demand. This is not shown in the plots, since the
nominal MPC control is intractable in these regions. The
last region is the nominal loading condition.

As shown in Figs. 6 and 7, during the first and second
stages of the demand profile, the actuators work to offset

the demand variation aided by the tank in Fig. 8. Since the
stored reserve in d125PAL is exhausted in the first region,
the actuators function to retain supply to the demand,
while respecting their own constraints, the feasibility of
the control. This is especially evident considering Fig.
7 (bMS), which shows the controller just maintaining
feasibility which was otherwise not the case with the
nominal MPC.



208 B. Khoury et al.

0 50 100 150 200 250
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Fig. 5. 80-Hour test scenarios for robust control for demand
node c125PAL.
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Fig. 6. Control action of CPIV.
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Fig. 7. Control action of bMS.

In Fig. 8, the level of water in the tank in the first
region is emptied to satisfy the added demand, but the
stability and recursive feasibility are preserved due to the
RMPC control. The tank start restocking in the second
region and finally converges to the nominal conditions in
the third region. Figure 9 shows that with the inclusion of
the reliability cost, not only there is a short term economic
gain, but also there is a safe operation of the network
in the long run. Thus reliable actuators against faults
minimizing downtime and maintenance costs.

But the improvement of the reliability is not cheap
since the problem presented has two primary conflicting
objectives of improving the reliability and minimizing the
cost of operations, the short term cost of operation. A set
of weights are selected to show the effect of the included
reliability index on the cost of operation presented in
a Pareto front presented in Fig. 11. The selection
of appropriate weights is a designer discretion but an
optimal solution or point on the front can be sought taking
into account the long run economic gain of considering
reliability in the control framework. Since the aim of the
added reliability index is to achieve a long-term gain, the
marginal loss in the short term economical gain, as shown
in Fig. 10, can be accommodated.

7. Conclusion

In this paper, the improvement of the reliability of a DWN
is considered through appropriate controller design that
takes into account a model of the network’s reliability,
by means of Bayesian network modelling. The resulting
nonlinear dynamic Bayesian model is represented in a
pseudo-linear form, easing the computational cost. Our
results show an improved reliability of the network when
the reliability index is added, at the expense of a marginal
cost of operation, which was seen to be minimal, thus
offering a long-term economic gain. Here the forecasted
demand is uncertain, which makes the control problem
more realistic, and a tube based ReMPC is designed with
zonotopic sets to ensure that the controller operates close
to normal in the presence of an unknown but bounded
uncertainty.

The robustness of the controller is tested with
additive loads from a symmetric bounded demand
profile on the known forecasted load. Our results
demonstrate the efficacy of the designed desirable
controller simultaneously with robust constraint
satisfaction, recursive feasibility and robust performance.
In consequence, a more realistic controller suitable for
real life deployment is proposed which takes into account
DWN network reliability.
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Table 2. Cost and reliability for different selections of weights.
Nominal Weight 1 Weight 2 Weight 3 Weight 4

Cost 600 587 561 518 400
Reliability 0.965 0.94 0.921 0.9 0.8
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