1,653 research outputs found

    Calibration Challenges for Future Radio Telescopes

    Full text link
    Instruments for radio astronomical observations have come a long way. While the first telescopes were based on very large dishes and 2-antenna interferometers, current instruments consist of dozens of steerable dishes, whereas future instruments will be even larger distributed sensor arrays with a hierarchy of phased array elements. For such arrays to provide meaningful output (images), accurate calibration is of critical importance. Calibration must solve for the unknown antenna gains and phases, as well as the unknown atmospheric and ionospheric disturbances. Future telescopes will have a large number of elements and a large field of view. In this case the parameters are strongly direction dependent, resulting in a large number of unknown parameters even if appropriately constrained physical or phenomenological descriptions are used. This makes calibration a daunting parameter estimation task, that is reviewed from a signal processing perspective in this article.Comment: 12 pages, 7 figures, 20 subfigures The title quoted in the meta-data is the title after release / final editing

    Sound Event Localization, Detection, and Tracking by Deep Neural Networks

    Get PDF
    In this thesis, we present novel sound representations and classification methods for the task of sound event localization, detection, and tracking (SELDT). The human auditory system has evolved to localize multiple sound events, recognize and further track their motion individually in an acoustic environment. This ability of humans makes them context-aware and enables them to interact with their surroundings naturally. Developing similar methods for machines will provide an automatic description of social and human activities around them and enable machines to be context-aware similar to humans. Such methods can be employed to assist the hearing impaired to visualize sounds, for robot navigation, and to monitor biodiversity, the home, and cities. A real-life acoustic scene is complex in nature, with multiple sound events that are temporally and spatially overlapping, including stationary and moving events with varying angular velocities. Additionally, each individual sound event class, for example, a car horn can have a lot of variabilities, i.e., different cars have different horns, and within the same model of the car, the duration and the temporal structure of the horn sound is driver dependent. Performing SELDT in such overlapping and dynamic sound scenes while being robust is challenging for machines. Hence we propose to investigate the SELDT task in this thesis and use a data-driven approach using deep neural networks (DNNs). The sound event detection (SED) task requires the detection of onset and offset time for individual sound events and their corresponding labels. In this regard, we propose to use spatial and perceptual features extracted from multichannel audio for SED using two different DNNs, recurrent neural networks (RNNs) and convolutional recurrent neural networks (CRNNs). We show that using multichannel audio features improves the SED performance for overlapping sound events in comparison to traditional single-channel audio features. The proposed novel features and methods produced state-of-the-art performance for the real-life SED task and won the IEEE AASP DCASE challenge consecutively in 2016 and 2017. Sound event localization is the task of spatially locating the position of individual sound events. Traditionally, this has been approached using parametric methods. In this thesis, we propose a CRNN for detecting the azimuth and elevation angles of multiple temporally overlapping sound events. This is the first DNN-based method performing localization in complete azimuth and elevation space. In comparison to parametric methods which require the information of the number of active sources, the proposed method learns this information directly from the input data and estimates their respective spatial locations. Further, the proposed CRNN is shown to be more robust than parametric methods in reverberant scenarios. Finally, the detection and localization tasks are performed jointly using a CRNN. This method additionally tracks the spatial location with time, thus producing the SELDT results. This is the first DNN-based SELDT method and is shown to perform equally with stand-alone baselines for SED, localization, and tracking. The proposed SELDT method is evaluated on nine datasets that represent anechoic and reverberant sound scenes, stationary and moving sources with varying velocities, a different number of overlapping sound events and different microphone array formats. The results show that the SELDT method can track multiple overlapping sound events that are both spatially stationary and moving

    Least-Squares Wavelet Analysis and Its Applications in Geodesy and Geophysics

    Get PDF
    The Least-Squares Spectral Analysis (LSSA) is a robust method of analyzing unequally spaced and non-stationary data/time series. Although this method takes into account the correlation among the sinusoidal basis functions of irregularly spaced series, its spectrum still shows spectral leakage: power/energy leaks from one spectral peak into another. An iterative method called AntiLeakage Least-Squares Spectral Analysis (ALLSSA) is developed to attenuate the spectral leakages in the spectrum and consequently is used to regularize data series. In this study, the ALLSSA is applied to regularize and attenuate random noise in seismic data down to a certain desired level. The ALLSSA is subsequently extended to multichannel, heterogeneous and coarsely sampled seismic and related gradient measurements intended for geophysical exploration applications that require regularized (equally spaced) data free from aliasing effects. A new and robust method of analyzing unequally spaced and non-stationary time/data series is rigorously developed. This method, namely, the Least-Squares Wavelet Analysis (LSWA), is a natural extension of the LSSA that decomposes a time series into the time-frequency domain and obtains its spectrogram. It is shown through many synthetic and experimental time/data series that the LSWA supersedes all state-of-the-art spectral analyses methods currently available, without making any assumptions about or preprocessing (editing) the time series, or even applying any empirical methods that aim to adapt a time series to the analysis method. The LSWA can analyze any non-stationary and unequally spaced time series with components of low or high amplitude and frequency variability over time, including datum shifts (offsets), trends, and constituents of known forms, and by taking into account the covariance matrix associated with the time series. The stochastic confidence level surface for the spectrogram is rigorously derived that identifies statistically significant peaks in the spectrogram at a certain confidence level; this supersedes the empirical cone of influence used in the most popular continuous wavelet transform. All current state-of-the-art cross-wavelet transforms and wavelet coherence analyses methods impose many stringent constraints on the properties of the time series under investigation, requiring, more often than not, preprocessing of the raw measurements that may distort their content. These methods cannot generally be used to analyze unequally spaced and non-stationary time series or even two equally spaced time series of different sampling rates, with trends and/or datum shifts, and with associated covariance matrices. To overcome the stringent requirements of these methods, a new method is developed, namely, the Least-Squares Cross-Wavelet Analysis (LSCWA), along with its statistical distribution that requires no assumptions on the series under investigation. Numerous synthetic and geoscience examples establish the LSCWA as the method of methods for rigorous coherence analysis of any experimental series
    corecore