1,013 research outputs found

    An intelligent-agent approach for managing congestion in W-CDMA networks

    Get PDF
    PhDResource Management is a crucial aspect in the next generation cellular networks since the use of W-CDMA technology gives an inherent flexibility in managing the system capacity. The concept of a “Service Level Agreement” (SLA) also plays a very important role as it is the means to guarantee the quality of service provided to the customers in response to the level of service to which they have subscribed. Hence there is a need to introduce effective SLA-based policies as part of the radio resource management. This work proposes the application of intelligent agents in SLA-based control in resource management, especially when congestion occurs. The work demonstrates the ability of intelligent agents in improving and maintaining the quality of service to meet the required SLA as the congestion occurs. A particularly novel aspect of this work is the use of learning (here Case Based Reasoning) to predict the control strategies to be imposed. As the system environment changes, the most suitable policy will be implemented. When congestion occurs, the system either proposes the solution by recalling from experience (if the event is similar to what has been previously solved) or recalculates the solution from its knowledge (if the event is new). With this approach, the system performance will be monitored at all times and a suitable policy can be immediately applied as the system environment changes, resulting in maintaining the system quality of service

    Traffic pattern prediction in cellular networks.

    Get PDF
    PhDIncreasing numbers of users together with a more use of high bit-rate services complicate radio resource management in 3G systems. In order to improve the system capacity and guarantee the QoS, a large amount of research had been carried out on radio resource management. One viable approach reported is to use semi-smart antennas to dynamically change the radiation pattern of target cells to reduce congestion. One key factor of the semi-smart antenna techniques is the algorithm to adjust the beam pattern to cooperatively control the size and shape of each radio cell. Methods described in the literature determine the optimum radiation patterns according to the current observed congestion. By using machine learning methods, it is possible to detect the upcoming change of the traffic patterns at an early stage and then carry out beamforming optimization to alleviate the reduction in network performance. Inspired from the research carried out in the vehicle mobility prediction field, this work learns the movement patterns of mobile users with three different learning models by analysing the movement patterns captured locally. Three different mobility models are introduced to mimic the real-life movement of mobile users and provide analysable data for learning. The simulation results shows that the error rates of predictions on the geographic distribution of mobile users are low and it is feasible to use the proposed learning models to predict future traffic patterns. Being able to predict these patterns mean that the optimized beam patterns could be calculated according to the predicted traffic patterns and loaded to the relevant base stations in advance

    Introducing pattern graph rewriting in novel spatial aggregation procedures for a class of traffic assignment models

    Get PDF
    In this study two novel spatial aggregation methods are presented compatible with a class of traffic assignment models. Both methods are formalized using a category theoretical approach. While this type of formalization is new to the field of transport, it is well known in other fields that require tools to allow for reasoning on complex structures. The method presented stems from a method originally developed to deal with quantum physical processes. The first benefit of adopting this formalization technique is that it provides an intuitive graphical representation while having a rigorous mathematical underpinning. Secondly, it bears close resemblances to regular expressions and functional programming techniques giving insights in how to potentially construct solvers (i.e. algorithms). The aggregation methods proposed in this paper are compatible with traffic assignment procedures utilising a path travel time function consisting out of two components, namely (i) a flow invariant component representing free flow travel time, and (ii) a flow dependent component representing queuing delays. By exploiting the fact that, in practice, most large scale networks only have a small portion of the network exhibiting queuing delays, this method aims at decomposing the network into a constant free flowing part to compute once and a, much smaller, demand varying delay part that requires recomputation across demand scenarios. It is demonstrated that under certain conditions this procedure is lossless. On top of the decomposition method, a path set reduction method is proposed. This method reduces the path set to the minimal path set which further decreases computational cost. A large scale case study is presented to demonstrate the proposed methods can reduce computation times to less than 5% of the original without loss of accuracy

    Multi-layer traffic control for wireless networks

    Get PDF
    Le reti Wireless LAN, così come definite dallo standard IEEE 802.11, garantiscono connettività senza fili nei cosiddetti “hot-spot” (aeroporti, hotel, etc.), nei campus universitari, nelle intranet aziendali e nelle abitazioni. In tali scenari, le WLAN sono denotate come “ad infrastruttura” nel senso che la copertura della rete è basata sulla presenza di un “Access Point” che fornisce alle stazioni mobili l’accesso alla rete cablata. Esiste un ulteriore approccio (chiamato “ad-hoc”) in cui le stazioni mobili appartenenti alla WLAN comunicano tra di loro senza l’ausilio dell’Access Point. Le Wireless LAN tipicamente sono connesse alla rete di trasporto (che essa sia Internet o una Intranet aziendale) usando un’infrastruttura cablata. Le reti wireless Mesh ad infrastruttura (WIMN) rappresentano un’alternativa valida e meno costosa alla classica infrastruttura cablata. A testimonianza di quanto appena affermato vi è la comparsa e la crescita sul mercato di diverse aziende specializzate nella fornitura di infrastrutture di trasporto wireless e il lancio di varie attività di standardizzazione (tra cui spicca il gruppo 802.11s). La facilità di utilizzo, di messa in opera di una rete wireless e i costi veramente ridotti hanno rappresentato fattori critici per lo straordinario successo di tale tecnologia. Di conseguenza possiamo affermare che la tecnologia wireless ha modificato lo stile di vita degli utenti, il modo di lavorare, il modo di passare il tempo libero (video conferenze, scambio foto, condivisione di brani musicali, giochi in rete, messaggistica istantanea ecc.). D’altro canto, lo sforzo per garantire lo sviluppo di reti capaci di supportare servizi dati ubiqui a velocità di trasferimento elevate è strettamente legato a numerose sfide tecniche tra cui: il supporto per l’handover tra differenti tecnologie (WLAN/3G), la certezza di accesso e autenticazione sicure, la fatturazione e l’accounting unificati, la garanzia di QoS ecc. L’attività di ricerca svolta nell’arco del Dottorato si è focalizzata sulla definizione di meccanismi multi-layer per il controllo del traffico in reti wireless. In particolare, nuove soluzioni di controllo del traffico sono state realizzate a differenti livelli della pila protocollare (dallo strato data-link allo strato applicativo) in modo da fornire: funzionalità avanzate (autenticazione sicura, differenziazione di servizio, handover trasparente) e livelli soddisfacenti di Qualità del Servizio. La maggior parte delle soluzioni proposte in questo lavoro di tesi sono state implementate in test-bed reali. Questo lavoro riporta i risultati della mia attività di ricerca ed è organizzato nel seguente modo: ogni capitolo presenta, ad uno specifico strato della pila protocollare, un meccanismo di controllo del traffico con l’obiettivo di risolvere le problematiche presentate precedentemente. I Capitoli 1 e 2 fanno riferimento allo strato di Trasporto ed investigano il problema del mantenimento della fairness per le connessioni TCP. L’unfairness TCP conduce ad una significativa degradazione delle performance implicando livelli non soddisfacenti di QoS. Questi capitoli descrivono l’attività di ricerca in cui ho impiegato il maggior impegno durante gli studi del dottorato. Nel capitolo 1 viene presentato uno studio simulativo delle problematiche di unfairness TCP e vengono introdotti due possibili soluzioni basate su rate-control. Nel Capitolo 2 viene derivato un modello analitico per la fairness TCP e si propone uno strumento per la personalizzazione delle politiche di fairness. Il capitolo 3 si focalizza sullo strato Applicativo e riporta diverse soluzioni di controllo del traffico in grado di garantire autenticazione sicura in scenari di roaming tra provider wireless. Queste soluzioni rappresentano parte integrante del framework UniWireless, un testbed nazionale sviluppato nell’ambito del progetto TWELVE. Il capitolo 4 descrive, nuovamente a strato Applicativo, una soluzione (basata su SIP) per la gestione della mobilità degli utenti in scenari di rete eterogenei ovvero quando diverse tecnologie di accesso radio sono presenti (802.11/WiFi, Bluetooth, 2.5G/3G). Infine il Capitolo 5 fa riferimento allo strato Data-Link presentando uno studio preliminare di un approccio per il routing e il load-balancing in reti Mesh infrastrutturate.Wireless LANs, as they have been defined by the IEEE 802.11 standard, are shared media enabling connectivity in the so-called “hot-spots” (airports, hotel lounges, etc.), university campuses, enterprise intranets, as well as “in-home” for home internet access. With reference to the above scenarios, WLANs are commonly denoted as “infra-structured” in the sense that WLAN coverage is based on “Access Points” which provide the mobile stations with access to the wired network. In addition to this approach, there exists also an “ad-hoc” mode to organize WLANs where mobile stations talk to each other without the need of Access Points. Wireless LANs are typically connected to the wired backbones (Internet or corporate intranets) using a wired infrastructure. Wireless Infrastructure Mesh Networks (WIMN) may represent a viable and cost-effective alternative to this traditional wired approach. This is witnessed by the emergence and growth of many companies specialized in the provisioning of wireless infrastructure solutions, as well as the launch of standardization activities (such as 802.11s). The easiness of deploying and using a wireless network, and the low deployment costs have been critical factors in the extraordinary success of such technology. As a logical consequence, the wireless technology has allowed end users being connected everywhere – every time and it has changed several things in people’s lifestyle, such as the way people work, or how they live their leisure time (videoconferencing, instant photo or music sharing, network gaming, etc.). On the other side, the effort to develop networks capable of supporting ubiquitous data services with very high data rates in strategic locations is linked with many technical challenges including seamless vertical handovers across WLAN and 3G radio technologies, security, 3G-based authentication, unified accounting and billing, consistent QoS and service provisioning, etc. My PhD research activity have been focused on multi-layer traffic control for Wireless LANs. In particular, specific new traffic control solutions have been designed at different layers of the protocol stack (from the link layer to the application layer) in order to guarantee i) advanced features (secure authentication, service differentiation, seamless handover) and ii) satisfactory level of perceived QoS. Most of the proposed solutions have been also implemented in real testbeds. This dissertation presents the results of my research activity and is organized as follows: each Chapter presents, at a specific layer of the protocol stack, a traffic control mechanism in order to address the introduced above issues. Chapter 1 and Charter 2 refer to the Transport Layer, and they investigate the problem of maintaining fairness for TCP connections. TCP unfairness may result in significant degradation of performance leading to users perceiving unsatisfactory Quality of Service. These Chapters describe the research activity in which I spent the most significant effort. Chapter 1 proposes a simulative study of the TCP fairness issues and two different solutions based on Rate Control mechanism. Chapter 2 illustrates an analytical model of the TCP fairness and derives a framework allowing wireless network providers to customize fairness policies. Chapter 3 focuses on the Application Layer and it presents new traffic control solutions able to guarantee secure authentication in wireless inter-provider roaming scenarios. These solutions are an integral part of the UniWireless framework, a nationwide distributed Open Access testbed that has been jointly realized by different research units within the TWELVE national project. Chapter 4 describes again an Application Layer solution, based on Session Initiation Protocol to manage user mobility and provide seamless mobile multimedia services in a heterogeneous scenario where different radio access technologies are used (802.11/WiFi, Bluetooth, 2.5G/3G networks). Finally Chapter 5 refers to the Data Link Layer and presents a preliminary study of a general approach for routing and load balancing in Wireless Infrastructure Mesh Network. The key idea is to dynamically select routes among a set of slowly changing alternative network paths, where paths are created through the reuse of classical 802.1Q multiple spanning tree mechanisms

    Context-awareness for mobile sensing: a survey and future directions

    Get PDF
    The evolution of smartphones together with increasing computational power have empowered developers to create innovative context-aware applications for recognizing user related social and cognitive activities in any situation and at any location. The existence and awareness of the context provides the capability of being conscious of physical environments or situations around mobile device users. This allows network services to respond proactively and intelligently based on such awareness. The key idea behind context-aware applications is to encourage users to collect, analyze and share local sensory knowledge in the purpose for a large scale community use by creating a smart network. The desired network is capable of making autonomous logical decisions to actuate environmental objects, and also assist individuals. However, many open challenges remain, which are mostly arisen due to the middleware services provided in mobile devices have limited resources in terms of power, memory and bandwidth. Thus, it becomes critically important to study how the drawbacks can be elaborated and resolved, and at the same time better understand the opportunities for the research community to contribute to the context-awareness. To this end, this paper surveys the literature over the period of 1991-2014 from the emerging concepts to applications of context-awareness in mobile platforms by providing up-to-date research and future research directions. Moreover, it points out the challenges faced in this regard and enlighten them by proposing possible solutions

    Essays on optimal spectrum management for expanding wireless communications

    Get PDF
    Wireless communications are experiencing an unprecedented expansion. The increasing mobility of the communication society and the pace of technological change are growing pressure for more spectrum to support more users, more uses and more capacity. Thus, spectrum management has become an extremely important part of wireless communications. A few regulators are changing their traditional ‘command and control’ approach. Nevertheless, many features of optimal spectrum management are still widely discussed. This work is aimed at contributing to that discussion. The key insight is that spectrum management can benefit from more liberal spectrum sharing. This work set out to answer three main research questions: (i) whether there is a theoretical framework which can be used to analyze and guide spectrum policy reform, when moving from a traditional ‘command and control’ regime to a market-inspired one; (ii) whether it is possible to design a plausible mechanism which can promote efficient allocation and assignment of spectrum commons; (iii) whether (and how) technological developments could enable band sharing methods outside the traditional management framework and without harmful interference. The literature on transition economics and policy was used to help answer the first research question. Evidence from liberalizing countries was positively analyzed to discuss reforms of spectrum allocation and assignment methods. Most countries have adopted strategies that gradually change their spectrum policies and started by using more liberal methods to assign spectrum. It is also argued that future spectrum reforms might benefit from insights presented in the transition economics literature. A translation of a model on cartel quotas under majority rule is proposed to answer the second research question. The work verifies, firstly, that an analogous set of properties is satisfied under our assumptions and that the median-index theorem applies, mutatis mutandis, to our setting. Thus firms bidding to acquire spectrum commons contribute a minimum amount of their wealth; the sum of contributions offered is then compared to other bids for the same spectrum, which is allocated to the highest bidder. The last research question considers novel ways of spectrum sharing that might be enabled by technological developments. The work explores contributions, from various research areas, regarding management of scarce resources. Those contributions are discussed with respect to shared spectrum access. It is suggested that spectrum management might benefit from methods which enable the management of pooled (intermittent) demands for access, especially methods in line with fair sojourn protocols
    • …
    corecore