2,958 research outputs found

    Proceedings of the 8th Scandinavian Logic Symposium

    Get PDF

    Agents that reason and negotiate by arguing

    Full text link

    Dagstuhl News January - December 2001

    Get PDF
    "Dagstuhl News" is a publication edited especially for the members of the Foundation "Informatikzentrum Schloss Dagstuhl" to thank them for their support. The News give a summary of the scientific work being done in Dagstuhl. Each Dagstuhl Seminar is presented by a small abstract describing the contents and scientific highlights of the seminar as well as the perspectives or challenges of the research topic

    Creationism and evolution

    Get PDF
    In Tower of Babel, Robert Pennock wrote that “defenders of evolution would help their case immeasurably if they would reassure their audience that morality, purpose, and meaning are not lost by accepting the truth of evolution.” We first consider the thesis that the creationists’ movement exploits moral concerns to spread its ideas against the theory of evolution. We analyze their arguments and possible reasons why they are easily accepted. Creationists usually employ two contradictive strategies to expose the purported moral degradation that comes with accepting the theory of evolution. On the one hand they claim that evolutionary theory is immoral. On the other hand creationists think of evolutionary theory as amoral. Both objections come naturally in a monotheistic view. But we can find similar conclusions about the supposed moral aspects of evolution in non-religiously inspired discussions. Meanwhile, the creationism-evolution debate mainly focuses — understandably — on what constitutes good science. We consider the need for moral reassurance and analyze reassuring arguments from philosophers. Philosophers may stress that science does not prescribe and is therefore not immoral, but this reaction opens the door for the objection of amorality that evolution — as a naturalistic world view at least — supposedly endorses. We consider that the topic of morality and its relation to the acceptance of evolution may need more empirical research

    Information sharing among ideal agents

    Get PDF
    Multi-agent systems operating in complex domains crucially require agents to interact with each other. An important result of this interaction is that some of the private knowledge of the agents is being shared in the group of agents. This thesis investigates the theme of knowledge sharing from a theoretical point of view by means of the formal tools provided by modal logic. More specifically this thesis addresses the following three points. First, the case of hypercube systems, a special class of interpreted systems as defined by Halpern and colleagues, is analysed in full detail. It is here proven that the logic S5WDn constitutes a sound and complete axiomatisation for hypercube systems. This logic, an extension of the modal system S5n commonly used to represent knowledge of a multi-agent system, regulates how knowledge is being shared among agents modelled by hypercube systems. The logic S5WDn is proven to be decidable. Hypercube systems are proven to be synchronous agents with perfect recall that communicate only by broadcasting, in separate work jointly with Ron van der Meyden not fully reported in this thesis. Second, it is argued that a full spectrum of degrees of knowledge sharing can be present in any multi-agent system, with no sharing and full sharing at the extremes. This theme is investigated axiomatically and a range of logics representing a particular class of knowledge sharing between two agents is presented. All the logics but two in this spectrum are proven complete by standard canonicity proofs. We conjecture that these two remaining logics are not canonical and it is an open problem whether or not they are complete. Third, following a influential position paper by Halpern and Moses, the idea of refining and checking of knowledge structures in multi-agent systems is investigated. It is shown that, Kripke models, the standard semantic tools for this analysis are not adequate and an alternative notion, Kripke trees, is put forward. An algorithm for refining and checking Kripke trees is presented and its major properties investigated. The algorithm succeeds in solving the famous muddy-children puzzle, in which agents communicate and reason about each other's knowledge. The thesis concludes by discussing the extent to which combining logics, a promising new area in pure logic, can provide a significant boost in research for epistemic and other theories for multi-agent systems
    • 

    corecore