6,074 research outputs found

    From Brownian Dynamics to Markov Chain: an Ion Channel Example

    Get PDF
    A discrete rate theory for general multi-ion channels is presented, in which the continuous dynamics of ion diffusion is reduced to transitions between Markovian discrete states. In an open channel, the ion permeation process involves three types of events: an ion entering the channel, an ion escaping from the channel, or an ion hopping between different energy minima in the channel. The continuous dynamics leads to a hierarchy of Fokker-Planck equations, indexed by channel occupancy. From these the mean escape times and splitting probabilities (denoting from which side an ion has escaped) can be calculated. By equating these with the corresponding expressions from the Markov model the Markovian transition rates can be determined. The theory is illustrated with a two-ion one-well channel. The stationary probability of states is compared with that from both Brownian dynamics simulation and the hierarchical Fokker-Planck equations. The conductivity of the channel is also studied, and the optimal geometry maximizing ion flux is computed.Comment: submitted to SIAM Journal on Applied Mathematic

    Range separation: The divide between local structures and field theories

    Get PDF
    This work presents parallel histories of the development of two modern theories of condensed matter: the theory of electron structure in quantum mechanics, and the theory of liquid structure in statistical mechanics. Comparison shows that key revelations in both are not only remarkably similar, but even follow along a common thread of controversy that marks progress from antiquity through to the present. This theme appears as a creative tension between two competing philosophies, that of short range structure (atomistic models) on the one hand, and long range structure (continuum or density functional models) on the other. The timeline and technical content are designed to build up a set of key relations as guideposts for using density functional theories together with atomistic simulation.Comment: Expanded version of a 30 minute talk delivered at the 2018 TSRC workshop on Ions in Solution, to appear in the March, 2019 issue of Substantia (https://riviste.fupress.net/index.php/subs/index

    Numerical electrokinetics

    Full text link
    A new lattice method is presented in order to efficiently solve the electrokinetic equations, which describe the structure and dynamics of the charge cloud and the flow field surrounding a single charged colloidal sphere, or a fixed array of such objects. We focus on calculating the electrophoretic mobility in the limit of small driving field, and systematically linearise the equations with respect to the latter. This gives rise to several subproblems, each of which is solved by a specialised numerical algorithm. For the total problem we combine these solvers in an iterative procedure. Applying this method, we study the effect of the screening mechanism (salt screening vs. counterion screening) on the electrophoretic mobility, and find a weak non-trivial dependence, as expected from scaling theory. Furthermore, we find that the orientation of the charge cloud (i. e. its dipole moment) depends on the value of the colloid charge, as a result of a competition between electrostatic and hydrodynamic effects.Comment: accepted for publication in Journal of Physics Condensed Matter (proceedings of the 2012 CODEF conference

    Dehydration as a Universal Mechanism for Ion Selectivity in Graphene and Other Atomically Thin Pores

    Full text link
    Ion channels play a key role in regulating cell behavior and in electrical signaling. In these settings, polar and charged functional groups -- as well as protein response -- compensate for dehydration in an ion-dependent way, giving rise to the ion selective transport critical to the operation of cells. Dehydration, though, yields ion-dependent free-energy barriers and thus is predicted to give rise to selectivity by itself. However, these barriers are typically so large that they will suppress the ion currents to undetectable levels. Here, we establish that graphene displays a measurable dehydration-only mechanism for selectivity of K+\mathrm{K}^+ over Cl−\mathrm{Cl}^-. This fundamental mechanism -- one that depends only on the geometry and hydration -- is the starting point for selectivity for all channels and pores. Moreover, while we study selectivity of K+\mathrm{K}^+ over Cl−\mathrm{Cl}^-, we find that dehydration-based selectivity functions for all ions, i.e., cation over cation selectivity (e.g., K+\mathrm{K}^+ over Na+\mathrm{Na}^+). Its likely detection in graphene pores resolves conflicting experimental results, as well as presents a new paradigm for characterizing the operation of ion channels and engineering molecular/ionic selectivity in filtration and other applications.Comment: 27 page

    A Multidomain Model for Ionic Electrodiffusion and Osmosis with an Application to Cortical Spreading Depression

    Full text link
    Ionic electrodiffusion and osmotic water flow are central processes in many physiological systems. We formulate a system of partial differential equations that governs ion movement and water flow in biological tissue. A salient feature of this model is that it satisfies a free energy identity, ensuring the thermodynamic consistency of the model. A numerical scheme is developed for the model in one spatial dimension and is applied to a model of cortical spreading depression, a propagating breakdown of ionic and cell volume homeostasis in the brain.Comment: submitted for publication, Aug. 28, 201

    Discrete solution of the electrokinetic equations

    Get PDF
    We present a robust scheme for solving the electrokinetic equations. This goal is achieved by combining the lattice-Boltzmann method (LB) with a discrete solution of the convection-diffusion equation for the different charged and neutral species that compose the fluid. The method is based on identifying the elementary fluxes between nodes, which ensures the absence of spurious fluxes in equilibrium. We show how the model is suitable to study electro-osmotic flows. As an illustration, we show that, by introducing appropriate dynamic rules in the presence of solid interfaces, we can compute the sedimentation velocity (and hence the sedimentation potential) of a charged sphere. Our approach does not assume linearization of the Poisson-Boltzmann equation and allows us for a wide variation of the Peclet number.Comment: 24 pages, 7 figure

    Langevin Trajectories between Fixed Concentrations

    Full text link
    We consider the trajectories of particles diffusing between two infinite baths of fixed concentrations connected by a channel, e.g. a protein channel of a biological membrane. The steady state influx and efflux of Langevin trajectories at the boundaries of a finite volume containing the channel and parts of the two baths is replicated by termination of outgoing trajectories and injection according to a residual phase space density. We present a simulation scheme that maintains averaged fixed concentrations without creating spurious boundary layers, consistent with the assumed physics
    • …
    corecore