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Abstract

Faculty of Engineering
Department of Civil Engineering

Engineering Doctorate in Systems

On Urban Vehicular Ad-hoc Networks and Parking Systems
by Pietro Carnelli

The nexus between wireless communication and transportation systems is in-
vestigated for urban areas. Both near and longer term scenarios are considered.
In the near term, we research potential methods for reducing inner-city vehicle
congestion through use of wireless enabled vehicle-parking occupancy detec-
tion and information dissemination. Subsequently, we developed a low-energy,
smart-phone based vehicle-parking activity detection system. Our proposed
system achieved high parking activity detection accuracies using low-energy
sensors found in typical smart-phones.

With regards to longer term urban transport and wireless systems, we in-
vestigated the feasibility of using a connected fleet of (potentially autonomous)
vehicles, also referred to as a VANET (Vehicular Ad-hoc NETwork), to provide
temporary network connectivity to a city-wide (delay tolerant) sensor network.
Initially we investigated how such a system would perform using real-world taxi
trace datasets that were publically available online for Rome (Italy) and San
Francisco (USA). We combined the (filtered, map-matched and ‘folded’) taxi-
traces with a road network and Line-of-Sight (LoS) model (based on Open-
StreetMap road and building footprint datasets) for our VANET simulations.
Simulation results show that increasing our connected fleet size relative to the
number of sensors reduces end-to-end delay. However, a performance plateau
was observed after increasing taxi fleet sizes beyond a certain ratio of vehicles
to sensors.

Finally, we investigated methods of improving the performance of our city-
wide VANET system. We developed an agent-based VANET simulation that
allowed for strategic re-routing of connected autonomous vehicles, as they per-
formed their passenger trips, in order to increase sensor message mean packet
delivery ratio values. Results show that even a minor increase in typical pas-
senger journey lengths (circa 500m or approximately a tenth of the median
passenger journey length) increased the final mean sensor packet delivery ratio
values.
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Chapter 1

Introduction

Two city sub-systems, namely vehicular transport and wireless infrastructure,
and their interactions, are considered in this thesis. Both are affected by in-
creasing urbanisation globally. As populations living in urban areas increase,
the demand for transport and wireless access to the Internet, and general seam-
less connectivity between citizens generally follows. For example, both trans-
port and wireless systems are needed in order for humans to work either via
commuting to a physical workplace or working remotely with Internet access to
their workplace.

Furthermore, as cities become ever more sophisticated in terms of sensors
monitoring everything from vehicle traffic at intersections to air quality, the
need to connect these sensors to the Internet will be critical for their intended
operation. Connecting every sensor to a physical networked link (e.g., using
Ethernet or a fibre optic back-bone) would be ideal in terms of reliability, con-
nection bandwidth and delay. However, the cost and complexity of laying or
retrofitting network cables in order to connect a city-wide sensor network can be
prohibitive for most local municipal governments. Finding a common interface
or method of working between vehicular transport and wireless systems is the
over-arching theme of this thesis.

Initially inner city vehicle-parking systems will be explored and investigated
with the eventual aim of improving information dissemination between drivers.
Cities such as San Francisco (USA) have implemented a near city-wide (circa
7,000 on-street parking spaces) smart parking system referred to as SFpark [79].
The aim of SFpark is to reduce inner-city vehicle congestion by varying the
price to park a vehicle on-street in the city centre and by providing drivers with
real-time vehicle-parking availability information. In order to collect parking
occupancy and price data, SFpark retrofitted over 6,000 on-street connected
parking meters (one per designated on-street vehicle parking space). At the
time, SFpark cost over 20M US dollars.

Rather than retrofitting all inner-city parking spaces (a somewhat lengthy
and costly process), we aim to investigate whether smart-phone based appli-
cations could provide the necessary platform to detect vehicle-parking activity,
and view on-street vehicle-parking availability. Future versions of our system
could incorporate a method for electronic payment. Our proposed method (re-
ferred to as ParkUs, Chapter 2) relied on using smart-phone sensor data streams
(such as those generated by a magnetometer, accelerometer and GNSS) to de-
tect and locate a change in transport modality.
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By harnessing sensor data and wireless connectivity, given the wide adoption
of smartphones in developed cities [52], we aim to provide better, near real-time
parking occupancy levels prior to a user journey. In particular, our focus will
be to provide an infrastructure-less and accurate parking-activity detection and
localisation method with minimal smart-phone energy consumption.

Whilst tackling near-term inner city congestion problems is of great inter-
est, however, given the predicted advent of Connected Autonomous Vehicles
(CAVs) over the coming decades [108], the rest of the thesis will explore and in-
vestigate whether CAVs could feasibly provide a city-wide sensor network with
connectivity.

In the longer term, once CAV technology has been developed in such a
manner to provide safe and efficient transport, CAVs will likely replace most
human-driven vehicles. Further potential benefits of CAVs include the ability
to allow those not able to drive (for example the visually impaired) to commute
across a city independently. CAVs ability to move without human drivers opens
up a raft of other potential applications and use-cases.

In particular, CAVs will require some form of wireless connectivity (alongside
vision and ranging technologies) in order to avoid collisions when conducting
driving manoeuvres such as lane changing or parking. Given that Vehicular
Ad-hoc Networks (VANETS) will be necessary for Autonomous Vehicle (AV)
operation, several other applications could benefit, or ‘piggy-back’ off such a
city-wide connected fleet of mobile nodes/wireless access-points. One applica-
tion explored in this thesis (see Chapters 3 and 4) involved using a fleet of CAVs
to provide some form of wireless connectivity to a distributed (sparse) city-wide
sensor network.

As sensing technology reduces in cost, more cities are using them to mon-
itor various aspects of their environment. In particular, we are interested in
connecting delay tolerant sensors, such as those that do not provide a high
sampling or update frequency (e.g., air quality monitoring or household en-
ergy consumption). Furthermore, such delay tolerant sensors may not need to
provide continuous data streams. As edge processing systems combined with
sensors become more popular, only metadata such as statistical features might
be transmitted instead, further reducing connectivity requirements.

We subsequently explore through modelling and simulation the feasibility
of using a CAV fleet’s VANET system to provide connectivity to a city-wide
sensor network. Initially, we used openly available real-world taxi trace datasets
for two cities: Rome (Italy) and San Francisco (USA). Local building footprint
and road network topology datasets were obtained through OpenStreetMap.
By ‘folding’ multiple days of taxi trace data we were able to investigate how
end-to-end delay and Packet Delivery Ratios (PDR) vary with differing taxi
fleet and sensor network sizes.

Given the results obtained from our initial study (Chapter 3) we then re-
searched and tested a method of improving final PDR values across the city-
wide sensor network. We developed an edge-weighting function in order to
incentivise efficient routing (of the simulated CAVs) in order to provide better
wireless sensor network connectivity by visiting more sensors per passenger trip.
We achieved this without overly lengthening passenger trip lengths.
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1.1 Cities

Over the last century humanity has slowly become urbanised. The UN Ur-
banisation Report finds that 55% of the world’s human population currently
live in cities [97]. A definition of a city can be somewhat misleading and open
to interpretation. The UN uses the following three definitions: ‘city proper’:
the smallest enclave, where the original city settlement began (often cover-
ing the central business and local city government buildings districts), ‘urban
agglomeration’: the surrounding area, often can be thought of as suburbs and
‘metropolitan area’ which covers an even larger surrounding area often including
small ‘satellite’ or ‘commuter’ towns. In general, the UN used the ‘urban ag-
glomeration’ definition and a soft-limit/minimum population threshold of three
hundred thousand human inhabitants in order to define a city /urban area.

Definitions aside, the proportion of urban dwellers is expected only to in-
crease, in part as generations now settling in cities earn more and raise families,
and through continued migration (mostly for economic reasons). The UN pre-
dicts that by the year 2050 over two thirds of humanity will live in a city. This
generates certain challenges for future city planners and administrators as to
how to manage the increase in urbanisation in a sustainable manner.

Cities were first treated formally as systems when General Systems The-
ory and Cybernetics was applied to the social sciences discipline in the late
1950s. The focus at the time was on ways in which the elements comprising the
city system interacted with one another through hierarchical structures. These
structures allowed for feedback, or control loops, designed to keep the entire sys-
tem stable within certain bounds. However, reasoning behind cities as systems
has evolved to consider that most systems cannot be organised into simple, dis-
tinct hierarchical structures. Instead cities were viewed as consisting of ‘messy’
sub-systems that interact with each other through specific interfaces [5].

Batty goes as far as suggesting that the notion of equilibrium and dynamics
(central to modern systems theory) was initially conceived, or at the very least,
“endorsed” by Adam Smith (an 18 century Scottish economist and philoso-
pher)'. Examples of these city components/sub-systems include (but are not
limited to) transportation, energy networks, water, education, local govern-
ment, policing, waste removal, health-care, and businesses. It is the interaction
between these sub-systems that defines the overall performance of a city, either
in terms of economic output or more human-centred measures such as the UN’s
Human Development Index (HDI) [5].

! Adam Smith coined the phrase “invisible hand” in his magnum opus titled, The Wealth of
Nations, when positing why free markets (can) reach a price equilibrium between supply and
demand. Adam Smith was most likely referring to the certain amount of (non-quantifiable)
belief required (on behalf of those trading within the market) for the market system to operate
effectively and efficiently. At some level one must be convinced that the goods or services
being exchanged are worthwhile.
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1.2 Vehicle Transportation Systems

Automotive vehicles (of various guises, sizes and powertrains) account for 90%
of all passenger traffic kilometres travelled and nearly two thirds of all freight
in the UK (see Tables TSGB0101 and TSGB0401 of Transport Statistics Great
Britain, Department for Transport [94]). Similarly, in the USA, where most
cities started to materialise around the time when vehicle manufacturing was
booming, 80% of all commuting journeys are by motor vehicle (see Table 1-41
of National Transportation Statistics from the US Bureau of Transportation
Statistics [87]).

Demand for transport is unlikely to reduce in the coming decades. As more
people move to live and work in cities, transportation systems will feel ever
more under pressure to cope with increased demand. Furthermore, transport is
not limited to those that commute to work, see Table 1.1. In the UK, a larger
proportion of trips are in fact for leisure, followed by shopping and then com-
muting”. Nonetheless, vehicular transport is still the dominant mode: according
to the Royal Automobile Club Foundation for Motoring (referred to simply as
the RAC Foundation) there are over 38M licensed vehicles in the UK [60].

Future mobility, at least within large urban agglomerations, may shift away
from individual (private) car ownership and towards a subsidised private-public
partnership of a bookable fleet of vehicles. Benefits from such a system include
drastically reducing the number of vehicles on the road (through higher utilisa-
tion per vehicle) whilst maintaining similar levels of availability. After all, many
studies have shown that on average, a (privately owned) vehicle spends at least
90% of its life stationary. Other benefits include efficient maintenance, as fewer
different parts are required for fleet maintenance (assuming they are the same
vehicle model). Some ride hailing and vehicle rental companies have recently
started partnering with vehicle manufacturers (examples include but are not
limited to BMW and Toyota) in order to provide vehicle transport/mobility
as a service. In these agreements, the manufacturers provide the assets (vehi-
cles) as well as coordinate their maintenance, whilst the ride hailing or rental
firms provide the supply of customers, via their on-line platforms, for scheduling
vehicle or trip bookings.

Vehicle transportation systems rely on two key assets, the vehicles and the
underlying road network infrastructure (not just the physical roads, but refilling
stations, traffic lights, signage, parking bays etc.). Both are fundamental for a
city’s transportation system. However, the road infrastructure is mostly fixed
in size and topology, since it is almost impossible to build more roads in a city
without having to purchase the land to do so, which requires enormous capital
expenditure. Consequently vehicle congestion in cities is increasing.

2At a recent machine learning systems conference attended by the author, an employee of
a large internet search firm with interests in mapping and smart-phone operating systems and
services admitted (albeit strictly ‘off the record’) that out of their near 2B monthly active
users, they were able to accurately (within reason) predict roughly half of their trips (best
hypothesis being that most of these trips were work commutes or parents on school runs).
Yet even with the firm’s vast user base, datasets and computational resources, they were not
able to predict or find any common trend to account for the other (roughly speaking) half of
trips the recorded.
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Two aspects of vehicle transportation systems will be investigated and dis-
cussed in this thesis. The first looks at a current scenario where we investigate
parking behaviour of drivers and congestion caused by drivers searching for a
vacant parking space within cities.

Research conducted in the USA by Donald Shoup suggests a significant
proportion of inner city traffic is caused by drivers circling streets searching for a
vacant parking space [81, 83|. He estimated this proportion of vehicle congestion
to be circa 20-30% depending on the city (and era of study). One potential
solution, as championed by Shoup, is to stop subsidising on-street parking® and
to increase fares when demand rises (similar to surge pricing within on-line ride
hailing platforms).

However, increasing vehicle on-street parking prices alone will not stop peo-
ple searching for a vacant parking space if they are already on their way to
their destination. Potentially, having parking occupancy information before a
trip commences could allow us to ‘nudge’ would-be drivers to using some other
mode of transport (e.g., public transport or a taxi cab). If not, we could at least
encourage drivers to search/park where parking spaces are readily available.

The second aspect of vehicle transportation systems explored in this thesis
concerns future cities, where mobility is seen as a service and most vehicles will
be autonomous and have dedicated wireless systems. In these scenarios we de-
velop two different vehicle traffic models; one based on real world vehicle trace
datasets (Chapter 3) and the other (Chapter 4) through an agent-based model
of CAVs and passengers. Both chapters aim to tackle the problem of providing
connectivity to sensors distributed across an urban area. In practice these sen-
sors could be air quality monitors, cameras or even parked CAVs not currently
in use. Given the sheer abundance of different types of sensors (from LiDAR to
cameras to ultrasonic ranging devices) required for autonomous control, parked
CAVs could provide environmental data as well as acting as local data storage
for up-to-date LiDAR maps.

1.3 Wireless Systems for Autonomous Vehicles

In order for fully autonomous vehicles to become a consumer reality, several
key technologies need to be researched, developed and deployed [108]. A large
amount of research has been conducted in order to improve current imaging and
image processing technologies to inform CAVs of obstacles, other road users, and
the road layout ahead (see |68, 74, 76]).

However, making decisions such as route planning or vehicle avoidance in a
safe and timely manner requires a V2X wireless communication system. This
is particularly important when obstacles are outside the Line-of-Sight (LoS)
of the vehicle. Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I)
networks are often cited as the solution to these problems as they allow vehicles
to communicate with each other for safety and to ensure better road utilisation.

3Shoup goes further by suggesting that the core of the problem lies in building regulations
which stipulate (although they do vary between the states) a minimum number of parking
spaces for different types of buildings, thus creating an almost permanent incentive to own
and use vehicles in cities [82].
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TABLE 1.1: Average number of trips by purpose in England,

2016, sample size: 954,000. Table reproduced from Trans-

port Statistics Great Britain, Department of Transport, Table
TSGB0104 [94].

Trip Purpose Fraction of Recorded Trips
Commuting 0.15
Business 0.03
Education/Parental Escort 0.12
Shopping 0.19
Other Escort 0.09
Personal Business 0.09
Leisure 0.26
Other 0.06

In addition, a central networked infrastructure might allow CAVs to obtain
the latest road map updates as well as any other related updates such as bad
weather, or roadworks along their planned routes.

Currently, Dedicated Short Range Communications (DSRC), cellular and
millimetre-wave (mmWave) wireless technologies are the main competing sys-
tems for V2X communication. DSRC, based on the IEEE 802.11p/WAVE pro-
tocols [36], is currently considered the default V2V technology due to its rapid
information dissemination frequency (10Hz) and low latency. The USA’s Na-
tional Highway Traffic Safety Administration (NHTSA) mandated that all new
production vehicles support DSRC from 2020 onwards®.

Cellular technologies such as 3G and LTE can offer larger capacity and
increased wireless communication range compared to IEEE 802.11p/WAVE
systems. However, these cellular systems are not currently used for V2V as
they do not satisfy the stringent delay requirements for V2V safety applica-
tions (like vehicle avoidance, or coordination at intersections). Modifications
to the LTE standard, in particular the Device-to-Device (D2D) system, have
yielded increases in average Packet Received Ratio (PRR), end-to-end delay,
and reliability necessary to be used for V2V systems [24, 25]. However, neither
the cellular (3GPP) or the Wi-Fi based IEEE standards achieve particularly
high data rates. Most aim to support low data rates of 2-6Mbps necessary for
safety /short message applications.

For higher data rate applications, such as infotainment or LiDAR, other
technologies must be developed. Recently, research has focused on higher fre-
quencies such as those with millimetre wavelengths to achieve higher data rates

4As of recently (November 2017), the current USA government administration revoked
this mandate [73]. It is hypothesised the mandate was revoked due to lobbying from mass
vehicle production manufacturers wanting to avoid including extra components that would
erode their already wafer-thin profit margins. This semi-hostile attitude to including new
vehicle safety technology is not particularly novel. Previously, vehicle manufacturers were
against including air bags and seat belts as standard. Afterall “only dead fish go with the
flow” [93].
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[88]. These systems require large antenna arrays to achieve high gains via beam-
forming.

The mmWave technology for V2V has seen a recent resurgence in part due
to some vehicle manufactures claiming higher levels of security if CAVs trans-
mit raw LiDAR data between each other. This is in contrast to transmitting
processed metadata such as a list of detected, localised and (correctly) classified
objects/people ahead of the CAV. Proponents of such ‘raw’ data transmission
systems [23] argue that providing other CAVs with such rich (un-processed)
data might be the only way to mitigate false-positive object or pedestrian de-
tection and increase safety of CAVs. By sharing and processing raw sensor data,
the ‘next” CAV in a platoon can decide for themselves if the the CAV in front
has actually detected someone crossing the road (for example). Furthermore,
[21] adds that such methods of data sharing between CAVs travelling in a pla-
toon could lead to a more collaborative approach to obstacle/human detection.
Potentially, better detection accuracies could be achieved by cross-referencing
classification/object detection results amongst the CAV platoon. Finally, the
platoon of CAVs could then hold a vote on whether to conduct evasive manoeu-
vres.

1.4 Aims and Objectives

The over-arching aim of this thesis is to explore how modelling and simulation
of the nexus between transportation and wireless systems could aid cities in
terms of wireless connectivity and reducing congestion/pollution.

Research Objectives:

e Conduct experiments to collect vehicle transport and trip data in order
to understand vehicle user behaviour

e Develop an energy efficient machine learning method of detecting vehicle
parking activities using low-energy sensors found on a typical smartphone

e (Collect or obtain vehicle fleet trace datasets for inner cities

e Develop VANET simulator using real-world vehicle trace datasets to un-
derstand urban sensor information dissemination using a simulated fleet

e Develop AGENT-based VANET simulator in order to explore various po-
tential VANET performance improvement strategies

1.4.1 Research Questions

1. How can cities address near/short term vehicular congestion, such as those
generated by inner city vehicle-parking systems in a relatively low cost and
effective manner?
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2.

With the advent of connected and autonomous vehicles, what are the
minimum requirements in terms of fleet size given the number/density of
city-wide sensors to ensure optimal network coverage of the urban area?

What strategies can be used to increase VANET performance such as
increasing or guaranteeing a certain Packet Delivery Ratio (PDR) without
overly lengthening CAV passenger trip lengths?

1.4.2 Original Contributions

Contributions to Knowledge

Developed and published fast, accurate, reliable and low-energy vehicle
parking activity detection and classification system. Research was pub-
lished in the Proceedings of the Twenty-Ninth AAAI Conference on Inno-
vative Applications (2017) [12].

Conducted and published first study into driver cruising behaviour and
detection. Research was published in MobiQuitous 2017: Proceedings of
the 14th EAI International Conference on Mobile and Ubiquitous Com-
puting Systems [43].

Filed a systems and method patent (in the USA and Japan) for an area
wide wireless network managed by autonomous vehicles with wireless ac-
cess points, US patent number: US20180098227A1 [11].

Investigated relationship between passenger trip lengths and overall sensor
network end-to-end delay using real world datasets. Research published in
proceedings of IEEE Vehicular Networking Conference (VNC) 2018 [13].

Showed how different vehicle-routing strategies can increase PDR at little
cost in terms of extra passenger trip lengths.

Contributions to Engineering and Open Source Community

Developed an open data centric VANET simulator [10].
Contributed to developing (updating) OSRM-PythonV3+ API [98].

Designed and conducted vehicle parking experiment (and data gathering
exercise) with volunteer users. Consequently an Android ‘smart-parking’
application has been developed and released online via the Google Play
Store [49].

Developed an agent-based VANET simulator including an urban LoS
model and adaptive vehicle routing techniques [9].
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1.5 Systems Stakeholder Background

The research presented in this thesis was the result of an Engineering Doc-
torate (EngD) sponsored by Toshiba Research EU Ltd and the University of
Bristol (UK). A lead academic and secondary supervisor were set by the univer-
sity. The sponsoring firm, Toshiba, appointed an industrial research supervisor.
Unfortunately mid-way through the EngD, the sponsoring company, Toshiba,
experienced two dramatic downturns; an accounting scandal followed by a US
subsidiary, Westinghouse, filing for bankruptcy. In turn these events led to a
drastic change in company structure (Toshiba was even briefly de-listed from
the Tokyo Stock Exchange) as well as changes in research and operational di-
rections.

Although Toshiba’s influence and business model changed during the course
of the EngD, an updated stakeholder diagram highlighting the various systems
and their respective owners and subsequent influence are detailed in Figure 1.1.

Toshiba’s main interests now lie in becoming a ‘Cyber-Physical’ company,
i.e.; a firm that sells both software services and the necessary hardware. Toshiba
still maintains a strong presence in the wireless and flash memory business, both
by researching and cooperating with wireless standards and protocol develop-
ment and by investing in new flash memory foundries (‘3D’ transistors as they
are referred to). Additionally, new focus and resources have been allocated to
develop more autonomous and lithium battery (powered) vehicle systems. In
particular, the development of new battery technology (referred to as SCiB)
increases the number of charge cycles per battery cell as well as developing
wireless chipsets for vehicle manufacturers. Toshiba’s ‘sphere of influence’ is
shown by a red circle in Figure 1.1.

The main focus of the EngD was to investigate future parking and au-
tonomous vehicle communication systems and their ability to sustain certain
applications (such as messaging or data gathering services). Consequently two
national government bodies, namely, the Department for Transport (DfT) and
the Office of Communications (OFCOM), are highlighted as having the great-
est influence with regards to setting transport policy and regulating the wireless
spectrum (necessary for V2X communications). National government organisa-
tions concerned with the research carried out over the course of the EngD, i.e.,
departments that set policy and regulate safety laws with regards to transport
and wireless communications are shown in Figure 1.1.

OFCOM sets policy covering power of cellular antennas and which parts
of the electromagnetic spectrum can be used by vehicular communication sys-
tems. At the time of writing, OFCOM had not decided concretely which parts
of the electromagnetic spectrum will be allocated for wireless V2X communi-
cations systems. OFCOM replied to requests from the author for clarification.
However, the author was met with an inconclusive response: “..., there is an
international discussion about using frequencies around 5.8-5.9GHz for Intelli-
gent Transportation Systems (ITS) and we [OFCOM] are participating in those

discussions”.

5Quote from email transcript between the author and A. Garrity, a Spectrum Licensing
Associate at OFCOM (2019).
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Whilst national government agencies set policy and regulations, it is often
up to the local authorities, in our case, Bristol City Council (coloured blue in
Figure 1.1) to pass judgements concerning building and antenna (base station)
heights and positioning. Furthermore, local governments have greater authority
over public transport and land use permits. This is of great concern with
regards to inner-city vehicle parking locations (and pricing schemes) as well as
locations (and power output) of electric vehicle charging points and permits for
AV testing.

Dept. For
Transport

Spectrum
Allocation

Highway
Regulations

Cellular
Base
Station

Charging | parking
Points

Wireless
Standards
/Protocols

SCiB Battery

Technology Antenna

Bristol City
Council (Local
Government)

Enelrgy Flash & HDD
Generation Memory Business

Toshiba

FiGURE 1.1: Stakeholder diagram highlighting areas of influ-

ence with respect to autonomous vehicles, wireless systems and

inner-city parking. National level UK government and respective

agencies (departments) are shown with black circles of influence.

Blue and red circles refer to local city government (Bristol City

Council) and the firm supporting the EngD in Systems, namely
Toshiba Research EU Ltd.

1.6 Thesis Structure

The remainder of this thesis is divided into five main chapters. Note there
is no overarching thesis literature review, instead each ‘research work’ chapter
contains a concise literature review relevant to the material being discussed.
Chapter 2 aims to address our first research question by detailing our work on
near-term solutions to current congestion problems facing inner cities, namely
congestion due to vehicles searching for a vacant on-street parking space. We
design an experiment whereby we collect driver transit and parking behaviour
data. The chapter investigates various machine learning approaches in order
to accurately (and reliably) classify when a user has occupied or vacated an
on-street vehicle-parking space. We achieve this by using mostly low-powered
sensors found in almost all smart-phones. We compare our classification system
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against current approaches and cost our method in terms of energy consumption
per vehicle-parking detection using an energy model. Finally, we investigate
whether we can detect changes in driver behaviour as they switch from simply
driving towards their destination to searching for a vacant vehicle-parking space.

Chapters 3 and 4 are similar in scope but differ in terms of the under-
lying modelling and simulation methodology. Both chapters aim to address
the research problem of combining a public-private transportation system with
wireless sensor connectivity for an urban area. Chapter 3 aims to address our
second research question concerning optimal taxi-fleet sizes for certain city-wide
sensor network scenarios. Note, all work detailed in Chapter 3 uses only openly
available (i.e., ‘real-world’) datasets such as OpenStreetMap [65] for our build-
ing footprint (to construct our urban LoS model) and road network model and
CRAWDAD vehicle trace data for two cities Rome (Italy) [8] and San Francisco
(USA) [71]. We developed a method of extracting, filtering and ‘folding’ these
taxi-trace datasets for our simulations.

Chapter 4 builds on some of the results and observations of Chapter 3 as well
as addressing some of the limitations of using vehicle trace datasets: namely
the inability to set vehicle routes and vary passenger demand. Consequently, an
agent-based VANET simulation was developed to allow for finer control of model
parameters in order to properly address our final research question. Further-
more, we introduce an edge-weight altering model parameter, a simplified LoS
model (for computational efficiency) and investigate certain behaviours such as
how the Largest-Connected-Component (LCC) of the VANET varies over time.
We show that PDR can be increased without significantly increasing passenger
trip lengths by carefully selecting the value of our edge-weight parameter.

Chapter 5 both concludes and discusses at greater length some of the findings
presented in the thesis. Some ideas and general directions for future work are
suggested.
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Chapter 2

Low-Energy Vehicle Parking
Detection Systems

This chapter is based on research published in two conference pro-
ceedings. The first paper, presented at the Twenty-Ninth Innovative
Applications of Artificial Intelligence conference (IAAI, San Fran-
cisco (USA), 2017), detailed our ParkUs system design and our low-
energy vehicle-parking detection methodology [12]. The second paper,
presented at the Fourteenth International Conference on Mobile and
Ubiquitous Systems (also known as Mobiquitous held in Melbourne,
Australia, 2017) introduced and evaluated a novel method for detect-
ing changes in driver behaviour [}3].

2.1 Introduction

Analysis conducted by the RAC Foundation in 2012 concluded that vehicles (in
Great Britain) spend on average 96% of their time parked [39]. Furthermore,
the total number of licensed vehicles in Great Britain has increased in all but
one year (1992) since 1945. Since 2012, the average growth of licensed vehicles
has been roughly 610,000 per year, but this growth has slowed in recent years
with the reduction of new vehicle registrations [96]. As of September 2019, there
were 38.9M licensed vehicles in Great Britain. Consequently, with the predicted
increase in urbanisation and vehicle ownership over the coming years, it is likely
congestion and competition for parking spaces within cities will continue to
increase.

Through surveying drivers in Westwood Village, Los Angeles (USA), Shoup
estimated the average time spent searching for a vacant (on-street) vehicle-
parking space (also known as ‘cruising’) to be just over 3 minutes per journey.
This may not seem much, but over a year this roughly equates to an excess
of 1.5M vehicle driven kilometres, generating approximately 730 metric tons of
greenhouse gas emissions [83]. This is somewhat alarming, given that Westwood
Village is a relatively small suburb of Los Angeles with only 470 metered on-
street parking spaces.

While there are hardware-based solutions to monitor on-street parking oc-
cupancy in real-time, instrumenting and maintaining such a city-wide system
can be a substantial investment. For example, in the city of San Francisco,
USA, a connected parking occupancy sensor and payment meter were installed
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at circa 7,000 on-street vehicle-parking spaces in 2011. The total cost of the
deployed system (at the time) was roughly 23M US dollars [79]. Consequently,
research effort has looked at methods of developing cost-effective parking occu-
pancy monitoring solutions. Ideally such systems incorporate (digital) payment
methods and are relatively inexpensive to install, require minimal maintenance,
and aid drivers in finding vacant spaces quickly and effectively, without causing
undue congestion in the area.

In this chapter, a novel low-energy consumption vehicle-parking activity
detection method, referred to as ParkUs, is introduced and tested (through ex-
tensive simulation) with the aim to eventually reduce vacant vehicle-parking
space search times. The system uses low-energy sensors, such as the accelerom-
eter and magnetometer found in most smart-phones, in order to detect parking
activity within a city environment. Moreover, we developed a novel sensor fu-
sion feature called the Orthogonality Error Estimate (OEE) to aid our detection
method. We show that the OEE feature is capable of detecting parking activities
with high accuracy and low energy consumption. One of the future envisioned
applications of the ParkUs system will be to provide drivers with (real-time)
guidance on where they are most likely to find vacant parking spaces within a
city.

The rest of the chapter is structured as follows, Section 2.2 covers more
of the background related work and competitor solutions to detecting vehicle-
parking activities using a smart-phone. In the methodology (Section 2.3) we
describe in detail our system design, overall architecture and our data collection
methodology for the training of our machine learning system. We discuss our
results (Section 2.4) and detection accuracies, and benchmark them against our
competitors using an energy consumption model. Finally, Section 2.6 concludes
the chapter by reviewing our proposed system and extended work (on driver
behaviour detection). We also briefly discuss developments in the field since
publication of the two papers this chapter is based on.

2.2 Related Work

As cities continue to rise in population [97], demand for basic services such as
transportation consequently increases. The automobile has been the dominating
method of inner city transportation for many cities across the globe, resulting
in increased congestion and air pollution. As the demand for transportation
rises, so do the number of vehicles which has a knock-on effect on availability
of vehicle-parking spaces. Part of the problem lies in how cities manage their
public on-street vehicle-parking spaces and road network infrastructure [20].
For example, a study conducted in the Washington DC region (USA), con-
cluded that cost-free parking (either at work or at home) was associated with a
greater than 95% chance that the individual will drive to work alone [1]. Such
parking and driving incentives are often not directly implemented by local or
national government policy. Rather, they are the consequence of decades old
building legislation often known as ‘parking minimums’ that designate a mini-
mum number of vehicle-parking spaces per residential building or land-use type.
For example adult bookstores in Clark County, Nevada (USA), are required to
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have at least three vehicle-parking spaces per 93 square metres (one thousand
square feet) of retail floor space [14]. Similarly Cupertino (a suburban city near
to San Francisco, California (USA)) has a requirement for any new-build hous-
ing developments to have at least two vehicle-parking spaces per apartment.

Consequently, many North American cities were built around the automo-
bile as their main form of transport. Vehicle ownership has thus become almost
ingrained in their society. This is understandable to an extent, since having min-
imum parking requirements in cities forces developers either to allocate space
beneath a building (although underground parking is prohibitively expensive)
or find less costly plots of land nearby and allocate them as (private) surface
parking. By having buildings more spread out, the average distance people have
to either commute or run errands increases, thus, further incentivising vehicle
ownership and use. As city population and area increase, more vehicles are
needed, causing ever more congestion [20].

Congestion and the lack of vehicle-parking availability has various knock-on
effects such as missed hospital appointments [59]. In this particular example, a
sample of 72 UK families were randomly surveyed to identify main reasons for
missing hospital appointments. It was found that 32% of patients had missed
appointments due to inadequate vehicle-parking facilities near to the hospital.
It is worth noting that missed appointments cost the UK NHS (National Health
Service) circa £790M annually.

Partially to better understand causes of vehicle congestion, various studies
(reviewed in [83]) conducted over the last century covering, cities in North
America such as New York, Detroit, Los Angeles, as well as a couple of European
cities such as Freiburg and Barcelona, conclude that the average proportion of
inner city traffic searching for a vacant parking space is approximately 30% [83].

Shoup and other researchers set about finding the optimal price for parking
to both reduce congestion and pollution in cities, by minimising the time spent
by drivers circling blocks in search for on-street parking spaces [82]. A parking
price per hour that results in 60-80% level of occupancy (averaged over the day)
was deemed ideal, since there will always be some space for the next driver to
park (thus cutting down on search times), whilst not being overly expensive
such that the public resource is underused and not generating valuable revenue.

The city of San Francisco (USA), implemented an on-street parking scheme
designed to achieve said optimal level of occupancy averaged across the day
through the use of variable pricing. The system, called SFpark, costed over
$23M US dollars (in 2011) to implement and covers 7,000 on-street parking
spaces and 14 publically owned and managed (off-street) parking garages. Re-
cently, the scheme was evaluated by the San Francisco Municipal Transportation
Agency (SFMTA) and in pilot areas the target parking occupancy of 60-80%
was met 31% more often than experimental control areas (no changes in price
based on driver demand) [79], The experimental control area vehicle-parking
spaces were full 1.5 times more often than SFpark pilot areas. Furthermore,
they estimate a 30% decrease in vehicle miles driven in SFpark system pilot ar-
eas, equating to a reduction of 2.1 metric tons of daily greenhouse gas emissions
(from 7.0 tons before the introduction of SFpark pilot to 4.9 tons) [79].

Although relatively successful at reducing congestion and emissions, SFpark
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relied on a massive initial investment. Further costs include ongoing running
and maintenance costs to operate successfully. Furthermore, SFpark only covers
a small percentage of the total stock of on-street parking in the urban area. As
attractive as the SFpark solution may appear, given how stretched the budgets
of most municipalities are, such solutions could struggle to see an uptake. There
is no doubt that solving the parking, congestion and air pollution problems are
high priority items on the agenda of most cities. However, many systems rely on
physical infrastructure being installed; such as smart parking meters (SFpark),
Closed Circuit Television Cameras (CCTV) overlooking parking bays [22], or
ultrasonic distance measuring transducers mounted on moving vehicles [54].
Whilst successful in some cases, the hassle and initial cost of physical infras-
tructure can be prohibitive in nature.

Deloitte, a consultancy, estimates that smart-phones have approximately
80% penetration across all countries surveyed [52|. Thus, encouraged by the
high penetration rate of smart-phones globally, and wireless internet access
availability in cities, various smart-phone based vehicle-parking solutions have
been researched and developed.

Most smart-phones have a combination of sensors and radio interfaces such
as a Global Navigation Satellite System (GNSS), as well as accelerometers, gy-
roscopes and magnetometers. Consequently, systems such as PhonePark [85]
and Park Here! |[78]| attempt to leverage smart-phone users and crowdsource
parking data to aid drivers with finding parking spaces efficiently. PhonePark
and Park Here! use GNSS, accelerometers, magnetometers and Bluetooth con-
nections to detect changes in user transit behaviour, i.e., when they switch from
driving to walking or vice versa.

Instead, ParkSense [62] relies on constructing Wi-Fi access point ID maps
in order to both infer velocity of a user (as they drive or walk past) as well
parking location. Although all the above cited systems were able to achieve
reasonably high vehicle-parking detection accuracies (approximately 80% true
positive rate), they were not optimised for energy efficiency and often relied on
some form of user tagging and large data collection windows. Furthermore, one
could question the ethics of collecting private Wi-Fi access point information on
a large scale, without consent or knowledge from /of their respective owners [45].

The PhonePark system [85] was to our knowledge the earliest attempt to
detect driver parking activities with a smart-phone. The PhonePark system was
able to distinguish between user transport modes, i.e., when the user was driving
or walking. Their detection system combined GNSS, accelerometer and Blue-
tooth connectivity data collected from a user’s smart-phone whilst in transit.
PhonePark achieved a relatively high reported true positive detection accuracy
of 80% and 85% for vehicle parking and un-parking activities respectively.

In an attempt to reduce energy consumption per parking detection, the
ParkSense system [62] avoided polling the (energy expensive) GNSS radio alto-
gether whilst detecting user parking. ParkSense [62] opted to use Wi-Fi radio
modules in smart-phones to estimate the user’s velocity. Their method relied on
mapping Wi-Fi access point IDs to a geographic location. By using the change
in Wi-Fi acess-point IDs as the user drove past the ParkSense system was able
to assess velocity changes as the user was travelling. Consequently, they were
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able to detect an un-parking event, and record this for other users looking for
parking nearby.

ParkSense was able to achieve an 83% true positive detection rate on user
un-parking activities. Whilst relatively energy efficient (essentially using only
one radio module to do their un-parking activity inference), ParkSense was
not able to run in the background on a smart-phone’ as it relied on users to
manually geotag where they had parked their vehicles. Furthermore, ParkSense
required a large data collection window (60s) and took almost five minutes to
process and confirm an un-parking event.

In a similar vein, Park Here! [78] made use of multiple wireless radio tech-
nologies (including Bluetooth) as well as the accelerometer and gyroscopes for
their parking and un-parking detection system. However, Park Here!’s classi-
fication was strictly binary (as opposed to the stationary, walking and driving
classes used by [62, 85]). Park Here! has a claimed 100% true positive rate for
parking and un-parking detection when a user had Bluetooth enabled on their
smart-phones. Note, that Park Here! relied heavily on Bluetooth as well as
conducting fewer trials (see Table 2.4 on page 37 for more comparison details).
Whilst many modern vehicles are equipped with Bluetooth systems, relying so
heavily on one sensor for accurate detection isn’t robust, since it does not allow
for truly ubiquitous detection (as some vehicles may not have such Bluetooth-
enabled systems or their owners may prefer to turn these off whilst driving for
privacy reasons).

In summary, multiple attempts to research and develop parking activity de-
tection systems, with similar aims of reducing unnecessary congestion (vehicles
circling blocks/streets) and pollution within inner city areas have been con-
ducted before. However, most of the research effort has focused on processing
data streams from ‘power-hungry’ (i.e., electrical energy consuming) sensors
such as wireless data transmission radio modules (Cellular, Wi-Fi, Bluetooth)
and GNSS typically found in smart-phones. Thus, our aim is to improve on
these vehicle-parking activity detection systems in terms of both detection ac-
curacy and energy consumption. Finally, we aim to extend our proposition by
investigating if driver ‘cruising’ behaviour, prior to parking, can be detected.

2.3 Parking Activity Detection Methodology

Systems such as PhonePark and Park Here! (|78, 85] respectively) relied on
(high) energy consuming radio modules such as GNSS, Wi-Fi, cellular and
Bluetooth to detect parking activities. In contrast, our proposed ParkUs system
aims to achieve similar (if not higher) detection accuracy rates without the use
of these radio modules, to avoid unnecessary smart-phone battery depletion.
Given the inherent complexities of devising a set of filters that work with
any (un-calibrated) smart-phone sensor, a machine learning method was con-
sidered appropriate. Consequently we developed a machine learning method
to select optimal statistical features to process and filter the noisy sensor data

1Or as an Android Service, if one is following the current Alphabet’s Android programming
guidelines [38].
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streams. A human could devise a set of rules, filters, thresholds etc., for vehicle-
parking activity detection. However, devising and calibrating them for each
smart-phone collection of sensors (of which there are hundreds of different man-

ufacturers/chipsets) would be too time consuming.
Consequently, volunteers were recruited in order to collect and annotate

journeys and in particular vehicle parking behaviour/activity data, to train our
(supervised) machine learning parking activity-detection system.

2.3.1 Training Data Collection
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FIGURE 2.1: Screenshots from our Android data collection soft-

ware application. On the left user-reported vehicle-parking/un-

parking location tag and on the right user-reported vehicle-
parking conditions. Figure reproduced from [12].

The ParkUs system aims to run locally on a user’s smart-phone by collecting
sensor data and processing this (in the background) to monitor changes in
transport mode (e.g., either walking or driving in a vehicle). User recorded and
annotated journeys were necessary for supervised machine learning.

Whilst there have been many advances recently in the training methods, as
well as hardware optimised for unsupervised machine learning (often referred to
as ‘deep’ neural networks) [48], this was not our chosen method for the following
reasons. Deep neural networks rely on vast amounts of data to train, often in
the orders of hundreds of GB’s if not more. Many researchers aim to get around
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FIGURE 2.2: Example of data collected from a typical user

recorded journey. Note, purple and yellow vertical lines are user

reported instances of un-parking and parking respectively. Fig-
ure reproduced from [12].

this problem by developing highly sophisticated cyber-physical environments for
their systems to train within?.

However parking systems simply can’t be ‘gamed’ or simulated in such a
manner. Furthermore, the collection/recording of millions of vehicle-parking
instances required for deep neural network training, simply wasn’t feasible given
budget and timescale limitations. Therefore, our approach to train through a
supervised method is ideal for scenarios where data is limited and cannot easily
be simulated in a game-like environment.

In order to collect user travel data, a custom data logging and user tagging
smart-phone application was developed® for our volunteers; see Figure 2.1 for
a couple of selected in-app screenshots. The Android operating system was
chosen due to the simplicity of developing and distributing applications without
the need for consent. Furthermore, the majority of smart-phone users (some
estimates put this at over 70% [52]) use the Android operating system, therefore
making it easier to find ‘compatible’ volunteers.

2This was the approach used by Deepmind (a subsidiary of Alaphabet Inc) to beat human
players at a board game called ‘Go’ and a variety of console games [57]. Deep neural network
architectures can learn by playing millions (if not more) games either against themselves (or
previous model iterations) or human players on-line. Deepmind opted for the former as it
allowed for better secrecy as well as being able to train seamlessly at any hour (for days at a
time). Again these systems take a lot of time to train as well as requiring a very structured
environment within which the neural network trains/learns. A board or computer/console
game with well-defined boundary conditions, limits and rules is ideal for these deep learning
methods since there is a relatively well defined scoring system (crucial for reinforcement
learning as well as ranking different machine learnt models) and objectives to achieve.

3Note, the Android data collection application was developed by a small team of Toshiba
software engineers in collaboration with the author.
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We advertised within our research office and on the University of the West
of England campus for volunteers to record their vehicle journeys and parking
activities. Seven volunteers (all located in Bristol (UK) were given access to
our training data collection application and asked to log their journeys as well
as vehicle parking /un-parking activities over the course of a month. Volunteers
were instructed to open the data collection application before starting a journey
and to manually record/geotag their un-parking/parking location.

The volunteers were instructed (during the induction session) to use their
smart-phones as they would normally (i.e., no need to place it anywhere in
particular either when walking, or driving the vehicle). Once a volunteer had
parked safely, they were asked to check their vehicle-parking location and add
any other information that they felt pertinent regards to their parking activity,
see Figure 2.1 for more details.

The extra information regarding parking activity was collected in order to
(briefly) investigate the driver’s skill at parking. For example, parallel parking
is often thought of as a more difficult manoeuvre than angled or bay parking.
Similarly, drivers of larger (SUV-esque) vehicles may avoid smaller or harder
to park spaces. Therefore, vehicle-parking space recommendations might differ
depending on driver/vehicle combinations and or preferences.

Information regarding where exactly the parking activity occurred, such
as in a private driveway or on-street, was considered useful for later ParkUs
implementations which might broadcast vehicle-parking availability information
to other users®. Information about the volunteer’s opinion of their parking was
initially considered a useful proxy for stress/anxiety whilst carrying out the
parking activity. Note, that whilst all these extra options were available for
volunteers to record information regarding parking activities, not all volunteers
were able to do this: many cited lack of time/“being in a hurry” as their major
barrier to fully recording/annotating their parking activity /experience.

Sensor data collected on volunteer’s smart-phones, along with their respec-
tive annotations, were stored locally before being opportunistically transmitted
over a Wi-Fi connection (in order to avoid excess cellular network charges’) to
our IES cities server platform (originally developed by [53] and modified for our
application) located on Toshiba Research Europe Ltd premises.

Table 2.1 (page 21) shows the relevant sensor sampling rates of our parking
activity data collection and logging application. In an ideal laboratory exper-
iment, the highest possible data rates would have been selected to generate
training data for our supervised machine learning system, since this would have
captured all possible signals in the sensor data. However, sampling smart-phone
sensors at high data rates and storing (i.e., writing the data to memory) is both
battery/energy consuming as well as being memory-expensive (note, only half
of our volunteer’s smart-phones had expandable non-volatile memory). There-
fore, sensor data polling rates were reduced to minimise energy and memory
usage/footprint whilst ensuring enough data was captured in order to train our
supervised machine learning system.

4As it would not be particularly helpful or wise to advise future users to park in privately
owned parking spaces or driveways.
5In particular after a volunteer complained, they were eventually reimbursed.
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TABLE 2.1: Android data collection application sensor sampling

rates.
Sensor Sampling rates/[Hz]|
Accelerometer 25
Magnetometer 5
Location (GNSS) 1
Ambient Noise (loudness/amplitude only) 10
Ambient Light (intensity) 5

For example, [3] showed that the majority of human physical motions oc-
cur below 10Hz, consequently (by virtue of the Nyquist-Shannon criterion) the
accelerometer was sampled at 25Hz to ensure as full data capture as possi-
ble/within reason (by allowing for a small safety margin).

Other sensors such as GNSS were sampled at far lower rates (1Hz) given the
sheer amount of energy and processing required for each reading. The magne-
tometer, ambient noise and light sensors were also sampled should they prove
useful for later parking detection algorithms. It was originally hypothesised
that ambient noise (i.e., amplitude/noise level) as well as light sensors might
change if users moved from inside a vehicle to outside (and vice-versa).

Over the course of our data collection month, our kind and patient volunteers
recorded and annotated over 60 journeys. The mean journey duration was 43
minutes and our volunteers recorded 52 and 57 parking and un-parking events
respectively. Note the minor disparity was mostly due to volunteers forgetting to
log their parking activities. There were a couple of reported in-app failures/bugs
which briefly hindered data collection, however, they were quickly remedied by
the author and Toshiba’s in-house software development engineers.

A typical volunteer-recorded and annotated training journey is shown in
Figure 2.2. Readings of three sensors (in descending order of depiction within
the Figure): GNSS, accerlormeter and Magnetic Field Strength were plotted
(with respect to time) along with volunteer /user annotations: purple and yellow
vertical lines for vehicle un-parking and parking events respectively.

Note that our training data collection application did not explicitly poll the
GNSS sensor asking for velocity measurements (a feature now available in most
versions of the Android operating system), as this was considered too battery-
intensive, and unnecessary, as the user speed could be estimated (off-line) by
using the distance covered and the time taken between the time-stamped GNSS
coordinates.

2.3.2 ParkUs: Design and Algorithms

The envisaged ParkUs system design is shown in Figure 2.3 and the parking
detection system is further detailed in Figure 2.4 with its four key components
(or sub-systems), namely: an initial median data filter, a feature processor, a
modality detector (Figure 2.5), a Finite State Machine (FSM, Figure 2.6).



22

Chapter 2. Low-Energy Vehicle Parking Detection Systems

ParkUs Server

.
o}
o
[2]
C
o
'—
i)
©
o

City parking
heatmap

..I’II" Updates Determines

‘ parking heatmap valldlty 7
\ "

Error
Timestamp Probability Location

G W ?

Destination Destination on parking
request heatmap data

tlj f®1 \%%

D . Magnetomeg_'
Parking detection

Users searching algorith
for parking Users already parked GPS algorithm

FIGURE 2.3: Overview of the envisaged ParkUs system architec-
ture. Starting from the bottom right, a user’s smart-phone’s sen-
sors are used to detect parking activity. Once detected, location,
timestamp and a confidence value are passed on to our ParkUs
server. Data from various parking activities are collated and
displayed as a heat-map overlaid on the surrounding road net-
work. Future users searching for vehicle-parking can query our
server from their smart-phone application to view latest parking
availability near their desired destination. Figure reproduced
from [12].
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Figure 2.4 details how data is processed locally on the ParkUs user’s smart-
phone. Starting from the top right (of the flow chart), data collected by sensors
was combined into a data frame or sample window. Note, future (incoming)
data frames are shown on the right, data frames (or data samples that have
already been processed are drawn on the left, therefore data in the current time
window is shown centrally). Each data sample is processed first with a median
filter (where extreme outliers are replaced with median values from the sample
window), before each sample window was further processed using our selected
range of statistical features. Once our features have been processed, they were
passed through our modality detector (see Figure 2.5 for more details) which
attempted to assign a transport mode such as: stationary, walking, vehicle
stationary (for example when a vehicle is in a queue at a traffic light) and
vehicle moving to each sample window (data frame). Details of past and current
activity classifications were subsequently passed on to our finite state machine
model (Figure 2.6) which attempted to understand the relationships between
the classified transport modes and conclude whether a parking activity has been
detected.

2.3.3 Data Pre-Processing

Due to the openness and resultant fragmentation of the Android operating
system platform, no sensor calibration was conducted. To counter potentially
low quality sensors, a median filter and hard thresholds were used to remove any
outlier data. A sliding time window of 27.5s was carefully chosen to ensure that
finer changes in activities were captured and detected without excess processing
and memory storage on the smart-phone.

Labelling activity data by human volunteers ‘on-the-fly’ (i.e., during the
experiment /data collection phase) was always going to be error prone. For
example, a minority of users forgot to create a parking label after they had
parked and left their vehicles. Since the data collection period was over a
month, it was understandable that such rushed occurrences happened.

Nonetheless, we were able to sufficiently limit the effect of timing errors
(where a user might record/label a parking activity hours after it had actually
occurred) by the following strategy. Firstly, by referring to the location and
inferred speed data (i.e., ‘raw’ time-stamped GNSS data), we were able to shift
unrealistic parking labels to the nearest stationary point. For example, there
were a couple of instances where volunteers had labelled a parking activity when
the GPS sensor was indicating that they were travelling over 20km /h. In these
rare cases, we shifted their parking tag to the next stationary point in their jour-
ney. Secondly, after assessing the data, it was deemed reasonable to have a 15
minute threshold between a volunteer actually parking and recording/labelling
the event. Overall, less than five parking events did not meet this threshold
and were removed from the dataset.

Note, machine learning systems are somewhat limited by their designers and
the data they train on. Given the importance of the latter on the overall perfor-
mance of the system, it is somewhat curious that label correction algorithms or
systems are rarely discussed in the relevant literature. With ever larger datasets
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FIGURE 2.4: Our in-App ParkUs activity detection architecture.
Figure reproduced from [12].

being collected and ‘fed’ to machine learning systems, the need to check and
correct human recorded/labelled events will become ever more pertinent.

2.3.4 Feature Extraction

Previous research [35] has shown that improved detection accuracy rates be-
tween stationary, walking and within-vehicle transport modes can be achieved
by estimating the gravity vector to generate an accurate decomposition of the
tri-axial accelerometer and magnetometer data. Using their algorithm, the grav-
ity and the North vectors were estimated from the accelerometer and magne-
tometer data respectively. The algorithm [35] opportunistically selected mo-
ments (or time windows) where the accelerometer readings were reasonably
stable (i.e., low variance within the data sample window) to estimate the grav-
ity vector. The variance threshold was increased gradually to obtain the optimal
number of stable moments within the accelerometer data. The North vector was
estimated using the same algorithm for the magnetometer data, since when the
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FIGURE 2.6: ParkUs Finite State Machine (FSM) model. Solid
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smart-phone is resting, it is always supported by some upward force (that op-
poses gravity). The constant force forms the vertical vector referred to in this
section as GG. In contrast, the magnetometer tends to point towards the Earth’s
magnetic North pole, and is estimated as vector N. Although heavily skewed
by the Earth’s magnetic field, the horizontal North vector, Ny, can be compen-
sated by subtracting N’s projection onto G from itself. Using these two vectors
with respect to the smart-phone, any acceleration data samples (or recordings)
can be rotated (see Figure 2.10) and decomposed into (effectively their) vertical
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and horizontal components [95], shown in Figure 2.8. Once the magnetometer
and accelerometer data were filtered, transformed and decomposed, we derived
for each data sample window (or data frame in Figure 2.4) gravity eliminated
acceleration, and estimations of G and N.

2.3.5 Feature Overview

TABLE 2.2: Most indicative features chosen by the Random
Forest algorithm for each motion class.

Motion Class Sensor Signal Feature

Median abs. change
Overall acc. Majority range
Walking Wavelet entropy

Peak power
ECDF 9" bin

Vertical acc.

Median abs. change

Overall acc. Majority range

Stationary

Mean
Vertical acc. ECDF 5 bin
ECDF 9" bin
G and N estimates OEE
In-Vehicle Peak power frequency

Overall acc. First peak
Second peak

Horizontal acc. FFT energy

Over 300 statistical features were initially considered in the development
of the ParkUs detection algorithm®, mostly inspired by previous research in
human activity detection. The features fall roughly into the following main
feature families.

Statistical Features

Standard statistical metrics such as minimum, maximum, mean, median, in-
terquartile range, variance and range were used to analyse and capture changes
in the dataset. In addition, the distribution of signal values (within each sample
data window) was represented by its empirical cumulative distribution function
(ECDF), with a resolution of 10 bins, similar to the strategy proposed by [34].

6Including a particular feature referred to as Majority Range, which is evaluated as fol-
lows. A window or data-frame of the accelerometer signal is further sub-divided into smaller
windows /sub-frames (of uniform length) and the range of each sub-frame is evaluated. There-
fore, the majority range is then the median range of the sub-frames. This statistical feature
was found to reduce false variances caused by changes in the smart-phone’s orientation, a
common problem when handheld.
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Discrete Fourier Transform (DFT)

In the frequency domain, the 1-3Hz DFT coefficients were shown to be good
indicators of cyclical walking motion [101]. Peak frequencies were also iden-
tified as features in addition to the peak coefficient (partly inspired by ‘peak
frequency power’ in [91]). Similar statistics from Welch’s power spectrum were
also included in our feature set.

Peak Statistics

A ‘peak’ in this context refers to a period of sustained acceleration in one
direction (for example see the horizontal peak in Figure 2.8). Inspired by [41],
peak characteristics were captured using area under curve, cumulative sum,
kurtosis, skewness, duration between peaks, and duration of each peak.

Wavelet Entropy

The information contained in the wavelet coefficients helps to analyse transient
features and non-stationary signals. A chaotic signal contains more information
than one that does not vary significantly [50].

Orthogonality Estimation Error (OEE)

A novel feature representation was developed for the ParkUs system which works
by estimating the error between the gravity and North vectors. The OEE was
a good indicator of vehicular motion, as it had a Pearson correlation coefficient
of —0.53 with the user’s travelling speed. This level of correlation is similar to
the Jaccard index used by ParkSense [62]. The OEE is calculated as follows.
For an arbitrary data sample window, where G and N are approximations
of the vertical ‘up’ vector (opposing gravity) and the magnetic North vector
respectively, the angle, O, between the two vectors is given by

G-N
Oy =cos™H | —— 2.1
and thus
OEE = [0y — 7/4]. (2.2)

Ideally, G always points vertically up and N always points to true North
without deviation. The angle between them should therefore be perpendicular.
Realistically, G and N are almost never orthogonal due to the shape of the
Earth’s magnetic field. There is a natural declination of N in most areas on
Earth except those very near to the equator. Since the study was conducted in
the UK, the inclination effect was very pronounced (around 60 degrees below
the horizon). Furthermore, G and N are only approximations. They are both
easily corrupted by unstable motion and abrupt changes in orientation, which
conveniently aids parking detection.
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2.4 Results

Briefly, for clarification, results relating to ambient noise and light intensity were
not included here as little could be inferred (with respect to vehicle-parking
activity detection) from their respective sensor readings. From discussions with
our volunteers after the data collection period, it emerged that the majority of
users had their smart-phones either in their trouser pocket or handbag when in
transit. As such, both sensors were somewhat shielded from the environment
that they were meant to be sensing (both when travelling inside the vehicle and
walking), and thus did not produce much useful data for which to train our
machine learning systems on.

Due to economic as well as temporal constraints, it was not possible to
test our system in a live environment”. Nonetheless, our evaluation of ParkUs
was based on cross-user validation: where one user’s dataset was left out and
the system was trained on the other user’s datasets before being tested on a
yet ‘unseen’ (at least from the ParkUs system’s point of view) user/dataset.
We simulated the real-time algorithm in a MATLAB computing environment
whereby the algorithm could not see into the future of the dataset/journey, i.e.,
it received only chunks of data for the particular time-step (similar to how we en-
visage our system being deployed for real). Furthermore, we limited the amount
of data that our ParkUs system was able to store locally in its buffer. Note,
whenever a test dataset was put through our classifiers, it was not added to our
training dataset, since, in a real-world deployment of the smart-phone applica-
tion/system, we do not envisage users continuously tagging/recording/labelling
their journeys. Finally, our system was able to classify small data chunks in the
order of hundreds (if not thousands depending on the processing power of the
computational resource being used) instances per second. This would suggest
the ParkUs classifier could easily be run in real time on less ‘powerful’ processors
(such those found in a typical Android OS smart-phone).

A parking activity detection was considered valid if it was made within ten
minutes from when the parking activity actually occurred. Note, the nearest
detection was considered correct should multiple detections be raised by the
algorithm. The somewhat generous time-shift criterion was developed to ensure
that a correct detection of a parking event was not recorded as incorrect due to
inaccurate volunteer annotations.

Similarly, the precise definition of a parking or un-parking event was crit-
ical to the evaluation of our proposed ParkUs system. Clearly when a user
transitions from either walking to driving (i.e., being inside versus outside of a
vehicle), or vice-versa, an un-parking or parking event ensues. However, from
observing the training datasets, it was clear that drivers often spend a few min-
utes (if not more) within their respective vehicles before and after parking. This
behaviour could be attributed to many different scenarios, likely causes include
drivers either collecting their belongings before exiting the vehicle (parking) or
potentially ‘warming-up’ their engines/planning their route before setting off
(un-parking activity). Since in both cases, a user was simultaneously occupying

It turns out there is a limit to how many donuts you can give to volunteers to record and
test vehicle-parking related smart-phone applications.
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a parking space, it was decided to define a parking event if a driver remains
stationary for more than 5 minutes.

2.4.1 Transport Mode Classification

One-versus-all classifiers were trained for three motions: walking/kinetic, static
and vehicular motion. The following machine learning algorithms were com-
pared for our application: Decision Tree (J48), k—Nearest Neighbours, Mul-
tilayer Perceptron, Support Vector Machine (trained using a standard RBF
kernel), Naive Bayes, Ada-Boost, and Random Forest. For non-ensemble ma-
chine learning, three different feature selection algorithms were experimented
with (inspired by [33]): correlation based, information gain and gain ratio.

Overall, the Random Forest models achieved the highest parking detection
accuracies: 98% in 10-fold cross validation and 96% in cross-user validation.
Again, given the time pressures and scope of the thesis, discussions on the
results of the other machine learning algorithms are omitted. Random Forest
trains and averages over multiple trees on random sub-samples of the training
dataset. Each tree trained by the algorithm used a random subset of all features.

Table 2.2 highlights the most important statistical features (i.e., most dis-
criminating with respect to the transport mode in question). A grid search of
bagging parameters saw optimal accuracies with one hundred simple trees with
a maximum of ten splits. Ensembles of greater size yielded marginal gains in
terms of accuracy while costing more (at least in terms of training times on
our local machine). Furthermore, limiting the size of the ensemble and number
of splits allowed for some/greater generalisation, since over-fitting is a common
problem with machine learning systems.

2.4.2 Detection Accuracy

Table 2.4 highlights the results of our parking activity detection algorithm as
well as benchmarking it against various competitor’s reported performance.

The lowest energy version of ParkUs did not use GNSS data for parking
detection. The GNSS sensor was only polled once a parking activity had been
detected to record the vehicle’s location in order to update our vehicle-parking
‘heat-map’. It is envisaged that the ‘heat-map’ will aid future drivers in the
area to find a vacant vehicle-parking space. Maintaining a short register of
previous modality classifications allowed the system to ensure that a transition
or parking event actually occurred, rather than, say, random stoppages due to
pedestrians crossing or traffic lights at intersections.

Nonetheless, ParkUs correctly detected 57 out of 58 un-parking events and
52 out of 53 parking events, thus achieving a True Positive Rate (TPR) of
roughly 0.98 for vehicle un-parking and parking detection [12|. Our system had
a false-positive parking and un-parking activity detection rate of 22% and 16%
respectively. However, only one false negative (i.e., a missed vehicle parking ac-
tivity detection) occurred, see Figure 2.15 for more details. Delving deeper into
the anonymised volunteer’s sensor data as well as the output of the modality
detector (framework shown in Figure 2.5), we discovered that the confidence
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FIGURE 2.12: Cross-user performance of our modified ParkUs-

SA (Speed-Assisted) detection algorithm. Computing speed data

from a set of time-stamped GNSS data points allows for more

confident parking activity detection by eliminating 11 false pos-

itive detections, whilst true positive detection rate remained un-
changed.
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values associated with modality classification were low (and of similar value to
the other classes) such that the classifier ended up switching between classes
as none were dominant (in terms of likelihood /confidence). Furthermore, inves-
tigating the physical locations of the mis-classified events highlighted another
problem: they all occurred on the same area of cobbled streets in Bristol’s city
centre. It is likely that the low vehicle velocity combined with frequent stops
(due to pedestrian crossings), and the vibrations generated from the uneven
road surface, caused the mis-classifications.

In contrast, Figures 2.13 and 2.14 highlight the potential robustness of our
detection system. Notably in a journey where the entire dataset was either
walking or stationary (see Figure 2.14), our motion classifier was able to cor-
rectly classify the motion classes even though none of the training datasets
included an all-walking journey. Similarly, Figure 2.13 shows how our classi-
fier and FSM (see Figure 2.6 for more details) were able to correctly classify
the actual vehicle-parking events, even though multiple transportation states
were occasionally sensed but disregarded as they did not fit with the logic (e.g.,
parking before an un-parking event occurred). Note, in this example no GNSS
sensor data was used for inferring vehicle-parking activity.

-5 Ground Truth —Classification  » True Unpark " True Park O Detected Unpark <> Detected Park
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FIGURE 2.13: An example of a typical correctly classified jour-
ney. Note, kinetic class refers to walking motion.

2.4.3 Detection Delay

Within the ParkUs detection system, a short 5s window length with 50% overlap
was used for each of the motion classifiers in the cascaded modality detector.
A ten sample window ‘look-back’ buffer was used to ensure the fragmentation
was low. Since each window overlapped by 50%, this meant a minimum of 30s
was required for stable motion classification.

Although our system was not trialled in a ‘live’ environment/deployment,
we were able to estimate the detection delay through our system of cross-user
validation where we ‘fed’ the system previously unseen sensor streams. Overall
our system had a detection delay of just under a minute (four minutes less than
the reported detection delay by ParkSense [62]).
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tion result, highlighting the ability of ParkUs to work with odd,
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FIGURE 2.15: Example of a false negative detection of a typical
user trip. Towards end of their journey our classifier mis-classifies

(inside) vehicle with stationary mode.

Our ParkUs-SA (i.e., speed assisted) version had a slightly longer detection
delay due to having to ask the GNSS module for more information when ParkUs-
SA sensed/believed a parking event had occurred. Again, the overall mean
detection delay rarely exceed a minute.

2.4.4 Estimated Detection Energy Consumption

Given the numerous smart-phone related parking detection applications (that
we evaluated, see Table 2.4, page 37), it was not conceivable to translate all
the various algorithms and test them on our dataset. Furthermore, the var-
ious smart-phone applications were not publically available to download for
direct/device usage comparison. To compound the problem of comparing en-
ergy usage, not only do smart-phones have different sensors, but what may run
efficiently on one smart-phone model may not do so on another. Furthermore,
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different operating systems and versions will also have an impact on energy
consumption per parking activity detection.

Therefore, our preferred method of estimating the energy consumption per
vehicle-parking activity detection involved breaking down the detection algo-
rithms (as they were described in the relevant literature) into actions under-
taken by the smart-phone, such as polling the GNSS sensor indoors or sensing
Wi-Fi channels for local access-points. Each of these actions could in turn be
costed in terms of their energy usage by using a look-up table developed for
an early smart-phone, namely the Nokia N95. Even though it has been over a
decade since its launch, the Nokia N95 is a (surprisingly) well researched and
documented smart-phone. See [2, 15, 70, 102, 107] and [46] for more details.
Note the Nokia N95 handset came with all the sensors (minus the Android op-
erating system) necessary to run the various parking detection algorithms being
compared.

Several further simplifying assumptions had to be made in order for fair
comparison and to aid evaluation. For example, quality of radio signals were
generally assumed to be excellent, ubiquitous and within range of whatever
source (be it GNSS, Bluetooth or Wi-Fi, etc.). In reality this would rarely be
the case, either due to distances involved, interference or wireless channel con-
gestion. However, since our aim was simply to ‘cost’ the detection methods, as
long as the same procedure and assumptions were applied to all the systems be-
ing compared, this should not be an issue. Further assumptions (note examples
of typical energy estimates are provided in Appendix A.1) include:

e GNSS and Wi-Fi scans took between two and three seconds to obtain
respectively

e No Bluetooth connection was available

e Data packets were assumed to be sufficiently small such that they took
less than a second to send/receive

e Battery life was assumed to be roughly 16,000J supplying 3.7V at 100%
efficiency®

Finally, we had to establish a test case (or scenario) for which to evalu-
ate/estimate the energy consumption of the different vehicle-parking detection
approaches. Our test case ran as follows: a user/driver carried with them a
Nokia N95 device for a total of three hours. Within that time, the user un-
parks, drives for 30 minutes, then parks their vehicle in the city centre. After
spending 2 hours in the city centre, our theoretical user returns home, un-
parking and driving again for 30 minutes before parking at his home. In total,
two parking and two un-parking events took place in our simulation.

Note that the likelihood of false positives were incorporated into the evalua-
tion of ParkUs and ParkUs-SA. In these cases, a false positive detection would
cost extra energy in requesting (unnecessary) location co-ordinates and sending
data over cellular networks. Some of the other systems described in Table 2.4

8These were values obtained from the original Nokia N95 specification.
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did not report their False Positive Rate (FPR) and so were given the benefit of
the doubt and were assumed to have none °.

Each parking activity detection system we evaluated was subjected to the
same test scenario (as previously described). To aid comparison between the
systems, some specific assumptions had to be made for certain systems such as
ParkSense [62]. ParkSense only detected vehicle un-parking events, therefore it
was assumed that it could also detect vehicle-parking events for fair comparison.
In this particular case, it was assumed that the energy cost of detecting either
event was identical.

The absolute values shown in Table 2.4 may not necessarily be very realistic,
however, what is more useful to analyse is the relative values or ranking of the
different systems. Overall, ParkUs had the lowest estimated energy consump-
tion in the test scenario, followed by ParkHere! 78] and our modified ParkUs-SA
which occasionally polls the GNSS sensor to get an estimate of speed when it
needs clarification between the detected transport modes. As such, ParkUs-SA
consumed slightly more energy but was able to reduce the FPR to 0.12 from an
original 0.19 (for ParkUs).

TABLE 2.3: Our smart-phone energy consumption model; gov-

erning equations. 7' denotes the total time a process runs for

and N is the number of data transfers. See [2, 15, 70, 102, 107]
and [46] for more details. Table reproduced from [12].

Process Energy Estimate

Idle-off Eio(T, N) =max(min(T + T;,, N - T},) - P;,0)
g Active-idle E.i(T,N) =max(min(7 + T4, To; - N) - (P, 0)
S Tail E(T,N)=Eyu(T,N)+ E;o(T — N -Ty;, N)
D Send E,N)=N-P,-T,

Total EJ(T,N) = E,(N)+ E(T — N - T,y, N)
AN Outdoors Eyo(T,N) =min(T + Typo, N - Typo) - (Pyo)
U Indoors Ey (T, N) =min(T + Typo, N - Typo) - (Pyi)

Event Report E., = E;(1,1) + Eu(1,1)

Wi-Fi Eus(T,N) = N - Tuy - Pos + T - Py

Gyr. E,(T)=T- P,

Acc. Eoo(T)=T - Py

Compass Eng(T)=T- Py,

9Somewhat unlikely given how inherently ‘noisy’ some of the data streams from sensors
were.
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2.5 Extended Results: ‘Cruising’ Detection

As it currently stands, our proposed ParkUs system relies on a high level of
user uptake for a given urban area in order to be able to provide near real-time
parking occupancy updates. This is potentially one of the greatest weaknesses
of the proposed system.

To address this weakness we investigated whether ParkUs could evolve to
detect when and where driver’s commence their search for parking along their
trip. Understanding/inferring driver behaviour in such a manner would allow
for a richer dataset to be collected on a per user/trip basis. Essentially, we
assume that it is unlikely that a driver passes (without parking) a vacant on-
street vehicle-parking space when they are near to their destination.

Given that the location of on-street parking spaces could be mapped (to
within reasonable accuracy) across a city, such a system would allow for efficient
updating of entire road segments from just a single user trip. Potentially, within
certain confidence intervals, it is safe to assume that the roads a driver searched
‘just’ before parking were likely to have no vacant vehicle-parking spaces (or
that they were ill-suited to the driver or vehicle size).

Strategies to detect ‘cruising’ behaviour based on smart-phone data collected
from within a driven vehicle were researched, examined and results reported in
[43]. In short, ‘cruising’ detection is not trivial.

Vehicle trace datasets were extremely difficult to collect because, as drivers
who volunteered for our study could not annotate (live) their behaviour whilst
driving. In turn, this made for difficult training of the various machine learning
methods reported in [43]. However, the greatest problem (again) was recruiting
enough volunteers in order to collect enough vehicle trace data for our systems
to train on.

Nonetheless, a simplified data annotation/scoring system was developed
whereby the vehicle-routed distance!” to the user’s desired destination was
recorded throughout their journey. As a driver approached and then passed
their desired destination (as they searching for parking), it is likely that a
‘global’ minima appears on the routed distance to destination versus time (dur-
ing the trip), see Figure 2.16 for an example.

In this particular case/journey, the volunteer was searching for a vacant
vehicle-parking space in a large car park located at the University of the West
of England (UK), campus. As the user drove past their desired destination,
they searched for parking until they found a vacant space. Consequently our
system was able, albeit with varying accuracy (see Table 2.5 for results), to
distinguish between ‘cruising’” and ‘non-cruising’ parts of the user’s journey.

Table 2.5 highlights the classification results (Fl-scores) of our proposed
machine learning algorithms compared to ‘off the shelf’ systems (referred to
as baseline approaches). Three algorithms namely, Decision Trees (DT), Sup-
port Vector Machines (SVM) and k-Nearest Neighbours (k-NN) were compared
along with our modified/proposed approach. For our proposed approach, we
selectively concatenate feature vectors from windows (data samples) and com-
bine them if they exhibit some inter-dependence. The method is discussed at

0By using the road network as opposed to the Euclidean or ‘as the bird flies” distance.
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FIGURE 2.16: Location samples plotted on map (A), and cor-
responding distance-to-destination curve for a journey that in-
volves cruising (B). The red triangle indicates the start of cruis-
ing identified by our method. Figure reproduced from [43].

length, including a visual representation of the sub-window feature concatena-
tion method in [43|. The machine learning methods developed are somewhat
outside the scope of the thesis, but are included here purely for completeness
of this chapter relating to vehicle-parking systems.

Our proposed system does improve accuracy of cruise detection, albeit with
a small margin, 0.81 versus 0.77 (harmonic means) for our proposed/modified
SVM compared to the baseline SVM. SVMs outperform (in terms of cruising
behaviour detection) the DT and k-NN classifiers in both the baseline (y = 1,
C' = 1) and the proposed (v = 0.59, C' = 6.21) approach. The optimal number
of nearest neighbours for the £-NN approach were found to be 9 and 7 for the
baseline and proposed approaches respectively.
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TABLE 2.5: Class-weighted F-1 scores of each classifier on each
user (total of 41 journeys conducted over 2 months), and the
average across each train-test split, for the sliding-window ap-
proach and our proposed approach. Table reproduced from [43].

Results Parameters

g Ul U2 U3 U4 Ub [ (w, f2)
:?;é DT 0.58 0.74 0.71 0.71 0.80 0.70 (30s, 10)
5 k-NN 0.76 0.67 0.66 0.81 0.89 0.72 (30s, 10)

SVM 0.80 0.72 0.85 0.81 0.75 0.77 (30s, 3)
’qg Ul U2 U3 U4 Ub i (w, k, ff)
a DT 0.66 0.68 0.74 0.73 0.80 0.72 (7s,5,5)
© k-NN 0.77 059 0.79 0.81 0.88 0.75 (8s,6,10)
A gvyM 081 0.77 0.85 0.87 0.75 0.81 (10s, 3,10)

2.6 Discussion and Conclusions

Overall, our ParkUs parking activity detection system was able to achieve rela-
tively high TPR and low FPR for parking activity detection when compared to
our competitors (see results in Table 2.4, page 37). In order to meet our aims of
a low-energy detection method, our first iteration did not poll the GNSS radio
module for positional and velocity updates.

In certain scenarios where the parking activity inference was struggling to
decide whether the driver had parked, a modified version, referred to as ParkUs-
SA (Speed Assisted) was able to poll the GNSS radio module for additional
information. As such, having accurate velocity data provided some added clar-
ification on user movement in order to improve transport mode classification
confidence. This modification resulted in a larger estimated energy cost per
parking activity detection (circa a factor of 1.5, still lower than most competi-
tor systems) but a reduction of the FPR from 0.19 to 0.12 (further results shown
in Table 2.4, page 37).

Technological interventions, such as ParkUs, need to be implemented with
complementary economic policy when introduced to the public. This is espe-
cially so, given that on-street parking spaces are a public good (in most cities).
It would not be sensible to introduce such a parking system without charging
users for it. In an ideal scenario, the local city government might even go as far
as introducing variable pricing schemes for on-street parking spaces in order to
achieve optimal occupancy rates of circa 60-80% as evaluated by [81, 83].

In this potential scenario, vehicle-parking search and payment activities take
place on a hand-held or in-car device. Therefore, some form of variable pricing
based on hourly parking occupancy data could be introduced as live pricing
information could be easily accessible online. San Francisco, USA implemented
a similar system of variable pricing in SFpark, and they were able to increase
revenue. However, SFpark’s variable pricing scheme was strictly controlled with
tight upper and lower bounds, and price changes were updated monthly (rather
than in real-time).
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However, in our experimental trials, recruiting volunteers to record their
journeys as well as their parking/driving behaviour was partially hindered given
limited incentive resources available. In an ideal world, a much larger set of
volunteers would be recruited (ideally from different cities) in order to generate
more data for our proposed machine learning system to train on.

Unfortunately we were unable to develop, deploy and test our entire envis-
aged system as shown in Figure 2.3 (page 22). This was due to time and resource
constraints as we sought to investigate ‘cruising’ behaviour detection (see Sec-
tion 2.5) instead. Therefore, we are unable to evaluate the overall efficacy of
such a system in reducing inner-city vehicle congestion.

Nonetheless, a potential (hypothesised) shortfall of such a deployed system
could be its need for a high user uptake per deployed city region. This potential
problem inspired our research [43]. By detecting and recording where a driver
searched prior to parking could reduce the application user uptake needed to
provide near real-time local vehicle-parking occupancy updates.

On the other hand, some firms have attempted to alleviate the initial user
uptake problem by having employees advertise vacant on-street parking spaces
through their smart-phone application. They then charged drivers a premium
for the information and or reserving of the on-street parking space. However, a
court ruling in San Francisco (USA), effectively banned such behaviour on the
grounds that on-street parking is a public good and as such a private entity
cannot seek rent from it [104].

Research carried out in the form of an agent-based parking model suggests
that at best, parking guidance systems reduce emissions by tiny percentages
when vehicle-parking space occupancy is less than 70% [103]. Once past this
threshold, the average estimated parking search times increased rapidly to over
12 minutes for parking occupancy rates of over 90%. Briefly, [103] concludes
that parking guidance systems are only useful in reducing search times (and
therefore congestion and emissions) when occupancy rates are consistently very
high.

Note, the model used in [103] was relatively small, less than 50 roads and 5
inner-city car parks were simulated (no on-street parking). In large urban envi-
ronments where vehicle-parking spaces are not so densely clustered (as typically
found in private off-street car parks), it is expected that drivers will experience
longer search times.

Furthermore, turn restrictions and one-way roads could lead to ever more
inefficient (i.e., longer) search strategies/routes. Such an explanation could have
been partly the reason for the longer inner-city parking search times recorded
and discussed by Shoup in [81, 83].

Finally, it is worth briefly discussing advances in (general) human activity
detection using a smart-phone since the research in this chapter was carried out.
Google (part of Alphabet Inc, who actively maintain and release the Android
operating system as well as global mapping services) developed and later re-
leased a method for Android software developers to access an in-built Android
activity recognition API [37].

Few details on how the method works were released. However, anecdotal
discussions and internal research lab trials suggest Google’s method is rather



42 Chapter 2. Low-Energy Vehicle Parking Detection Systems

accurate at detecting, for example, whether a user is sitting, standing, walking
or running. It is hardly surprising that they achieved this since there are over
2 billion Android devices in circulation [52]. Even a small fraction of users who
agreed to have their data used by Google for research and development purposes
would have yielded orders of magnitude more data than we could ever muster.

Curiously Google has not (to our knowledge) released a parking-activity ap-
plication or add-on to their popular mapping services. Google seems to provide
(although not in all cities and Android versions) a user method to manually geo-
tag where they have parked their vehicle. This feature was presumably intended
for use in very large car-parks.
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Chapter 3

Taxi VANET Simulations Using
Real World Datasets

This chapter is based on research presented and published in the pro-
ceedings of the 2018 IEEE Vehicular Networking Conference held in
Taipei (Taiwan) [13].

3.1 Introduction

Wireless communication between Autonomous Vehicles (AVs) combined with
object detection and ranging systems (e.g., LIDAR) will be crucial to ensure
safe and efficient operation. Given the predicted advent of AVs over the coming
decades [108], they will likely require a plethora of different wireless systems
on board. Wireless systems such as 802.11p, LTE-V2V, 5G and potentially
even mmWave for particularly high data rate systems (e.g., exchanging LiDAR
information) [77| are being considered for AVs.

Given this potential futuristic Connected Autonomous Vehicle (CAV) sce-
nario, wireless vehicular ad-hoc networks (VANETS) comprised solely of city
taxis were investigated (in this chapter) for their ability to transfer environ-
mental sensor data across a city.

Various companies and government bodies could have an interest in develop-
ing VANETSs. In particular as more sensors, such as those used for monitoring
safe human habitable levels (e.g., testing air quality for particulates as well as
pollutants such as COy and NOx) are deployed across cities globally, a method
of data collection is needed. Therefore, methods of connecting these sensors for
further data analysis (whilst minimising communication costs) are of particular
interest.

A current example problem /use-case would be connecting sensors designed
to monitor energy usage in buildings to a back-haul network where further
processing of such data is carried out on a central or cloud server. Most natural
gas and electricity consumption meters are located inside buildings, often in
cellars, basements or cupboards under stairs/hallways, i.e., areas that are hard
for wireless signals to penetrate. Local planning laws could further prevent
optimal placement of cellular base stations increasing the likelihood of ‘patches’
of poor connectivity within urban areas.

To overcome such problems of connecting thousands of (if not more) sensors
distributed across an urban area, future CAVs could provide some of the sensor
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network connectivity requirement. CAVs could be uniquely suited to the task
as they will have most of the wireless interface present as well as being able to
drive anywhere in a city. Since environmental sensors (such as air quality) do not
need to provide high frequency updates, and have a relatively low data rate, it
is theorised that CAVs could provide some form of sensor-network connectivity
as they shuttle passengers (or just drive empty) past. Furthermore, CAVs could
collect, store and transmit (i.e., relay) sensor data whenever they are within
range of each other or the sensor data destination in the city.

To investigate the feasibility of such a system and its performance, a VANET
simulator was developed using openly available taxi trace datasets for Rome
(Italy) [8] and San Francisco (USA) [71], combined with respective building
footprint and road network topology data from OpenStreetMap [65], to generate
a realistic systems level model of a taxi-based V2V network.

Using openly available datasets reduces research costs and allows for future
comparison since other researchers can use the same datasets to benchmark
their VANET systems. Given the complexities and difficulties of gathering
or modelling user transport data, we opted to use openly available taxi trace
datasets. These taxi trace datasets capture (to an extent) real passenger trips
and background vehicular traffic flows (as taxis still have to navigate through
a congested city road network).

The rest of this chapter is divided as follows. In Section 3.2 we cover some
of the related work and background of wireless AV systems as well as discussing
some of the previous mobility and simulation models used for VANETs. In Sec-
tion 3.3 we describe in detail our simulator’s design, taxi trace data and road
network filtering methods. We discuss our method of varying fleet size through
our ‘slicing” and ‘folding’” of taxi traces. We obtain building footprint data
from two cities for our wireless model and compute a likelihood of LoS given
a Euclidean separation distance between vehicles. Results from our VANET
simulator are presented and discussed in Section 3.4, alongside some parameter
sweeps to ensure robustness of our simulator. In particular we explore the im-
pacts of differing taxi fleet sizes and environmental sensor densities. Finally we
conclude the chapter in Section 3.5 and discuss some of the potential weaknesses
of our simulator, e.g., the inability to re-route simulated CAVs (as they were
based on taxis traces and not passenger trip datasets).

3.2 Background and Related Work

VANETSs are an extensively researched area over the last decade or so |16,
29].  VANETs differ from most other wireless networks notably in terms of
their dynamic node (vehicle) positioning, rapidly evolving network topology
and complexity with respect to routing data packets. VANETSs can be often
thought of or viewed through the lens of Mobile Ad-hoc Networks (MANETS)
or large scale mesh networks with (fast) moving nodes [42]. With such networks,
routing packets between desired nodes might be possible in one (time) instance
but not in the next, as connected vehicles (nodes) alter the network topology
(i.e., which vehicles are connected/within range of each other) changes. The
dynamic node positioning and resultant intermittent links between CAVs make
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it virtually impossible to maintain a real-time VANET routing table for efficient
data routing and dissemination [4].

Traditionally VANETS have been considered as methods for AVs to commu-
nicate. CAVs are likely to communicate with each other (e.g., sharing current
and planned positional data) and with road-side units to aid coordination at
large intersections. There is a large body of research as well as engineering
standardisation effort conducted for such VANET systems [42, 77].

Initially, the IEEE 802.11b wireless standard was considered optimal for
vehicular networks. However, a detailed study comparing two competing stan-
dards (IEEE 802.11p and 802.11b) concluded that under highway, rural and
inner-city /urban environments, the 802.11p standard achieved greater network
throughput and crucially (for safety critical messages) lower end-to-end delays
[6]. Recently, another study comparing the newer IEEE 802.11n and 802.11p
standards for vehicular network applications was conducted by [105]. They
showed that, under vehicular network conditions, IEEE 802.11p outperforms
[EEE 802.11n in crucial quality of service metrics such as latency and Packet
Delivery Ratio (PDR).

The IEEE 802.11p standard (sometimes referred to in the literature and
by manufacturers as Dedicated Short Range Communications (DSRC)) outper-
forms other key wireless network standards. This is in part due to the IEEE
802.11p protocol’s ability to send messages without time and processor consum-
ing overheads typically needed for association/authentication between wireless
devices. The protocol was designed to spread information quickly regarding
the CAV’s current location and velocity in order to avoid collisions and aid
intersection coordination. Consequently, its mechanism for doing so is effec-
tively message flooding, i.e., it provides the aforementioned information at a
frequency of 10Hz. However, this update frequency can be reduced when there
is significant traffic across the wireless medium (typically found when there are
more than a couple thousand CAVs/transmitting-nodes within a square kilo-
metre). Note, only two main parameters namely, the central frequency and
bandwidth, are required to be configured in advance between IEEE 802.11p
compliant devices for successful data transmission.

Further studies [61] have evaluated the performance of mobile WiMAX
(based on the IEEE 802.16e standard) with respect to vehicular network scenar-
ios. Network coverage, mean throughput and end-to-end delay were evaluated
through simulation for different vehicular traffic scenarios. Results [61] show
that WiMAX performs better with larger vehicular networks, in particular with
respect to PDR. Note, the Mobile WiIMAX standard allows for devices to com-
municate with multiple other devices simultaneously (i.e., point-to-multi-point
wireless connectivity). However, [61] notes that the IEEE 802.11p standard
achieves the low end-to-end delays requirements for safety critical communica-
tions between vehicles and /or road-side infrastructure.

Nonetheless, with the increasing need for multiple high data rate sensors
(e.g., LIDAR, camcorders and RADAR) to communicate with other CAV sys-
tems, various standards such as 3GPP LTE-A Pro (with Cellular-V2X mode)
[51] and mmWave (millimetre wavelength), IEEE 802.11ad [64] and 802.11ay
[27], have been proposed and studied.
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Table 3.1 offers a summary of the various VANET related standards and as-
sociated performance metrics. For successful high frequency (such as mmWave
systems) communication, LoS is critical. Whereas in general, for standards
that operate at lower frequencies, such as mobile cellular networks, they are
able (within limits, such as node density, channel conditions etc.,) to operate
without LoS. However, in particular with regards to V2V communication be-
tween CAVs, LoS is far more preferable to guarantee successful information
exchange. Note, that the LTE-A C-V2V standard (as proposed by 3GPP) is
able to operate without LoS by utilising lower, cellular frequencies for data
transmission between CAVs.

Future CAVs will likely have to rely on multiple wireless technologies in
order to achieve full autonomy in a safe and efficient manner. As such, mmWave
seems ideal for providing the high data rate communication links necessary for
transmitting rich (potentially raw) sensor information between CAVs. Note,
whilst a single roof mounted LiDAR unit should be able to detect multiple
objects and especially pedestrians or other (vulnerable) road users up to 100
150m away in all directions, it is not advised. Given the necessity for safety,
multiple LiDAR units, most likely at each corner of the CAV (potentially with
a roof mounted LiDAR unit for added system redundancy) will appear in early
CAV set-ups. Having multiple objection detection and ranging units on a CAV
will improve accuracy and provide some redundancy should any systems fail (or
a LiDAR unit is obstructed for example).

On the other hand, the IEEE 802.11p (and its potential variants) protocol
will likely be used for V2V safety critical message broadcasts of future CAV
position (i.e., velocity) as well as coordinating CAV traffic (as opposed to data
traffic) at busy intersections.

Given the importance of wireless systems for CAVs and their potential to act
as a city-wide taxi fleet in the coming decades, this chapter aims to explore how
CAVs (or simulated connected taxis) could potentially provide delay tolerant
sensor networks with connectivity. In all our simulations, the CAV fleet is
assumed to be operating with a V2V standard similar to the IEEE 802.11p
standard. Assumptions based around the IEEE 802.11p standard, in particular
Line-of-Sight constraints will be explored and discussed in greater detail in
Section 3.3.

As briefly mentioned in the chapter’s introduction (Section 3.1), various
companies and government agencies have an interest in developing large-scale
and low-cost (to run) city-wide sensor networks. In particular sensors such as
those that monitor energy usage as well as environment sensors (such as air
quality, wind speed, temperature and or humidity for example) do not need a
high data rate and to provide frequent (e.g., millisecond) updates. Therefore,
there could be an opportunity in the future, where CAVs are in abundance
to use their VANET systems to provide a ‘piggy-back’ network connectivity
service. CAVs could, as they drive past, collect, store and disseminate (where
appropriate) sensor data. By providing connectivity through a fleet of CAVs
(which could be providing passenger transportation services as well), a city
government could avoid the high connectivity costs typically associated with
dedicated cellular and fibre sensor networks.
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Furthermore, it could be the case that the CAVs themselves act as an envi-
ronmental sensing agent. After all, CAVs will require a large array of sensors,
such as (multiple) LIDAR/RADAR modules, infrared and ultrasonic distance
sensors. Therefore, parked CAVs could provide some of the sensing (and data
processing) requirements for ‘smart’ cities, especially in areas where physical in-
frastructure may be hard to install (or too costly for a permanent fixture). Not
only would future CAVs have an array of environment sensing capabilities, they
will likely have substantial wireless communication systems on-board. These
could vary from safety critical V2V communication systems (such those based
on the IEEE 802.11p protocol) or more energy intensive, high data rate systems
such as mmWave (IEEE 802.11ad) for transmitting high resolution and frame
rate LIDAR/camera information between CAVs. If there is no cellular connec-
tivity to off-load collected sensor data, parked CAVs could instead off-load the
(delay tolerant) data transmission to other passing CAVs through their V2V
wireless interface.

Collecting sensor data and disseminating it to a central server (via simu-
lated CAVs) forms part of this chapter’s research objective. Such a system
should be city-independent and allow for reasonable PDR and end-to-end de-
lay. Note, given the assumed type of sensors being deployed in the simulated
urban environment, low latency and high data throughput (or bandwidth) are
not necessary. For example, air quality or energy usage data need not be col-
lected and evaluated at every second, hourly readings or daily averages would
probably suffice in most instances.

Previous research in VANETSs has mostly centred around developing fast
short message exchanging wireless systems for moving vehicles. Getting posi-
tional information across quickly is necessary when CAVs are coordinating at
intersection or busy roads. As such a variety of commercially available sim-
ulators have been developed such as VEINS [84] and OMNeT++ [100]. Both
VEINS and OMNeT++ have software plugins that allow the user to model road
networks explicitly. Most use simple traffic models (such as car following) often
derived from SUMO (a micro-scopic vehicle traffic simulator [47]). Recently,
attempts have been made to integrate MATLAB with a traffic simulator such
as SUMO and obtain parameters from real-world V2X experiments [55].

However, none of these solutions are of particular interest since they either
require expensive software licenses, real world calibration or a complex interface
development procedure to link a vehicle traffic model to a sophisticated wireless
system emulator. Due to the wireless focus of most of these simulators, often
they do not allow for thousands of vehicles and sensors to be simulated concur-
rently as physical layer wireless channel modelling (which includes ray tracing
and fading for example) is computationally intensive. Furthermore, our intent
is not to improve or study individual wireless vehicle exchanges and protocol
design (which NS3, VEINS and OMNeT++ are designed specifically for) but
rather to understand information propagation characteristics and feasibility of
using a fleet of connected vehicles to gather and deliver sensor data across a
large urban environment.

Combining a vehicle traffic simulator with a wireless network simulator is not
trivial. Several problems present themselves, including how to process messages
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when vehicles are moving and how to route vehicles (traffic generation or trip
demand). In the majority of cases, no single simulator can achieve high vehicle
location precision with ‘real-time’ processed message transmission exchanges.
The problem being that message exchange success is dependent on vehicle po-
sition, distance between them and level of congestion (both in the wireless and
physical road intersection domains). As such, the majority of these simulators
operate in a real-time/discretised hybrid system/environment, whereby vehicles
move according to some traffic model and message exchanges are processed in
a discretised fashion. Often the wireless network simulator simply polls the
vehicle traffic simulator for vehicle position at a given time in order to simulate
wirelees data exchange. However, rarely are the two simulators able to effec-
tively combine vehicle position based upon messages being received (i.e., all
clear from a road-side unit placed near a major road intersection). Given this
inherent complexity, the simulator we developed and evaluated in this chap-
ter operates as a high-level information spreading (‘quasi-infection modelling’)
system.

Real city taxi trace datasets were used to provide accurate (albeit with
some reasonably sophisticated filtering, interpolating and map-matching) vehi-
cle positions at any given simulation time-step. In our VANET simulations, the
messages being exchanged were modelled as if they were being broadcast us-
ing a V2V safety message protocol (such as IEEE 802.11p), therefore message
exchange does not alter a vehicle’s trajectory. As such the vehicle positions
are independent of wireless sensor message exchange. However, not vice versa,
since message transmission is highly dependent (in our simulator) on distance
and LoS conditions between the simulated road-side sensors and vehicles.

The author attempted several times to contact different taxi companies in
order to obtain larger (and more recent) datasets of taxi traces in urban areas.
Unfortunately, none of the four companies (one had over ten thousand registered
taxis in their fleet) replied to our requests for data or a potential research
collaboration. It is understandable from a taxi company perspective why this
data might not be made public, given it could contain passenger identifiable
names and potentially their addresses. However, we suspect their major concern
is with their drivers (employees) who may not want to be tracked by either their
company or a third party (in our initial correspondence we promised we would
anonymise all data collected).

Consequently, publically available taxi-trace datasets were sourced and a
method was developed in order to scale the fleet sizes for our VANET simulator.
Our method of filtering and ‘folding’ the taxi trace datasets is discussed in
greater detail in Section 3.3.5 (page 60).
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3.3 Simulation Methodology

Our intention is to assess the data dissemination and delivery performance of
these large scale city-wide vehicular networks in an attempt to address our sec-
ond research question namely, “What are the minimum requirements in terms of
CAYV fleet size given the number/density of city-wide sensors to ensure optimal
network coverage”.

From our perspective, optimal network coverage is roughly defined as achiev-
ing a high PDR (i.e., the fraction of the data collected and transmitted by the
stationary sensors reach their relative destination) and modest delay (i.e., the
time it takes for the packets to be delivered to their destination since being first
visited by a simulated CAV).

Previous VANET simulators tended to focus on the the wireless protocol de-
sign being investigated by simulating realistic channel conditions. As a result,
these simulators often are limited to simulating small CAV fleets (less than a
thousand in certain cases due to the amount of computation required), especially
when ray-tracing, signal scattering, interference and packet acknowledgements
are also being simulated. Furthermore, vehicle traffic/mobility patterns are as-
sumed and often are not very realistic; such as using random waypoint models
instead of simulating an underlying road network topology. Consequently, our
work focuses on using real world taxi trace datasets as these provide a realis-
tic depiction of inner-city vehicle traffic/passenger mobility patterns as well as
having hundreds (if not more) vehicles in the simulation.

Our system level VANET simulator is based on open source datasets, such as
those maintained by OpenStreetMap [65] and Community Resources of Archiv-
ing Wireless Data At Dartmouth University (CRAWDAD) [17]. The former,
OSM, maintains relatively up to date building footprint and street network
topology for most human settlements by courtesy of users uploading data-
points, geotaging/labelling buildings, bridges etc. OSM also receives data do-
nations from various organisations that have mapped parts of the globe. An
example of the detail of building footprint dataset as well as a single taxi trace
is shown in Figure 3.4.

CRAWDAD maintains datasets specifically for experiments and simulations
conducted for wireless network research. Their datasets range from packet level
information (for example of university campuses wireless networks) to high level
taxi trace datasets (used in this chapter). For the later, taxis were tracked
over a certain period (roughly a month) and their (raw) timestamped GNSS
coordinates uploaded (see Table 3.2 for more details).

Since OSM provides reasonably accurate (and up to date) locations, foot-
prints of buildings and road network topology, we were not limited in our choice
of cities to investigate (in terms of geography at least). However, the same can-
not be said for taxi trace datasets, of which there are few, and even fewer that
are (truly) openly available. Given the relative (or more accurately ‘claimed’)
sizes of these datasets, we were initially interested in using Shanghai|31], Bei-
jing [40] and Shenzhen [106] as they tracked circa 4,000, 10,000 and 14,000 taxis
respectively. Authors we contacted regarding Shenzhen and Shanghai datasets
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FIGURE 3.1: Schematic showing our VANET system simulation
architecture. From left to right (i.e., the order we process data in
our system), we list the sources of our raw datasets and our filter-
ing and pre-processing methods (including our taxi trace dataset
‘folding’ technique as discussed in Section 3.3.5, page 60). Our
simulation’s model components included interpolated positions
of (filtered, map-matched and ‘folded’) taxis positions at every
simulation time-step, a sub-list of the pairs that form a V2V con-
nection (using our sophisticated LoS building footprint database)
and the ‘snapped’ positions of all sources/sinks/sensors in the
simulated urban environment. Figure reproduced from [13|. For
more details on simulation architecture and processes, see flow
chart in Figure A.1 (page 122).

never responded!. Consequently, our simulator is limited by the availability of
these taxi trace datasets, and as such we focus our efforts on the cities where
datasets are openly available (and of reasonable resolution), namely San Fran-
cisco (USA) [71] and Rome (Italy) [8]. Table 3.2 summarises some of the details
and filtering parameters applied to the two taxi trace datasets used for our sim-
ulations in this chapter.

3.3.1 Simulator Architecture

An overview and detailed flow chart schematic of our simulator architecture
(including pre-processing and simulation modules) are shown in Figures 3.1
and A.1 (page 122). Our simulator essential works in two parts: an offline data
extraction and filtering pipeline, followed by an online simulation of the vehicles
moving, collecting and exchanging sensor message information.

The data extraction pipeline has to be run first in order to filter both road
network topology data (data from OSM, filtered using OSRM software [67]),
building footprint data and taxi trace datasets. A summary of our taxi trace

Eventually we managed to obtain some taxi trace data for Beijing. However, this was
too little and too late to be included in our study.
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data filtering parameters and results are shown in Table 3.2. Once we have a
filtered road network topology, filtered and interpolated taxi trace dataset (i.e.,
vehicle positions at every time-step) and a list of taxis within LoS and V2V
range (again for each simulation time-step) we then run our wireless/message
exchange simulator using the aforementioned datasets as inputs.

At this stage, our simulator runs through the positions of each taxi evaluat-
ing their relative (haversine) distance to all (stationary) sensors (environmental
sensors were distributed in a uniform random fashion and ‘snapped’ to their
nearest road segments). Taxis within V2I range of any sensors were allowed to
exchange message information.

V2V message exchanges were then processed (with updated taxi message
lists). We collect all manner of data from the simulator, for example the number
of messages each sensor and or taxi has stored, where V2V message exchanges
occur and when sensors are first visited. Result data was stored locally before
being uploaded to a central server for further analysis. We label each simula-
tion run and store input parameters used (such as number of taxis and sensor
distribution). Further value ranges of simulation parameters are summarised in
Table A.4 (page 123).

3.3.2 Road Network Topology

All our road network data was provided by OpenStreetMap (OSM). However,
OSM data files are not optimised for simulations. OSM data files are built in
the form of a giant dictionary (i.e., a .xml file), where all road links are listed
as keys with their associated tags (values). For example, tags associated with
each OSM waypoint can range from ‘parking’, ‘one-way’ to ‘recycling-bins’; all
with associated GNSS co-ordinates. Briefly, OSM tag quality varies enormously
between cities, regions and countries. More avid OSM contributors such as the
UK and Germany tend to have very well populated city maps, whereas those in
developing countries or more restrictive ones (such as China and North Korea)
tend to have fewer labels/tags.

In order to run simulated vehicle and wireless traffic across our areas of in-
terest, the OSM map needed to be decomposed and reconstructed in a manner
that allows for map-matching (of our vehicle trace datasets), placing or ‘snap-
ping’ our simulated sensors to roads/links and interpolation of vehicle positions
at a given sampling frequency (i.e., simulation time-step). Consequently, we
chose the openly available Open Source Routing Machine (OSRM) [67] as our
back-end method for pre-processing OSM and taxi trace data. OSRM has mul-
tiple in-built functionalities and runs relatively quickly (its’ back-end is written
in C++), making it possible to ‘snap’ or ‘map-match’ thousands of sensors or
vehicle trace data points in an instance. In our system architecture OSRM runs
as a local server and receives queries from our modified Python Version 3+
wrapper [98].

OSRM converts OSM road network data into an edge-expanded graph for
fast routing. OSRM uses OSM tags (for individual links or road edges) such
as link length, direction and maximum velocity to evaluate the duration (in
seconds) of traversing that edge depending on your mobility profile. An example
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FIGURE 3.2: OSM records multiple nodes (or waypoints) per
road edge/link. This allows OSM to develop highly accurate
maps as roads can follow complex shapes or curves. However,
storing all these extra nodes/edges is memory expensive as well
as unnecessary for processing routing algorithms. OSRM [67]
compresses road edges with excessive nodes (e.g., top schematic)
into a single long link (as shown in the bottom schematic). In or-
der to accurately route vehicles, OSRM takes into account maxi-
mum speed limits, link directionality and length when combining
multiple sequential edges. Thus ensuring accurate routing rep-
resentation. In this particular example, there are two separate
routes for travelling between nodes (or realistically intersections)
@ and K. OSRM realises that there are no intersections be-
tween these nodes and ‘compresses’ them by summing their rel-
ative edge weights together and removing excess ‘shorter’ links
and replaces them with a single (representative in terms of edge
weights) link such as Lgg and Li¢q. Note the original road net-
work locations were used for map-matching and simulated taxi
positions.

of this graph compression in shown in Figure 3.2. OSRM uses OSM tags in order
to assess link travel times given user selected /coded mobility profile. Given these
parameters, OSRM is able to combine multiple edges (with no junctions) into
longer single edge links with equivalent travel costs/time. To further improve
accuracy, OSRM includes all turn restrictions as well as allowing for U-turns to
be made on certain road edges, see Figure 3.3 for more details.

OSRM allows users to customise mobility profiles by setting vehicle pa-
rameters and local traffic/highway restrictions. Parameters such as fastest
speeds (180kph), vehicle mass and length (2000kg and 4.8m respectively), u-
turn penalty (20s), left hand driving, traffic light penalty (2s) can be altered.
Furthermore, the types of roads your method of transport can/can’t access,
such as motorways, bicycle paths, canals etc. were taken into account when
running fastest route and map-matching algorithms.
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Original OSM representation of a OSM with turn restrictions (i.e. a OSRM stored graph representation
sample road network. directed graph). with junction and U-turn penalties
and restrictions for routing.

FIGURE 3.3: OSM data is used as an input to OSRM (left) be-
fore being filtered for turn restrictions (centre) and finally OSRM
adds/removes turns/ways that are not allowed by the selected
mobility profile (for example large vehicles may not fit under
bridges or use cycle paths). Note OSRM adds some mid-point
nodes to certain edges to allow for U-turn manoeuvres and for
routing to a specific link (rather than the nodes it connects).
Figure was reproduced from OSRM’s online documentation [67].

For all our simulations we used the standard vehicle profile as maintained
by OSRM (some values included in brackets above, for more details see [66]) as
was considered to (reasonably) representative of typical inner-city taxi vehicle
models. This had the benefit of being comparable in the future. OSRM’s
routing and map-matching engine were used in order to check whether taxi
trace data points were reliable/realistic. For completeness, we set a maximum
allowable distance from a nearest road segment to be 200m when map-matching
taxi trace datasets.

3.3.3 Filtering Taxi Trace Datasets

Two city taxi trace datasets were used in our simulator to act as VANET en-
abled vehicles providing wireless network coverage to local sensors (within V2I
range) and exchanging messages between vehicles (V2V). Two separate studies
conducted in Rome (Italy) [8] and San Francisco (USA) [71] monitored taxi
locations at differing data collection frequencies over the course of a month.
Both taxi trace datasets contained individual taxi identification numbers and
time-stamped unfiltered (raw) GNSS locations.

Due to the nature of these vehicle traces, conducted in large cities with
tall buildings, GNSS accuracy was significantly reduced. This creates problems
such as vehicles appearing at seemingly random positions along a road or worse,
appearing inside building footprints. As such the raw vehicle trace data (for
both cities) is mostly un-usable. Fortunately, this is a common problem when
working with GNSS datasets and there is an entire body of research, called map-
matching, dedicated to filtering and matching timestamped GNSS recorded
points with what was likely the real trajectory of the vehicle. Since our goal was
not to further map-matching research we briefly considered various algorithms
available and settled for a tried and tested system developed by [63]. Note, this
is the algorithm used by OSRM to ‘map-match’ both taxi trace datasets to the
underlying road network.
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FIGURE 3.4: An example of our taxi trace filtering system for the
Rome dataset. A single taxi’s trajectory is plotted (all coloured
dots) along with the resultant OSRM map-matched trace (OSM
road network, green line) with Rome’s buildings footprints in the
background (golden-yellow polygons). As described in Table 3.2
(page 3.2) our first filter, Filter A, removes points (black coloured
dots) which cannot be interpolated due to being deemed too far
apart (in this particular case more than our sampling window of
30s). Data points that met Filter A’s criterion but were rejected
due to their location being deemed implausible (e.g., too far in-
side a building footprint or due to particular turn restrictions not
permitting certain routes) are shown as red filled dots. Finally,
cyan filled dots are the trace data points deemed plausible (i.e.,
they met both filtering criteria) and were map-matched (using
OSRM) before being interpolated for our simulations using the
original road network. Note, the final set of interpolated map-
matched points used in our simulations all lie along the road
network whilst preserving the same temporal relations as their
original raw points where possible. However, the plethora of
points were omitted to aid clarity.
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TABLE 3.2: Overview of the Rome and San Francisco taxi trace
datasets and filtering method used in our research.

Parameter Rome, San Fran-

Italy cisco,
USA

Data Collection Period Feb-Mar May-June
2014 2008

Number of Participating Taxis 320 536

Median Update Time Period/[S] 7.54 58.7

Sampling Window Size/|S] 30 120

Filter A: percentage of data rejected (.92 10.1

due to sampling window

Filter B: percentage of data rejected 9.98 26.5

due to poor location accuracy

Overall percentage of data used in sim- 89.5 66.1
ulations (1-A)(1-B)

As part of our initial taxi dataset filtering and map-matching process, we
developed two filters to apply to the taxi trace datasets. The first vehicle trace
dataset filter, known simply as Filter A, was based on the update frequency
of the two taxi trace datasets. The cumulative empirical update frequency
distributions (for both cities) are plotted in Figure 3.7. It is clear that Rome has
much higher median update frequency (roughly every 8s, or 0.125Hz) compared
to the San Francisco taxi trace dataset (median update time period of roughly
60s or 0.017Hz). Consequently, sampling windows of 30 and 120s were chosen
for the Rome and San Francisco datasets respectively, and given 50% overlap
with each other to aid smoothness of the interpolated trajectory data.

Filter A determines whether a minimum of two (vehicle trajectory) data
points lie within the query’s sampling window. Should this be the case, then
Filter B, makes a query to our OSRM server to ensure the data points are
map-matched to the correct road segment (or potentially rejected if they can’t
be map-matched). If the vehicle trajectory data points did not lie on the same
road segment, a ‘most likely’ route was established using OSRM’s routing func-
tionality (a situation that frequently occurs given vehicles in cities often change
lanes, direction and roads as they navigate to their destination). OSRM’s rout-
ing and map-matching service both take into account the time-stamps of the
taxi trace data points being investigated (to ensure velocities are realistic) as
well as any local speed limits, intersection/turn restrictions and vehicle traffic
direction.

The consequences of our two vehicle trace dataset filters (A and B) as well
as general properties of the datasets are highlighted in Table 3.2. Overall, the
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FicUrRE 3.5: Effect of filtering the San Francisco taxi depot

located at (-122.395, 37.7516) on cumulative V2V message ex-

changes over a randomly selected 12 hour period. Figure repro-
duced from [13].

Rome dataset achieved the least amount of data point rejections, almost 90%
of the original data points were used in our simulator. Whereas with the San
Francisco dataset, a larger proportion (circa 1/3) was rejected.

In the San Francisco case, a much larger proportion (roughly an order of
magnitude more when compared to the Rome dataset) was rejected due to
poor cohesiveness between vehicle trace data points (referred to as Filter A, see
Figure 3.4 for an example). Subsequently, a quarter of trace data points that
passed Filter A’s criteria were then rejected due to the inability of our OSRM
system to confidently map-match the data to road segments. San Francisco
has a higher density of tall buildings and a grid like road network topology
potentially creating ideal ‘urban-canyons’ which could effectively hinder the
accuracy GNSS sensors used in the study.

After filtering out taxi-trace data points that were deemed un-realistic or
too noisy to use, we interpolated the remaining (filtered and map-matched)
taxi positions at the desired simulation time-step frequency. For simulation
results presented in this chapter we used a time-step of 10s. Taxi trace data
points were interpolated in such a manner to match the final velocity of the
two interpolated trace data points. We used OSM’s road network topology to
ensure interpolated points were on the physical road network as well as ensuring
realistic routing strategies (using OSRM) for points that were further apart or
across multiple junctions.

Hail-able taxicabs (which our trace datasets are based on) are known to
spend a considerable proportion of their time idling/waiting in designated taxi
ranks and/or outside important tourist or transport hubs, such as museums
or train stations. This imposes certain extra computational costs as well as
reducing our fleet size of ‘active’ taxis. Since for every pair of taxis within
V2V communication range, a LoS check has to made, and if successful, the
V2V messages stored in the taxis need to be processed. We briefly investigated
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FIGURE 3.6: Inset shows a satellite view (satellite image re-

produced from Google Maps) of the filtered San Francisco taxi

depot. Main image shows San Francisco’s building footprints

(surrounding the taxi depot) overlaid with V2V exchanges over

a 12 hour period. Red lines represent taxi pairs without LoS
whereas blue lines are those with LoS.

where the largest clusters of non-moving taxis were located in both the Rome
and San Francisco taxi trace datasets.

In Rome, the largest cluster of non-moving taxis was located at Roma Ter-
mini?. We investigated the impact of filtering out taxis stationed there in our
VANET simulations. We concluded that overall, it had a relatively small im-
pact on cumulative message exchange: less than 1% of V2V exchanges occurred
there during the study period. Consequently, taxis positioned outside Roma
Termini were not filtered from our simulations.

Whereas, in San Francisco, the largest cluster of non-moving taxis was lo-
cated at an inner-city taxi-cab depot. We hypothesise that the GNSS devices
used to monitor and record taxi trace data were not switched off when the taxis
were parked overnight (or during the day) at the depot. This resulted in a
large (and ultimately) unnecessary contribution to computational work load, as
shown in Figure 3.5. Filtering taxis located within 250m of the depot reduced
the number of cumulative V2V messages exchanged by about a third. A far
greater proportion than the (circa) 10% of V2V exchanges filtered out when
only taxi pairs with LoS were considered. We filtered out all taxis parked at
the depot in all simulation results presented in this chapter. For completeness,
we include a satellite image as well as a model view of the filtered depot in
Figure 3.6.

3.3.4 Simulation Time-Step

Individual vehicle trajectory interpolation was necessary in order to assess their
positions at higher sampling frequencies. A typical V2V wireless transmission
protocol, such as the IEEE802.11p typically have a 10Hz positional and velocity
update frequency (note this can be reduced as part of the standard’s wireless
congestion mechanism when there are large numbers of vehicles within com-
munication range). However, this is not strictly necessary given our simulation

2Note, Roma Termini is train terminus as trains do not pass through it.
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for all simulation results presented in this chapter. Figure repro-
duced from [13].

interest lies at the system level rather than at the individual V2V packet level.
Since our scenario is not safety critical we did not seek such high levels of po-
sitional granularity. Recall, that we are modelling information spread across
the city from environmental sensors rather than individual taxis sorting them-
selves at intersections in a safe and efficient manner. Furthermore, message
size (between exchanging taxis) was not deemed to be a particularly large and
therefore reduces the requirement for simulating longer ’contact-times’ (i.e., the
time communicating taxis stay within range of each other).

Our choice of simulation time-step was partially limited by our access to
computational resources. In particular, our computing cluster had to share
Random Access Memory (RAM) resources with other user’s simulations. Given
the sizes of our (e.g., filtered taxi-trace and building footprint) datasets and
length of intended simulations (multiple hours) we were effectively limited to
selecting a simulation time-step >5s. Larger time-steps would ensure fair use of
the cluster and a high-level of successfully completed simulations (thus avoiding
the time-consuming process and need to re-submit jobs to the cluster).

Finally, given the granularity of the original taxi-trace datasets (see Figure
3.7) there was a high likelihood of simply over-sampling the taxi trace data.
Therefore a time-step of 10s was selected as it nicely balanced our need for
reasonably granular positional sampling whilst allowing for a large range (from
250 to circa 2000 taxis) to be simulated within the working memory limits of
our computing cluster.
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3.3.5 Taxi Trace Data Slicing and Folding

In order to investigate city-wide VANETSs we needed to increase the fleet size
to mimic, to a certain extent the true proportion of taxis/vehicles present in a
city. In both cities there are thousands of registered taxis, however, only a small
sub-set were equipped with position tracking devices. To overcome the small
number of active taxis in our simulations we resorted to ‘folding’ taxi traces
from randomly selected days (out of the entire month-long datasets).

To make matters slightly more complicated, not only were there an unequal
number of taxis participated in both data recording exercises to start with, but
active taxis fleet sizes varied significantly throughout the day. We hypothesise
these traces might be drivers going home after a shift or stopping for a lunch
break (for example). As a result, different numbers of days had to be folded in
order to achieve roughly matching and stable numbers of taxis throughout the
overall simulated time period for both cities.

Since we were only concerned with a central portion of both cities (64km?)
some taxi routes both left and entered the bounding area. As we were able to
record individual IDs of taxis, even if a taxi left and re-entered the simulation
boundary its stored sensor messages were not erased. However, no process-
ing of V2V message exchanges occurred outside the boundary area. Note, this
happened rarely given that our boundaries were quite large. Furthermore, in
the case of San Francisco our boundary is roughly the same as the geographi-
cal /physical limits imposed by the coast line. It was noted that the majority of
taxis leaving our simulated area were travelling to and from airports (located
outside of each city).

3.3.6 Wireless Communication Model

In both of our V2I and V2V wireless models we were primarily concerned with
the spreading and exchanging of information between taxis and sensors. Given
that we never simulated more than circa 2000 taxis at any given instant (all
driving within our simulated 64km? urban environment), it was decided not to
model channel contention and interference given the relatively low density of
nodes.

For example, the IEEE 802.11p protocol was designed for up to 2000 ve-
hicles/nodes exchanging information all within a square kilometre. Given we
never observed such high densities of vehicles/nodes in any of the simulations
presented in this chapter, our focus turned towards assessing information spread
(PRR), PDR and subsequent end-to-end delay of sensor messages.

Vehicle-to-Infrastructure

At each simulation time-step a distance matrix was evaluated to assess whether
taxis were within V2I range (set at 100m) of the fixed sensors (scattered along
road/edges of the road network). For each vehicle-sensor pair, their messages
were exchanged (effectively a set union of the sensor and taxi message sets), and
the resultant combination stored as the new, updated set of messages for both
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FIGURE 3.8: Visualisation of 96 hours of taxi trace overlaid

with San Francisco building footprint. Communicating pairs of

vehicles are plotted: green lines for pairs within V2V range and

with LoS, whereas red lines are pairs of vehicles within V2V

range but do not possess LoS. Note, a typical street ‘block’ in
San Francisco is roughly 140 by 100 metres.

-~ SF V2V trace data

—@— Rome V2V trace data

0 100 200 300 400

V2V Euclidean separation distance/[m]

FIGURE 3.9: 96 hours (over 2 million datapoints) of taxi trace
datasets recorded in San Francisco (black) and Rome (red) were
analysed by finding all pairs of taxis with a Euclidean separation
distance of less than 500m and sorting the results into 10 bins
(of 50m widths). For each bin, the proportion of pairs of vehicles
which had LoS, evaluated using our detailed building footprint
and road network datasets), are plotted at bin mid-points. Fig-
ure reproduced from [13].
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(vehicle and sensor). Note, the order in which sensor-vehicle pairs message ex-
changes were processed was randomised at each simulation time-step. Through-
out the chapter we often refer to transit delay, as it more accurately portrays the
type of information spreading delay we were assessing/recording. Transit delay
is the time taken for a message to be shuttled between sensors (once they have
been visited) by our simulated fleet of connected taxis. We recorded the simula-
tion time-step whenever a taxi visited a previously un-visited sensor and when
a new sensor message (i.e., their unique ID) was received at any other sensor
(since all our simulations presented in this chapter were of all-to-all scenarios).

Vehicle-to-Vehicle

Again, at each simulation time-step a distance matrix was evaluated to assess
the (haversine) distance between all possible taxi-taxi pairs. Taxi-taxi pairs
within our set V2V range limit (200m) were then checked if they had LoS by
querying our sophisticated OSM building footprint database. A depiction of
the building footprints along with vehicle trace data plotted on top is shown in
Figure 3.8. We then selected the pairs of taxis that were both within range and
had LoS in order to process the V2V message exchanges in a randomised order.
We recorded the location and time-step of V2V exchanges for later analysis and
to ensure we never achieved unrealistic densities for wireless exchanges. Note,
should a pair of taxis be within V2V range and have LoS, successful transmission
of data was guaranteed.

Some analysis was conducted in order to understand the likelihood of having
LoS given a Euclidean separation distance between the taxis. To this end, over
90 hours (roughly 4 days worth of taxi trace data) was analysed for LoS at every
time-step. We recorded the separation distances and whether the taxis had LoS
(again utilising our PostGIS enabled building footprint database). We plot the
(empirically derived) probability distribution functions for both San Francisco
and Rome in Figure 3.9.

3.4 Taxi VANET Simulation Results

All results shown in this chapter are for an All-to-All communication scenario,
i.e., all stationary sensors (distributed in a uniform random fashion before being
‘snapped’ to the nearest road segment) aim to communicate with one-another
during the simulation. Sensors (even those within V2I range) cannot communi-
cate with one another, instead, sensors use the VANET (folded-taxi trace data)
to transfer, store and carry their (sensor) messages. We varied both the density
of vehicles/taxis (by our taxi trace data folding method) and sensors within our
simulated urban areas in order to better understand and assess the feasibility
and transit delay of a large-scale urban VANET system.

3.4.1 PDR and PRR Results

We define Packet Received Ratio (PRR) as a measure of how many (unique)
sensor messages (out of the total number of sensors) an individual taxi is storing
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FIGURE 3.10: Single simulation PRR results are plotted for

an All-to-All sensor message communication scenario for Rome

(Italy). Simulation involved 14 days of ‘folded’ taxi trace data

(circa 900-1000 taxis) and 2000 randomly distributed sensors.

For each taxi, we plot their relative PRR over the simulated

time period (coloured curves). The solid black curve is the mean
PRR at each time-step.
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sensors. For each sensor, we plot their relative PDR over the

simulated time period (coloured curves). The solid black curve
is the mean PDR at each time-step.
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and carrying during our simulation. Similarly, Packet Delivery Ratio (PDR) is
a measure of how many (unique) sensor messages (again, as a proportion of the
total number of sensors being simulated) each individual sensor has received
from V2I exchanges throughout the simulated time period.

Since we recorded at each simulation time-step the messages being ex-
changed and what messages the vehicles and sensors had stored, we were able
to plot the mean (as well as individual) packet received and delivery ratios over
the simulated time period.

Figures 3.10 and 3.11 highlight some of the internal workings of our VANET
simulator by plotting PRR and PDR for each (individual) taxi and sensor during
the simulation, respectively. We also plotted the mean PDR and PRR values
throughout the simulated time period.

In both Figures, the mean lags somewhat behind the peak PRR/PDR re-
sults. This was expected, since some sensors were likely to be located in areas
of the city where taxis may be less likely to frequent (such as residential areas)
or route across (such as boundary or perimeter areas) and as such will have low
PDR/PRR values. Consequently there is a larger range of PDR than PRR val-
ues as some sensors might never be visited during the simulation. Whereas the
simulated connected taxis (almost) always interacted with at least one sensor
or another taxi during the simulated period thus achieved higher mean PRR
than PDR.

Intuitively PRR should be higher than PDR. Simply due to the fact that
vehicles both are mobile and act as the (sole) conduit for message exchanges
between other vehicles and sensors. Whereas in all of our simulations, sen-
sors can only communicate with nearby passing vehicles and were stationary
throughout. As such taxis build up a larger collection of unique sensor mes-
sages earlier in the simulation as they cover more ground/conduct more V2X
exchanges. This is evident when comparing the average (black lines) PRR and
PDR in Figures 3.10 and 3.11 respectively. The mean PDR barely reaches 0.6—
0.7 (towards the end of the entire simulation) whereas mean PRR reaches that
level roughly halfway through the simulation (circa 1500s or 25 minutes) and
continues increasing until reaching roughly 0.8 PRR. Furthermore, this trend
is also observable in results Figures 3.17 and 3.18. In these results, mean PDR
(solid lines) and PRR (dashed lines) were plotted for a series of simulations
with varied (i.e., folded) taxi fleet densities (for both cities) and fixed sensor

densities (2000 sensors per simulated environment, or roughly 31 sensors per
km?).

3.4.2 Transit Delay Results

Increasing folded taxi fleet sizes in Figures 3.17 and 3.18 yields relative im-
provements in both PDR and PRR. Quasi-dramatic gains in final mean PDR
values (from roughly 0.5 to 0.8 in the Rome simulations and 0.2 to 0.7 in the
San Francisco) were observed as the folded taxi fleet size was increased from
less than 300 to circa 1000 active taxis in both simulations. Gains in terms
of PDR/PRR diminish as the folded taxi fleets were increased beyond 1000 to
circa 2300. Both simulations seem to peak around the 0.7 to 0.8 PDR range.
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FIGURE 3.12: Series of box-plots showing final taxi-side PRR
simulation results (averaged across 20 runs for Rome (left) and
San Francisco (right)) for differing sensor network and ‘folded’
taxi fleet sizes. Note, median PRR values are plotted in orange
(horizontal lines), widths of box’s represent the standard devia-
tion of taxi fleet size during the simulated hour, heights of box’s
represent the IQR (middle 50% of the data), and the whiskers
are 1.5 times the IQR.
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FIGURE 3.13: Series of box-plots showing final sensor-end PDR
values of simulation results (averaged across 20 runs for Rome
(left) and San Francisco (right)) for differing sensor network and
‘folded’ taxi fleet sizes. Note, median PDR values are plotted in
orange (horizontal lines), widths of box’s represent the standard
deviation of the taxi fleet size during the simulated hour, heights
of box’s represent the IQR and the whiskers are 1.5 times the
IQR.
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To better assess performance of our VANETSs under different conditions, a
series of simulation runs (20 per combination) were conducted and the averaged
final PRR and PDR results are plotted as box plots in Figures 3.12 and 3.13 re-
spectively. Results for each combination of city (San Francisco and Rome), sen-
sor densities (500-2000) and folded taxi fleet sizes (circa 300-2300) are shown.
Note, the width of the box plots are the (averaged) standard deviation of the
folded taxi fleet size.

With regards to the PRR plots, increasing taxi/vehicle fleet size certainly
increases the PRR rate, with smaller fleet sizes (less than 1000 taxis) achieving
modest levels of PRR within the range of 0.7-0.9. Further increases in folded
taxi fleet sizes (i.e., from 1000 to just over 2200) yield smaller improvements,
with maximal values of PRR within the 0.8-0.9 range for both cities.

Similarly, the Inter-Quartile-Range (IQR) decreases as the taxi fleet size
increases to around 1000 vehicles and remains fairly consistent for simulated
fleet sizes beyond 1000 taxis. This would suggest there are some saturation
effects for larger fleet sizes, even as the sensor density increases. It is likely that
any fleet density larger than 15/km? has enough time and likelihood of V2V
encounters that the necessary V2V exchanges occur early on in the simulation,
meaning that most taxis will have almost all the sensor messages that were
collected. Again, it is likely that the vehicle routes (i.e., where they are travelling
respective to sensor locations) will have a greater impact on the PDR than the
fleet size.

Similar trends were observed with the PDR plots in Figure 3.13. As the
folded taxi fleet size was increased (irrespective of sensor density) the final mean
PDR values also increased. We observed a levelling off of the PDR once the
simulated connected fleet size exceeded 1000 taxis/vehicles (or roughly 15/km?).

Similar to the PRR results (see Figure 3.12) the San Francisco taxi fleets
achieved slightly higher PDR values irrespective of vehicle or sensor density
used in the simulations. With regards to San Francisco results, folded taxi fleet
sizes greater than 500 achieved final median PDR values over 0.8, something
the various folded Rome taxi fleets struggled to achieve in a consistent manner
(as shown by their larger IQR spreads).

We recorded the simulation time-step whenever a taxi visited a previously
un-visited sensor and when a sensor received a new (unique) sensor message
(via the VANET). This gave us an idea of the end-to-end delay inherent in our
proposed system. We refer to this type of delay measure as transit delay, since
it effectively is the time taken for messages to be transferred/transported by
our simulated connected vehicle/taxi fleet (i.e., our city-wide VANET).

Figures 3.14 and 3.15 show various probability distribution functions of
recorded transit delay for various folded taxi fleet sizes with fixed number of
sensors (2000) in the simulated urban areas (64km?) of Rome and San Fran-
cisco. 36 bins of width 100 seconds were used to analyse the results for both
cities. Transit delay results for Rome show a wider spread, with some broadly
symmetrical (almost Normal) relatively large tails at the higher end of transit
delay values. We observed that the transit delay distributions in the Rome
simulations appear to shift their mean values as the folded-taxi fleet size was
increased. For example, fleets with fewer active taxis (less than 500) appeared
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FiGURE 3.14: Empirical transit delay probability distribution
functions for a Rome simulation with various ‘folded’ taxi fleet
sizes (see legend) and 2000 sensors. We used 36 bins (with widths
of 100s) and plot results at bin mid-points. For smaller fleet sizes
(< 500 taxis), we witness a large spread of transit delay, with
some peaks at around the 1000-2000s range. However, with
larger fleet sizes (> 1000 taxis) we witness a reduction in ‘peak’
transit delay to around 500s.
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FIGURE 3.15: Empirical transit delay probability distribution
functions for a San Francisco simulation with various fleet sizes
(see legend) and 2000 sensors. We used 36 bins (with widths
of 100s) and plot results at bin mid-points. Overall, San Fran-
cisco outperforms our Rome transit delay simulation results (see
Figure 3.17, with peaks for all fleet sizes less than 1000s. Again,
increasing fleet size yields a reduction in transit delay, with larger
fleet sizes (greater than 1000 taxis) having peak transit delay re-
sults of less than 300s.
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to have mean transit delays in the region of 1000-1500s. For folded fleet sizes
with more taxis, (greater than 1000) the mean shifts, resulting a more skewed
distribution with peaks (modal values) around 500s.

Transit delay results for San Francisco exhibit more skewed distributions,
with longer/‘thinner’ tails towards high transit delay values. We observed a
smaller shift in mean transit delay values, with smaller folded taxi fleets (less
than 1000) achieving a mean transit delay in the range of 500-1000s. For larger
fleet sizes, the transit delay probability distributions shift, with peak values
< 500s.

Twenty simulation runs were conducted for each combination of fleet sizes,
sensor densities (varied from crica 7/km? to 31/km?) and road network topolo-
gies (Rome and San Francisco), and folded taxi fleet sizes (circa from 300 to
2300) and averaged across before being plotted as a series of box and whisker
diagrams in Figure 3.16. Note, that median values of transit delay are plotted
in orange and that the width of the 'box’ is set to the standard deviation of the
active folded taxi fleet size during the simulated time period.

In all cases, increasing the mean active (folded) taxi fleet size reduces the
median transit delay as well as reducing the range of transit delay values (IQR
is smaller). This is likely due to larger taxi fleets being able to cover more
ground per simulated time-step and consequently able saturate the simulated
sensor environment with more messages.

However, reductions in experienced transit delay are not proportionally lin-
ear with respect to increases in fleet sizes. A plateau was observed after ‘folded’
taxi fleet sizes of circa a 1000 taxis. However, San Francisco taxi fleets appear
more efficient at reducing delay than their Rome counterparts. The median
transit delay for folded fleets greater than 1000 taxis was less than 500s in San
Francisco (for all sensor densities simulated in Figure 3.16). Corresponding sim-
ulations using similar taxi fleet sizes and sensor densities but with the Rome
road network resulted in median transit delays of around 500 to 1000s.

At this stage it is hard to identify exactly why San Francisco taxis perform
better both in terms of reducing median transit delay as well as reducing the
spread (IQR) of transit delay results as the fleet size increases. A potential
explanation could be that taxis in San Francisco might experience a greater
diversity of trips, whereas Rome taxis could be more likely to cover similar
routes, such as between major transport or tourist hubs. However, to counter
this, we specifically picked random day/hour slices of taxi trace data to fold.

On the other hand, there could be some inherent structure in the road net-
work topologies being investigated that reduces message dissemination. After
all Rome’s initial settlement dates back to a couple of millenia, consequently its
road network varies greater in terms of road width sizes as well as structure.

San Francisco was a more recent settlement and large swathes of its road
network were built in the last century or so. San Francisco’s road network not
only is more modern (wider roads, more lanes) but also structured in more
regular grid-like format. The grid-like road network topology could (in theory)
allow for more ‘quasi-fastest’ routes between any two destinations as there are
many ways of traversing a grid network topology with small variation in overall
trip length (i.e., there are multiple fastest routes to choose from). In practice
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plotted are for a series of simulation runs (All-to-All scenarios)
with varying ‘folded’ taxi fleet sizes whilst maintaining constant
number of sensors (2000) in the city of Rome (Italy). Note how

the ‘lag’ between the mean set of messages carried /stored by the
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consistent between the vehicle fleet sizes.

The final PDR and
PRR values are lower in contrast to San Francisco simulations,

see Figure 3.18.
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FIGURE 3.18: PDR (solid lines) and PRR (dashed lines) re-
sults plotted are for a series of simulation runs (All-to-All scenar-
ios) with varying ‘folded’ fleet sizes whilst maintaining constant
number of sensors (2000) in the city of San Francisco (USA).
Again, note how the ‘lag’ between the mean set of messages car-
ried /stored by the taxi fleet in the VANET compared to the
sensor-end PDR (i.e., difference between dashed and solid lines)
increases as the fleet size is reduced.
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the Romans built many streets following a grid-like pattern across some areas
of Rome, such as around Roma Termini or sometimes grids spanning out in a
radial pattern from a central square or small garden such around Castello San
Angello (Prati district).

San Francisco, like many other North American cities, suffers from having
many one-way streets and turn restrictions at junctions, thus potentially re-
ducing the number of ‘quasi-fastest’ routes between any two points in the road
network. However, without further experiments and or detailed road graph
analysis and more traffic data it is hard to discern a (precise) relationship be-
tween the underlying road network topology and VANET transit delay.

3.5 Discussion and Conclusions

Overall we considered the problem of connecting environmental sensors dis-
tributed across an urban environment by simulating a fleet of connected taxis,
i.e., a city-wide VANET. Two (publically available) taxi trace datasets (recorded
in Rome (Italy) and San Francisco (USA)) were selected, filtered, ‘folded’ and
interpolated in order to generate roughly comparable simulated taxi fleet sizes.

Similarly, the underlying road network was extracted from Open Street Map
and we used the OSRM software library to filter and map-match our taxi trace
datasets. Several environmental sensor densities were explored along with vary-
ing taxi fleet sizes in order to investigate performance characteristics of our
VANET at collecting and disseminating information in an All-to-All message
exchange scenario (between the fixed sensors).

Briefly in terms of model verification and validation:

e Location of V2X interactions were investigated to ensure they were oc-
curring along roads and not inside buildings

e Stationary environmental sensors were checked to be located on OSM
road-segments

e All-to-One, One-to-All and All-to-All simulation scenarios were investi-
gated to ensure model was correctly functioning

e Building footprints were manually inspected and samples computationally
checked for inconsistent polygons

e Vehicle positions were all taken from OSM waypoint coordinates and not
the node/edge reduced graph used for routing and map-matching

e All folded taxi traces where from the same city, with unrealistic traces
and taxi depots filtered as discussed at length in the methodology section

e Folding of real taxi trace data ensured pseudo-realistic user trips and
background vehicle traffic flow

Rome VANET simulations appeared to result in consistently lower PRR
and PDR when compared to simulations of San Francisco (for similar sized
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folded taxi fleets). Furthermore, spreads (i.e., inter-quartile ranges) of results
of repeated simulations suggest that taxi fleets in San Francisco not only per-
form moderately better in terms of delay, PRR and PDR but were also more
consistent. There are several potential explanations for these observations.

The first possible explanation, as already briefly touched upon in the results
section lies in the folding and trip types for both taxi datasets. It is certainly
true that on any given day (in the original, i.e., ‘raw’) recorded taxi trace
dataset a smaller proportion of total participating taxis were active in the Rome
dataset. This resulted in more days worth of taxi trip data being folded in
order to generate (albeit quasi-synthetically, see Table A.3 in the Appendix)
similar active taxi fleet sizes as the San Francisco dataset. It was originally
hypothesised that by folding more randomly selected day’s worth of trace data,
there would be a greater spread or range of trips being undertaken (since we
could in essence be merging different days of the week of traffic data into ‘one
day’). However, the opposite was observed in our results. It is likely that there
were more repeated trips (i.e., between major tourist or transport hubs) in the
Rome dataset that in San Francisco.

Another potential explanation could be that in the Rome dataset there were
more taxis waiting at taxi stands, thus reducing overall fleet ground cover (i.e.,
the area of the map searched at any instance of time by the entire fleet) per
simulation time-step. That said, we did partially correct for this by filtering
out large clusters of stationary taxis.

Yet another explanation could be there is some inherent road network topol-
ogy that disadvantages the Rome dataset as vehicles end up on similar routes,
thus reducing the overall fleet search area as a proportion of the simulated en-
vironment. This is a subtle difference relative to ground cover, since both fleets
could be covering the same amount of ground (assuming similar active fleet
sizes) per time period, however, due to turn or lane restrictions it could be the
same rather than different streets/areas being searched.

More research could yield certain road graph information, for example by
investigating the variation in distance of the ‘top’ n number of shortest paths
between any two points in either city. Regular, grid-like road networks inher-
ently allow for more shortest-paths (of virtually equal lengths) between any
two randomly intersections/nodes in the road network. In a perfectly regular
grid network with n by m edges road topology, there are (nj;m) fastest routes
between any two opposite/extrema vertices (nodes/intersections) of the road
network. Since there are a certain number of left /right and/or up/down turns
to be made regardless of order. However, in reality it is likely that turn restric-
tions, as well as one-way streets and residential speed limits could have reduced
the overall travel time (even though routes could be of similar length).

Due to limits of both computational memory and data (for we cannot fold
more days that exist without repeating identical trips) we were limited to simu-
lating no more than circa 2200 taxis/vehicles per fleet and 2000 environmental
sensors. It would have been of interest to simulate larger densities of sensors
and vehicles to investigate if there were scenarios where final PDR values could
be more consistent and potentially higher.
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With regards to our second research question concerning the minimum fleet
requirements for a given sensor density, we suggest that a one to one ratio (taxis
to sensors) would be a good starting point/potential ‘rule of thumb’. Figure
3.13 highlights this threshold nicely for both cities; as the taxi fleet size roughly
approaches the number of sensors in the simulation the PDR tends to increase
to approximately 0.8 and levels off after that. In the San Francisco VANET
simulations, we observed slightly better PDR values at over 0.8 as the taxi
fleet approached the number of sensors in the simulation. For scenarios below
this threshold, the taxi fleets performed badly at collecting and disseminating
messages to the stationary sensors as shown by the larger IQR spreads at lower
taxi densities (generally less than 15/km?).

In terms of transit delay we observed a similar but less obvious pattern. As
the taxi fleet size was increased relative to the number of simulated sensors we
achieved only marginal gains in terms of reducing transit delay. Transit delay
certainly decreases before levelling off again. However, the IQR spreads are
quite large, at least in comparison to the PRR and PDR results.

Given that in all cases shown in Figures 3.12, 3.17 and 3.17, the final PRR
(i.e., the ratio of sensor messages being carried by the taxis relative to the
total number of sensors) values were always higher than the final PDR values.
This could suggest that some modification to routing strategies could reduce
delay and potentially increase overall PDR of the system. Routing strategies
along with the ability to alter passenger trips will be explored in detail in the
subsequent chapter.

Overall, simulated taxi fleets were able to transfer data from a large dis-
persed set of sensors in an urban area. Our simulations show that on average
transit delay (between a sensor first being visited and receiving new sensor data)
decreases from 1000s to around 300-500s for larger taxi fleets. However, given
we are interested in collecting non-safety critical sensor data, our system can
be classed as a delay-tolerant VANET. In terms of PDR we achieve relatively
good results, varying from 0.7-0.9 depending on fleet size and sensor density.
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Chapter 4

Agent-Based VANET Simulations

Following on from results obtained in the previous chapter, our re-
search aims to evaluate the performance gains, in terms of wire-
less sensor network PDR, by strategically re-routing CAVs without
overtly lengthening passenger trips. The following chapter is also
subject to a filed patent in the US and Japan which covers a sys-
tem and method for managing a connected fleet of autonomous vehi-
cles providing connectivity to stationary (e.g., environmental sensor)
nodes [11].

4.1 Introduction

In order to have finer control over individual taxi/AV trips, routes and passenger
demand, we developed a simplified agent-based VANET simulator which no
longer relies on vehicle trace datasests. As such, passenger demand can be
varied along with the routes selected by the (simulated) CAVs to serve the
passengers.

Varying individual CAV routes allows us to evaluate how effective our system
could be in terms of packet delivery ratios. For continuity and to aid comparison
we use the road network (again, obtained from OSM) of San Francisco (USA)
and similar wireless models developed and discussed in Chapter 3. Previously
we focused on obtaining taxi trace datasets and developing filtering and ‘folding’
methods in order to vary taxi fleet sizes. However, we no longer use (real-world)
vehicle trace datasets. Instead passenger trips are generated across the urban
environment following a distribution inspired by the New York City Taxi and
Limousine Commission’s extensive data records of all licensed taxi journeys
conducted within the New York City metropolitan area [89]. Note, this is the
largest taxi-trip dataset that is currently publically available.

Finally, we will investigate how CAVs can be ‘re-routed’ in such a manner
that they both provide physical transportation services to passengers as well
as network coverage and connectivity to the distributed sensors across the sim-
ulated urban environment. It is likely as with most dual or multi-objective
optimisation problems that any gains in one dimension lead to a cost or re-
duction in performance in the other. Understanding this trade-off would be of
great interest in assessing the feasibility and the limits of what can be achieved
purely in terms of re-routing strategies for improved PDR.
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The rest of the chapter is divided as follows. We briefly introduce related
work (Section 4.2), before detailing our agent-based VANET simulator design
and simulation methodology (Section 4.3). We compare our passenger demand
(i.e., trip generation) model with the largest publically available inner-city taxi
trip dataset. We introduce and discuss our reduced (from a computational
perspective) Line-of-Sight wireless (V2I and V2V) communication model and
road network graph filtering method. Furthermore, we developed an edge (road)
weighting method and parameter (referred to as « in the chapter) for incentivis-
ing efficient AV routing to meet passenger and wireless (sensor) connectivity de-
mand. Agent-based VANET simulation results of structured parameter sweeps
of CAV and sensor densities, and « are shown in Section 4.4. We investigated
the limits of our system with regards to poorly connected sensor locations and
briefly discuss potential mitigation strategies (Section 4.5). We conclude (Sec-
tion 4.6) by briefly investigating the role of the Largest-Connect-Component
(LCC) our AV fleet and message exchange strategies.

4.2 Related Work

Data mules (i.e., vehicles equipped with wireless systems for short-range data
transfer) were originally conceived as a method for connecting an area scattered
with sensors and access-points by [80]. Their work focused on a simplified
grid topology whereby each cell contained either a sensor (i.e., data generating
source) or an access-point (i.e., data sink). Their simulated data mules were
able to randomly traverse the grid environment collecting and distributing data
whenever they landed in a cell containing either a sensor or an access-point
respectively.

Data mules have been developed and used to increase connectivity for remote
or developing regions [69]. The DakNet system (developed by [69]) used hu-
man driven vehicles equipped with electronic memory storage and Wi-Fi access
points in order to connect remote village kiosks, families and shops with (albeit
temporary) data transfer facilities. Data automatically uploads and downloads
when the bus (or any vehicle equipped with DakNet) is in range of a kiosk
or wireless hub. Whilst DakNet couldn’t provide seamless connectivity (un-
less you were constantly within range of the DakNet equipped vehicles), it was
able to aid local small-holders, shop keepers and families to conduct financial
transactions and maintain e-mail correspondence.

Since then, multiple studies have investigated the potential of data mule or
message ferry networks on both land and underwater environments [90, 110].
Further studies have investigated different wireless routing protocols [4, 109]
but not the effects of vehicle (i.e., message ferry) routing strategies. Routing of
the vehicles has been investigated for grid networks by [44] but not for realistic
road networks with sparse sensor coverage.

Following on from our work (Chapter 3), we aim to address our final research
question covering methods of improving wireless network performance across
our simulated urban environments. We use the same performance/evaluation
metrics, such as Packet Delivery Ratio (PDR), Packet Received Ratio (PRR)
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and transit delay as well as the same city road network topology, San Francisco
(USA) to aid comparison.

4.3 Simulation Methodology

A bespoke agent-based VANET simulator was developed in order to assess the
feasibility of providing both passenger transport services as well as wireless
connectivity to sensors distributed across an urban area. Although we refer to
our simulated AVs as agents this is not a strict definition as vehicles driven by
humans following a (connected) route guidance system would technically suffice
assuming they have the requisite wireless systems for V2I and V2V message
exchanges (i.e., with sensors and other vehicles respectively).

In all simulation results presented in this chapter, all sensors aim to com-
municate with all other sensors (referred to as an All-to-All scenario). The
All-to-All scenario was selected as it was considered the hardest use-case for
the CAV fleet due to the sheer number of messages required to be collected
(an All-to-All sensor communication scenario scales in a quadratic fashion with
the number of sensors present) and disseminated across the entire urban area.
Therefore, a key feature of our simulator, which differentiates it from our pre-
vious work in Chapter 3, is the ability to route passenger trips via sensors with
differing priority /weighting attached to either objective.

For example, in extreme cases where high levels of PDR are required in
a short period, we envisage a higher weighting assigned to (road) edges with
many or nearby sensors in order to incentivise passenger transporting CAVs to
drive past as many sensors as possible (albeit at the cost of increasing average
passenger trip distance/times). Assessing and understanding the cost/benefit
relationship of this multi-objective optimisation problem will be the focus of
the chapter. To assess the robustness of such an integrated transport-wireless
service our simulator allows for varying trip demand models (uniform random,
‘tidal-in’, ‘tidal-out’), varying the sensor density and location, CAV fleet size
and weighting assigned to each objective.

4.3.1 Simulated Urban Environment

Using real, openly available datasets (courtesy of OpenStreepMap [65]) an 8 by
8 kilometre square was downloaded, filtered to keep only necessary features such
as ‘vehicle-friendly’ roads (and their respective directionality) and intersections
(see figure 4.1). For road networks discussed and simulated in this chapter we
used the OMMnx Python library [7] to filter out unnecessary OSM data points
and to reduce the complexity /memory footprint of the overall road network.
The OMMnx library! allows the user to convert raw OSM data into a Pythonic

'Note whilst the OMMnx library |7] was excellent for extracting road networks from OSM
datasets, it has been developed in such a manner that it relies on an exhaustive list of depen-
dencies (i.e., other open source libraries). An example of a key OMMnx library dependency is
Pandas [56]. At the time of writing, the Pandas library was not optimised for large datasets
nor for efficient executable package compilation (necessary for our large-scale simulations to
run on our computing cluster). Unfortunately the Pandas library was developed utilising
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FIGURE 4.1: 8 by 8 kilometres of the San Francisco central
road map is shown as a simplified graph (using OMMnx’s OSM
waypoint graph extraction function [7]). The full OSM road
network had over 79,000 nodes and 171,000 edges. OMMnx’s
simplifies the OSM road network by combining multiple OSM
way-points on the same road link into a single road link/edge of
equivalent cumulative length. OMMnx’s simplified road network
therefore is able to mostly maintain accurate road geometry but
reduces the road graph to circa 23,000 nodes and 70,000 edges,
effectively halving the memory footprint needed for our agent-
based VANET simulations.
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NetworkX [18, 32] readable graph .

In order to reduce memory footprint and look up times for CAV routing
problems, the road network was simplified further by removing excess short links
(i.e., those not connecting to an intersection and of length less than 10 metres)
and replacing them with a single longer link/edge. OSM has an overabundance
of short links making up stretches of roads between intersections, often of lengths
less than a few metres. The reasoning for the way-point system (adopted by
OSM) is to enhance accuracy of the network topology as bends/curves in roads
can be accurately represented by slicing the curve into multiple angled shorter
segments.

The resultant (filtered and simplified) road network topology was stored as
a directed graph. Since the road network is spatially embedded, corresponding
geographical positions along any edge and node can be found and used for CAV
agent mobility and sensor positioning. Unfortunately, due to lack of data with
respect to the road network dataset, it was not possible to have height positions
for all road edges and nodes. Therefore, all our simulated environments are
essentially planar.

This could lead to some unintended effects such as slightly exaggerating V2V
connectivity as vehicles are deemed to be within range (horizontally) but could
otherwise be vertically much further apart. In practice it is rare for vehicles to
be separated in the vertical direction by over 200m (our wireless communication
range limit) whilst being within range horizontally. However, the hills found in
many cities (such as in San Francisco (USA)) could instead prevent V2V wire-
less communication if the vehicles are (for example) horizontally within range
and driving towards each other but are positioned either side of a hilltop. In this
particular case, the vehicles would conduct a message exchange (in our simula-
tor) but in reality, they would have their LoS interrupted by the physical (hill)
peak between them. Again, this is a rare event and can be easily discounted by
introducing an extra V2V exchange penalty should this be quantifiable in the
future (when better open/public mapping data is available).

4.3.2 Simulated Agents
Connected Autonomous Vehicles

e Behaviour: CAV agents served both passenger trips as well as providing
local (V2I/V2V) network coverage in an urban area. At the initial sim-
ulation time-step, CAV agents were generated and distributed at start
locations of passenger trips. CAV agents serve the first passenger trip fol-
lowing pre-defined route (according to pre-selected « weighting parameter
value, see Section 4.3.5). Once the first passenger trip was completed (by

mostly Python (a scripting language) as it’s back-end. Consequently, compiling such code to
make it portable for multiple simulations to run on different ‘workers’ was rather inefficient
due to the resultant memory footprint of the executable file. For example, a single simula-
tion (utilising the Pandas library) resulted in an Python executable file size of the order of
hundreds of MB’s. Whereas, identical simulations utilising Numpy [99] as the mathematical
processing library (whose back-end is mostly written in C) generated executable files of at
least one if not two orders of magnitude smaller with respect to memory footprint.
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‘dropping off’ passengers at their desired location) CAV agents continued
moving by searching the road network for other passenger trips to serve.
CAV passenger search strategy was relatively straightforward, CAV agents
randomly select a node (intersection) in the road network and are routed
(according to our o edge weighting parameter) towards it. If along the
route they pass a passenger, the CAV agents stop to pick-up the passenger
(as if it were a hailable cab) and were subsequently re-routed (in the next
time-step) to the passenger’s desired destination. CAV agents continued
to iterate between serving passenger trips (with defined start-end points
and route) and searching for new passengers to serve until the simulation
period ended.

e Wireless Information Exchange: Throughout their ‘life’ CAV agents ex-
change information with each other (V2V) and with fixed location (typ-
ically environmental) sensors (V2I). The wireless model and method of
processing message exchanges between vehicles and sensors are described
in detail in Section 4.3.4.

e Mobility: On a ‘planning-level’ CAV agents followed routes with a ran-
domly selected end point until they pass a passenger to serve. At the
‘street-level’ all CAV agents were moved along an edge (road link) at ev-
ery time-step according to the pre-set maximum/constant speed. This
allowed for fine granularity (within 1 metre) of all CAV agent’s positions
at every simulation time-step in order to construct accurate distance ma-
trices upon which our wireless (V2I and V2V) communication models rely
on. CAV agents had their entry and exit edge/road link times evaluated
before they entered/moved to the next edge/road link. This method en-
sured that CAV agents abide by the First-In-First-Out (FIFO) vehicle
traffic criterion. Note, CAV agents positions are limited to link locations.
They cannot travel off-road.

Sensors

All sensors were initially placed following a uniform random distribution across
the entire simulated urban environment. A distance matrix was constructed
to check whether all sensors were within the pre-defined V2I range of a mid-
point of a road link/edge. Sensors which fell foul of the criterion were re-
distributed (again, in a uniform random fashion) until all sensors met the V2I
range criterion. All sensors remained at their pre-defined (starting) locations
throughout the VANET simulation.
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4.3.3 Passenger Trip and Wireless Connectivity Demand
Models

Passenger Trip Demand

Over 1.2 million taxi trips conducted during 2017 in New York City (USA)
were analysed to ensure we used a realistic taxi-passenger trip demand model .
Note the New York City taxi trip datasets are huge, over 14 million trips were
conducted in Manhattan alone in a single year, resulting in several GB’s of data
to download and process. New York City requires all taxis (licensed hailable
Hackney carriages as well as online bookable taxis) to record their trip start
and end locations, drop-off and pick-up times, the fare charged and the number
of passengers undertaking the journey.

We estimated the (routed) trip length distribution by painstakingly routing
each trip start and end point on an OSM based road network model of New York
City (USA). Given the sheer size of the NYC taxi trip dataset, this required
a somewhat complex and time consuming system of dividing up the taxi trip
dataset into ‘trip-chunks’ (i.e., parcels of data containing a thousand or so trip’s
start and end GNSS positions) before they were sent off to a ‘worker’ node on our
computing cluster. The worker node then ran Dijkstra’s routing algorithm?® over
our extracted and filtered New York City road network in order to accurately
estimate the individual taxi trip lengths.

Once trip lengths were estimated, the data was collected from the ‘worker’
nodes before plotting the resultant New York City taxi trip length probability
distribution, see Figure 4.2. We rejected taxi trips where start and end points
could not be matched to the nearest road segment (our self-imposed filter range
of 200m). However, in practice this was extremely rare as less than 0.1% of
taxi trips were rejected for not meeting this criterion, likely due to poor GNSS
signal at the time the trip was conducted.

For our simulations, passenger trip demand was generated by randomly se-
lecting two points in the simulated urban environment before finding the nearest
(in terms of Euclidean distance) corresponding nodes (i.e., road intersections)
in the road network graph. Once the Origin-Destination (OD) pair of nodes
were selected, a Dijkstra algorithm was run to find the ‘shortest path’ (initially
based on real-world road edge length data) between the OD pair. This was
repeated for however many passenger trips were necessary for the simulation.

An example of passenger trip length distribution is shown in Figure 4.4 (page
90). Note the similar skewed shape distributions with peaks around 4000-5000m
(routed length) with long flat tails from 10km onwards for both the real New
York City taxi trip dataset (dotted black line) and our randomly generated sets.

For simulations where we investigated the sensitivity and effects of vary-
ing the road graph edge weights with our parameter, a we generated multi-
ple ‘shortest-path’ routes between the same randomly selected OD node-pair.

2The New York City Taxi and Limousine Commission publishes yearly datasets for all taxi
trips conducted within the metropolitan area datasets are open and freely available [89].

3Since we are concerned with investigating the efficacy of our proposed edge-weighting
method to improve PDR, precise evaluations of total trip lengths/costs were necessary. There-
fore, routing algorithms that rely on a meta-heuristic cost function were not selected.
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FIGURE 4.2: Probability distribution function of New York City
(USA) taxi (routed) trip lengths conducted. In total we analysed
over 1.2 million taxi trips conducted in 2017. Note, our filtering
and analysis method rejected less than 0.1% of taxi trips due
to inaccurate/non-plausible GNSS data readings. Finally, bin
widths were (uniform and) set to a routed length of 500 metres.
We used the OMMnx [7] software library to extract and filter
OSM [65] road network dataset of New York City (USA). In
order to route taxi trips we used the NetowrkX graph processing
library [18].
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‘Shortest-path’ in this case refers to finding the route which minimises the sum of
edge weights (based on some partially-normalised function involving our model
parameter «, see section 4.3.5) between the OD node pair.

In some simulations, passenger trip OD node pairs sometimes cannot be
connected. Fortunately this rarely occurs and is often a result of poor road
network filtering, i.e., where some lesser important roads might not be connected
to the main ‘arteries’ of the road network. In these rare cases, a new OD pair
was selected until a suitable route was found.

For ‘tidal-in’ simulations we aim to capture a typical morning rush-hour
scenario whereby a large proportion of vehicle traffic is heading from all parts
of the urban area to the Central Business District (CBD). To achieve this type
of trip demand all the destination nodes were located within a subset area of
the urban environment being simulated. In the case of San Francisco, the CBD
was defined as being roughly a 4 by 4 km square covering the top right-hand
corner of the simulated area (shown in Figure 4.1). Whereas the origin nodes
can be anywhere within the simulated environment and vice-versa for ‘tidal-out’
simulations (i.e., typical evening rush hour traffic).

Wireless Sensor Connectivity Demand

All sensors aim to communicate with all other sensors throughout the simulation
(i.e., an All-to-All scenario). An All-to-All scenario allows for understanding of
the problem or ‘hard-to-connect’ sensors/geographic areas of the city. Further-
more, an All-to-All scenario allows us to select prime locations for central control
units, where data could be (relatively easily and swiftly in terms of transit de-
lay) collected and analysed from all over the city (imagine a local government or
city administration office type of edifice). Finally, the All-to-All scenario neatly
incorporates multiple One-to-All and All-to-One simulations. By covering all of
these simulation scenarios we can show how multiple communication demand
objectives could be fulfilled. For example, pushing a sensor kernel software
update to all sensors (One-to-All) or collecting weather/climate/air quality in-
formation from all sensors (All-to-One). Note, in our simulations sensors cannot
communicate with each-other or with the Internet, instead sensors only com-
municate with passing (within V2I range) CAV agents. Sensors store messages
from other sensors, delivered via CAV agents.

4.3.4 Wireless Communication Models
Vehicle-to-Vehicle (V2V)

A maximum allowable communication V2V range of 200m was imposed in all
simulations between CAV agents (as per the previous chapter) given recent
V2V experiments conducted in the city of Bristol [92], 200m was observed as
the maximum reliable communication range for successful V2V transmission in
an urban environment. The V2V range increases to 300-400m in rural areas
with less physical obstacles and wireless interference from other nearby radios.
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Should CAV agents be within the maximum V2V communication range,
their likelihood of successful message exchange was given by a negative exponen-
tial function. The successful V2V exchange probability distribution was drawn
from the observation that as vehicles were further apart in cities (in terms of
Euclidean distance), the likelihood of having an obstacle impeding LoS wireless
exchange increased. This observation was confirmed by plotting the likelihood
of having LoS from our real-world vehicle traffic (taxi trace locations in a city)
and building footprint dataset (see Figure 3.9, page 61). Since we know the po-
sition of every vehicle at every time-step (via our linear interpolation strategy)
we were able to check whether pairs of vehicles (those less than 500m apart,
Euclidean distance) had LoS.

Results of our investigation into likelihood of LoS given a separation distance
as well as our suggested fitted exponential curve is shown in Figure 4.3. Com-
putationally, this model is lightweight as it negates the requirement to store a
large amount of building footprint data in memory. This method also reduces
the volume of (also computationally expensive) calls to the PostGIS city-wide
building footprint database to run a ‘in-polygon check’ if the communicating
pair of CAV agents actually possess LoS. In our simulations communicating
pairs of CAV agents, i.e., those that were within range and were deemed ‘fortu-
nate’ enough by our V2V transmission success curve, were guaranteed exchange
message success. Note, we randomised the message exchange processing order
at every simulation time-step.

All our simulations were based on the assumption that a version of the IEEE
802.11p protocol was implemented for all wirelessly communicating agents. We
chose this protocol to base our simulations on since it is very likely to be intro-
duced as a minimum communication requirement for future production vehicles
including CAVs.

The IEEE 802.11p protocol was designed for rapid dissemination (and gath-
ering) of trajectory data of vehicles whilst in motion, hence the rapid message
broadcast rate of 10Hz and low latency. Furthermore, the protocol has been
designed to allow for a maximum of 2000 in-range communicating nodes. This
is the extreme demand case where vehicles have to reduce their broadcasting
rate in order to avoid flooding the medium, for example at a large four-way by
four-lane intersection. These extreme channel contention scenarios rarely occur
(if at all) in our simulations as our simulated fleet size does not exceed 2000 (due
to available computational resources at the time of writing) and our CAVs were
generally spread across the simulated 64km? urban environment. Consequently
we do not model this variable.

Vehicle-to-Infrastructure (V21)

A maximum allowable communication range of 100m was imposed in all simu-
lations between CAV agents and fixed position sensors agents. No exponential
LoS model was required due to the overwhelming likelihood of having LoS given
the shorter maximum wireless communication distance (compared to our V2V
wireless model).

V2I communication exchanges were processed in a randomised order just
after the CAV agents had their positions updated for the current simulation
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FIGURE 4.3: 96 hours of taxi trace data (over 2M datapoints) in
San Francisco (USA) were analysed by finding all pairs of taxis
with a Euclidean separation distance of less than 500m and sort-
ing the results into 10 bins (of uniform 50m widths). For each
bin, the proportion of pairs of taxis which have LoS (evaluated
using our detailed building footprint and road network datasets)
are plotted in black. To reduce memory footprint and computa-
tionally expensive calls to our LoS database (when running our
V2V message exchange model) we used a fitted exponential curve
(green dotted line) to the San Francisco (USA) LoS dataset.

time-step. Note this is prior to V2V exchanges being processed in the same
time-step. V2I exchanges follow the same method as those of V2V exchanges in
that each exchanging pair has a ‘set.union()’ operation performed. At the end
of the exchange both sensor and CAV agent will have an identical message set.

We base our V2I communications model on the assumption that we were
simulating short range Wi-Fi or even just using 802.11p (as our V2V systems
assumes) links. Therefore, given the large average distance between sensors
(in our simulations there were between 4-63 sensors/km?) and the low average
density of our CAV fleet size (4 — 31AVs/km?) we do not model interference or
wireless channel contention for V2I exchanges.

4.3.5 Simulation Model Parameters

Our « edge weight parameter (which varied between zero and unity inclusive)
was developed such that routing between any two nodes (road intersections) in
the road graph could be altered in favour (or against) driving past edges/road
links with more/less sensors. Higher values of « increased the likelihood of
driving past sensors on routes by lowering their respective edge weights (see
Equation 4.1). We set a search limit of twice the length of the shortest (real
distance) path route when « was set to unity. Whereas, an « value of zero
indicated that no priority was given to edges closer to sensor locations, instead
any passenger trip will always select the shortest route in terms of real-world
edge lengths. A standard Dijkstra (shortest-path) algorithm was used for all
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passenger trip routing. Our edge weight £, ;), for connecting nodes i and j (in
a road graph), is given by the following equation:

1
Eij = E[(l —a)Lgj + O‘-Dmin} (4.1)

where Ry is a range/length constant used to normalise the edge weight, set
to half the length of one side of the road network area (4km) in question, «
is our edge weight parameter, varied between 0 and 1 (inclusive), L(; ;) is the
physical length of the road segment connecting nodes ¢ and j and D,,;, is the
Euclidean distance to the nearest sensor from the edge midpoint.
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FIGURE 4.4: How our edge weight parameter «, influences our

passenger trip length (left) and sensor count (right) probability

distribution functions. « values are shown in the Figure legend.

Note, the New York City (USA) taxi PDF reproduced from pre-

vious Figure 4.2 is plotted in the background (black dashed lines)

for reference and to act as a ‘reality-check’ for our simulated de-
mand model.

4.3.6 Simulation Runs

To compare performance of our (simulated) CAV agent fleet given different sim-
ulation inputs and model parameters, multiple simulation runs were necessary
to ensure reliable results. Our system was designed to be light-weight enough
that once compiled, simulations could run individually on a node (or server
blade) within a large computing cluster environment.

Once each simulation (or job) was completed, a separate script collated
the results and plots averages of the various result parameters of interest. To
aid comparison between parameter variations, all passenger OD locations were
kept constant, only the pre-generated routes varied depending on what edge-
weighting function was being investigated. Initial parameter values are shown
in Table 4.1.
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edge length whereas o = 1 corresponds to edge weights based on
the Euclidean distance to the nearest sensor.

TABLE 4.1: Agent-based VANET simulator model parameters

and values.
Parameter Description Value Range
Number of CAV agents 250-2000
Number of Sensor Agents 250-4000
Number of Pre-Generated Passenger Trips 4000
Maximum V2I Range/|m] 100
Maximum V2V Range/|m] 200
Passenger Trip Detection Range/|m| 100
CAV Velocity/[m/s] 5.56 (20 km /h)
Simulation Time Step/|s] 1

Simulation Duration/|s] 3600
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FIGURE 4.6: San Francisco road edge weight spatial distribution

for varying « values. Road edge weight values are shown as a
colour map (see right hand colour bar for edge weight colour
scale). Edge weight values are plotted at the midpoints of their
respective road edges. Sensor locations (red points) are plotted
for one graph (bottom right). As « is increased, the disparity (in
terms of edge weight values) between roads that have sensors and
those that do not increases, as evidenced by the darker ‘patches’
in the right hand-side plots (where sensors are not present). This
range of edge weight values further incentivises CAVs to avoid
roads without any sensors (in communication range).
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For each simulation, multiple runs were conducted to properly assess perfor-
mance and robustness of our system and for us to obtain meaningful averages
and distributions of results. For example, a simulation where we varied our
edge weight parameter o and sensor density (such as in Figures 4.7 and 4.8), we
conducted 50 runs for each parameter combination, yielding over 1500 separate
results to analyse and plot.

4.4 Results

Our aim was to investigate the relationship between providing wireless connec-
tivity to fixed sensors scattered across an urban environment whilst simulta-
neously transporting passengers to their desired destinations. To better un-
derstand this relationship and the difficulties involved regards optimising the
system we devised a set of simulations to analyse.

4.4.1 Full Alpha Range

Initially, to get a sense of the our proposed system, we fixed the CAV fleet
size (to 2000 vehicles), passenger and wireless demand models and only varied
our road edge weight parameter o from 0 to 1 and sensor density from 4 to 60
sensors/km? (i.e., 250 to 4000 sensors in absolute terms) across our simulated
urban environment (an 8 by 8 km square section of central San Francisco (USA).

Figure 4.7 shows how the PDR varied with time within the simulation (note,
we discretised the system such that CAV positions and V2I and V2V exchanges
are processed at every 1ls time-step) for different sensor densities (only the first
four were plotted due to lack of space on a standard A4 page). It is immediately
clear that the majority of improvement, in terms of PDR, occurs at the lower
end of our edge weight parameter o range (generally between 0 and 0.5).

In all cases where a was not set to zero yielded improvements both in the
final PDR value and the time taken to reach the 0.90PDR threshold value. This
is clearly shown in Figure 4.8 where we plot the time taken to reach 90% of the
total possible packets being delivered at the sensor end. In all of our simulation
results we never achieved perfect PDR values, in fact the system rarely exceeded
0.95PDR for any given sensor density and « value. Even when the simulations
were allowed to run for longer (we initially only allowed simulations of one
hour due to limits of computational resources available at time of writing) PDR
values rarely reached above 0.95. We discuss why this could be the case later
on in the chapter.

Whilst increasing our road edge weight parameter o up to 0.5 certainly
improved performance both in terms of PDR at the sensor end as well as the
end-to-end delay of the system for most sensor densities, the same cannot be
said for o values of zero, i.e., where passenger trip routing was purely based
on physical road network distance. Curiously for extreme sensor densities of
roughly 4 and 64 per km? it took 300 and 250 seconds respectively to reach
the 0.90PDR threshold. Whereas for sensor density values in between the two
extremes, the average time to the same PDR threshold level took longer, roughly
between 300 and 450 seconds.
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FIGURE 4.7: San Francisco simulation PDR results for various

sensor densities and « values. Note, number of passenger trips,

taxis and map were kept constant to aid comparison of perfor-

mance. Any increase in « value above zero yields an improve-

ment in terms of PDR, however, the majority of the improvement
is achieved with low values of o < 0.5.



4.4. Results

2)3

Num. Sensors: 4000
1/2
Alpha Value

1}3

2}3

Num. Sensors: 2000
? %—I
1/3 12
Alpha Value

2)3

HIH

Num. Sensors: 1000
1/2
Alpha Value

H L H

1}3

Num. Sensors: 500
=
=
12 2/3
Alpha Value

=
13

Num. Sensors: 250
1/2
Alpha Value

T -

o =3 o =3
n =1 r =1
o

@ ~ ~
[s]/PIoysaJyL 4ad 06°0 03 wilL

450
400
150
100

FIGURE 4.8: Time taken to reach mean 0.90PDR threshold for
various sensor densities and « values are shown as box-plots and
whisker diagrams. Note, the ‘box’ represents the inter-quartile-
range (IQR, middle 50% of the data), the orange horizontal lines
denote the median values and the whiskers are 1.5 times the IQR.
Number of passenger trips, taxis and map were kept constant. In
the many cases, increasing « reduces the median time taken to
reach the 0.90PDR threshold. However, as sensor densities were
increased the time taken to reach the PDR threshold increased.
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Given sensor positions and passenger trips were fixed for each simulation
run, the only real difference were the number of sensor messages that needed
to be transferred across the network. Since this we simulated an All-to-All
communication scenario, the total number of messages scales in a quadratic
fashion with the number of sensors present. With very high sensor densities
(such as our maximum of 64 per km?) it was very likely that a simulated CAV
agent would pass down a road (or graph edge) with a sensor (regardless of its
routing strategy). Therefore the spread (average time to 0.90 of PDR) between
the a values is generally smaller for high sensor density simulations than those
with fewer sensors.

4.4.2 Focused Alpha Range

To further investigate our proposed system dynamics, we conducted another
series of simulations, again fixing passenger trip numbers and CAV fleet size
but with lower (more focused) values of «, ranging from 0 to 0.2. PDR results
are plotted in Figures 4.9, 4.10 and 4.11.

Again, increasing « results in faster PDRs across the range of sensor den-
sities simulated. Results for the time taken to reach 0.90PDR were partic-
ularly encouraging given the almost linear improvements across the range of
sensor densities as o was slowly increased (see Figure 4.10. However, certain
results appeared to be counter-intuitive, for example when 500 sensors (circa
8 sensors/km?) were simulated on average it took longer to reach our PDR
threshold for all values of @ when compared to higher sensor densities. In this
case, it is suggested that higher sensor densities allowed for greater chance of
passing by a sensor on any given ’shortest’ path in the road network. Not only
were the median values higher, but the inter-quartile ranges are also greater
(nearly three times greater deviations than at other sensor densities).

We also plotted the time taken to reach 0.95PDR threshold values (see Fig-
ure 4.11). Results for simulations where we generated 1000 sensors seem almost
non-sensical as very few simulation runs achieved the higher PDR threshold,
generating under populated box-plots. Note, in the case a = 0, no simulation
run achieved the threshold within the simulated hour.

4.4.3 Varying AV Fleet Size

So far, only sensor density and « were varied in our simulations. To further
investigate performance of our proposed system, we fixed the number of sensors
at 1000 (circa 16 sensors/km?) and varied instead the CAV fleet size and «
(using the narrower and lower range o = [0 — 0.2]). Varying CAV fleet size and
subsequent simulated PDR results are plotted in Figures 4.12 and 4.13.
Reducing CAV fleet size had an enormous effect on PDR values. Results
plotted in Figure 4.12 for CAV fleets of less than 500, final PDR values barely
reached 0.80 within 200s for the range of simulated « values. Given that CAV
agents provided the sole means for message gathering and exchange, reducing
the fleet size drastically reduced the so called ‘search-area’ per simulation time-
step. For example 1000 AVs can in theory search 1000 edges (to an extent), or a
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FIGURE 4.10: Time taken to reach 0.90PDR threshold for vari-
ous sensor densities and focused « range are shown as box-plots
and whisker diagrams. The box shows the IQR, the orange hor-
izontal lines denote the median values and the whiskers are 1.5
times the IQR. Number of passenger trips, CAV agents and road
network topology were kept constant. Note, as o was increased,
the time taken to reach the 0.90PDR threshold reduces across
all sensor densities simulated. The largest performance gains
were achieved at the low sensor densities potentially highlight-
ing one of the benefits of our system when sensors were sparsely
distributed across the simulated urban area.
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FIGURE 4.11: Time taken to reach 0.95PDR for various sensor
densities and focused « range are shown as box-plots and whisker
diagrams. The box shows the IQR, the orange horizontal lines
denote the median values and the whiskers are 1.5 times the
IQR. Number of passenger trips, CAV fleet size and road network
topology were kept constant. With a higher PDR threshold, we
notice a much greater range of results across most of the sensors
densities when compared to the lower 0.90PDR, threshold, see
Figure 4.10. In certain cases such as a 1000 sensors (circa 15
senors/km?), the 0.95PDR threshold was rarely met resulting in
poorly populated box and whisker plots.
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theoretical maximum area of 31 km? per time-step compared to roughly 7.9 km?
for 250 CAVs (assuming, no overlap and a 100m V2I maximum communication
range).

With regards to surpassing the 0.90PDR threshold (Figure 4.13) results were
fairly consistent across the range of AV fleet size and a. In all CAV fleet size
cases, the decrease in time taken to reach said threshold appeared to be fairly
linear with increasing a. Improvements beyond 1000 CAVs appeared to taper
off, with median values (time taken to reach the 0.90PDR threshold) decreasing
from roughly 300s to slightly less than 250s for CAV fleet sizes of 1000 and 2000
respectively. This is in stark comparison to an average of median values of
around 1200-1600s for an CAV fleet size of 250.

4.4.4 Varying Passenger Trip Demand

Lastly, we simulated a ‘tidal-in’ scenario, whereby half of all passenger trips com-
menced outside but terminated inside of the Central Business District (CBD)
of San Francisco (USA). The CBD was defined as the top right hand corner of
our network topology (see Figure 4.1), i.e., a quarter (4 by 4 km squared) of
the entire simulated urban environment. Our aim was to evaluate the perfor-
mance of our system with a different passenger demand model. We kept half the
trips as uniform random to ensure there was some background traffic (after-all,
not everyone works in the city centre). Note, that ‘tidal-in’ simulations make
it harder for CAVs to search a greater proportion of the map. In particular
sensors located near to the simulated environment boundaries were adversely
affected as they tended to receive even less packets.

Figure 4.14 shows how the PRR and PDR vary with simulation time-steps
for a values of 0 to 0.3. In both cases, messages still spread throughout the
VANET system fairly rapidly. In terms of PRR, which focuses solely on the
messages stored within the vehicles (as opposed to those delivered and stored
at the sensor end) 0.90PRR level was reached roughly within 100 to 150s for
« values greater than zero. Similarly PDR values rose quickly, on average
surpassing 0.90 roughly within 300 to 400s of the simulations commencing.

Results shown in Figure 4.14 suggest our system can cope with this demand
model as PDR rates are comparable to our initial passenger trip demand model
simulation results. More passenger trip demand models could be tested. How-
ever, given the limits of our computational resources and time required to run
the simulations and analyse results meant we did not investigate other forms
of passenger trip demand, such as 'tidal-out’ (i.e., late evening rush-hour where
city traffic typically empties from the central area).

4.5 Discussion

Overall our approach to optimising CAV routes to satisfy both passenger trip
demand as well as sensor network connectivity seemed feasible. As shown in
the results, trip times do increase slightly (see Figure 4.4 but our PDR rates
both increase faster (during the simulation, meaning shorter end-to-end delays)
and reach higher levels of final PDR (again at the sensor end).
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FIGURE 4.12: Mean PDR results at the sensor end for various
CAV fleet sizes and focused « value range. Number of passenger
trips, sensors (1000 for this simulation) and road network topol-
ogy were kept constant. Final mean PDR values rarely exceed
0.8 unless more than a 1:1 ratio of sensors to CAV agents is sur-
passed. Increasing o had a greater impact (in increasing both
performance measures) for lower values (< 1000) of CAV agent
fleet size.
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FIGURE 4.13: Time taken to reach the mean 0.90PDR threshold
for various CAV fleet sizes and focused « range are shown as box-
plots and whisker diagrams. The box shows the IQR, the orange
horizontal lines denote the median values and the whiskers are
1.5 times the IQR. Number of passenger trips, sensors and road
network map were kept constant. Overall, increasing CAV fleet
size decreases the time taken to reach the PDR threshold, from
over 1000s to less than 250s for CAV agent fleet sizes of 250
and 2000 respectively. In the majority of scenarios increasing o
reduced the time taken, greatest (relative) improvements can be
seen with reduced CAV agent fleet sizes.
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Our improvements in terms of PDR values were significant. With low «
values we were able to more than halve the time taken to reach the 0.90 PDR
threshold when compared to our standard non-optimised system (i.e., when
a = 0) for most simulated sensor densities. However, even in the best cases
the time it took to reach that PDR threshold was circa 100-200 seconds, still
rather slow and somewhat un-reliable relative to other forms of wireless sensor
network systems such as LoRaWAN (Low Power Wide Area Networks).

4.5.1 Comparisons With Wide Area Sensor Mesh Net-
work Protocols

Regards to comparisons with other types of wireless sensor network proto-
cols/designs such as LoRaWAN (slowly becoming an industry standard for wide
area sensor networks [75]) our proposed system may not be as reliable or as
fast in terms of end-to-end delay. However, this misses some crucial points.
Whilst individual sensors can communicate over large distances (experiments
have been conducted in the order of kilometres with LoRaWAN systems) with
higher reliability and lower end-to-end delay, LoRaWAN requires sensors to con-
nect directly to a gateway or router, i.e., in a star formation (LoRaWAN does
not support packet routing or multi-hop transmission paths). This limits how
many sensors can be connected to single gateway due to spectral interference.
In short, through simulation, it has been shown that the coverage probabil-
ity drops exponentially with the growing number of sensors (end devices) [26].
Hence, LoRaWAN relies heavily on having multiple fibre back bone connections
placed across the sensor network.

In contrast our system can handle up to a simulated 4,000 sensors with
relative ease (see Figure 4.10 without the need for any router/gateways or fibre
backbone connections. Furthermore, LoRaWAN does not support down-link
transmissions, although this is being worked on [72]. Note, our system treats
every node as a source as well as a sink, thus being a true All-to-All simulation
scenario, something that LoRaWAN currently does not support.

Other sensor wide/mesh network protocols such as 6TiSCh (IPv6 over Time
Slotted Channel Hopping networks) require an extensive optimisation/set-up
period before communications can commence [30]. This is necessary due to
the time-slotted nature of the protocol which requires all sensors and gate-
ways/routers connected in the wireless network to synchronise and organise a
communication schedule between them (to avoid interference with transmitting
messages). Clearly as the number of sensors increases, the amount of time
required for this initial set-up/optimisation phase also increases. That said,
once the optimisation/set-up phase was successfully been completed, due to the
rigours of time-slotted channel hopping allows for PDR> 0.99 values, something
that our optimised (simulated) VANET systems never achieved.

4.5.2 Poorly Connected Sensors

It was rare in our simulations to reach PDR> 0.95. We ran some simulations
for longer on individual machines with greater memory capacity. Whilst these
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levels were eventually reached getting anywhere near full PDR values across all
sensor densities was not possible. We briefly investigated why this was the case.

To this end we plotted (see Figure 4.15) the locations of the least well con-
nected, or ‘poorly-connected’ sensors, defined as sensors that achieved less than
0.10 final PDR values against varying o values. It was clear that the poorly
connected sensors were those most likely to be located near to the boundaries
of our simulated urban environment regardless of o value. This is not the most
surprising result given that passenger trips do not cross the simulated environ-
ments boundary.

Whilst we could have used an even larger simulated area for passenger trips
but then only focused on a central sub-area for our sensor experiments, this
would have meant ever larger road networks to be analysed and stored in mem-
ory during our simulations. Given we were already passing memory limits on
occasion (at least 1% of simulations failed due to lack of available memory on
the compute node) we leave this open to future work.

Throughout all work presented in this chapter, in cases where simulations
failed, they were recorded and repeated either on local machines (with greater
memory capacity) or re-submitted to the computing cluster until the simulations
completed successfully. We considered varying our edge-weighting function to
prioritise sensors on the boundaries (by generating artificially low edge weights
in those cases), however, we also leave this for future work.

4.5.3 Simulation Time-Step

With any discrete simulation, there have to be choices made regarding the time-
step length. For all simulation results shown in this chapter we used 1 second
as our time-step. Ideally shorter time-steps would have allowed for ever more
granular simulations and results analysis. In particular, it worth noting that
in the current crop of V2V protocols such as IEEE 802.11p, the V2V message
broadcast rate is 10Hz.

Effectively by using a longer time-step we were potentially reducing the pos-
sibilities for V2V message exchange per overall simulated time period. However,
given the computational resources available at the time of writing, we were lim-
ited in further reducing our simulation time-step. Smaller time-steps would
have generated more data per fixed length simulation (potentially surpassing
our cluster’s per node memory limits). Note that at each time-step our agent-
based VANET simulator had to evaluate the positions of all CAVs relative to
one-another, sensors and passenger trip locations. This process required a lot of
distance matrices to be computed all based upon using the Haversine formula
for computing surface distances between two points on an Earth-like shaped
body.

We briefly considered parallelising a lot of the code, in particular our dis-
tance matrix operations. However, after extended experiments on both our
local machines and the compute nodes on our cluster utilising the new Python
Multiprocessing library [19] yielded small (essentially negligible) gains in overall
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—— road/edge
intersection/node

FIGURE 4.15: Simulated San Francisco road network topology
overlaid with poorly connected sensor locations for varying a val-
ues (see figure legend). 4000 sensors were distributed in a uni-
form random fashion across the simulated urban environment (8
by 8 kilometres). Each sensor was located within V2I range of
a road segment. The majority of poorly connected sensors (de-
fined as those with PDR values of less than 0.1 at the end of the
simulation) were located near to the boundaries of the simulated
road network. Potentially in future simulations, a proportion of
CAVs which are not serving passengers could act as temporary
‘data-mules’ and visit hard to reach sensors at the boundaries of
the city.
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performance. Given the functions being paralellised and the quantity of compu-
tation required, the overheads for tracking which sub-job computed where and
when meant that any computational performance gain was essentially negated.

4.5.4 Largest Connected Component (LCC)
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—-122.46 —-122.44 -122.42 —-122.40
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FIGURE 4.16: Spatial distribution of LCC VANET compo-
nent used for message exchange/propagation investigation. 1001
CAVs form the LCC and their respective locations are plotted
in blue, red diamond signifies the centre of mass of the VANET
LCC. Note, the centre of mass of the VANET lies along a major
central thoroughfare, known as Market Street in San Francisco
(USA). This may explain the long diagonal line of connected
CAVs stretching roughly from top right hand corner to the cen-
tre of the plot.

In our agent-based VANET simulations, sensor messages or packets were
stored, carried and exchanged by CAVs in ‘epidemic/contact’ model type of
scheme. However, it was considered, both from a computational efficiency as
well as a network stability point of view, how the LCC of the VANET varies
throughout the simulation. Figure 4.16 aids visualisation of a typical VANET
LCC in our simulations. The plotted LCC consists of roughly half the total
CAV fleet size (being simulated) and was mostly spread across Market Street
(a main thoroughfare running southwest across San Francisco’s CBD). Each
blue dot represents a CAV which is within range of another CAV, all forming a
connected component, spanning roughly 10-15km?.

However, as shown in Figure 4.17 the VANET LCC was not very stable.
This was expected given the highly dynamic nature of the nodes (i.e., con-
stantly moving CAVs). CAV IDs were compared for each time-step to check for
similarities between the LCCs (again processed for each time-step), these are
plotted as red squares (Figure 4.17). The LCC VANET similarity coefficient
rarely exceeds 0.80 (i.e., roughly an eighth of the CAVs were present in the
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FIGURE 4.17: LCC VANET graph diameter (red dotted line)
plotted over simulation time (left) and stability of the LCC is
plotted on the right. We use a normalised vertical axis for the
LCC similarity coefficient (red solid line) and LCC size as a frac-
tion of the total number of CAVs present (blue dotted line). Due
to the dynamic positioning of nodes (i.e., CAVs) LCC stability
can vary drastically between consecutive simulation time-steps.
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LCC of two consecutive time-steps) and often ‘crashes’ to effectively near zero
similarity.

Plotted on the same axis are the relative sizes of the LCCs with respect to
the overall CAV fleet size (in this particular case, there were a total of 2000
simulated AV agents).This further highlights the lack of stability given that the
fraction (of CAVs present within the LCC) rarely exceeds 0.5 and in fact lingers
for best part of the simulation between 0.2-0.4.

Also plotted (Figure 4.17) are the LCC graph diameters * throughout the
simulation. The graph diameter gives a rough idea of how long it would take
for a single packet to be transmitted across the VANET LCC (i.e., a multi-hop
routing scenario).

We briefly investigated how V2V message exchanges could be processed more
efficiently by assuming that all CAVs within the LCC obtained the same message
set in a single time-step. Figure 4.18 shows how fast messages spread through
the VANET LCC assuming different packet loss rates, or V2V transmission
success probabilities for each simulated time-step.

For V2V transmission success values between 0.8 and 1 the number of time-
steps taken for all CAVs within the LCC to exchange messages between them-
selves (again, an All-to-All simulation scenario) was less than 20 time-steps.
For PDR values of greater than 0.90 less than 10 time-steps were needed. Only
with a worst case scenario, such as a packet loss rate of 0.5 per transmission (or
V2V hop) do we observe a significant deterioration of PDR across the VANET
LCC: taking nearly 40 time-steps to reach full PDR.

Recall that current V2V standards require message broadcasting rates of
10Hz. Therefore, our results suggest it is reasonable to assume that all CAVs
within a LCC should be able to exchange short messages within a couple of
(real-time) seconds. However, after select trials, computing the LCC from the
general VANET requires almost as much processing as simply computing the
V2V exchange pairs given the CAV fleet sizes and sensor densities being inves-
tigated.

4.6 Conclusion

Overall our system of providing wireless network connectivity to sensors scat-
tered across an urban environment whilst simultaneously serving passenger trips
with our simulated CAV fleet performed reasonably well across a multitude of
parameter sweeps and variation. We showed that even when varying sensor
density (to numbers far greater than simulated with LoRaWAN), CAV fleet
size and passenger trips our system was robust within reason. At the very least
it out performed standard routing methods (i.e. when o = 0. We note that
whilst increasing PDR and the time taken to reach PDR thresholds our system
does not cost the passenger much in terms of extra trip time, Figure 4.4 shows
how little the passenger trip length distribution shifts between low values of
our novel edge weight parameter o. Note that in the majority of simulations,

4Graph diameter in this particular cases refers to the longest (in terms of hop count)
shortest path possible within the LCC or network graph.
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a < 0.3 suggesting that the extra trip length (or added cost) was even less
significant than the distribution plotted in Figure 4.4. With ever decreasing
prices in computational hardware, it is not inconceivable that ever larger sim-
ulations (in terms of road network topology area and CAV fleet size) could be
constructed and run.

With regards to robustness, we briefly tested our system under non-uniform
random passenger trip distributions (which were originally inspired by our anal-
ysis of over 1M recorded passenger trips in New York City, see Figure 4.2, page
86). Results for our ’tidal-in’ simulations suggest that there is little difference
in terms of performance (see Figure 4.14) compared to our other passenger
demand model simulations.

We investigated the stability of our VANETS in terms of largest connected
components of the VANET graph during the simulations. We conclude that
whilst it is theoretically possible to speed up V2V message exchanges in our
simulator by assuming all CAVs within the LCC have the same message (since
messages spread relatively quickly) even when accounting for differing packet
loss rates, see Figure 4.18), it was not worthwhile given the computational effort
needed to select which CAVs form the LCC at each time-step.

4.6.1 Future Work

There are several avenues for further analysis that could be considered for future
work. Firstly, we suggest investigating further the problem of connecting ‘hard-
to-reach’/‘poorly-connected’ sensors (those defined as achieving a PDR < 0.1).
Figure 4.15 highlights the extent of the problem, regardless of a value used,
our system struggles to reliably connect sensors at the boundaries of the urban
environment. It has been suggested to extend the simulation boundary by
routing trips across it and only having sensors distributed in a central ‘square’
of the entire simulated area. This would allow for more CAVs to regularly
penetrate those ‘hard-to-reach’ areas with sensors. Whilst this would certainly
aid in understanding the scope of the problem, we note that San Francisco
(USA) for example, is in fact geographically limited on three sides: to the
East, West and North there are the Pacific Ocean, Golden Gate Strait and San
Francisco Bay respectively. All are (large) bodies of water with only two major
bridge crossing points (Golden Gate and Bay Bridge), thus not allowing us to
usefully extend the simulated boundary area.

Potentially by using other city road networks, such as Rome, Italy which are
not as geographically limited would allow for better understanding of how to
connect sensors at the edges of an urban area. We further suggest that a portion
of CAVs which are not serving passengers could instead serve these boundary
sensors by travelling in those directions (regardless of passenger trip demand).
Another strategy could involve varying « such that sensors at the edges are
prioritised, however this could have a detrimental effect on the ‘core’ sensors
located in the city centre.

We also suggest exploring systems with ever more accurate or realistic traffic
models. Although we do not perceive our system as being unduly simplistic, it
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is worth noting that CAVs travel at a constant slow speed of 15km /h through-
out the simulation. Certainly varying speed depending on traffic could yield
more realistic results. Furthermore, CAVs could be routed such that they avoid
vehicle traffic by serving sensors in low vehicle traffic areas. However, this was
deemed overtly complex to tackle given we were already reaching the computa-
tional limits of the resources available at the time of writing.

Finally our wireless system model relied entirely on distance between nodes
irrespective of density in order to evaluate transmission success. In general this
was not an issue, given current V2V standards are able to function with up to
2000 vehicles communicating all within range (i.e., at a large four way, four lane
intersection). Whilst these large intersections were present in our simulated
network topology, we rarely observed such high vehicle densities. Note, our
largest connected components rarely had more than half the CAV fleet size.
Even in those cases the LCC was spread over several square kilometres. Still a
wireless simulator that maybe introduced penalties (such as reducing the V2V
transmission success rate) when higher densities of nodes are observed could
provide further analysis.
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Chapter 5

Conclusion

5.1 Summary of Research

Inner-city vehicle parking systems were initially investigated in order to better
understand if it would be possible to reduce the proportion of trip time spent
by drivers searching (or ‘cruising’) for a vacant on-street parking space. Vehicle
parking was seen as a near term goal that addressed our first research question,
namely, how cities could address near/short term congestion problems. Various
studies (such as [81, 83|) highlighted the extent of vehicle-parking induced traffic
in city centres. Their research led to the observation that circa 30% of inner-
city traffic is potentially made up of drivers searching for a vacant on-street
vehicle-parking space.

We conducted a research and exploration study into potential low-cost and
‘low-energy’ methods of detecting driver parking activity as well as dissemi-
nating parking occupancy information. We conducted an experiment whereby
volunteers were tracked (using an Android smart-phone and a specifically de-
signed software application) in order to collect vehicle-parking data. We then
developed a low-energy consumption method (through our machine learning
based system) and tested it via leave-one-out validation methods. We showed
that our ParkUs system was able to detect more accurately (high true positive
rates), with less energy consumption and shorter detection delays than our (at
the time) competitors, see Table 2.4 (page 37) for our final set of results and
competitor solution benchmarking.

Unfortunately, due to cost and time pressures we were not able to obtain a
larger following of our smart-phone ParkUs application via the online Google
Play Store. This meant we were not able to evaluate performance gains in
terms of reducing driver search times when parking near to or within the city
centre. We leave driver cruising detection research open to future development
and public trials. We note that Alphabet (Google’s holding company) has
since released an updated Android activity detection API [37] which would
theoretically allow for easier detection (from a coding perspective, however,
not necessarily low-energy). It is likely that Alphabet will introduce vehicle-
parking detection features in future Google Map application updates. Since the
Android operating system has a user base of over 2B, it seems likely that there
is a critical mass of Android users in most cities for such a parking system to
operate successfully.

Nonetheless, we were able to briefly investigate the ability of machine learn-
ing systems to detect (again from sensors found in a typical smart-phone)
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whether drivers were searching for a parking space or simply en-route to their
destination. This research was motivated by the observation (from our prelimi-
nary dataset) that drivers tend to drive close to their desired destination before
searching for parking (most likely in the hope of finding a vehicle-parking space
that minimises their subsequent walking distance to destination). Therefore,
the data generated by a driver passing their destination and subsequently driv-
ing down several other roads before eventually parking could be used to infer
vehicle-parking availability (through some probabilistic model/thresholds).

Such a method of collecting more data per user trip would reduce our need to
have a large uptake of users to generate near real-time vehicle-parking availabil-
ity data for a given city precinct. Our novel method of correlating disparate time
series data windows in order to detect such an activity yielded some improve-
ments over baseline approaches (see Table 2.5, page 40). However, accurately
detecting (using smart-phones) when a driver switches from simply driving to
actively searching for a vehicle-parking space was not trivial.

With regards to the machine learning systems we used and developed in our
ParkUs and later ‘cruising’ detection methods, we note that they were trained
on relatively small datasets. Whilst our parking activity dataset was the largest
(at the time of writing when compared to published competitor systems, see Ta-
ble 2.4, page 37) we still struggled with generalisation and accurate (in terms
of precision and recall) detection results. Labelled data aids the learning rate
because the machine learning system is essentially guided towards understand-
ing/correctly classifying human activities based on sensor data streams. This
is in contrast to ‘deep’ neural networks, where learning is often based on un-
supervised (i.e., raw data streams) large datasets and has no access to pre-coded
statistical features. The latter has been relatively successful with vision based
classification problems [48|, but the computational resources (both in size and
length of learning periods) required can be prohibitive.

We recommend further research into human driver activity detection and
classification. For example, at small, narrow inner-city intersections, under-
standing a human driver’s intentions (i.e., whether or not they are letting some-
one through the junction or merging into traffic if a vehicle is parked) will assist
human/CAV traffic flow interactions and increase overall system level safety.
Currently, apart from signalling with an indicator or flashing headlights, in-
formation between human driven and (future) CAVs is limited. A potential,
system-wide solution which requires all drivers to input their desired destina-
tion and to subsequently broadcast their planned route or next set of way-points
(e.g., through a retro-fitted V2V wireless system) could aid intra-operability
between CAVs and human driven vehicles. However, this will have privacy
implications for transport users.

Our second and third research questions concerned future city scenarios and
investigated how CAVs could be used to provide public transport services (in
the form of hailable taxis) as well as providing temporary wireless connectivity
to a distributed (i.e., city-wide) delay tolerant sensor network (such as those
concerning environmental sensing, e.g., air quality, temperature etc.). We ad-
dressed our second and third research questions by initially investigating taxi
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fleet trace datasets, and later agent-based CAV models, in order to better un-
derstand the feasibility and performance requirements of such a system.

In Chapter 3 we used real taxi trace data collected in two cities, namely
Rome (Italy) and San Francisco (USA) in order to investigate the performance
of collecting and disseminating city-wide sensor data. We developed a ‘folding’
method in order to vary the simulated taxi fleet sizes and maintain relatively
stable numbers (of active taxis) throughout our simulated time windows. We
also developed a realistic city road network topology and Line-of-Sight (LoS)
model by downloading and filtering (in an appropriate manner) openly available
datasets from OpenStreetMap [65].

Throughout our simulations we noted an increase in terms of mean PDR
and PRR values when increasing taxi fleet sizes. However, there was a limit to
improvements generated beyond the 1:1 ratio of taxis to sensors. We noted in
our initial simulations that final mean PDR values were rather low (0.6-0.7) by
wireless network standards.

We briefly investigated how sensor message distribution was limited and
showed through a One-to-All simulation (rather than our typical All-to-All sce-
nario), that sensor messages spread rapidly (again relatively speaking) amongst
the fleet of simulated connected taxis. Over 80% of the taxi fleet received the
single sensor (i.e., source) message within a (simulated) hour of the first taxi
visiting and exchanging information with the sole transmitting sensor. This
highlighted a potential issue of our system, whilst messages spread relatively
quickly amongst the taxi fleet, collecting and disseminating sensors messages
back to the sensors was less successful.

In order to address some of the limitations of our initial taxi-VANET system
(and our third research question) we investigated the problem of optimising a
CAV passenger system with the need to collect, exchange and distribute city-
wide sensor messages. We developed an agent-based VANET simulator to allow
us to alter passenger trip routes and CAV mobility incentives. Our method of
improving PDR involved re-assigning edge weights to individual roads (which
form the entire city road network /graph), by using a special heuristic that took
into account the nearest sensor location to each road-edge mid-point. We were
able to vary the weighting parameter (referred to as «) in order to experiment
with differing routing incentives (for the simulated CAV fleet) as well as bench-
marking against a system of routing based on real-world road edge lengths.

We showed that even small incentives (i.e., @ < 0.3) led to significant im-
provements in overall (final) mean PDR values from around 0.7 to over 0.9 with
a small increase in mean user journeys (circa 500m seemed to suffice). Further-
more, we showed under uniform random distribution and a ‘tidal-in” passenger
demand scenario (such as an early morning rush-hour), that PDR rates did not
alter significantly. However, we stress that more simulations with differing pas-
senger demands are worthwhile in order to ensure PDR thresholds are achieved
within reasonable time frames.

Unfortunately, due to time constraints, we were not able to simulate longer,
‘rolling’ scenarios whereby we would simulate entire days (if not more) of con-
tinuous CAV fleet movement (and passenger demand). Potentially, such simu-
lations could allow us to better understand where hard-to-connect sensors are



116 Chapter 5. Conclusion

and the ‘re-fresh’ rate of the entire sensor network (i.e., how long it would take
to repeatedly collect and distribute all sensor messages). However, in all our
simulations, the PDR and PRR values tended to reach a ‘saturation’ point well
before the end of our simulated time periods. This suggests any further running
of the simulation was unlikely to yield better PDR results.

A better strategy for improving final PDR values could involve re-routing
under-used or un-occupied CAVs towards hard to reach sensor locations. In
practice this could be rather complex, since it is hard to transmit across the
VANET a manifest of which sensors have been visited and which have not.
However, we note that after an hour or so of simulation, most of the vehicles have
most of the (visited) sensor messages. Therefore by a process of ‘semi-stochastic’
elimination, it could be ‘guessed’ or theorised that any sensor messages, not
within the set collected by an individual CAV agent, are most likely not to
have been visited by other CAV agents in the city-wide system. Consequently
these unoccupied CAVs could re-route themselves to areas where they believe
lie poorly-connected or hard to reach sensors.

From a simulation point of view, this is a relatively straightforward but
time consuming task to implement properly. CAV agents will need sophisti-
cated thresholds and coded rule sets in order to decide when it is efficient to
route themselves away from the city (where it is likely more passengers are
waiting to be collected) to visit predicted ‘hard-to-reach’ sensors. Furthermore,
selecting the route to traverse the road graph is not trivial either, since the
‘travelling salesman’ problem is known to scale superpolynomially (in the worst
case scenario) with the number of stops or sensors to visit along the trip. In
practice the routing problem could be reduced by simply selecting the nearest
(predicted) ‘hard-to-reach’ sensor to route towards. However, CAVs would then
require knowledge of sensor locations, something that is not currently shared be-
tween the CAV agents. Finally such a system could potentially increase waiting
(rather than travel) times per passenger trip.

5.2 Results Highlights

Penultimately, we sumarise some of our key results:

e Detecting parking activity using a driver’s smartphone and associated low-
energy sensors (such as the accelerometer and magnetometer) is possible
and our method (referred to as ParkUs) showed considerable improve-
ments over previous attempts (see results and competitor comparison Ta-
ble 2.4, page 37).

e Detecting ‘cruising’ or park search behaviour using sensors found in a
typical driver’s smartphone was attempted and our novel proposed system
of disparate window concatenation performed better when compared to
other baseline machine learning approaches. However, we still struggled
to achieve workable detection accuracies (see Table 2.5, page 40).
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e We showed through use of real-world taxi trace, building footprint, and
road network topology datasets that city-wide sensor networks can com-
municate with one-another via a fleet of connected taxis. However, end-
to-end delay and PDR values were rather high (over 500s for large taxi
fleet sizes, see Figure 3.16, page 71) and low (circa 0.7 to 0.8, see Figure
3.13, page 67) respectively.

e Through our method of ‘folding’ taxi trace datasets, we were able to scale
the overall fleet size in order to assess sensor network performance im-
provements. We conclude that once there was roughly one taxi per de-
ployed sensors, the improvements (in terms of PDR and transit delay)
tended to level off, see Figure 3.18 (page 74).

e We showed, through our agent-based VANET simulator, that strategically
re-routing passenger carrying CAVs led to significant increases in PDR
(over 0.9 was regularly achieved, see Figure 4.13, page 102), whilst not
impacting passenger trip lengths (on average an extra 500m of distance
travelled per passenger trip was sufficient to improve PDR, see Figure 4.4,
page 90).

e In the majority of our VANET simulations we investigated All-to-All sce-
narios, highlighting the ability of our system to provide both down (e.g.,
a sensor firmware update) and up-link (e.g., environment data gathering
for central processing) services to a city-wide sensor network.

e We investigated V2V message exchange order and found little impact
on message dissemination and final PDR values amongst our VANET’s
largest connected component (see Figure 4.18, page 108 for further re-
sults).

5.3 Future Work

Lastly, we briefly discuss some potential avenues for further research and routes
to market for the systems we researched in this project:

e Potentially collaborating with Google could lead to larger human activity
datasets for better human driving and vehicle-parking activity inference.

e Trialling our ParkUs system with more users over an extended period of
time would yield a better understanding of the proportion per trip (or
time) saved. Ideally we would aim to recruit users from an area of city in
order to provide as near to real-time updates as possible.

e Ideally, a driver ‘cruising’ detection system could be incorporated into
future connected vehicles. Potentially a such a system could access the
GNSS radio module of the vehicle as well as telemetry data via the CAN
bus in order to detect when a driver starts to search for parking. Such
a method has the added benefit of relying on systems (within the ve-
hicle) with access to large energy sources therefore allowing for further
processing as well as high data sampling rates.
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e Ever more granular and sophisticated vehicle traffic modelling (for exam-
ple taking into account lane change behaviour and intersection traffic light
control) could lead to ever more accurate results of our simulated VANET
systems. Combining such a simulator with advanced CAV agents that are
able (or potentially trained through some machine learning method) to
decide when (and where) it is appropriate to search for poorly connect sen-
sors without significantly increasing passenger waiting times could also be
of interest. Such a system could potentially guarantee 1.0PDR.

e Further road network topologies could be experimented with, for example
our focus has been on large cities (populations of over or around 1M).
However, how our VANET system would operate in a sparse environment
such as multiple villages/small towns could be investigated.
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Appendix A

Appendix

A.1 Energy Model Parameters and Values

TABLE A.1l: Power consumption reference values based on the
Nokia N95 |2, 15, 46, 70, 102, 107].

Sensor, Mean Power Symbol
Component or Consumption

Process (mW)
Wi-Fi Channel Scan 1430 P,
Wi-Fi Connect 635 P..
Wi-Fi Idle 42.0 P
UMTS (3G) active 645 P
UMTS (3G) idle 466 P,
GNSS (Outdoors) 597 P,
GNSS (Indoors) 357 P,
Bluetooth Connect 185 B,
Bluetooth Scan 195 by
Gyroscope 103 Py
Accelerometer 55.0 P,
Compass/Magnetometer 45.0 Py

TABLE A.2: Table of power-off delays on the Nokia N95 as mea-
sured and reported by [46].

Radio Chipset Power-off delay (s) Symbol
GNSS 30.0 Typo
UMTS (3G) idle to off 31.3 Tio

UMTS (3G) active to idle 5.45 Thai
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A.2 Energy Model Test Case Scenario Assump-
tions

PhonePark:

Bluetooth turned off, GNSS sampled every 15s, 3G transmission every 15s,
accelerometer briefly turned on for 3 minutes after each parking event and no
false positives: Egyo(Tout, Tout/15) + Egi(Tin, Tin/15) + Ew(T,T/15) + E4e(3 X
60 x 2) = 10600/

ParkSense:

Wi-Fi scans every 60s when user is away, Wi-Fi scans every 2s when user driv-
ing, 3G transmission with GNSS location for 4 of the detected events, no false
positives. It is assumed that ParkSense is able to detect parking to aid com-
parison: Eu(Tout, Tout/2) + Ews(Tin, Tin /60) + 4E,, = 3330J

Park Here!:

Accelerometer and gyroscope turned on throughout, 3G transmission with GNSS
location for 4 of the detected events, no false positives: E,.(T")+Ey,(T)+4E., =
18407

ParkUS:

Accelerometer and compass turned on throughout, 3G transmission with GNSS
location for 4 of the detected events, 0.192 false positive probability: E,.(T) +
E.o(T)+ (4+4 x0.192) E,, = 1240J

ParkUs-SA:

Accelerometer and compass turned on throughout, 4 GNSS samples per de-
tected event, 3G transmission for 4 of the detected events, 0.121 false positive
probability: E..(T) + Eng(T) + (4 + 4 x 0.121)(E,, + 4E,,(30,4)) = 1880.J
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A.3 Extended Real-world VANET Simulator Model
Parameters and Architecture

TABLE A.3: Rome and San Francisco Taxi Trace Datasets Fold-
ing Fleet Sizes.

Location Number Mean Mean
of Days Number Number
Folded of Active of Taxis in
Taxis VANET
1 272 105
San 2 523 269
Francisco, 4 983 648
USA 6 1560 1180
9 2260 1820
3 258 133
7 465 277
Rome, 14 983 698
Italy 21 1670 1310
28 2250 1840
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TABLE A.4: Folded taxi-trace VANET simulator model param-
eters ranges and values.

Parameter Description

Value Range

Folded Taxi Fleet Size
Number of Sensor Agents
Maximum V2I Range/|m)|
Maximum V2V Range/|m|
Simulation Time Step/|s]
Simulation Duration/|s|

250-1900
250-2000
100

200

10

3600
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