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ABSTRACT 
 
Increasing numbers of users together with a more use of high bit-rate services 

complicate radio resource management in 3G systems. In order to improve the system 

capacity and guarantee the QoS, a large amount of research had been carried out on 

radio resource management. One viable approach reported is to use semi-smart 

antennas to dynamically change the radiation pattern of target cells to reduce 

congestion. 

 

One key factor of the semi-smart antenna techniques is the algorithm to adjust the 

beam pattern to cooperatively control the size and shape of each radio cell. Methods 

described in the literature determine the optimum radiation patterns according to the 

current observed congestion. By using machine learning methods, it is possible to 

detect the upcoming change of the traffic patterns at an early stage and then carry out 

beamforming optimization to alleviate the reduction in network performance. 

 

Inspired from the research carried out in the vehicle mobility prediction field, this 

work learns the movement patterns of mobile users with three different learning 

models by analysing the movement patterns captured locally. Three different mobility 

models are introduced to mimic the real-life movement of mobile users and provide 

analysable data for learning. 

 

The simulation results shows that the error rates of predictions on the geographic 

distribution of mobile users are low and it is feasible to use the proposed learning 

models to predict future traffic patterns. Being able to predict these patterns mean that 

the optimized beam patterns could be calculated according to the predicted traffic 

patterns and loaded to the relevant base stations in advance.  
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1 INTRODUCTION 

With the development of the 3rd Generation (3G) mobile communication techniques, 

this new generation of mobile networks began to flourish and soon became the 

mainstream in Europe since 2005. In order to provide stable and high quality services, 

advanced load balancing schemes, such as applying semi-smart antennas, are 

introduced to meet the demands of 3G networks. With the purpose of taking the 

advantage of semi-smart antennas to alleviate network congestion in a predictive way, 

this research proposes a novel approach to simulate, learn and predict traffic patterns 

in 3G networks. 

 

1.1 Research Motivation 
The first successful launch of the mass market commercial 3G services was by 3 in 

Europe in 2003. With the development and popularization of the 3G networks, 3G 

services have been introduced to more and more people’s daily life. The European 

Union Council even suggested that the 3G operators should cover 80% of the 

European national populations by the end of 2005. So far, most European 3G 

networks are built based on the Wideband Code Division Multiple Access (WCDMA) 

air interface standard. 

 

WCDMA is a wideband spread-spectrum mobile air interface that uses the Code 

Division Multiple Access to achieve higher transmission speeds and larger network 

capacity. As a complete reflection of 3G requirements, WCDMA technology has 

emerged as the most widely utilized 3G radio air interface. However, the variety of 

data services in WCDMA networks, such as surfing the internet, playing online games, 

etc., need advanced radio resource management algorithms to guarantee QoS and 

optimized system capacity. One viable approach is to use smart antenna techniques 

[Chry00] to dynamically change the radiation pattern of target cells to reduce 

congestion. 
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The concept of using semi-smart antennas in 3G networks is described in [CRTBB01]. 

One key factor of the smart antenna techniques is the beam pattern adjustment 

algorithm that is used to cooperatively control the size and shapes of the radio 

coverage. In [DBC04], Du indicated that a semi-smart antenna with six sectors and 

four elements for each sector could significantly increase system capacity by using the 

bubble oscillation algorithm. Subsequently, Yao showed that the computational 

workload and processing time of [DBC04] could be considerably reduced by using 

CBR matching to change the shape of the antenna patterns [YC05]. Moreover, [YC05] 

also tried to predict the consequent congestion pattern by matching a sequence of 

congestion solutions. This thesis describes research that extends these techniques. 

 

When the network is considered congested, both the above two approaches work out 

the optimized radiation pattern in accordance with the current traffic snapshot. As 

described in [YC06], motions of mobile terminals are not completely random in real 

life, since all the motions should be constrained at least by road topologies. Thus, 

movement trajectories of mobile terminals should follow similar patterns in a specific 

area. If the local traffic patterns could be learnt and the future traffic status could be 

predicted in advance, proper beamforming patterns would be loaded on the relevant 

antennas before the exacerbation of congestion leads to a decrease in network 

performance. 

 

In order to provide more accurate upcoming traffic information for the existing 

beamforming optimization schemes mentioned in [DBC04] and [YC05], this research 

proposes a novel approach to simulate, learn and predict the traffic patterns of mobile 

terminals in cellular networks.  

 

In this thesis, three mobility models and three traffic pattern learning models are 

presented. The first two mobility models can be considered as semi-microscopic 

models, which are built based on the traditional Random Walking model with more 

advanced movement rules to reproduce the realistic inter-cell and intra-cell traffic 
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patterns of mobile terminals. Then, a microscopic model, built based on the Cellular 

Automaton model, is applied to mimic traffic patterns of vehicular mobile users with 

inter-user interactions. On the other hand, in order to learn and make predictions of 

the intra-cell traffic patterns, an Order-k Markov model, a Static Traffic Pattern 

Learning model and a Dynamic Traffic Pattern Learning model are proposed and the 

feasibility of performing traffic pattern prediction with these models are evaluated. 

 

1.2 Research Scope 
The aim of this research is to find a general way to learn local traffic patterns and to 

make predictions on the geographic distribution of mobile terminals, so as to provide 

more accurate upcoming traffic information for the beamforming adjustment module 

of semi-smart antennas in cellular networks. 

 

The previous work described in [Du04] used three load balancing schemes to perform 

the radiation pattern adjustment for semi-smart antennas. Each optimization was made 

according to the users’ geographic distribution in a traffic snapshot obtained from a 

macroscopic mobility model that had 50,000 users distributed with predefined pattern 

in an area with 100 BSs. It was proved that the network performance could be 

significantly improved.  

 

With the purpose of reducing the large computational overhead, a CBR-matching 

approach was proposed in [Yao07] to match a given congestion distribution to a 

best-fit one in the case library that was built up with results from the simulator used in 

[Du04]. Then, the optimal radiation pattern of the matched distribution was loaded to 

alleviate the given congestion. Notice that only the congested areas were taken into 

account in [Yao07]. It was proved that the network performance could be improved, 

and the execution time for adjusting the radiation pattern with the CBR-matching 

approach was much shorter then applying methods proposed in [Du04]. Besides, 

[Yao07] also investigated the practicality of making predictions with the 
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CBR-matching approach. The results showed that the accuracy of predicting 

upcoming patterns of growing hotspots are acceptable, but a large error might occur 

when predicting the congestion patterns for moving hotspots. 

 

Based on the prior research reported in [Du04] and [Yao07], one main task of this 

research is to propose feasible approaches to make accurate predictions for the 

upcoming user distributions, for both congested and uncongested areas, and both 

growing mobile clusters and moving mobile clusters. [Du04] calculated the optimal 

radiation patterns for semi-smart antennas based on not only the number of users 

covered by target antennas but also the users’ geographic distribution patterns in the 

target antennas’ coverage areas as shown in Figure 1.1. If the geographic distributions 

of mobile terminals can be predicted accurately, load balancing schemes in [Du04] 

can be applied to work out optimised radiation patterns for the expected traffic 

distribution. 

 

Figure 1.1 Optimised cellular coverage for hot-spots traffic (Figure 3.6 from [Du04]) 

 

[Yao07] divided each radiation coverage area of a BS into bands, sectors and 

segments, as shown in Figure 1.2. Then, the number of users in each segment in a 

given area was used to match a best-fit case in the case library with similarity 

functions. If the distribution of mobile clusters in each segment can be predicted 
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precisely, load balancing schemes in [Yao07] can be used to find the proper 

beamforming patterns from the case library to alleviate the forthcoming congestion. 

 
Figure 1.2 Illustration of cell model (Figure 3.9 from [Yao07]) 

 

Besides, the mobility model involved in [Du04] and [Yao07] could be considered as a 

simplified version of the RWP model with limited information of users’ movement 

behaviours within a radio cell or between different cells. The lack of movement 

behaviour information might be a significant reason that [Yao07] failed to make 

predictions for moving hotspots. Thus, this research attempts to build mobility models 

that include movement behaviour information and geographic impact to reflect the 

real-life movement patterns of mobile users. 

 

Therefore, this research focuses on building advanced mobility models to generate 

realistic cell transition trajectories, and evaluating the feasibility of using proposed 

pattern learning models to learn local movement patterns and to make predictions on 

the upcoming geographic distributions of mobile terminals and mobile clusters by 

mining the captured cell transition trajectories. 

 

1.3 Research Contributions 
The work presented in this thesis is novel. The main contributions are: 

• Performing traffic pattern predictions for the intra-cell distribution of mobile 
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users and mobile clusters, which is novel in the location management and 

mobility prediction field. 

 

• Introducing two novel semi-microscopic mobility models and one novel 

microscopic mobility model to mimic the movement of mobile users in a realistic 

way. 

 

• Proposing three pattern learning models, the Order-k Markov model, the Static 

Traffic Pattern Learning (STPL) model and the Dynamic Traffic Pattern Learning 

(DTPL) model, to learn the geographic movement patterns from the cell 

transition data and to make predictions on the upcoming traffic patterns of mobile 

users and future positions of mobile clusters. The remaining two pattern learning 

models are original from this research. 
 

• Introducing the concept of letting traffic pattern prediction cooperate with the 

load balancing schemes of semi-smart antennas, which extends the existing 

research of [Du04] and [Yao07]. 

 

1.4 Author’s Publications 
1. K. Zhang and L. Cuthbert, “Traffic Congestion Forecasting in WCDMA 

Networks,” in Proceedings of the 3rd International Conference on 

Communication and Networking in China (ChinaCom2008), pp. 992-996, Aug. 

2008. 

 

2. K. Zhang and L. Cuthbert, “Performing Traffic Pattern Prediction in WCDMA 

Networks,” in Proceedings of the International Conference on Wavelet Analysis 

and Pattern Recognition (ICWAPR08), pp. 832-837, Aug. 2008. 

 

3. K. Zhang and L. Cuthbert, “Random Traffic Prediction in WCDMA Networks,” 

in Proceedings of the 4th International Conference on Wireless Communication, 
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Networking and Mobile Computing (WICOM08), Oct. 2008 

 

4. K. Zhang and L. Cuthbert, “Traffic Pattern Prediction in Cellular Networks,” in 

Proceedings of the 11th IEEE Singapore International Conference on 

Communication Systems (ICCS2008), pp. 549-553, Nov. 2008. 

 

5. K. Zhang and L. Cuthbert. “Predicting the Distribution of Mobile Users in 

Cellular Networks,” in Proceedings of the IEEE International Conference on 

Communication Technology and Application (ICCTA2009), Oct. 2009. 

 

1.5 Organisation of the Thesis 
The remainder of the thesis is organised as follows. 

 

Chapter 2 provides the state-of-the-art relevant to this research. It starts with an 

overview of the development of the mobile networks before moving on to introduce 

WCDMA and its relevant radio resource management methods. Then, smart antennas 

and their operational mechanisms are described to explain how network performance 

can be improved by using semi-smart antennas when congestion occurs. Finally, the 

ideas that have been proposed to tackle traffic prediction are discussed. 

 

Chapter 3 gives a detailed introduction of the basic mobility model and the first two 

pattern learning models applied in this research. The concept and the components of 

the basic mobility model are introduced first. Then, the Order-k Markov model and 

the original STPL model are presented. Finally, result evaluation methods are 

introduced. 

 

Chapter 4 presents the intra-cell traffic pattern prediction proposed in this research. To 

start with, an overview of traffic pattern prediction is given. Then the configuration of 

the mobility model and the pattern learning models are introduced, followed by the 
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description of the predefined scenarios. Finally, the simulation results are presented 

and discussed. 

 

Chapter 5 presents the traffic pattern prediction carried out in more sophisticated ways. 

An enhanced mobility model is presented first. Then, an improved pattern learning 

model, the original DTPL model, is proposed. Finally, the simulation results are 

discussed and the accuracy of the prediction is evaluated. 

 

Chapter 6 introduces a cellular automaton model to mimic the vehicular traffic 

patterns with inter-user interactions. Then, the traffic pattern prediction is carried out 

with the Order-k Markov model. Finally the simulation results are presented and 

discussed. 

 

Chapter 7 presents the conclusions and future work of this research. 
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2 BACKGROUND 

This chapter provides the state-of-the-art relevant to this research. It starts with an 

overview of the development of the mobile networks before moving on to introduce 

WCDMA and its relevant radio resource management methods. Then, smart antennas 

and their working mechanisms are described to explain how network performance can 

be improved by using semi-smart antenna when congestion occurs. Finally, the ideas 

that have been proposed to tackle traffic prediction are discussed. 

 

2.1 Mobile Networks 
Universal Mobile Telecommunications System (UMTS), which has a dominant role in 

Europe, is one of the widely utilized third generation (3G) mobile telecommunications 

technologies. It is part of the ITU IMT-2000 standard and is specified by 3GPP. As 3G 

systems, UMTS networks are designed for flexible delivery of a variety of services 

based on high bit rates.  

 

Generally speaking, services supported by UMTS networks can be categorized into 

person-to-person services, content-to-person services and business connectivity 

[HT04]. The person-to-person service type includes Adaptive Multirate (AMR) 

speech service, video telephony, multimedia messaging (MMS), Voice-over-IP (VoIP), 

multiplayer games, etc. These services mentioned above can be further divided into 

person-to-person circuit switched services and person-to-person packet switched 

services. For the content-to-person service type, web browsing, audio and video 

streaming, content downloading and Multimedia Broadcast Multicast Service (MBMS) 

are the main components. The business connectivity service type considers access to 

corporate intranet or to Internet services using laptops. 

 

Being a complete network system, UMTS specifies the UMTS Terrestrial Radio 

Access Network (UTRAN) that handles all radio related functionality, the core 
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network that takes charge of switching and routing calls and data connections to 

external networks, and the authentication of users via the UMTS Subscriber Identity 

Module (USIM). Figure 2.1 illustrates an overview of the UMTS system architecture. 

 

 
Figure 2.1 UMTS network architecture 

 

In UMTS networks, the Node B, more often known as the Base Station (BS), is 

responsible for providing the radio link for mobile terminals and managing the radio 

resources within its coverage area. The Radio Network Controller (RNC) manages a 

group of radio cells, and owns and controls the radio resources in its domain. The 

sub-network composed by one RNC and at least one Node B is called a Radio 

Network Sub-system (RNS). As shown in Figure 2.1, a number of cooperatively 

working RNS can be considered as a UTRAN.  

 

One important part of IMT-2000 is the specification of air interface options. For the 

UMTS networks, the UMTS Terrestrial Radio Access (UTRA) includes three main air 

interface standards, WCDMA, TD-CDMA and TD-SCDMA. Since WCDMA is 

dominant in Europe, and is relevant to this research, its features are discussed in the 
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next section. 

 

2.2 WCDMA 
Wideband Code Division Multiple Access (WCDMA) is a wideband spread-spectrum 

mobile air interface standard. It was first developed by NTT DoCoMo for the early 

3G network Frontier of Mobile Multimedia Access (FOMA). Then, WCDMA was 

selected as an air interface for UMTS, and was specified as part of the 3G standard in 

IMT-2000. 

 

2.2.1 Technical features 

WCDMA uses the Direct-Sequence Code Division Method Access (DS-CDMA) 

technology to transmit on a pair of 5MHz-wide radio channels. It supports the concept 

of Bandwidth on Demand (BoD) whereby the data capacity allocated for a user might 

vary from frame to frame according to the real time traffic demand. Frequency 

Division Duplex (FDD) and Time Division Duplex (TDD) are the two duplexing 

methods supported by WCDMA. In the FDD mode, both the uplink and downlink can 

have 5MHz carrier bandwidth for transmission use. By contrast, only one 5MHz 

bandwidth is shared between the uplink and downlink in the TDD mode. Table 2.1 

summarizes the main parameters of WCDMA air interface. 

 

Table 2.1 Main WCDMA parameters [Table 3.1 in HT04] 

Multiple access method DS-CDMA 

Duplexing method FDD / TDD 

Base station synchronization Asynchronous operation 

Chip rate 
3.84 Mcps (5 MHz carrier 

bandwidth) 

Frame length 10 ms 

Service multiplexing 
Multiple services with different 

QoS requirements multiplexed on 
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one connection 

Multi-rate concept 
Variable spreading factor and 

multi-code 

Detection 
Coherent using pilot symbols or 

common pilot 

Multi-user detection, smart antennas 
Supported by the standard, optional 

implementation 

 

WCDMA is designed to enable 3G networks to achieve higher transmission speed and 

larger network capacity. Using WCDMA, UMTS is able to support maximum 

theoretical data transfer rates of 21Mbit/s, which is also a key factor for UMTS to 

support a variety of mobile data services, such as web browsing, file downloading, etc. 

In order to guarantee the QoS of these services as well as increase the system capacity, 

more advanced radio resource management approaches should be involved in 

WCDMA networks. 

 

2.2.2 Radio resource management in WCDMA 

Radio resource management (RRM) can be considered as a system level control that 

is responsible for efficient utilization of the limited radio spectrum resources and 

radio network infrastructure. Generally speaking, the RRM algorithms used in 

WCDMA networks can be divided into power control, handover control, admission 

control, load control and packet scheduling functionalities [HT04]. 

 

Power control is utilized to minimize the interference level and to provide the 

required QoS. In CDMA systems, power control is especially important since 

interference comes from other mobile terminals. Without proper controls, a single 

overpowered mobile terminal could block a whole cell. Two power control algorithms 

are mainly used in WCDMA networks, the closed loop power control [SC01] and the 

outer loop power control [OP98]. 
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Handover control is adopted to enable mobile terminals to work seamlessly when 

moving across cell boundaries. In WCDMA networks, the softer handover and soft 

handover are introduced to improve the performance of the hard handover. When a 

mobile terminal is in the overlapping cell coverage area of two adjacent sectors of one 

base station, the softer handover is triggered. During softer handover, each sector 

allocates a channel for the terminal to communication with the base station. When a 

mobile terminal is in the overlapping cell coverage area of two sectors belonging to 

different base stations, the soft handover is triggered. During soft handover, the 

mobile terminal concurrently communicates with both base stations from two air 

interface channels provided by each base station separately. Figure 2.2 shows the 

above two scenarios. According to [HT04], softer and soft handovers typically occur 

in about 5-15% and 20-40% of connections respectively. 

 

 
Figure 2.2 Softer and soft handover scenarios (Figure 3.11 and 3.12 from [HT04]) 

 

For admission control, load control and packet scheduling, they are required to 

provide the required QoS and maximize the system throughput. Since the radio 

resources within a radio cell are limited, it is impossible for a base station to keep 

admitting connection request without considering the consumption of the radio 

resources. In a WCDMA network, admission control is involved to determine the 

impact of allowing an incoming connection request from the perspectives of system 

capacity and call dropping probability. Moreover, packet scheduling is used to support 

packet switched services and analyse their performance for the sake of guaranteeing 

QoS of these services. Proper admission control and packet scheduling methods could 
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ensure that the network is in a stable state without being overloaded. When the system 

is overloaded, load control is triggered to return the system back to the expected states. 

Existing load control methods currently used in the WCDMA networks are [HT04]: 

 

 Downlink fast load control; 

 Uplink fast load control; 

 Reduce the throughput of packet data traffic; 

 Handover to another W-CDMA carrier; 

 Handover to GSM; 

 Decrease bit rates of real time applications; 

 Drop low priority calls in a controlled fashion. 

 

The characteristics of WCDMA air interface enable advanced CDMA receiver 

concepts, such as multiuser detection and smart antennas, to be realized, which makes 

it possible to introduce advanced load control approaches to increase system capacity 

and optimize the radiation pattern. This research intends to carry out the load control 

in a predictable way to extend the existing load control schemes of semi-smart 

antennas.  

 

2.3 Using Smart Antenna in 3G Networks 
Smart antennas have been adopted in areas such as radars, satellite communications, 

and remote sensing. Generally speaking, a smart antenna refers to a system of antenna 

arrays arranged in a certain distributed configuration with a specialized signal 

processor. So far, a considerable amount of work, such as [Chry00], [GL04], 

[PCAB06] and [TAP00], has proved that using smart antennas in cellular networks 

can significantly improve the system performance and capacity. In this section, a brief 

introduction of smart antenna technology is presented, followed by a discussion of the 

load balancing schemes relevant to this research. 
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2.3.1 Smart antenna technology 

A smart antenna system has a number of antenna arrays with signal processing 

capability to transmit and receive in an adaptive way. Using a smart antenna, the 

radiation pattern of the transmitter can be customized to match the traffic conditions. 

In real 3G networks, although various technologies offer higher data rates and double 

voice capacity compared with their 2G counterparts, their actual performance is still 

susceptible to interference and adverse channel conditions created by multipath 

propagation and system loading. Therefore, smart antenna techniques are introduced 

as an enhancement to 3G systems to improve network performance and capacity by 

alleviating the degradation caused by co-channel interference and other adverse 

factors.  

 

According to [Chry00], smart antenna systems are commonly classified into two 

categories, switched beam system and adaptive array system. Figure 2.3 illustrates 

these two kinds of smart antenna.  

 

 
Figure 2.3 Illustration of smart antenna types 

 

Briefly speaking, the most significant difference between these two types is the 

radiation pattern adjusting scheme. For the switched beam system, several available 

fixed beam patterns are recorded to support the adjustment of beamforming shapes. 

All the patterns loaded on the antenna are chosen from this predefined pattern set. On 

the other hand, adaptive array system allows the antenna to fine-tune the beam pattern 

Switched beam                Adaptive array 
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in real time according to the real traffic demand. Although both systems attempt to 

increase gain in the direction of the user, only the adaptive array system offers optimal 

gain, while simultaneously identifying, tracking, and minimizing interfering signals 

[Comp88]. 

 

2.3.2 Semi-smart antenna system 

Admittedly, using smart antennas can increase the utility of radio resources, providing 

both enhanced data rates and improved coverage and spectral utilization. However, 

the cost on modifying the existing cellular system architecture and the difficulties of 

maintaining and managing such systems cannot be neglected. Even building a 

dedicated network using smart antennas, for example the TD-SCDMA network in 

China, shows much more unexpected difficulties. Therefore, a mutation of smart 

antenna with lower complexity, called semi-smart antenna, was introduced to 

overcome the limitations identified in existing smart antenna systems. 

 

The aim of developing such a system is to introduce a much simpler scheme that 

meets the industry needs of accommodating traffic hotspots dynamically, but with 

minimum changes to the existing infrastructure [PCAB06]. The basic principle behind 

the load balancing scheme used in the semi-smart antenna system is to shape the 

radiation pattern of each cell in real time according to the traffic needs. Congestion in 

a heavily loaded cell is decreased to match the guaranteed QoS by contracting the 

radiation pattern around the hotspot, while adjacent cells expand their radiation 

patterns to compensate for coverage loss, as illustrated in Figure 2.4. 
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(a) Conventional fixed radiation patterns  (b) Cells adjust shape to handle congestion 

Figure 2.4 Semi-smart antenna system for geographic load balancing in a cellular 

network (Figure 2.7 from [Yao07]) 

 

Compared to other approaches used by smart antenna systems, semi-smart antenna 

systems can accomplish the load control only with the knowledge of the location of 

mobile clusters, rather than the location of individual mobile terminals. Since the 

movement of mobile clusters is much slower than the movement of individual 

mobiles, the system can afford a much longer update period between two pattern 

loadings. According to [PCAB06], this update period can be 30 seconds.  

 

With proper load balancing algorithms to work out the optimal radiation patterns for 

the current traffic, semi-smart antenna system can significantly improve the network 

performance and capacity with much lower complexity and cost. Two load balancing 

algorithms relevant to this research are discussed in the rest of this section. 

 

2.3.3 Bubble oscillation algorithm 

Having got antennas that are capable of adjusting beamforming shapes, it is necessary 

to design load balancing algorithms that can work out the optimal radiation patterns 

according to the traffic demands. In the literature [DBCNP03] [DBC03] [DBC04], 

User 

Cell Coverage 

Base Station 

“Hotspot” cell 
reduced in size 

Surrounding cells adjust 
cooperatively 
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three different load balancing algorithms were proposed to guide the process of 

radiation pattern adjustment according to the geographic traffic distribution. These 

algorithms were the cooperative negotiation approach, the utility-based approach, and 

the bubble oscillation approach. Then, it was proved in [Du04] that using the bubble 

oscillation algorithm can effectively and efficiently improve the system capacity and 

decrease the call blocking rate in WCDMA networks. Thus, the bubble oscillation 

algorithm is described below in detail. 

 

The main concept of this approach is to use an analogy with air bubbles. The local 

coverage scheme is treated as an air bubble; the local traffic load is treated as the air 

within the bubble; the un-served traffic is treated as a vacuum between adjacent 

bubbles [DBC04]. Figure 2.5 illustrates the comparison between the natural bubble 

oscillation and the radio cell oscillation.  

 

 

Figure 2.5 Comparison between the oscillation of natural bubbles and the radio cells 

(Figure 6.1 and 6.4 from [Du04]) 

 

When running the bubble oscillation algorithm, the congested areas are considered as 

“temporary vacuum area”, which causes the coverage shape oscillation of every cell 

to minimize these vacuum areas. In each iteration, the attraction forces generated by 

the un-served mobiles are calculated to update the repulsion forces of the relevant 

mobiles. Then, the local optimizations are performed with the updated repulsion 
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forces. The result converges when the number of un-served mobiles remains constant 

or becomes zero. The flowchart of the bubble oscillation algorithm is shown in Figure 

2.6. 
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Figure 2.6 Flowchart for the process of the bubble oscillation algorithm 

(Figure 6.3 from [Du04]) 
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Figure 2.7 shows the simulation results of adopting the bubble oscillation algorithm in 

the WCDMA network to assist semi-smart antennas in radiation pattern optimization. 

It had been proved in [Du04] that the bubble oscillation algorithm can obviously 

improve the network performance. 

 

 

Figure 2.7 Simulation results of the bubble oscillation algorithm  

(Figure 7.19 from [Du04]) 

 

The load balancing schemes described in [Du04] adjust the cell size and shape 

according to the geographic traffic distribution. The geographic traffic distribution has 

the same meaning as the term “traffic pattern” used in this research. In Du’s 

simulations, the optimized radiation patterns were generated based on the traffic 

pattern captured in each snapshot. The time interval between every two continuous 

snapshots is 60 s. For each snapshot, the traffic pattern was analysed with the 

conventional cell shape. If congestion areas are found in one snapshot, then the load 
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balancing scheme is invoked to work out the suitable radiation pattern for the current 

situation.  

 

The concept of applying the bubble oscillation algorithm to alleviate the network 

congestion can be considered as the workflow that is illustrated in Figure 2.8. 

 
Figure 2.8 The workflow when apply the bubble oscillation algorithm 

 

As indicated in the above figure, the bubble oscillation algorithm is applied when 

traffic congestion is observed from the snapshot. Regarding the mobile traffic pattern, 

or in other words the distribution of mobile users, in the congested areas, the antenna 

pattern optimization is carried out with the bubble oscillation algorithm. By adjusting 

the beamforming shape of the semi-smart antenna with congestion and semi-smart 

antennas in the neighbouring areas, the traffic burden in the congested cell can be 

eased by the extended coverage of the neighbouring cells. When the calculation is 

accomplished, the optimized antenna patterns are loaded on the relevant semi-smart 

antennas to improve the network performance. 

 

When using the bubble oscillation algorithm, the optimization problem is a NP-hard 

When congestion is 
observed from the 

traffic snapshot 

 

Loading the optimized 
antenna pattern in 
the congested area  

Applying the 
bubble oscillation 

algorithm 
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problem with considerably heavy calculation overhead. Although the network 

performance can be improved significantly with the bubble oscillation algorithm, the 

computational workload for every optimization cannot be neglected. 

 

2.3.4 CBR-matching algorithm 

With the purpose of decreasing the computational workload and processing time for 

the bubble oscillation algorithm, a Case Based Reasoning (CBR) matching approach 

was introduced in [YC05] [YC07] and [Yao07]. The principle is that congestion often 

follows certain patterns, which means that the optimal radiation pattern found for one 

congestion case can be reloaded when a similar situation reoccurs.  

 

Different from the work described in [Du04] which takes the geographic traffic 

distribution into account to adjust the radiation pattern, the approach taken in [Yao07] 

is based on congestion patterns, rather than traffic patterns. Figure 2.9 illustrates how 

a congestion pattern is determined. 

 

Figure 2.9 Illustration of radiation pattern and congestion pattern 

 (Figure 5.1 from [Yao07]) 
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In Figure 2.9, the conventional coverage area of a cell is divided into a number of 

segments. The circle represents the antenna coverage with equally-excited radiation 

sectors; the black dots represent mobile terminals located in this area; the shadow 

areas represent the segments with one or more blocked traffic units. The blocked units 

can be determined by inputting the traffic snapshot into the network simulator used in 

[Du04]. Then, one segment is considered as a blocked segment if the number of 

blocked units is larger than a predefined threshold. Finally, the congestion pattern of 

one cell is defined as the distribution of the blocked segments in that cell. The reason 

of using congestion patterns instead of traffic patterns is to reduce the amount of data 

to be matched and to concentrate on the areas where congestion occurs.  

 

In order to carry out the CBR algorithm, a case library is built to record historical data. 

In the case library, each case has two parts, the situation description part and the 

solution part [Yao07]. Every component in the situation part contains the description 

of a congestion pattern and the relevant radiation pattern when that congestion occurs 

in one cell. The corresponding solution part records the adjusted radiation pattern in 

that cell and the surrounding six cell’s radiation patterns.  

 

When applying matching, the existing antenna and congestion patterns are compared 

with the corresponding values in the library by using similarity functions. The 

best-matched case, which has the lowest similarity value, is retrieved from the library, 

and the related solution is loaded by the antenna in that cell. Figure 2.10 shows the 

system performance improvement after involving CBR matching mechanism in the 

network. Figure 2.11 shows the execution time of the bubble oscillation approach and 

the CBR matching approach under same scenarios. It can be seen that the system 

performance is obviously improved; and the execution time of the CBR matching is 

much less than the bubble oscillation algorithm. Moreover, [Yao07] had proved that 

both growing hotspots and moving hotspots could be handled by the CBR matching 

algorithm in the matching phase. However, problems come about in the prediction 

phase, which is explained in the following section.  
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Figure 2.10 Improvement in system blocking rate by applying CBR approach  

(Figure 4.8 from [Yao07]) 

 

 

Figure 2.11 Comparison of the execution time (Figure 4.9 from [Yao07]) 

 

The concept of using CBR matching algorithm to ease the traffic congestion can be 

considered as the workflow that is shown in Figure 2.12. 
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Figure 2.12 The workflow when apply the CBR matching algorithm 

 

In [Yao07], the CBR approach was also used to carry out congestion pattern 

predictions. In the prediction phase, future congestion patterns were predicted if 

previous matching results can match a continuous sequence of historical congestion 

patterns. All the predictions took place based on the information from the case library 

and from the congestion patterns without using any information from the geographical 
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distribution and movement of the mobile terminals. The simulation results in [Yao07] 

revealed that the CBR scheme does have the potential to predict future congestion 

patterns, but mainly for growing hotspots rather than moving hotspots. 

 

2.3.5 Extending the existing research 

The work presented in the previous two sections can be regarded as the foundation for 

this research. [Du04] aimed at implementing an intelligent load balancing scheme to 

dynamically optimise the cellular coverage patterns according to the geographic 

traffic pattern. Letting the bubble oscillation algorithm work cooperatively with the 

semi-smart antenna system, the network capacity can be improved considerably. The 

main drawback of this scheme is the heavy computational workload for each 

optimisation. In order to realize a swift load balancing, [Yao07] introduced the CBR 

matching algorithm only considering the congestion pattern instead of the entire 

traffic pattern in each snapshot. When determining the optimised radiation pattern by 

matching the current congestion pattern to those captured ones in the library, it is 

proved that the capacity improvement is still significant and the processing time is 

much faster; this works on both the growing hotspots and the moving hotspots. When 

making predictions on future radiation patterns based on the information from the 

case library and from the congestion patterns without using any prediction 

information from the geographic traffic distributions, it turns out that the antenna 

reshaping cost can be reduced mainly for growing hotspots rather than moving ones. 

As the existing approaches do not pay enough attention to the upcoming traffic status, 

this research introduces traffic pattern prediction to fill the gap. 

 

When making predictions on the future traffic patterns of a growing mobile cluster, 

the aim is to determine the size and scale of the target cluster and the affected areas in 

the upcoming observations. On the other hand, making predictions for a moving 

mobile cluster aims at finding out its movement or dispersal tendency and areas that 

might be affected by the mobile cluster in the following snapshots. If the upcoming 
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traffic patterns could be predicted, proper radiation patterns would be calculated and 

loaded on the relevant BS to alleviate the impact caused by the congestion. 

 

According to the prediction results for moving hotspots in [Yao07], it can be seen that 

only matching the current congestion pattern to the historical ones cannot obtain 

enough information to picture upcoming situations. In real life, there is no completely 

random movement of a mobile terminal, since movements should be restricted by the 

intention and the habits of the owner, the local road topology and other factors. Thus, 

it is reasonable to believe that the generalized local movement features could be 

extracted from the relevant segments of the cell transition trajectories. Inspired from 

the mobility prediction field, the intention and movement trends of one terminal 

owner could be learnt by analysing the historical movement data of a specific terminal; 

the local road topology of an area could be learnt by analysing the historical 

movement date of terminals passing by. With the learnt local movement features, 

future traffic patterns could be predicted by estimating the upcoming distribution of 

each mobile terminal based on its current location and relevant local features. 

 

2.4 Mobility Prediction 
In this section, the existing research in the mobility prediction field that is relevant to 

this research is presented. First, the necessity of performing mobility prediction is 

discussed. Then, approaches that inspire this research are described. 

 

2.4.1 Performing mobility prediction 

Mobile devices, such as mobile phones, PDAs and laptops, are very common and 

appear to be becoming more widespread in recent years. This situation forces the 

wireless network providers to find ways to increase the capacity of their networks. In 

big cities, an often used solution for cellular networks is to decrease the antenna 

coverage and increase the number of base stations so as to increase the frequency 

reuse. Nevertheless, this method causes more frequent handovers and increasing 
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paging costs, which might lead to a serious QoS degradation [CZDTZ04]. One 

possible way to mitigate these problems is to guess the next access point (AP) of a 

mobile terminal so as to take pro-active actions before handover happens or incoming 

calls arrive, which is known as the mobility prediction. Many studies have been 

carried out to manage the mobility prediction in various wireless networks, such as 

WiFi, ad hoc and GSM networks. 

 

Generally speaking, the research goal in the mobility prediction field is to forecast the 

next possible locations of a mobile terminal during its movement according to the 

known historical data. In most research, the next possible locations refer to areas 

covered by the specific APs in Ad Hoc networks or BSs in cellular networks. Besides, 

the prediction methods used in the mobility prediction field can be classified into two 

categories, as mentioned in [FL07]. These two categories are the Mobile Host Centric 

(MHC) approach and the Access Point Centric (APC) approach. For the MHC, each 

mobile terminal tries to train a movement pattern learning model by the historical data 

carried by itself and perform the prediction individually. Thus, the MHC prediction 

process can be considered as a distributed prediction process. For APC, each AP 

builds one or more pattern learning models and trains each model by the local motion 

patterns that have been captured by the AP. In the prediction phase, predictions are 

activated and made by the relevant AP. Thus, the APC approach can be considered as 

a centralized prediction process. In order to realise an intelligent location management, 

different modelling techniques have been applied for mobility prediction. 

 

In [BD99] and [BD02], the data compression algorithm was utilized to learn the 

characteristic of movements between radio cells. The authors of [BD99] and [BD02] 

believe that good compressors usually are good predictors since recent research in 

computational learning theory shows that prediction is synonymous with 

generalization and data compression. Every access point in [BD99] is named by a 

unique symbol from a finite alphabet. Thus, the location history of every user can be 

listed as a string of symbols. Then, the LeZi-update compression algorithm is used to 
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make predictions on the next access point of a mobile user to reduce the paging cost. 

The authors of [YL02] extended the prediction model used in [BD99] by introducing 

the factor of channel holding time. This model can predict not only the cell to which a 

mobile will handoff but also when the handoff will occur.  

 

In [AW04] [Quin05] and [BBK11], a user mobility profile (UMP) framework was 

proposed to record many important factors associated with a mobile terminal’s 

behaviour. Then, this UMP was used to predict the possible neighbours which a 

mobile terminal might move into and the possible service type in the next observation. 

 

In [LBC98] [PSJ04] and [ZM05], variants of the Kalman filter were used to perform 

the mobility prediction. In these works, the mobility state consisted of the position, 

velocity, and the acceleration of a mobile user, and the movement of a mobile user 

was considered as the transition between different states. In [LBC98], future mobility 

states were estimated by using a modified Kalman filter with observations taken from 

there independent pilot signal strength measurements from three different base 

stations. [ZM05] improved the algorithm in [LBC98] by employing a pre-filter to 

obtain coarse position estimates prior to the application of the Kalman filter. In 

[PSJ04], a Robust Extended Kalman Filter was proposed to estimate the next cell a 

mobile would visit. These approaches can give good results in the case of regular 

movements. However, poor prediction results can be seen in irregular mobility 

conditions.   

 

In [AZ01] [SVA06] and [ITV09], probabilistic modelling approaches were applied. 

[AZ01] made use of the mobility history and the radio signal strength measures to 

indicate a group of radio cells, called the shadow cluster. The probability of visiting 

cells in the shadow cluster by the target mobile user should be larger than a threshold. 

[ITV09] extended the work in [AZ01] by introducing a Predictive User Mobility 

Behaviour algorithm to improve the threshold for choosing shadow clusters. [SVA06] 

proposed an activity based mobility prediction scheme to determine the target user’s 
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location of interest, preference and the probable entry and exit times.  

 

Artificial neural networks and Markov chains remain the most widely used techniques 

in mobility prediction. When applying neural networks, one of the key factors that can 

influence the prediction performance is the training sets used to train the neural 

networks. Different types of movement data were taken into account as input 

parameters in [AS07a] [AS07b] [BEJ97] [CB04] [CBCS02] [Chak02] [JHSRP10] and 

[Quin05] to uncover the movement characteristics. When building learning models 

with Markov chains in [BK10] [BBK11] [FL07] [GV06] [SB07] [SK04] and 

[SWYS10], a number of variants of Markov chain were applied and several additional 

mobility data were taken into account. The applications of artificial neural networks 

and Markov chains will be discussed in the following sections. 

 

2.4.2 Mobility prediction with neural networks 

The neural network algorithm is one of the most famous artificial intelligence models 

that are widely used in the data mining field. It is an interconnected assembly of 

simple processing nodes, whose functionality is loosely based on the animal neuron, 

as shown in Figure 2.13. The processing ability of the network is stored in the 

inter-unit connection strengths, or weights, obtained by a process of adaptation to a 

set of training patterns [Gurn03]. With the variants of neural network, both the linear 

regression and the non-linear regression can be carried out. Due to the strong 

capability of regression, [AS07a] [AS07b] [BEJ97] [CB04] [CBCS02] [Chak02] 

[JHSRP10] and [Quin05] carried out the mobility prediction by building the pattern 

learning models with different variants of neural networks, and creating the training 

sets with different types of mobility data to train the models. When using neural 

networks to predict future states, the structure of the neural networks and the quality 

of the training sets (composed by input patterns and expected output patterns) directly 

affect the prediction performance. 
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Figure 2.13 A simple model of neural network 

 

In [AS07a] [AS07b] [BEJ97] [CBCS02] [Chak02] [JHSRP10] and [Quin05], MHC 

approaches are used to carry out the mobility prediction. The general argument when 

using the MHC in the above works is that although the mobility patterns seen in the 

networks as a whole are complex, these patterns become much simpler and more 

regular when viewed on a per-user basis. 

 

In [BEJ97] [CBCS02] [Chak02] and [Quin05], user mobility profiles were used to 

generate the training sets. An example of the daily MH mobility profile is shown in 

Figure 2.14. The authors believe that, for a majority of mobile terminals for most of 

the time, the mobility profile repeats on a day-to-day basis. The next movement of a 

mobile user strongly depends on the present location and the time of the day. A 

feedback neural network was used in [BEJ97] and feed-forward neural networks were 

used in [CBCS02] [Chak02] and [Quin05]. Simulation results show that the above 

approaches work fine only when the movement pattern repeats almost unchanged day 
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by day.  

 

 
Figure 2.14 An example of the daily MH mobility profile 

 

In [JHSRP10], a feed-forward back-propagation neural network was used to predict 

the movement speed of the mobile user. Training sets were generated with three 

variables, the simulation time, the mobility speed and the desired speed. This 

approach can give good results in the highway scenario. Poor results can be seen if the 

movement direction varies frequently.   

 

In [AS07a] and [AS07b], the author used a Bayesian neural network to predict the 

next locations the users would probably be given their past movements. In these 

works, the input vector is composed by Cell ID, Cell History, Start Hour, Start Minute 

and Day of week; the output value is the next Cell ID. According to the author, the 

major benefit of the Bayesian neural network is that the resulting prediction is an 

average prediction of possible traditional neural network solutions weighted by their 

probability. The results show that the proposed model works well on the regular 

movements but not the random ones. One contribution of [AS07a] and [AS07b], 

which inspired this research, is that the proposed method is topology-independent.  

 

(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6) (1, 7) 

(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6) (2, 7) 
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(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6) (4, 7) 

(5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6) (5, 7) 

Home 

Office 



42 
 

In [CB04], the APC approach was used to carry out the mobility prediction. Figure 

2.15 shows the APC mobile tracking proposed in [CB04]. The author believed that the 

mobility patterns would be influence in a significant way by the geographic 

conditions present at the location of an AP. Two types of information about the user’s 

mobility behaviour, the movement direction and the movement speed, were included 

in the training sets. Then, a back-propagation neural network was used to learn the 

movement characteristic. The simulation results show that the proposed model can 

give good results in the urban scenario as enough mobility data can be captured in the 

observed area in the low-speed movement scenario. The feature inspiring this research 

from the above work is that the APC approach is better able to handle erratic 

behaviour by a single user. 

 

 
Figure 2.15 An example of the APC mobile tracking (Figure 3 from [CB04]) 

 

2.4.3 Mobility prediction with Markovian models 

Generally speaking, the Order-k Markov predictors, widely used in the mobility 

prediction field, attempt to predict the next location from a given k-length movement 
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context comprised of the k most recent observations in the mobility history. In 

[SKJH04], the author made a comparison between Markov-based and 

compression-based predictors. It was proved that low-order Markov predictors 

perform better than the more complex and more space-consuming compression-based 

predictors. Due to the low complexity and good performance of the Order-k Markov 

predictor, [BK10] [BBK11] [FL07] [GV06] [SB07] [SK04] and [SWYS10] applied a 

number of variants of Markov chain with several additional mobility data to carry out 

the mobility prediction. 

 

The authors of [FL07] believe that the sequence of APs crossed by each mobile 

terminal is an interesting source of information. Because the movements are always 

constrained by the geographical conditions and a mobile user usually has a precise 

purpose for a specific movement, it is possible to extract the movement characteristics 

from the captured AP sequences. In [FL07]], two mobility prediction methods are 

studied, the MHC method and the APC method. For the MHC method, each user 

trains a learning model using its own movement historical data. For the APC method, 

each AP learns the local movement characteristic based on the captured movement 

historical data of mobiles that has visited that AP. Figure 2.16 indicates the learning 

process for order-2 Markov models. Each time a terminal moves, its new AP is 

appended to its mobility trace; a special “OFF” AP is added when the user is 

disconnected from the network. According to the results in [FL07], the measured 

accuracy difference between APC and MHC is only a few percent (typically 55% vs. 

59%). Moreover, the authors indicate that building models specific to certain periods 

of time (week / weekend, morning / afternoon) does not bring any improvement.  
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Figure 2.16 Overview of the learning process for order 2 Markovian models 

 

In [SK04], the author performed the mobility prediction with an order-2 Markov 

predictor and other additional data, such as road topology, cell geography and the 

average road-crossing time. In order to create the training sets for the Markov model, 

roads in the observed area were divided into segments, as shown in Figure 2.17. 

According to the simulation results, the author believed that incorporating road 

topology information into the prediction technique could potentially yield better 

prediction accuracy for mobile users in vehicles. Inspired from the work in [SK04], 

this research treats the geographic layout of the observed area as a key factor when 

learning the local movement patterns. 

 

AP6 
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AP8 
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Learning set Learning set 
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Figure 2.17 Utilizing road topology information for mobility prediction (Figure 1 

from [SK04]) 

 

In [BK10] and [BBK11], the author presented an APC approach and a MHC approach 

respectively. For the APC predictor in [BK10], a Markov-based Mobility Prediction 

Algorithm (MMPA) was proposed. The MMPA algorithm was build based on the 

order-2 Markov model with two additional enhancements, the visit frequency 

generator and the ping pong handover eliminator. The visit frequency generator will 

be invoked if the mobility history data are not enough to support the Markov predictor; 

the ping pong handover eliminator is used to alleviate the influence from the ping 

pong handover phenomena. In [BBK11], the user mobility profile is used 

cooperatively with an order-2 Markov model to make predictions for individual users. 

Inspired from [BK10], the local visit frequency is taken into account when learning 

the generalized movement patterns. 

 

In [GV06] and [SWYS10], hidden Markov models are used for mobility prediction. 

The hidden Markov model can be interesting whenever movement observations can 

be obtained rather than the exact mobility states due to measurement errors and other 

noise. However, this model introduces complex computations. 
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2.5 Summary 
This chapter starts with an overview of the development of the mobile networks 

before moving on to introduce WCDMA and its relevant radio resource management 

methods. Then, the smart antenna concept and its working mechanisms are described 

to explain how network performance can be improved by using semi-smart antenna 

when congestion occurs. Finally, the ideas that have been proposed to tackle traffic 

prediction are discussed.  

 

Notice that most of the mobility prediction methods described in this chapter aim at 

location prediction of an individual user. Just the next AP or BS’s ID of each moving 

user is not enough for the semi-smart antenna system to optimize the coverage pattern 

of each antenna sector using the existing optimization methods, for example the 

Bubble Oscillation method and the CBR matching method mentioned above. In order 

to take the advantage of semi-smart antennas to improve the network capacity, future 

geographic distributions of mobile terminals and mobile clusters are needed by the 

load balancing module of the semi-smart antenna system.  

 

Thus, this research attempts to make predictions on the geographic distributions of a 

number of mobile users in specific areas in advance. The term “geographic 

distribution” includes the number of users in sub-areas that compose the coverage 

area of each AP, as well as the location of each mobile user and mobile cluster in the 

observed area. In the next chapter, the traffic pattern prediction carried out in this 

research will be explained in detail. 
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3 MOBILITY MODELLING AND TRAFFIC PATTERN 

LEARNING 

The main task of this research is to predict the future traffic distribution of mobile 

users, which can be used by the semi-smart antenna system to load proper 

beamforming patterns to alleviate the network performance decrease caused by the 

upcoming traffic congestion. In order to generate movement data for traffic pattern 

learning, a mobility model that reflects features of the real-life traffic of mobile users 

is needed. Then, pattern learning modules are needed to learn the movement pattern of 

mobile users and make predictions of upcoming patterns in specific areas. In order to 

evaluate the performance of the learning modules, error rate calculation methods are 

involved to indicate the prediction performance.   

 

3.1 The Overview of Traffic Pattern Prediction 
In real life, the movements of mobile users are rarely completely random, since all the 

motions should be constrained by many factors, such as the road topology the 

intention of the movement, etc. The location information of a moving mobile terminal 

that can be easily obtained is the relative position of that terminal with reference to 

the BS connected by it. As all the motions should obey the same road restriction in the 

same area, it is reasonable to believe that the road topology as well as the movement 

characteristic of a specific area can be learnt by analysing the intra-cell transition data 

captured in this area. Besides, the movement trajectories of different mobile users 

with similar intentions usually look alike, for example the routes of pedestrians from 

the stadium to the nearest tube station after a football match. Thus, the individual 

movement habit recorded in each terminal could be used to indicate the mobile trend 

more accurately based on the learnt local movement characteristic.  

 

The traffic pattern prediction carried out in this research is similar to the user mobility 

prediction that is mentioned in the previous chapter. The similarity between them is 
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that both attempt to guess the future location of moving mobile terminals. In order to 

develop the traffic prediction method used by the semi-smart antenna systems, traffic 

patterns with local geographic details should be forecasted to support the radiation 

pattern adjustment. Thus, the traffic pattern prediction is interested in predicting the 

locations of upcoming or moving mobile clusters and the distribution status of the 

mobile users within each BS rather than just the number of users within each BS. 

Knowing the distribution of mobile terminals, it can be easily discovered which base 

stations and which parts of coverage areas of these base stations are heavily loaded. 

Figure 3.1 (a) and (b) shows how the traffic pattern prediction module would fit 

within the semi-smart antenna system. 

 

 
Figure 3.1 (a) The flowchart of a semi-smart antenna system 
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Figure 3.1 (b) The flowchart of a semi-smart antenna system with the traffic pattern 

prediction module 
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Figure 3.1 (a) shows the flowchart of a normal semi-smart antenna system; Figure 3.1 

(b) shows the flowchart of a semi-smart antenna system with the traffic pattern 

prediction module. The blue areas represent the steps introduced by the traffic pattern 

prediction module. With the normal semi-smart antenna system, an optimized 

radiation pattern will be loaded on the relevant BS to improve the network 

performance when network congestion is found. With the traffic pattern prediction 

module, the upcoming traffic pattern can be estimated and the relevant optimized 

radiation pattern can be calculated in advance. The variable ∆T in Figure 3.1 is the 

time interval between two continuous changes of radiation patterns. According to 

[YWZCX11], there is no need for rapid changes of radiation patterns in semi-smart 

antenna systems; and a fast algorithm for beamforming optimization is not required as 

the time interval ∆T can be set up to 100s. Thus, additional steps introduced by the 

traffic pattern prediction module can be tolerated by semi-smart antenna systems. 

 

Similar to the classification of prediction methods in the mobility prediction area, 

approaches used in this research are classified into centralized prediction (CP) and 

distributed prediction (DP). 

 

 CP approach: Each BS is responsible for building and maintaining pattern 

learning models. Learning models are trained with the local movement data that 

have been captured by the BS to uncover the local movement regularly. When 

making predictions, each BS plays a leading role in the process. 

 

 DP approach: Each observed mobile terminal records its own movement habit 

and trains the pattern learning models to reveal the individual behaviour 

characteristics. Predictions are activated and made by each terminal in the 

prediction phase. 

 

It can be seen that the CP approach is used to obtain the general behaviour features in 

an area. The main benefit of the CP approach is that this scheme can quickly get an 



51 
 

estimation of the learnt model since it improves every time a mobile goes by. On the 

other hand, the DP approach intends to indicate the individual feature during the 

observation. One reason of using DP approach is that the behaviour of a particular 

mobile cannot be simplified to the mean behaviour of all the users moving in the same 

area. However, the DP approach does not work when a mobile terminal enters the 

observation area for the first time, since there is no historical data related to this area. 

Thus, combining the CP and DP approaches together may improve the performance of 

the traffic pattern prediction. In this research, CP learning models are applied to reveal 

the geographic features of an observed area. Then, individual movement features are 

taken into account in the pattern learning phase to improve the accuracy of the 

prediction. 

 

3.2 Existing Mobility Models 
When carrying out telecommunication network simulations, mobility models, such as 

models proposed in [AHMES09], [AKAET09], [CST96], [HMA06] and [SK99], are 

always involved to mimic the movement of a number of real mobile terminals in a 

simulation area. According to [CBD02], current mobility models can be classified into 

two types, traces and synthetic models. Traces are those mobility patterns that are 

captured in real life systems. Information extracted from traces can more accurately 

reflect the real traffic situations. However, the expense and time needed for collecting 

traces from the real network sometimes cannot be afforded. Thus, synthetic models 

are introduced in this field. As implied by the name, synthetic models attempt to 

realistically represent the behaviours of the moving mobile users without the use of 

traces. During the simulation, speed and direction of the user must be changed in 

reasonable time slots. In terms of the correlation among the moving mobile users, the 

synthetic model can be further classified into entity mobility models and group 

mobility models. Mobile users move independently in the entity mobility model. By 

contrast, users’ decisions on movement might depend upon others in the group 

mobility model. 
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According to [CBD02] and [CJS04], the most widely used synthetic entity models 

include: Random Walk Mobility Model and its probabilistic version, Random 

Waypoint Mobility Model, Boundless Simulation Area Mobility Model and 

Gauss-Markov Mobility Model. On the other hand, the most widely used synthetic 

group models includes: Exponential Correlated Random Mobility Model, Colum 

Mobility Model, Nomadic Community Mobility Model, Pursue Mobility Model and 

Reference Point Group Mobility Model. The mobility models that inspire this 

research are the Random Walk Model, the Gauss-Markov Model, the Nomadic 

Community Model, and the Boundless Simulation Area model. The relation of those 

models to this research will be discussed in the following sections. 

 

3.2.1 Random Walk Model 

The Random Walk Model was first proposed mathematically by Einstein in 1926 and 

was widely used (e.g. [BKM94], [GM99], [RC97] and [ZD97]) to simulate the 

extremely unpredictable movement of mobile entities. This model is sometimes 

referred to as Brownian Motion Model. The moving rules of mobile terminals in this 

model are very simple. At the beginning of each simulation, a number of mobile 

terminals are uniformly distributed in a simulation area. Each mobile terminal moves 

from its current location to the next location by randomly choosing a movement 

direction and a movement speed with the following moving rules at time n. 

 

𝜃𝑛 = 𝑢𝑢𝑢𝑢𝑢𝑢𝑢_𝑢𝑟𝑢𝑟(0, 2𝜋) 

𝑣𝑛 = 𝑢𝑢𝑢𝑢𝑢𝑢𝑢_𝑢𝑟𝑢𝑟(𝑣𝑚𝑚𝑛, 𝑣𝑚𝑚𝑚) 

�𝑥𝑛+1 = 𝑥𝑛 + 𝑣𝑛 ∙ cos 𝜃𝑛
𝑦𝑛+1 = 𝑦𝑛 + 𝑣𝑛 ∙ sin 𝜃𝑛

 

(3.1) 

 

where 𝑢𝑢𝑢𝑢𝑢𝑢𝑢_𝑢𝑟𝑢𝑟(𝑟, 𝑏) is the function that returns a value uniformly distributed 

between a and b; (𝑥𝑛+1,𝑦𝑛+1) and (𝑥𝑛,𝑦𝑛) are the location of this mobile terminal 

at time (𝑢 + 1) and n respectively; 𝜃𝑛  and 𝑣𝑛  are the movement direction and 

speed the mobile terminal chooses at time n. Figure 3.2 illustrates the movement 
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pattern Random Walk Model with a single mobile terminal. 

 
Figure 3.2 Movement pattern of a mobile terminal in the Random Walk Model 

(Figure 1 from [CBD02]) 

 

In this research, the walking mechanism of the mobile terminal in the mobility model 

derives from the Random Walk Model. At each time interval, the mobile terminal 

needs to choose a direction and a speed, which are used together with the current 

coordinates to determine its location at the next time interval. 

 

3.2.2 Gauss-Markov Model 

The Gauss-Markov Model was first proposed by Liang and Haas in [LH99]. The main 

aim of this model is to introduce different levels of randomness for the movement of 

mobile terminals. Similar to the Random Walk Model, the movement direction and 

speed are chosen by mobile terminals at each time interval to determine the 

movement trajectory in the following time interval. Instead of using uniformly 

distributed direction and speed, these two walking parameters at time n are 

determined using the following equations. 
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𝜃𝑛 = 𝛼𝜃𝑛−1 + (1 − 𝛼)�̅� + �(1 − 𝛼2)𝜃𝑚𝑛−1 

𝑣𝑛 = 𝛼𝑣𝑛−1 + (1 − 𝛼)�̅� + �(1 − 𝛼2)𝑣𝑚𝑛−1 
(3.2) 

 

where 𝜃𝑛 and 𝑣𝑛 are the direction and speed determined by the mobile terminal at 

time interval n; 𝛼(0 < 𝛼 < 1) is the randomness coefficient that is used to vary the 

randomness of 𝜃𝑛 and 𝑣𝑛; �̅� and �̅� are two constants representing the mean value 

of speed and direction as 𝑢 → ∞; and 𝜃𝑚𝑛−1 and 𝑣𝑚𝑛−1  are random variables from 

the Gaussian distributions with mean values �̅� and �̅� respectively. When 𝛼 = 1, the 

values of 𝜃𝑛  and 𝑣𝑛  are deterministic and equals to the values of 𝜃 and 𝑣 in 

previous time intervals; When 𝛼 = 0, the values of 𝜃𝑛  and 𝑣𝑛  are completely 

random and follow the Gaussian distribution. When 0 < 𝛼 < 1, the intermediate 

level of randomness can be obtained. Figure 3.3 illustrates the movement pattern of 

the Gauss-Markov Model with a single mobile terminal. 

 

 
Figure 3.3 Movement pattern of a mobile terminal in the Gauss-Markov Model 

(Figure 10 from [CBD02]) 
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In this research, the method of determining the walking parameters 𝜃 and 𝑣 derives 

from the Gauss-Markov Model. Intermediate level of randomness is introduced when 

determine the movement speed; 𝜃 is chosen according to the road topology.  

 

3.2.3 Nomadic Community Model 

In real life, the movement of each pedestrian could be independent if the density of 

pedestrians is low in the observed area. Along with the increase of pedestrian density, 

the possibility of interactions among different pedestrians increases as well. In an area 

with high pedestrian density, the movement speed and direction decision made by an 

individual might be greatly affected by the nearby pedestrians. The movement speed 

and direction of an individual pedestrian might be very close to the average speed of 

the pedestrian cluster that the individual belongs to. For vehicles, interference from 

nearby vehicles always exists even when the density of vehicles is not high, due to 

safety considerations. Thus, with the purpose of investigating the influence of a group 

of mobile users, the synthetic group mobility models are introduced into the mobility 

management field. 

 

As the name implies, the Nomadic Community Model is applied to mimic the 

movement of groups of mobile terminals from one point to another [CBD02]. In the 

Nomadic Community Model, each mobile terminal uses an entity mobility model to 

roam around a given reference point. When the reference point starts moving, all the 

terminals in this group move following the trajectory of the reference point. Figure 

3.4 illustrates the movement pattern of the Nomadic Community Model with seven 

mobile terminals and one reference point. 
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Figure 3.4 Movement pattern of a group of users in Nomadic Community Model 

(Figure 16 from [CBD02]) 

 

In this research, one main task is to learn the local traffic pattern and make predictions 

on the future geographic distribution of mobile clusters. The concept of the Nomadic 

Community Model is applied to guide the movement of mobile clusters in [Yao07]. In 

real life, people in a moving cluster can hardly maintain similar movement patterns 

for a long time, but disperse during the movement according to the geographic layout. 

Thus, a more realistic walking rule is applied for the moving clusters in this research, 

which will be presented in the next chapter. 

 

3.2.4 Boundless Simulation Area 

When simulating the movement of mobile users with mobility models, one 

circumstance that mobile users face is the possibility of moving out of the boundary 

of the simulation area which might happen quite often. Thus, it is necessary to extend 

to moving rule to include the solutions for out-of-boundary situations. Three solutions 

that are widely used in mobility models are discussed next. 
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The first solution is to discard those mobile users that are no longer in the simulation 

area and add new mobile users into the simulation area after each ∆𝑇 or the total 

number of the users is less than a threshold value, as shown in Figure 3.5(a). The 

second solution is to prevent the mobile users getting too close to the boundary. When 

the distance between one mobile user and the boundary is shorter than a predefine 

threshold value, the mobile terminal will be forced to move towards the centre of the 

simulation area, as shown in Figure 3.5(b). The third solution is to treat the simulation 

area as a boundless plane. Mobile users that reach one side of the simulation area 

continue travelling and reappear on the opposite side of the simulation area. This 

solution creates a torus-shaped simulation area allowing the mobile users to travel 

unobstructed, as shown in Figure 3.5(c). 
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(a) Discard the out-of-boundary MTs 

 
(b) Rebounding region in the simulation area 

 

(c) Boundless simulation area 

Figure 3.5 Three boundary rules for mobility models 
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In this research, one key task is to learn the local traffic pattern so as to predict the 

future geographic distribution of mobile users. The mobility model used in this 

research is required to reflect real-life traffic patterns. For the first two boundary 

handling solutions, movements in areas with the Mobile Terminal (MT) source or in 

the rebounding region are deterministic and unrealistic. With the boundless simulation 

area solution, the total number of the mobile terminals can be kept constant; and the 

predefined movement rules are not affected when a mobile terminal gets close to the 

boundary. Thus, the concept of the boundless simulation area is applied when building 

the mobility model in this research. Equations below are used when a mobile user is 

out of the boundary at time interval n. 

 

𝑥𝑛 = �𝑥𝑛 + (𝑥𝑚𝑚𝑚 − 𝑥𝑚𝑚𝑛), 𝑥𝑛 < 𝑥𝑚𝑚𝑛
𝑥𝑛 − (𝑥𝑚𝑚𝑚 − 𝑥𝑚𝑚𝑛), 𝑥𝑛 > 𝑥𝑚𝑚𝑚

 

𝑦𝑛 = �𝑦𝑛 + (𝑦𝑚𝑚𝑚 − 𝑦𝑚𝑚𝑛),𝑦𝑛 < 𝑦𝑚𝑚𝑛
𝑦𝑛 − (𝑦𝑚𝑚𝑚 − 𝑦𝑚𝑚𝑛),𝑦𝑛 > 𝑦𝑚𝑚𝑚

 
(3.3) 

 

where 𝑥𝑚𝑚𝑛, 𝑥𝑚𝑚𝑚, 𝑦𝑚𝑚𝑛 and 𝑦𝑚𝑚𝑚 are the boundary values of the simulation area 

in the Cartesian coordinate system. 

 

3.3 The SMP Mobility Model  
In this section, the Single-Movement-Pattern (SMP) mobility model used in this 

research is presented. The main goal of this research is to learn the local traffic pattern 

with historical intra-cell transition data and make predictions on the future local 

distribution of mobile users. The ideal historical data for this research are the daily 

movement trajectories observed by base stations in real life. These trajectories provide 

accurate information that can reflect the behaviour habits of users and the geographic 

layout of the observed area. However, collecting a large set of mobile users’ 

movement trajectories is very time consuming and expensive. For the existing 

mobility models, they are either generating completely random trajectories as shown 

in [AWS06] or generating probabilistic cell transition history as shown in [AHMES09] 

and [SMBS10]. Thus, the SMP mobility models are designed and used in this research 
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to generate comparative realistic movement trajectories of mobile users for local 

traffic pattern learning. One novelty of the proposed SMP model is that factors 

influencing the movement patterns in real life, such as the road topology, the traffic 

condition, the road throughput capability, are introduced when building the mobility 

model. 

 

In order to enable semi-smart antennas to optimise their beamforming patterns with 

load balancing schemes, such as the bubble oscillation algorithm and the CBR 

matching algorithm, for upcoming traffic, both the inter-cell traffic patterns and the 

intra-cell traffic patterns need to be presented in the prediction results of the mobile 

traffic. The inter-cell traffic pattern can be simply indicated by the number of mobile 

users in the coverage area of the target cell. On the other hand, the intra-cell traffic 

pattern needs to show the geographic distribution of mobile terminals so as to let the 

semi-smart antenna know which part of its coverage area is heavily loaded. Thus, 

another novelty of the SMP model is that it generates both the inter-cell transition data 

and the intra-cell movement trajectories. 

3.3.1 Random Walking Point 

In real life, most movements are not completely random but with explicit intent. 

Those real-life movements also need to be restricted by road topology and traffic rules. 

If there is no sudden stop during the movement, the movement trajectory of a mobile 

user can be considered as a continuous and smooth curve. If the moving duration is 

divided into n small time intervals, the movement trajectory then can be decomposed 

into n sub-curves, which can be treated as short lines when the time interval is small. 

This approximation is shown in Figure 3.6. 
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Figure 3.6 User trajectory approximation 

 
With this approximation, each mobile user could be treated as a moving point with 

constant speed and direction in each time interval ∆𝑇. Thus, the Random Walking 

Point (RWP) is introduced in this research to mimic the moving mobile user in real 

life. 

 

The RWP is defined as a continuously moving point that randomly determines its 

location at every step according to the predefined walking rules. The term “step”, with 

the similar meaning of “time interval” mentioned in other research, is used in this 

research. The time interval ∆𝑇 between two steps is a constant. At each step, the 

coordinates of all the RWPs in the simulation area are captured as a traffic snapshot to 

present the instantaneous geographic distribution of the mobile users. Besides, a 

number of consecutive coordinates of one RWP can be used to generate the movement 

trajectory to reflect the user’s behaviour habits and the local area topology. 

 

In this research, a pair of variables, v and 𝜃, are introduced and named as walking 

parameters for the RWP. At each step, the RWP generates the walking parameter 

values to determine its coordinates for the next step. As illustrated in Figure 3.7, v 

describes the walking speed and 𝜃 indicates the walking direction. In this simulator, 

Cartesian coordinates are used to represent and calculate the position of RWPs. The 

new coordinates of the RWP can be obtained by using the following equations: 
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�
𝑥(𝑚+1)𝑗 =  𝑥𝑚𝑗 + 𝑣𝑚𝑗  ∙  𝑐𝑢𝑐 𝜃𝑚𝑗
𝑦(𝑚+1)𝑗 =  𝑦𝑚𝑗 + 𝑣𝑚𝑗  ∙  𝑐𝑢𝑢 𝜃𝑚𝑗

 (3.4) 

 

where 𝑃𝑗�𝑥𝑚𝑗 ,𝑦𝑚𝑗� are the coordinates of RWP 𝑃𝑗 at step i; 𝑃𝑗′�𝑥(𝑚+1)𝑗 ,𝑦(𝑚+1)𝑗� are 

the next coordinates of 𝑃𝑗 at step (𝑢 + 1). 𝑣𝑚𝑗 and 𝜃𝑚𝑗 are the walking parameters 

generated by 𝑃𝑗 at step i. 

 

 

Figure 3.7 Walking parameters of the RWP 

 

In order to reduce the modelling complexity, all the RWPs in this research are treated 

as activated users and there is no “OFF” state for the RWP in the simulation. 

3.3.2 Simulation area 

In order to let the RWPs move in a realistic way, a simulation area with real-life 

geographic features is needed to guide to movements of RWPs. In real life, the 

possible movement directions of mobile users in a specific area are restricted by the 

local road topology. Although the intents of moving mobile users are not the same, 

their movement trajectories in the same local area should follow a limited number of 

movement patterns, which are restricted by the local geographic layout. Thus, in order 

to generate realistic traffic flows, local geographic details are introduced in the 

simulation area used in this research.  

𝜃 

𝑣 

𝑃𝑗 ′(𝑥(𝑚+1)𝑗, 𝑦(𝑚+1)𝑗) 

𝑃𝑗(𝑥𝑚𝑗 , 𝑦𝑚𝑗) 
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In real life, people could always use “east”, “west”, “north”, “south”, “northeast”, 

“northwest”, “southeast” and “southwest” to describe the current direction they are 

moving towards. If a specific area is divided into a number of square-shaped grids, 

then directions all the roads in a grid could lead to are the directions from the current 

grid to its eight neighbours, as shown in Figure 3.8. 

 

Figure 3.8 Geographic grid elements in the simulation area 

 

With the gridded areas as shown in Figure 3.8, the local geographic layout in one grid 

square could be described as the main directions of the traffic flow, which reflect the 

directions of the main roads in that area; and the possibilities transiting from the 

current gird square to its neighbours, which reflect the local movement habits and 

preferences. Therefore, the grids, as shown in Figure 3.8, are defined as geographic 

grid elements (GGEs) in this research, which are used to build the simulation area and 

to provide local geographic details. In order to simplify the simulation, only four 
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directions, “east”, “west”, “north” and “south”, are taken into account in this research. 

Figure 3.9 shows an example of the geographic grid element. 

 

 
Figure 3.9 An example of the geographic grid element 

 

As shown in Figure 3.9, the geographic details carried by a GGE can be classified into 

the following types: 

• Road directions 

• Transition matrix for direction changing 

• Road throughput capabilities 

 

Road directions 𝜃𝑚(𝑢 = 1, 2, 3, 4) are used to indicate the directions of the main roads 

that restrict the local traffic flow in a GGE. As mentioned above, four main directions 

are taken into account in this research, “θr1 - East", “θr2 - North", “θr3 - West" and 

• Road directions 
 

𝜃𝑟1 
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“θr4 - South". In the rest of the thesis, direction 1, direction 2, direction 3 and 

direction 4 are mapped to “East”, “North”, “West” and “South”, respectively. The 

value ranges areθr1[−π
4

, π
4

), θr2[π
4

, 3π
4

), θr3[3π
4

, 5π
4

) and θr4[5π
4

, 7π
4

). When initiating 

the road topology, each GGE randomly generates the four local traffic flow directions 

according to the value range above for each direction. Then these directions are used 

to restrict the movement pattern of MTs in the local area. 

 

The probability 𝑃𝑚𝑗  (𝑢, 𝑗 = 1, 2, 3, 4) in the transition matrix for direction changing is 

used to indicate the inclination of mobile users when travelling in a local area from a 

specific direction. i is the direction the mobile user comes from in the previous step; j 

is the direction this user moves towards in the current step. Notice that the movement 

inclination mentioned here is duo to the features of the geographic layout. For 

instance, pedestrians are inclined to turn to the direction of the bus stop or the tube 

station at a fork during rush hour. When initiating the road topology, the probabilities 

in the transition matrix are generated randomly or based on the predefined local 

geographic layout. Then this matrix needs to be taken into account by MTs when 

making decisions for the next movement direction. 

 

Road throughput capabilities 𝑇𝑃𝑚(𝑢 = 1, 2, 3, 4)  are used to indicate the traffic 

saturation threshold value of each direction. If the number of MTs moving toward 

direction i is larger than the predefined 𝑇𝑃𝑚, then the movement speed of those MTs 

will be affected by the traffic saturation status, and the movement speed of an 

individual MT approaches the average speed in the saturated direction. When 

initiating the road topology, the road throughput capabilities are generated randomly 

or based on the predefined local geographic layout.  

 

In this research, the simulation area is composed of a number of GGEs. As introduced 

above, the main intent of using the GGE is to imitate the influences on the moving 

mobile users from the local geographic layout in real life. Therefore, the movement 



66 
 

patterns generated by RWPs will be more realistic rather than random moving or 

moving straight forward from the initial position to the predefined destination. 

Another benefit of using GGEs to build the simulation area is that the whole layout of 

the simulation area can be easily adjusted to create different scenarios only by 

adjusting the local layouts of the relevant GGEs.  

 

3.3.3 Walking rules 

In this research, the historical movement trajectories of mobile users are generated by 

the mobility model for movement pattern learning sake. As discussed in the previous 

two sections, the RWPs are used to mimic the moving users and the GGEs are used to 

build the simulation area. Then, RWPs are distributed in the simulation area and start 

to move according to the predefined walking rules. This section presents the walking 

rules applied for the RWPs walking over each GGE. 

 

At each step, RWPs generate the walking parameters 𝜃 and v according to the 

information provided by the GGE they visit. When determining the value of 𝜃 in 

each step, the first decision a RWP needs to make is which direction it will move 

toward in this step. The probability of direction changing is calculated based on the 

transition matrix in the visited GGE. Notice that each RWP has a limited number of 

chances to change its direction in one visit of the same GGE, since it is unrealistic to 

keep changing movement direction in the same area in real life. When the movement 

direction is decided, the base value of the movement direction 𝜃𝑏𝑚𝑏𝑏 is fixed, as 

𝜃𝑏𝑚𝑏𝑏 is the same as the relevant road direction 𝜃𝑟𝑚 of the visited GGE. In order to 

introduce the randomness factor into each movement, a random bias 𝜃𝑏𝑚𝑚𝑏  is 

generated followed the Gaussian distribution and added to 𝜃𝑏𝑚𝑏𝑏 to determine the 

value of 𝜃 in this step. The generating rules of 𝜃 can be described as follows: 
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𝜃𝑏𝑚𝑏𝑏 ∈ (𝜃𝑟1,𝜃𝑟2,𝜃𝑟3,𝜃𝑟4) 

𝜃𝑏𝑚𝑚𝑏 = 𝑢𝑟𝑢𝑟_𝑢𝑢𝑢𝑢𝑟𝑛(𝜇𝑏𝑚𝑚𝑏,𝜎𝑏𝑚𝑚𝑏, 𝜃𝑏𝑚𝑚𝑏_𝑚𝑚𝑛,𝜃𝑏𝑚𝑚𝑏_𝑚𝑚𝑚) 

𝜃 = 𝜃𝑏𝑚𝑏𝑏 + 𝜔 ∙ 𝜃𝑏𝑚𝑚𝑏 

(3.5) 

 

where 𝑢𝑟𝑢𝑟_𝑢𝑢𝑢𝑢𝑟𝑛(𝑤, 𝑥, 𝑦, 𝑧) is the function that generates a random number that 

follows the normal distribution 𝑁(𝑤, 𝑥2) within the boundary [𝑦, 𝑧]. 𝜔(0 < 𝜔 <

1) is the randomness level coefficient that is used to vary the randomness level of 

𝜃𝑏𝑚𝑚𝑏. As discussed above, the value range of 𝜃𝑟𝑚 is [−π
2

, 7π
2

). This value range is also 

applicable for 𝜃 . Besides, 𝜃𝑏𝑚𝑚𝑏_𝑚𝑚𝑛  and 𝜃𝑏𝑚𝑚𝑏_𝑚𝑚𝑚  are set to −1
6
𝜋  and 1

6
𝜋 

respectively in this model to introduce a small variation of 𝜃𝑏𝑚𝑏𝑏. 

 

The movement speed v is determined after the RWP knows which direction it travels 

in the current step. When initiating the RWP at the beginning of the simulation, two 

parameters 𝑣𝑛𝑛𝑟𝑚𝑚𝑛 and 𝑣𝑚𝑚𝑚 are preconfigured. 𝑣𝑛𝑛𝑟𝑚𝑚𝑛 can be considered as the 

recommended movement speed for the RWP; 𝑣𝑚𝑚𝑚 is the maximum value of the 

movement speed the RWP can reach. If there is no internal and external influence, the 

RWP is supposed to move with speed 𝑣𝑛𝑛𝑟𝑚𝑚𝑛. However, due to the influences from 

the external environment and the random internal impacts, the actual movement speed 

𝑣𝑚 might vary in each step. The generating rules of 𝑣𝑚 at step i can be described as 

follows: 

 

𝛼 = 𝑢𝑟𝑢𝑟_𝑢𝑢𝑢𝑢𝑢𝑢𝑢(𝑣𝑏𝑚𝑚𝑏_𝑚𝑚𝑛, 𝑣𝑏𝑚𝑚𝑏_𝑚𝑚𝑚) 

𝛽 = ℱ�𝜌𝑟𝑖� 

𝑣𝑚 = (𝜔 ∙ 𝑣𝑚−1 + (1 − 𝜔)𝑣𝑛𝑛𝑟𝑚𝑚𝑛) ∙ 𝛼 ∙ 𝛽 

𝑣𝑚 = 𝑟𝑢𝑎𝑢𝑢𝑢(𝑣𝑚 , 𝑣𝑚𝑚𝑚) 

(3.6) 

 

 

where 𝑢𝑟𝑢𝑟_𝑢𝑢𝑢𝑢𝑢𝑢𝑢(𝑥,𝑦) is the function that generates a random number follows 

the uniform distribution between x and y. ℱ(𝑥) is the function that determines the 
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congestion coefficient according to the number of users facing the relevant direction 

in a GGE. 𝜌𝑟𝑖(𝑢 = 1, 2, 3, 4) indicates the number of uses with the same movement 

direction in a GGE. 𝛼 (0.9 < 𝛼 < 1.1) is the internal random influence factor, which 

represents the speed variation caused by the RWP itself. 𝛽 (0 < 𝛽 < 1) is the traffic 

congestion factor, which represents the external influence from the environment and 

other RWPs. 𝜔(0 < 𝜔 < 1) controls the extent of the dependence between the 

movement speed 𝑣𝑚  at step i and the movement speed 𝑣𝑚−1  at step 𝑢 − 1 . 

𝑟𝑢𝑎𝑢𝑢𝑢(𝑥,𝑦) is the function that retrieving the argument with the smaller value. 

Figure 3.10 shows an example of the simulation results of the SMP model. 

 

 

Figure 3.10 An example of movement trajectories 

 

3.4 Traffic Pattern Learning Methods 
The traffic pattern learning methods involved in this research are inspired from the 

approaches proposed in the mobility prediction field. As mentioned in the previous 

chapter, the main task in the mobility prediction field is to figure out the next possible 
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cells a mobile terminal might visit. The simulation area used in most of the research is 

divided into hexangular grids to mimic the radio cells. Thus, the movement history of 

a mobile terminal could be presented as a sequence of cell IDs from a finite set.  

 

After referring to the methods used in the mobility prediction field, the learning grids 

(LG) are introduced in this research to capture the local movement characteristics and 

provide information for prediction use. The learning grid is defined as a 

square-shaped grid that is much smaller than the radio cell. The number of the 

learning grid contained in the coverage area of a conventional radio cell is a constant. 

Each learning grid is given a unique ID, so the movement trajectory of a mobile 

terminal within a cell can also be presented as a sequence of IDs from a finite set. The 

two CP approaches introduced in this section are both based on the usage of a learning 

grid. 

 

3.4.1 The Order-k Markov learning model 

In the mobility prediction field, both [HKA04] and [SKJH04] show that simple 

Markovian models perform nearly as well as other more complex methods when 

learning the movement features the motion trajectories captured in the Wi-Fi networks. 

Thus, the Order-k Markov learning model with a self-degradation function is used in 

this research. As the existing learning models proposed for predicting the intra-cell 

user distribution are rare, the prediction performance of the Order-k Markov learning 

model is used as a baseline when carrying out the results evaluation. 

 

A Markov chain is a sequence of random variables 𝑋1, 𝑋2, 𝑋3,… with the Markov 

property. Having the Markov property means that, given the present state, future 

states and past states are independent. A Markov chain of order k means that the next 

state only depends on the last k states. The order-k Markov chain can be represented 

by the following equation: 
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𝑃(𝑋𝑛+1 = 𝑥 | 𝑋𝑛 = 𝑥𝑛, … ,𝑋2 = 𝑥2,𝑋1 = 𝑥1) = 

𝑃(𝑋𝑛+1 = 𝑥 | 𝑋𝑛 = 𝑥𝑛, … ,𝑋𝑛−𝑘+1 = 𝑥𝑛−𝑘+1) 
(3.7) 

 

where 𝑃(𝐴|𝐵) denotes the conditional probability of A given B; 𝑥𝑚 (𝑥𝑚 ∈ 𝜗) denotes 

the value at state 𝑋𝑚. Moreover, a stochastic process is said to be stationary, if the 

following equation is satisfied for every shift s and for all 𝑥𝑚 ∈ 𝜗. 

 

𝑃( 𝑋𝑛 = 𝑥𝑛, … ,𝑋2 = 𝑥2,𝑋1 = 𝑥1) = 

𝑃(𝑋𝑛+𝑏 = 𝑥𝑛, … ,𝑋2+𝑏 = 𝑥2,𝑋1+𝑏 = 𝑥1) 
(3.8) 

 

It is reasonable to believe that there are relations between the next area a mobile user 

would visit and the sequence of k areas this user visited most recently because the 

movements of mobile users are always constrained by road topologies and might have 

a common purpose. Thus, the sequence composed by the next location and the 

previous k locations an RWP visited has the Markov property and can be considered 

as order-k Markov chain. Moreover, similar mobility patterns always take place 

repeatedly in one area. If the temporal shift of the occurrence of the similar mobility 

patterns is treated as the shift s appearing as the increment of the subscript in Equation 

3.8, then the occurrence of the k-length movement trajectory in a specific area (for 

instance in the same geographic grid element) can be considered a stationary process.  

 

The main task of the Markov learning model is to predict a sequence of areas an RWP 

will visit according to its movement history. In order to capture the local movement 

characteristics, an Order-k Markov learning model is implemented based on the 

conclusion of Equation 3.7 and 3.8. As mentioned above, a number of learning grids 

are used to cover the simulation area. Since each learning grid has a unique ID, the 

short term motion trajectory of a mobile terminal can be represented by a series of 

learning grid IDs from a finite integer set.  

 

At each step, the RWPs determine the IDs of the learning grids they are visiting. Thus, 
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an RWP 𝑃𝑚 should have a movement history set 𝐿𝑚 = {𝑛0, 𝑛1, 𝑛2, … , 𝑛𝑛−1, 𝑛𝑛} at the 

end of step n, where 𝑛0 is the learning grid ID related to 𝑃𝑚’s initial position and 𝑛𝑛 

is the learning gird ID related to the coordinates of 𝑃𝑚 at step n. Then, this RWP 

generates a “context, next location” pair {𝑛𝑛−𝑘, 𝑛𝑛−𝑘+1, … , 𝑛𝑛−1;  𝑛𝑛} that will be sent 

to the Order-k Markov model that belongs to learning grid with 𝑛𝑛−1 as its ID. The 

first k elements denote the k grids this user visited most recently; the last element 

denotes the grid visited after the context. The “context, next location” pairs generated 

by the RWPs are used to train the learning models. With the CP scheme, an Order-k 

Markov learning model can be trained quickly because it improves every time an 

RWP goes by. 

 

Assume that 𝐿𝑛  denotes the location of an RWP at step n; 

𝐿𝑐𝑛𝑛𝑐𝑏𝑚𝑐 = {𝐿𝑛, 𝐿𝑛−1, … , 𝐿𝑛−𝑘+1} denotes the k-length location context used for 

prediction; 𝕃 denotes the historical sample set of “context, next location” pairs the 

predictor has already recorded. It is worth noting that the length of each member in 𝕃 

is 𝑘 + 1. If one 𝐿𝑐𝑛𝑛𝑐𝑏𝑚𝑐 is seen and captured before by a learning model, this 

𝐿𝑐𝑛𝑛𝑐𝑏𝑚𝑐 is the substring of at least one member of the 𝕃 owned by that learning 

model. Then, the prediction rule of the Order-k Markov predictor can be represented 

by the following equation: 

 

𝑃�(𝐿𝑛+1 = 𝑛 |𝐿𝑐𝑛𝑛𝑐𝑏𝑚𝑐) =
𝑁((𝐿𝑐𝑛𝑛𝑐𝑏𝑚𝑐, 𝑛);  𝕃)
𝑁(𝐿𝑐𝑛𝑛𝑐𝑏𝑚𝑐;  𝕃)

 (3.9) 

 

where 𝑁(𝑐;𝕊) denotes the number of times the string 𝑐 occurs as a substring in the 

string set 𝕊; (𝑐1, 𝑐2) denotes a string with 𝑐1 as its former part and 𝑐2 as its latter 

part. 

 

When making a prediction, an RWP sends a k-length context, including the last k 

learning grid IDs, to the local Order-k Markov model. The learning model calculates 

the probability of each possible l with equation 3.9. In this research, two different 
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choosing rules are used to determine the next possible location. The first rule is that 

the predicted next location 𝑛𝑝𝑟𝑏𝑝 is chosen if it has the highest 𝑃��𝑛𝑝𝑟𝑏𝑝 �𝐿𝑐𝑛𝑛𝑐𝑏𝑚𝑐); 

the second rule is that the 𝑛𝑝𝑟𝑏𝑝 is chosen with a probability of 𝑃��𝑛𝑝𝑟𝑏𝑝 �𝐿𝑐𝑛𝑛𝑐𝑏𝑚𝑐). 

Only one of these rules is activated in each simulation. Notice that if the k-length 

context is seen for the first time, the first j IDs (1 ≤ 𝑗 < 𝑘) will be discarded. Then, 

the Order-k Markov model will degenerate to an Order-(𝑘 − 𝑗) Markov model and 

use the last 𝑘 − 𝑗 elements in the context to make a prediction.  

 

3.4.2 Static Traffic Pattern Learning model 

In [YKUM04], a three-phase algorithm is proposed to carry out the mobility 

prediction. According to [YKUM04] and [WY02], traffic patterns hiding in the 

historical trajectories contain valuable information that could reveal the behaviour 

features of a target user or the movement features in a target cell. The authors use the 

first two phases to learn the inter-cell traffic patterns and to extract the mobility rules 

from the learnt patterns. Then these rules are used to make mobility prediction in the 

last phase.  

 

For the inter-cell mobility prediction, the mobility rules reflect the probabilities of a 

target user moving from the current cell to its neighbours. When mining the intra-cell 

movement trajectories in this research, the aim is to discover the local geographic 

pattern and the movement habits of each local area covered by a base station. Inspired 

from the concept of learning mobility patterns from historical data in [YKUM04], this 

research proposes a Static Traffic Pattern Learning (STPL) model to handle the 

short-term traffic pattern prediction. 

 

Notice that the real-life movement trajectories of mobile users are rarely random. 

When walking on the street, most people have an explicit destination rather than 

aimless roaming. In order to avoid obstacles, a movement trajectory can hardly be a 

straight line between the starting point and the end point, but be restricted by the 
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geographic layout along the path. Besides, the routes chosen by different users should 

be similar in the same area, as the movement patterns in a specific area are limited. 

Thus, this research uses the STPL model to learn the traffic patterns from the 

following aspects: local geographic layout, local behaviour habit, and short-term 

movement speed variation. 

 

Figure 3.11 shows movement trajectories of moving mobile users in the coverage area 

of a semi-smart antenna. In real life, the coverage radius of a BS in urban area is 

usually between 500 metres and 1500 metres. Although the movement patterns in the 

whole coverage area cannot be unique, trajectories in the same local area should 

follow the similar patterns, as those trajectories are affected by the same local features. 

Thus, a number of square-shaped learning grids are deployed into the target area, and 

each learning grid applies the STPL model locally to learn the local traffic patterns, as 

shown in Figure 3.12. 

 

Figure 3.11 Intra-cell movement trajectories of mobile terminals 
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Figure 3.12 Learning grids deployed in the simulation area 

 

When processing the historical movement data, the learning grid records each 

movement trajectory that goes through its coverage area as a context sequence of 

coordinates 𝐶𝑐𝑛𝑛𝑐𝑏𝑚𝑐 = {𝐶𝑓𝑟𝑛𝑚,𝐶1,𝐶2, … ,𝐶𝑛,𝐶𝑐𝑛} (𝑢 ≥ 1), where 𝐶𝑓𝑟𝑛𝑚  is the last 

observed coordinates before a user enters the coverage area of the learning grid; 𝐶𝑐𝑛 

is the first observed coordinates before a user leaves the coverage area of the learning 

grid; 𝐶1,𝐶2, … ,𝐶𝑛  are n pairs of coordinates consecutively observed within the 

coverage area of the learning grid, as shown in Figure 3.13. Then, all the context 

sequences recorded by the learning grid are used to learn the local traffic pattern. 
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Figure 3.13 An example of the context sequence 

 

When learning the local traffic patterns, the first task is to learn the local geographic 

layout. In this research, the main movement directions in the target area are treated as 

the direct reflection of the main roads’ directions, which reveals the local geographic 

layout. At the beginning of the pattern learning phase, an integer number k is 

designated to denote the number of main directions. Then the 2𝜋  radians are 

averagely divided into k sectors, as shown in Figure 3.14. The sector i indicates the ith 

main direction with the value range �(2𝑚−3)𝜋
𝑘

, (2𝑚−1)𝜋
𝑘

�  (𝑢 = 1, 2, 3, … ,𝑘). 

𝐶𝑓𝑟𝑛𝑚 

𝐶1 𝐶2 𝐶𝑐𝑛 
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Figure 3.14 Dividing 2𝜋 radians into k main directions 

 

For a context sequence 𝐶𝑐𝑛𝑛𝑐𝑏𝑚𝑐 = {𝐶𝑓𝑟𝑛𝑚,𝐶1,𝐶2, … ,𝐶𝑛,𝐶𝑐𝑛} (𝑢 ≥ 1), 𝑢 > 1 means 

the observed user moves within the coverage area of the target learning grid for more 

than 1 time interval of the observation. 𝑢 = 1 means the observed user moves fast in 

this area, only one observation captures its presence in this area. Figure 3.15 shows 

the above two circumstances.  
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Figure 3.15 Examples of the context sequence with different length 

 

In order to extract the sample values of the movement directions, the learning grid 

filters out all the context sequences with (𝑢 ≥ 1), and calculates the direction sample 

values 𝜃  with all (𝐶𝑚(𝑥𝑚,𝑦𝑚),𝐶𝑚+1(𝑥𝑚+1, ,𝑦𝑚+1)) pairs extracted from the context 

sequences by using the following equations. 

 

𝑐𝑛𝑝𝑝 = 𝑦𝑚+1 − 𝑦𝑚 

𝑐𝑚𝑝𝑗 = 𝑥𝑚+1 − 𝑥𝑚 

𝜃 = ℱ𝑚𝑟𝑐𝑐𝑚𝑛(𝑐𝑛𝑝𝑝, 𝑐𝑚𝑝𝑗 ,𝑘) 

(3.10) 

 

where 𝑐𝑛𝑝𝑝  and 𝑐𝑚𝑝𝑗  denote the length of opposite side and the length of the 

adjacent side respectively. Notice that the value of 𝑐𝑛𝑝𝑝 and 𝑐𝑚𝑝𝑗 can be negative. 

ℱ𝑚𝑟𝑐𝑐𝑚𝑛(𝑟, 𝑏,𝑘) is the function to calculate the arctangent value of 𝑚
𝑏
 with the value 

range [−𝜋
𝑘

, (2𝑘−1)𝜋
𝑘

). k is an integer that indicates the number of main directions 

taken into account in the learning phase. 

 

𝐶𝑓𝑟𝑛𝑚 

𝐶1 𝐶2 𝐶𝑐𝑛 

𝐶𝑓𝑟𝑛𝑚 

𝐶𝑐𝑛 

𝐶1 
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Assume that Θ𝑚(𝑢 = 1, 2, … , 𝑘) denotes the 𝜃 sample set for the ith interval with 

value range �(2𝑚−3)𝜋
𝑘

, (2𝑚−1)𝜋
𝑘

�  (𝑢 = 1, 2, 3, … ,𝑘). After each calculation with equation 

3.10, the direction sample 𝜃 ((2𝑗−3)𝜋
𝑘

≤ 𝜃 < (2𝑗−1)𝜋
𝑘

) is added to the sample set 

Θ𝑗(1 ≤ 𝑗 ≤ 𝑘). With the purpose of simulating a realistic environment, the population 

of 𝜃 in each sample set is assumed to follow a normal distribution. Assume that the 

𝜃 samples recorded in Θ𝑚  are Θ𝑚(𝜃𝑚1,𝜃𝑚2, … ,𝜃𝑚𝑛). By assuming 𝛩𝑚~ 𝑁(𝜇𝜃𝑚,𝜎𝜃𝑚2 ), 

the estimated value of 𝜇𝜃𝑚 and 𝜎𝜃𝑚2  are: 

 

⎩
⎪
⎨

⎪
⎧�̂�𝜃𝑚 =  𝜃𝚤� =  �𝜃𝑚𝑗  / 𝑢

𝑛

𝑗=1

𝜎�𝜃𝑚2 =  
1
𝑢
�(𝜃𝑚𝑗 −  𝜃𝚤�)2
𝑛

𝑗=1

     (𝑢 = 1, 2, … , 𝑘) (3.11) 

 

where �̂�𝜃𝑚 is the average value of the ith movement direction; 𝜎�𝜃𝑚is the average 

deviation between �̂�𝜃𝑚  and sample values in Θ𝑚 . In this research, 

𝛩𝑚~ 𝑁�𝜇𝜃𝑚,𝜎𝜃𝑚2 �(𝑢 = 1, 2, … ,𝑘) is treated as the learnt geographical features of the 

coverage area of a learning grid.  

 

The next task in the traffic pattern learning phase is to determine the local behaviour 

habits. When walking in the same local area, similar patterns can be observed as users 

share common intentions. As shown in Figure 3.16, mobile users have similar 

movement patterns when they want to reach the bus station. In this research, the local 

route choosing preferences are considered as the reflection of mobile users’ behaviour 

habits.  
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Figure 3.16 Typical movement trajectories towards the bus stop at Mile End, London 

 

For a context sequence 𝐶𝑐𝑛𝑛𝑐𝑏𝑚𝑐 = {𝐶𝑓𝑟𝑛𝑚,𝐶1,𝐶2, … ,𝐶𝑛,𝐶𝑐𝑛} (𝑢 ≥ 1) , 𝐶𝑚(𝑢 =

1, 2, … ,𝑢) are the observations within the learning grid; 𝐶𝑓𝑟𝑛𝑚  and 𝐶𝑐𝑛  are the 

observations in the neighbour areas of the learning grid. If 𝐶𝑓𝑟𝑛𝑚  and 𝐶𝑐𝑛  are 

substituted by 𝐶0 and 𝐶𝑛+1 respectively, the context sequence can be written as 

𝐶𝑐𝑛𝑛𝑐𝑏𝑚𝑐 = {𝐶0,𝐶1,𝐶2, … ,𝐶𝑛,𝐶𝑛+1} (𝑢 ≥ 1). Then, the movement direction of the 

observed user at observation 𝐶𝑚(𝑢 = 1, 2, … ,𝑢, 𝑢 + 1) can be obtained by applying 

equation 3.10 to (𝐶𝑚−1,𝐶𝑚). Assume that 𝜃𝑚 denotes the movement direction at 𝐶𝑚; k 

denotes the designated number of the main directions. As mentioned above, the 2𝜋 

radians are averagely divided into k sectors, and sector j indicates the jth main 

direction with the value range �(2𝑗−3)𝜋
𝑘

, (2𝑗−1)𝜋
𝑘

�  (𝑗 = 1, 2, 3, … , 𝑘). These k sectors 

are treated as k states in this part. The state of the movement direction 𝜃𝑚 at 𝐶𝑚 is j, 

if (2𝑗−3)𝜋
𝑘

≤ 𝜃𝑚 < (2𝑗−1)𝜋
𝑘

 exists. Assume 𝑟(𝜃𝑚) denotes the state of the movement 

direction at 𝐶𝑚(𝑢 = 1, 2, … , 𝑢,𝑢 + 1), then the context sequence of the direction states 

related to 𝐶𝑐𝑛𝑛𝑐𝑏𝑚𝑐 = {𝐶0,𝐶1,𝐶2, … ,𝐶𝑛,𝐶𝑛+1} (𝑢 ≥ 1) can be written as: 

Bus stop 
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𝑟𝑐𝑛𝑛𝑐𝑏𝑚𝑐 = [𝑟(𝜃1),𝑟(𝜃2), … ,𝑟(𝜃𝑛),𝑟(𝜃𝑛+1)] (𝑢 ≥ 1) (3.12) 

 

By applying the conversion described above, all the context sequences recorded by a 

learning grid can be written as context sequences of direction states to indicate the 

local direction state transition regularities. Notice that the lengths of the direction state 

sequences are not the same, as the value of n in each 𝐶𝑐𝑛𝑛𝑐𝑏𝑚𝑐 varies.  

 

As discussed in the previous section, the movements of mobile users are not 

memoryless, as the current pattern strongly depends on the previous L movement 

patterns. Let 𝑟𝑚(𝐿)  denote the direction state sequence of mobile user x with 

sequence length L. Assume that the direction state is a variable D, and 𝐷(𝑢, 𝑗) is a 

string 𝐷𝑚𝐷𝑚+1 …𝐷𝑗  representing the sequence of values that D takes for 1 ≤ 𝑢 ≤ 𝑗 ≤

𝐿, then the states of movement direction can be described as an order-L Markovian 

process as follows: 

 

𝑃𝑢𝑢𝑏 �𝐷𝑛+1 = 𝑟�𝐷(1,𝑢) = 𝑟𝑚(𝐿)� 

= 𝑃𝑢𝑢𝑏(𝐷𝑛+1 = 𝑟|𝐷(𝑢 − 𝐿 + 1,𝑢) = 𝑐) 

= 𝑃𝑢𝑢𝑏(𝐷𝑚+𝐿+1 = 𝑟|𝐷(𝑢 + 1, 𝑢 + 𝑘) = 𝑐) 

(3.13) 

 

Notice that the first two lines indicate that the probability depends on the most recent 

L states, while the latter two lines indicate the assumption of a stationary property of 

this process.  

 

Each direction state sequence 𝑟𝑐𝑛𝑛𝑐𝑏𝑚𝑐 recorded by the learning grid is a sub-string 

of a 𝑟𝑚(𝐿), which reveals the direction state transitions when user x goes through the 

coverage area of the learning grid. Let 𝔻𝑚  denote all the 𝑟𝑐𝑛𝑛𝑐𝑏𝑚𝑐  sequences 

recorded by learning grid m; let 𝐷𝑚 = {𝑟𝑚1,𝑟𝑚2, … ,𝑟𝑚𝑛} (𝑛 ≥ 1)  denote the 
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direction state context sequence that could be observed in m; let 𝐷𝑚(𝑛) denote the lth 

states in 𝐷𝑚. Notice that all the states in 𝐷𝑚 should be movement direction states 

that can be observed in m. Thus, the local direction state transition regularities in m 

can be presented as: 

 

𝑃𝑚(𝐷𝑚(𝑛 + 1) = 𝑟|𝐷𝑚) =
𝑁((𝐷𝑚,𝑟);  𝔻)
𝑁(𝐷𝑚;𝔻)

 (3.14) 

 

where 𝑁(𝑐;𝕊) denotes the number of times the string 𝑐 occurs as a substring in the 

string set 𝕊; (𝑐1, 𝑐2) denotes a string with 𝑐1 as its former part and 𝑐2 as its latter 

part. Notice that the Markov model above will degenerate to a lower order level, if 

𝐷𝑚 is seen for the first time. 

 

The last task in the traffic pattern learning phase is to learn the short-term movement 

speed variation. In this research, the time interval between each traffic pattern 

observation ∆𝑇 is very short. The movement speed cannot be considered as a 

constant during the whole movement, as the movement speed of the mobile user 

might be affect by the unexpected incidents from the external environment. However, 

the speed in the consecutive time intervals should be similar and correlated, as the 

value of ∆𝑇  is small. Thus, the Weighted Moving Average (WMA) model, 

mentioned in [QWZW10], is applied in this research to make short-term predictions 

on the movement speed.  

 

Let 𝑣𝑚(𝑡) denote the movement speed of mobile user x at step t; let 𝑣�𝑚(𝑡) denote 

the estimated speed at step t. Considering that the speed at time interval nearer to the 

time interval 𝑡 + 1 is more correlated with the movement speed at time interval 

𝑡 + 1, a WMA model can be presented as: 

 

𝑣�𝑚(𝑡 + 1) =
𝛼0𝑣𝑚(𝑡) + 𝛼1𝑣𝑚(𝑡 − 1) + ⋯+ 𝛼𝑘𝑣𝑚(𝑡 − 𝑘)

𝛼0 + 𝛼1 + ⋯+ 𝛼𝑘
 (3.15) 
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where 𝛼𝑚(0 < 𝛼𝑚 < 1) denotes the weight and the contribution from 𝑣𝑚(𝑡 − 𝑢). The 

values of 𝛼𝑚 and k are designated at the beginning of the simulation. 

 

3.5 Results Evaluation 
When the predicted traffic distribution is obtained, evaluation methods need to be 

applied to determine the performance of the proposed pattern learning models. In this 

research, traffic pattern predictions are carried out to provide upcoming traffic pattern 

details for semi-smart antennas to adjust beamforming patterns. The existing load 

balancing schemes as presented in Chapter 2 do the calculation based on the local 

distribution of mobile users and the location of mobile clusters. Thus, the prediction 

results can be considered as accurate if the predicted traffic distribution in the target 

base station’s coverage area is close to the real distribution, and the upcoming location 

of the mobile clusters can be correctly identified. 

 

In this research, user distribution grids (UDGs) are introduced to evaluate the 

prediction performance. Two types of the UDGs are involved in the results evaluation, 

the square-shaped UDG (SUDG) and the arc-shaped UDG (AUDG), as shown in 

Figure 3.17. 
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Figure 3.17 Examples of SUDGs and AUDGs 

 

For the SUDG, the whole simulation area is divided into a number of square-shaped 

units with the predefined length and width. For the AUDG, the conventional coverage 

area of each base station is divided into sectors and bands, as shown in Figure 2.9. 

Then all the segments in the coverage area of a semi-smart antenna are considered as 
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the UDG for this antenna.  

 

When evaluating the prediction results with SUDGs, the cumulative error rate of each 

prediction is calculated in terms of the incorrect ratio of the population of RWPs in 

the SUDGs. Assume that 𝑁𝑟𝑚(𝑢) denotes the real number of mobile users in the mth 

SUDG at step i. 𝑁𝑝𝑚(𝑢) is used to denote the predicted number of mobile users in 

the mth UDG at step i. Thus, prediction error rate of the mth SUDG at step i can be 

calculated by the following equation: 

 

𝑒𝑆𝑆𝑆𝑆(𝑢,𝑢) =
 𝑁𝑟𝑚(𝑢) − 𝑁𝑝𝑚(𝑢)

𝑁𝑟𝑚(𝑢)  (3.16) 

 

and the cumulative error rate of the prediction at step i can be calculated by the 

following equation: 

 

𝐸𝑆𝑆𝑆𝑆(𝑢) = �∑ 𝑒𝑆𝑆𝑆𝑆(𝑢,𝑢)2𝑚

𝑀
 (3.17) 

 

where M denotes the total number of the SUDG deployed in the simulation area. 

 

When evaluating the prediction results with AUDGs, the cumulative error of each 

prediction is calculated in terms of difference of the population of RWPs in each 

AUDG. Notice that the centre point of one set of AUDGs, as shown in Figure 3.16, is 

the location of one BS, and AUDGs are deployed in the coverage area of this BS. 

When the granularity of the AUDG set is high, for example 36 × 20 which is used in 

[Yao07], the population of RWPs might be 0 in many AUDGs, which leads the 

denominator in equation 3.16 become invalid. Thus, the following equations are used 

to calculate the cumulative errors. 

 

𝑒𝐴𝑆𝑆𝑆(𝑢,𝑢) = 𝑁𝑟𝑚(𝑢) − 𝑁𝑝𝑚(𝑢) (3.18) 
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𝐸𝐴𝑆𝑆𝑆(𝑢) = �∑ 𝑒𝐴𝑆𝑆𝑆(𝑢,𝑢)2𝑚

𝑀
 (3.19) 

 

3.6 Verification and Validation 
As explained in [LK97], verification is the check that the simulation model is 

performing as intended; validation is the check that the conceptual simulation model 

is an accurate representation of the system under study.  

 

In this research, the verification of the mobility models and the learning models were 

carried out by detailed debugging of the codes and detailed study of printouts. Tracing 

information was added into each key step to track the correctness of the operations.  

 

On the other hand, the validation of the mobility models was performed by checking 

the correctness of the movement trajectory against the predefined geographic layout; 

and the validation of the learning models was performed by checking the predictions 

made manually against the historical trajectory segments extracted from the relevant 

learning grid. 

 

3.7 Summary 
In this chapter, the main concepts of this research and the models involved are 

presented. First, the definition and features of the traffic pattern prediction carried out 

in this research is given. Then the SMP model used in this research is introduced from 

the perspectives of the RWP, the simulation area and the walking rules. Subsequently, 

the two pattern learning models and the result evaluation methods are presented.  

 

The STP mobility model is novel, as the external influences are taken into account 

when generating individual movement trajectories and intra-cell traffic patterns are 

generated rather than the inter-cell distributions. The STPL pattern learning method is 

novel, as the cell transition data is used to uncover the local geographic layout and the 
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aggregating intra-cell movement features are learnt rather than the visiting preference 

of neighbouring radio cells. The concept of combing the proposed traffic pattern 

prediction with load balancing is novel, as upcoming geographic distributions of 

mobile users are predicted and optimized radiation patterns are calculated accordingly 

to guide the beamforming adjustment rather than matching the observed congestion 

patterns with existing cases in the case library and choosing the radiation pattern 

related to the matched case ([Yao07]). 

 

In the next chapter, the process of performing the traffic pattern prediction is 

described and the simulation results in different scenarios are presented and discussed. 
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4 PERFORMING TRAFFIC PATTERN PREDICTION 

In this chapter, traffic pattern prediction is performed by using the two pattern 

learning models described in the previous chapter. At the beginning of this chapter, an 

overview of how traffic pattern prediction is performed is given. Then the 

configuration of the mobility model and the pattern learning models are introduced, 

followed by the description of the predefined scenarios. Finally, the simulation results 

are presented and discussed to reveal the feasibility of predicting upcoming traffic 

patterns. 

 

4.1 An Overview of Performing Traffic Pattern Prediction 
Generally speaking, the simulation carried out in this research is to investigate the 

feasibility of using proposed learning models to learn the local movement patterns and 

to make predictions on the upcoming distributions of mobile users and mobile clusters 

in cellular networks. Mobility models are used to provide historical movement 

patterns by simulating the real-life traffic patterns of moving mobile users. Pattern 

learning models are used to learn the local movement patterns according to the 

historical data and to make predictions on the upcoming pattern variations. Traffic 

patterns generated by the mobility models are called “real patterns”; Traffic patterns 

predicted by the learning models are called “predicted patterns”. Both the real pattern 

and the predicted pattern are given a time stamp to indicate the moment at which the 

pattern is seen or will be seen. The time stamp here is the step number, at which the 

pattern is observed. The performance is evaluated by making comparisons between 

the real and the predicted traffic patterns that have the same time stamp. 

 

In the simulation, a number of RWPs continuously move in a predefined simulation 

area. The simulation area is composed of a number of geographic grid elements, 

which are used to mimic a variety of road topologies. All the RWPs change their 

speed and direction according to the restrictions in the geographic grid element. In 
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order to learn the mean behaviour regularity in each specific area, learning grids are 

involved to cover the whole simulation area, capture the historical movement data, 

and learn the mobility features. Then, with the knowledge that has already been learnt, 

the future locations of the RWPs are predicted to present the distribution of the mobile 

terminals in future steps. Figure 4.1 shows the flowchart of the simulation described 

in this chapter.  



89 
 

 

Figure 4.1 Simulation flowchart 
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In this research, either the on-line pattern learning or the off-line pattern learning can 

be performed. With the on-line pattern learning, the pattern prediction is carried out 

with pattern learning at the same time; with the off-line pattern learning, the pattern 

prediction is performed based on the knowledge that has already been learnt from the 

historical data. From the perspective of tasks, the simulation process can be divided 

into three phases, the pattern generating phase, the pattern learning phase, and the 

pattern prediction phase. In Figure 4.1, blue areas represent the pattern generating 

phase; yellow areas represent the pattern learning phase; green areas represent the 

pattern prediction phase. 

 

4.1.1 Pattern generating phase 

In the pattern generating phase, the main task is to generate traffic patterns that can be 

used as historical data by the pattern learning models. At the beginning of the 

simulation, all the RWPs are distributed in the simulation area uniformly or following 

the predefined rules. Then, the RWPs independently generate the walking parameters 

r and 𝜃 to carry out the movement. Notice that the r and 𝜃 values generated by an 

RWP are not dependent on the parameter values generated by others, but impacted by 

the predefined local road conditions. The higher the throughput towards one direction 

is, the larger the flux of that direction could be seen. Besides, in order to eliminate the 

unrealistic direction change, there is limited number of chances for an RWP to change 

its moving direction at the same visit of one geographic grid element. Since the 

simulation area is a boundless area, RWPs that reach one side of the simulation area 

continue travelling and reappear on the opposite side of the simulation area. 

 

On the other hand, the GGEs are used to support the random walking of RWPs by 

reproducing the factors and phenomena that can be seen in real life. First, the road 

topology is reproduced by different direction changing probabilities predefined in 

each grid element. If the direction changing probability of each direction is similar, 

that area probably is an intersection. If the direction changing probability of “east” 
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and “west” is much higher than other probabilities, it means that there probably is an 

east-west major road in this area. Second, the throughput capacity of different roads is 

reproduced by the throughput capability parameters. Major roads have larger 

throughput capability parameters. Besides, the throughput capability parameter is also 

used to calculate the congestion coefficient when the RWP determines the movement 

speed at each step. The value of the congestion coefficient in one direction is 

inversely proportional to the user density of that direction. The term “user density” is 

defined as the number of RWPs that moving towards the same direction in a specific 

area. Third, different traffic scenarios are created by adjusting the values of direction 

changing probability and the road throughput capability. The mobile clusters can be 

easily formed by decreasing the value of the road throughput capability, as happens in 

real life. 

 

4.1.2 Pattern learning phase 

The main task of this phase is to record the local movement pattern and learn the local 

behaviour regularity. The order-k Markov learning model and the STPL model are 

used in this section to illustrate the process of extracting the local traffic patterns. In 

this research, either the on-line pattern learning or the off-line pattern learning can be 

employed.  

 

When applying the on-line pattern learning mode, the RWPs need to report the 

movement trajectory segments to the relevant learning grids at the end of each step, 

which allows the latest traffic patterns to be taken into account. With a proper 

predefined time window, abnormal traffic patterns can be noticed right after they are 

captured by the learning grids. The reported trajectory segment for the order-k 

Markov model is the most recent 𝑘 + 1 length movement trajectory represented by a 

string of IDs of the related learning girds. The reported trajectory segment for the 

STPL model is the movement trajectory from the last observed location before 

visiting the target learning grid to the first observed location after moving out of this 
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learning grid. This reported trajectory segment is represented by a string of 

coordinates. Examples of these two kinds of trajectory segments are shown in Figure 

4.2 (a) and Figure 4.2 (b). One drawback of using the on-line mode is that pattern 

generation, pattern learning and pattern prediction are carried out in parallel, which 

might lead to a slow operating speed. 

 

Figure 4.2 (a) Context-Next Location pairs for Order-5 Markov model 

 

Figure 4.2 (b) Coordinates strings for STPL model 

 

When applying the off-line pattern learning mode, the complete movement trajectory 

Context Next Location 

   (Px , Py) 
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of each mobile terminal is recorded instead of trajectory segments. The recorded 

movement trajectory contains the coordinates, the moving direction, and the related 

learning grid’s ID of each observation, as shown in Figure 4.3. When collecting the 

pattern data, each movement trajectory is written in an individual text file, and the file 

name is reported to the learning grids that appear in the trajectory to expedite the 

generation of learning patterns. Before starting to learn the pattern features, local 

traffic patterns that are suitable for the applied learning model should be extracted 

from the recorded trajectories by each learning grid. Although the pattern learning 

phase is more complicated and time consuming in the off-line mode, predictions can 

be made much faster with the knowledge learnt off-line. One drawback of using the 

off-line mode is that response time to real-time traffic pattern changes is long.  

 
Figure 4.3 Movement trajectory recorded in the off-line mode 

 

Step No. Coordinates Direction & Grid ID 
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Either applying the on-line learning mode or the off-line learning mode, learning 

patterns that are suitable for the applied learning model are needed before carrying out 

the pattern learning phase. With the on-line mode, all the patterns recorded by the 

learning girds are ready to use. With the off-line mode, learning patterns, with the 

same format as patterns captured in the on-line mode, need to be extracted from the 

recorded trajectories. When performing the pattern learning algorithm, there is no 

difference between the on-line mode and the off-line mode. 

 

With the proposed order-k Markov model, 𝑘 + 1 length “context, next location” 

pairs {𝑛𝑛−𝑘, 𝑛𝑛−𝑘+1, … , 𝑛𝑛−1;  𝑛𝑛} are used by each learning gird to reveal the local 

traffic features. With Equation 3.9, the conditional probability of the next possible 

location 𝑃�(𝐿𝑛+1 = 𝑛 |𝐿𝑐𝑛𝑛𝑐𝑏𝑚𝑐)  can be calculated by given a k length observed 

movement trajectory 𝐿𝑐𝑛𝑛𝑐𝑏𝑚𝑐 = {𝐿𝑛, 𝐿𝑛−1, … , 𝐿𝑛−𝑘+1}. In the learning phase, related 

“context, next location” pairs are loaded into the buffer of the learning grid for 

prediction use, rather than doing calculation. 

 

With the proposed STPL model, the context sequences of coordinates 𝐶𝑐𝑛𝑛𝑐𝑏𝑚𝑐 =

{𝐶𝑓𝑟𝑛𝑚,𝐶1,𝐶2, … ,𝐶𝑛,𝐶𝑐𝑛} (𝑢 ≥ 1) are used by each learning gird to discover the 

local geographic layout and the local behaviour habits. Assume 2𝜋 radians are 

averagely divided into k sectors that represent the possible movement directions. With 

Equation 3.10 and 3.11, the regularities of each possible movement direction in the 

local area can be expressed as a probability distribution. With Equation 3.10, a 

coordinate sequence can be converted to a context sequence of the direction states 

𝑟𝑐𝑛𝑛𝑐𝑏𝑚𝑐 = [𝑟(𝜃1),𝑟(𝜃2), … , 𝑟(𝜃𝑛),𝑟(𝜃𝑛+1)] (𝑢 ≥ 1). The converted direction state 

sequences are loaded into the learning grid’s buffer for calculating the conditional 

probability of the next moving direction in the prediction phase. 

 

4.1.3 Pattern prediction phase 

The main task of this phase is to estimate the distributions of mobile terminals in the 
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upcoming observation steps. As mentioned above, the location of a moving mobile 

terminal at step 𝑡 + 1 is correlated with the movement patterns from step 𝑡 − 𝑘 + 1 

to step t. With the most recent k observations, the next location of the moving mobile 

terminal can be estimated by the pattern learning models according to the local traffic 

features learnt from the historical data. In this research, predictions are made for 

individual mobile terminals. Then, the predicted distributions of all the mobile 

terminals are compared to the real observed traffic distributions to determine the 

prediction accuracy. 

 

When applying the order-k Markov model, future locations are represented by the IDs 

of the learning grid. When making a prediction, an RWP sends a k length historical 

trajectory including k most recent IDs of the visited learning grid to the current 

learning grid where this RWP located. By using Equation 3.9, the probability of the 

possible next locations can be obtained. Two decision rules can be chosen here to 

decide the next location. The first rule is to choose the location with the highest 

probability as the next location; the second rule is to choose the location ID according 

to the probability distribution. When the prediction for one step is finished, all the 

RWPs with the same location ID are uniformly distributed in that area.  

 

When applying the STPL model, future locations are represented by the coordinates 

of the RWP in the simulation area. When making a prediction, the walking parameters 

are generated for the visiting RWP by the learning grid to predict next location of the 

RWP. In order to provide the context information, a sequence of coordinates 

�𝐶𝑓𝑟𝑛𝑚,𝐶1,𝐶2, … ,𝐶𝑛� (𝑢 ≥ 1) , including the coordinates from the most recent 

observation back to the last observation before visiting the current learning grid, is 

reported to the currently visited learning grid. With Equation 3.10, the context 

sequence can be converted to a sequence of movement direction states 

{𝑟(𝜃1),𝑟(𝜃2), … ,𝑟(𝜃𝑛)} (𝑢 ≥ 1) . By applying the direction state sequence into 

Equation 3.14, the probability of the possible movement directions in the next step 
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can be obtained. Similarly, two decision rules are available here, to choose the 

direction with the highest probability or to decide the moving direction according to 

the obtained probability distribution. When the next moving direction is determined, 

the estimated walking parameter 𝜃� can be generated by using the learnt probability 

density function of the value of 𝜃 for that direction. By applying Equation 3.15, the 

walking parameter 𝑣� can be estimated. Finally, Equation 3.4 is used to calculate the 

predicted coordinates of this RWP at the next step. 

 

When predicting the future traffic patterns, all the learning grids cooperatively carry 

out a continued movement prediction for n steps. This is called the n-step-ahead 

prediction in the simulation. In the n-step-ahead prediction, only the first prediction 

uses the information from the real movement history. In the remaining 𝑢 − 1 

predictions, the previous prediction results are used as the latest movement history 

when calculating the next coordinates or generating new contexts. Assume 

{𝐶𝑚−𝑛+1,𝐶𝑚−𝑛+2, … ,𝐶𝑚} is the l-length movement context; �̂�𝑚+1 is the 1-step-ahead 

prediction result. Thus, for the 2-step-ahead prediction, � 𝐶𝑚−𝑛+2, … ,𝐶𝑚 , �̂�𝑚+1� is used 

as the movement context to estimate �̂�𝑚+2, and the rest may be deduced by analogy. 

 

When evaluating the prediction performance, the predicted traffic distribution of each 

step is compared to the real pattern that has the same time stamp as the predicted one. 

As mentioned before, a time stamp is given to every real traffic pattern that is 

generated by the mobility model. This time stamp is used to indicate the order of each 

traffic pattern in the temporal axis. Assume that there is a traffic pattern generated by 

the mobility model at step k. The time stamp of this real pattern is k; the time stamps 

of the next n continuous patterns are 𝑘 + 1,𝑘 + 2, … ,𝑘 + 𝑢 . When making the 

n-step-ahead prediction at step k, the prediction results are the estimated traffic pattern 

at step 𝑘 + 1,𝑘 + 2, … ,𝑘 + 𝑢  with the time stamp 𝑘 + 1, 𝑘 + 2, … ,𝑘 + 𝑢 

respectively. Then, the real and predicted patterns at 𝑘 + 𝑢 (𝑢 = 1,2, … , 𝑢)  are 

compared to reveal how close the predicted pattern is to the real one.  
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4.2 Simulation Environment 
The main goal in this research is to test the feasibility of making predictions on the 

upcoming geographic distributions of mobile terminals by mining the historical cell 

transition trajectories. If the accuracy of the prediction is acceptable, then predicted 

future traffic patterns could be used by the load balancing algorithms, such as the 

Bubble Oscillation Algorithm, to help semi-smart antennas adjusting the radiation 

patterns.  

 

When calculating the optimal radiation patterns with the Bubble Oscillation 

Algorithm, the geographic distribution pattern of the mobile users is needed, 

especially the distribution of the active users. With the predicted geographic 

distribution pattern, the Bubble Oscillation Algorithm can work out a set of the proper 

radiation patterns to alleviate the upcoming negative effects on the network 

performance. In order to reduce the modelling complexity, all the RWPs in the 

simulation area are treated as active mobile users. 

 

In the following section, other configurations of the simulator and the predefined 

scenarios are presented. 

 

4.2.1 Initialization of simulation area 

In the simulations carried out in this research, the simulation area was defined as a 3 

kilometres long and 3 kilometres wide square-shaped area. The GGE, which was used 

to reflect the local geographic patterns, was defined as a 0.5 kilometres long and 0.5 

kilometres wide square-shaped grid. Thus, 36 GGEs were deployed in the simulation 

area to reproduce the road topology. Figure 4.4 illustrates the configurations of the 

simulation area and the GGEs. The map used in Figure 4.4 is a real map of the Mile 

End area in London. The length and width of the grid use the same scale as the map. It 

can be seen that most of the major roads in the same 0.25𝑘𝑢2 area have similar 

directions. Thus, the proposed size of the GGE is an acceptable value. 
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Figure 4.4 An example of the simulation area with deployed GGEs 

 

In this simulation, “East”, “North”, “West” and “South” were the four main road 

directions, and were mapped to direction 1, direction 2, direction 3 and direction 4 

respectively. In the initialization of the deployed GGEs, the road directions, the road 

throughput capability of each direction and the direction transition matrix need to be 

determined. In real life, most of the roads are bidirectional. Thus, 𝜃𝑟13 and 𝑇𝑃13 

were used to represent the road direction and the throughput capability of East and 

West respectively; 𝜃𝑟24 and 𝑇𝑃24 were used to represent the road direction and the 

throughput capability of North and South respectively. Five levels (𝑇𝑃𝐿𝐿 = 1,2, . .5) 

were used to rank the throughput capability. The higher the 𝑇𝑃𝐿𝐿  is, the larger 

throughput capability the road could have. In real life, the width and direction of a 

road varies smoothly. Thus, the values of 𝜃𝑟13 and 𝑇𝑃𝐿𝐿_𝐸𝐸 were allowed to change 

slightly or remain constant in the East-West neighbouring GGEs; the values of 𝜃𝑟24 

3 Km 

3 Km 

500m 

500m 
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and 𝑇𝑃𝐿𝐿_𝑁𝑆 were allowed to change slightly or remain constant in the North-South 

neighbouring GGEs. The values of 𝜃𝑟13 , 𝜃𝑟24 , 𝑇𝑃𝐿𝐿_𝐸𝐸  and 𝑇𝑃𝐿𝐿_𝑁𝑆  were 

generated randomly for the GGEs in the bottom and on the left side. Then, other 

GGEs determined values of 𝜃𝑟13, 𝜃𝑟24, 𝑇𝑃𝐿𝐿_𝐸𝐸 and 𝑇𝑃𝐿𝐿_𝑁𝑆 accordingly to avoid 

sudden changes of the local road topology. The road directions can be determined by 

the following equations. 

 

�

𝜃𝑟1 = 𝜃𝑟13        
𝜃𝑟2 = 𝜃𝑟24        
𝜃𝑟3 = 𝜃𝑟13 + 𝜋
𝜃𝑟4 = 𝜃𝑟24 + 𝜋

 (4.1) 

 

The throughput capability of each direction of a GGE can be determined by the 

following equations. 

 

𝑇𝑃13 = 𝑢 + 𝑢 ∙ (𝑇𝑃𝐿𝐿_𝐸𝐸 − 1) ∙ 𝛿 

𝑇𝑃24 = 𝑢 + 𝑢 ∙ (𝑇𝑃𝐿𝐿_𝑁𝑆 − 1) ∙ 𝛿 

𝑇𝑃1 = 𝑇𝑃3 = 𝑇𝑃13 

𝑇𝑃2 = 𝑇𝑃4 = 𝑇𝑃24 

(4.2) 

 

where 𝑢 is the unit number of users, which was set to 100 in the simulation; 𝛿 is the 

incremental factor, which was set to 0.5 in the simulation to avoid significant 

difference of the throughput capability between roads with the adjacent throughput 

level. In real life, people prefer to choose major roads for their journey to save travel 

time. The probability of choosing the road with stronger throughput capability should 

be higher than the probability of choosing roads with low throughput level. Thus, the 

direction transition matrix is initialized with the following equation. 

 

𝑃𝑚𝑗 = �
𝑇𝑃𝑗

∑ 𝑇𝑃𝑘𝑘
   (𝑘 = 1, 2,3,4 𝑟𝑢𝑟 |𝑘 − 𝑢| ≠ 2 𝑟𝑢𝑟 |𝑗 − 𝑢| ≠ 2)

0         (|𝑗 − 𝑢| = 2)                                                          
 (4.3) 
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Notice that Equation 4.3 is only used to generate the initial value of 𝑃𝑚𝑗, and it can be 

seen that U-turns are forbidden in the simulation area. The value of 𝑃𝑚𝑗 could be 

changed by activated events during the simulation. Figure 4.5 (a) (b) and (c) show 

examples of the initialized GGEs. 

 
Figure 4.5 (a) The geographic layout of GGEs represented by IDs and TP Levels 

 

Figure 4.5 (b) The geographic layout of GGEs represented by road directions 

𝑇𝑃13 = 4 
𝑇𝑃24 = 3 

GGE ID = 5 

GGE Layout (GGE IDs)  GGE Layout (TP Lvs)  

GGE Layout (Main direction) 

𝜃𝑟13 = −0.1976𝜋 
𝜃𝑟24 = 0.37𝜋         
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Figure 4.5 (c) An example of the direction transition matrix 

 

4.2.2 Initialization of RWPs 

In the simulation, 15000 RWPs were created and distributed in the simulation area.  

The walking rules presented in Section 3.3.3 were applied by the RPWs to determine 

their coordinates at each step. The time interval between two consecutive steps was 60 

seconds. In order to simplify the simulation, only one type of moving users, i.e. 

pedestrians, was taken into account. According to the average walking speed of 

pedestrians in real life, 𝑣𝑛𝑛𝑟𝑚𝑚𝑛 and 𝑣𝑚𝑚𝑚 of the RWP were set to 80 m/min and 100 

m/min. The speed dependence controller 𝜔 defined in Equation 3.5 was set to 0.5, 

which means the previous moving speed has a moderate effect on the current speed.  

 

4.2.3 Simulation scenarios 

In order to test the performance of the learning model for predicting a variety of 

traffic patterns, three simulation scenarios are defined, the normal walking scenario, 

the mobile cluster forming scenario, and the mobile cluster dispersing scenario. 

 

In the normal walking scenario, all the RWPs are distributed uniformly in the 

simulation area and all the connatural parameters of each GEE are kept constant in the 

simulation. This scenario is used to test the performance of the proposed learning 

models with the normal traffic pattern. 

GGE Direction Transition Matrix with Initial Values 

 

𝑃1𝑗 = [0.5, 0.25, 0, 0.25] 
(𝑗 = 1,2,3,4) 
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In the mobile cluster forming scenario, mobile clusters are formed intentionally by 

two methods. The first method is to degrade the throughput level of a number of 

selected roads to a very low value. By degrading the throughput level, the movement 

speed of the mobile terminals in those areas is affected, which makes the mobile 

terminals stay longer in those areas. The second method is to modify the direction 

transition matrix of a number of selected GGEs to divert the traffic to the direction 

with a low throughput level. In the simulation, the above two methods are used 

cooperatively to form the mobile clusters in a very short time. This scenario is used to 

mimic a traffic jam caused by traffic accident or short-term traffic restriction in real 

life. The performance and reaction speed of the learning models could be evaluated in 

this scenario. 

 

In the mobile cluster dispersing scenario, a number of mobile clusters are distributed 

initially in the simulation area. When starting the simulation, the mobile terminals in 

the mobile clusters begin to move according to the walking rules in section 3.3.3. The 

relevant direction transition matrix can be modified to divert the movement of the 

mobile cluster intentionally. On the other hand, the dispersion of the mobile clusters 

can be observed if the parameters of the GGEs are not changed. This scenario is used 

to mimic the traffic pattern around a stadium after a football match or a concert in real 

life. The performance of the learning models on predicting the movement of mobile 

clusters are evaluated in this scenario. 

 

4.2.4 Initialization of learning models 

In the simulation, the order-k Markov model and the STPL model were applied to 

learning the pattern features and to make predictions on the upcoming traffic pattern 

with the given trajectory context. As it has been proved that the second decision rule 

can lead to better performance, both the order-k Markov model and the STPL model 

used the second decision rule in the simulation. 
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The off-line learning mode was applied for both learning models. A case library was 

built with 50000 movement trajectory samples, which were generated with the same 

geographic topology used in the simulation. The learning patterns were extracted by 

the two learning models from the case library for pattern learning use.   

 

4.3 Simulation Results 
In this section, the simulations results are presented to reveal the feasibility of making 

predictions on future traffic with proposed learning models. Simulations were carried 

out in three scenarios respectively. Different numbers of learning grids and UDGs 

were deployed to test the granularity influences.  

 

4.3.1 Simulation result in the normal walking scenario 

In the simulation, all the RWPs were uniformly distributed in the simulation area. 

Figure 4.6 (a), (b) and (c) shows the real traffic pattern at step 0 (initial pattern), step 

50, and step 100 respectively. Both the x-axis and y-axis represent the length of the 

simulation area. The black triangle represents the location of the BS; the black circle 

represents the coverage area of the BS. The square-shaped grids are the deployed 

GGEs. The blue dots are the RWPs. 
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Figure 4.6 (a) The initial distribution of the mobile terminals 

 

 

Figure 4.6 (b) The distribution of mobile terminals at Step 50 
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Figure 4.6 (c) The distribution of mobile terminals at Step 100 

 

It can be seen in Figure 4.6 (a) that RWPs were distributed uniformly at the beginning 

of the simulation. Clusters of RWPs can be seen in Figure 4.6 (b) and 4.6 (c) without 

any triggered events, which was caused by the bottleneck points of the geographic 

layout. 

 

In the simulation, a number of BSs were deployed in the simulation area. Considering 

the configuration of antennas in the urban area in real life, the coverage radius of the 

BS is set to 650 metres and the distance between two BSs is set to 1.1 kilometres, as 

shown in Figure 4.6. With the above settings, the coverage area of four BSs could be 

contained completely by the simulation area. Those coverage areas are represented by 

real-line circles in Figure 4.6. When evaluating the prediction performance with 

AUDGs, four sets of AUDGs were deployed in the area covered by the real-line 

circles, and the predicted user distributions in that area were analysed. The rest part of 

the simulation area was not taken into account when evaluating the prediction 

performance with AUDGs. 
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Figure 4.7 shows the simulation results of the one-step-ahead prediction with the 

Order-5 Markov learning model and the STPL model when the number of learning 

grids was set to 225 (200𝑢 × 200𝑢) and the number of the SUDG was set to 900 

(100𝑢 × 100𝑢). Figure 4.8 shows the simulation results evaluated by 4 sets of 

AUDGs (36 𝑐𝑒𝑐𝑡𝑢𝑢𝑐 × 20 𝑏𝑟𝑢𝑟𝑐), and other configurations are the same as in 

Figure 4.8. In order to let the RWPs have enough movement context, predictions were 

carried out from Step 10. 

 

 

Figure 4.7 The simulation result of one-step-ahead prediction with 225 (15 × 15) 

LGs, evaluated by 900 (30 × 30) SUDGs 
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Figure 4.8 The simulation result of one-step-ahead prediction with 225 (15 × 15) 

LGs, evaluated by 4 sets of AUDGs (36 × 20) 

 

As proved in [HKA04] and [SKJH04], simple Markov models perform nearly as well 

as other more complex methods when learning the movement features the motion 

trajectories captured in the cellular networks. In this research, not only the 

performance of using Order-k Markov model to predict intra-cell traffic patterns was 

evaluated, the performance of the Order-k Markov model was also used as a 

benchmark when evaluating other models’ performance. 

 

In the above two figures, the cumulative error rate of the STPL model is presented by 

the blue line; the cumulative error rate of the Order-5 Markov predictor is presented 

by the red line. The x-axis represents the identifier of the snapshot; the y-axis 

represents the value of the cumulative error rate. Notice that the error rate used in this 

research is the Root Mean Square Error (RMSE) rate, as the RMSE is measured in the 

same units as the data. In the simulation, 𝐸𝑆𝑆𝑆𝑆(𝑢) = 0.1 means the predicted local 

user density in a SUDG is on average 10% more or less than the observed value; 

𝐸𝐴𝑆𝑆𝑆(𝑢) = 1.0 means the difference between the predicted population of RWPs and 
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the observed one in an AUDG is on average 1.  

 

It can be seen in Figure 4.7 that the prediction error rates of the STPL model are 

below 0.15 and the error rates of the Order-5 Markov model are below 0.25 for all the 

predicted traffic patterns when using SUDGs to compare the predicted local 

distributions with the observed ones. The average error rates of the STPL model and 

the Order-5 Markov model for the one-step-ahead prediction are 0.1165 and 0.1826 

respectively. When using AUDGs to compare the predicted distributions with the real 

ones, it can be seen that the prediction error of both the STPL model and the Order-5 

Markov model are below 1.5, with the average prediction error 0.9985 and 1.3969 

respectively for the next-step prediction.  

 

When carrying out the traffic pattern prediction, one aim is to forecast the location of 

mobile cluster in the upcoming steps. In the simulation, a SUDG or AUDG was 

considered as congested containing a mobile cluster, if the population of RWPs in the 

same SUDG or AUDG is larger than a predefined threshold. Notice that distribution 

of congested UDGs represents the distribution of mobile clusters. Figure 4.9 and 

Figure 4.10 show the prediction accuracy in terms of the number of congested UDGs 

with the STPL model; Figure 4.11 and Figure 4.12 show the prediction accuracy in 

terms of the number of congested UDGs with the Order-5 Markov model. 
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Figure 4.9 Predicted number of congested SUDGs with STPL, evaluated with 900 

SUDGs (30 × 30) 

 

 

Figure 4.10 Predicted number of congested AUDGs with STPL, evaluated with 4 sets 

of AUDGs (36 × 20) 
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Figure 4.11 Predicted number of congested SUDGs with Order-5 Markov Model, 

evaluated with 900 SUDGs (30 × 30) 

 

 

Figure 4.12 Predicted number of congested AUDGs with Order-5 Markov Model, 

evaluated with 4 sets of AUDGs (36 × 20) 
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In the above four bar charts, the blue bars represent the number of congested UDGs 

whose locations are predicted correctly; the red bars represent the number of 

congested UDGs whose locations are defective in the predicted patterns; the green 

bars represent the number of congested UDGs that are missed in the predicted 

patterns. In each snapshot, the sum of the blue bars and the red bars represents the 

total number of congested UDGs in the prediction; the sum of the three bars 

represents the total number of congested UDGs in the observation. If the green bar is 

seen below the x-axis, it means the total number of the congested UDGs in the 

prediction is larger than the observed ones. With the distribution of congested UDGs, 

the location and scale of mobile clusters can be easily determined.  

 

It can be seen from Figure 4.9 and Figure 4.11 that most congested UDG locations 

can be predicted when evaluating the results with 900 SUDGs. The average 

accuracies with STPL model and the Order-5 Markov model are 88.56% and 80.69% 

respectively. When using 4 sets of AUDGs to evaluate the results, the proportion of 

the red bars grows, but the average accuracy is still acceptable, as the granularity of 

four sets AUDGs is much higher than 900 SUDGs. The average accuracies with STPL 

model and the Order-5 Markov model are 77.16% and 69.28% respectively in Figure 

4.10 and Figure 4.12. 

 

According the above simulation results, it can be seen that the predictions made with 

the STPL model are more accurate than with the Markov model. One reason is that 

more details are taken into account when learning the local movement characteristics 

with the STPL model, such as the local road topology, the probability of movement 

direction changing, and the varying tendency of movement speed. By contrast, the 

Order-5 Markov model makes prediction only based on the movement context 

comprised of 5 most recent observed locations. Another reason is that prediction 

results with the STPL model are coordinates of mobile users, which can present the 

traffic distribution directly. With the Order-5 Markov model, prediction results are the 

next LGs mobile users would visit. Then mobile users are uniformly distributed in the 
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estimated next location to present the traffic distribution, which affects the accuracy 

of the distribution. 

 

In order to test the sensitivity of the two learning models to the granularity of the 

learning grid, simulations were carried out with different numbers of learning grids 

applied in the pattern learning phase and pattern prediction phase. Figure 4.13 and 

Figure 4.14 show the relevant results. 

 

 

Figure 4.13 Comparing number of learning grid using STPL model 
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Figure 4.14 Comparing number of learning grid using Order-5 Markov model 

 

It can be seen in Figure 4.13 that the performance differences when deploying 

different number of learning grids are not significant. The highest rate, which is 

0.1781, can be seen when 100 learning grids were used to learn the traffic pattern; the 

lowest rate, which is 0.1153, is obtained when 400 learning grids were deployed. The 

traffic patterns learnt by the learning grid with small size contain less generalized 

features, which could reflect the real local movement regularity better. However, one 

exception can be seen when 36 learning grids are used. This is because the size of the 

learning grid is exactly the same as the size of the GGE, and the learning patterns 

extracted by each learning grid are from the same GGE. In the learning and prediction 

phase of the simulation, the geographic layout of the simulation area is treated as 

unknown information. Thus, this exception cannot be generalized. 

 

Figure 4.14 indicates that the performance of the Order-5 Markov model is correlated 

with the granularity of the learning grid. The more learning grids that are deployed, 

the lower the error rate that can be obtained. When using the Order-k Markov model, 

both the context trajectories and the prediction results are represented by the IDs of 
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the learning grid. The low granularity of the learning grid could affect the accuracy of 

the prediction. With 400 learning grids, the average error rate is 0.1689, which is still 

higher than the error rate when making predictions with the STPL model under the 

same configuration. 

 

Figure 4.15 and Figure 4.16 show the variation of the error rate when analysing the 

prediction results with different granularity of the SUDGs and AUDGs. 

 

 

Figure 4.15 Comparing number of SUDGs 
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Figure 4.16 Comparing number of AUDGs 

 

Figure 4.15 indicates that the more the UDGs are deployed, the higher the error rate 

that is experienced. With 3600 SUDGs, the average error rates can reach 0.3602. 

Figure 4.16 shows the cumulative error with high granularity of AUDG does not 

significantly increase. According to the result, the average population difference when 

applying four sets of 72 × 20 AUDGs is 1.1109, which is only 12% higher than the 

average difference when the granularity of AUDG is set to 36 × 20. However, this 

does not mean that the error rate under high granularity of AUDG is as good as the 

rate with low granularity. When using 72 × 20 AUDGs, the average population of 

the RWP in most grids is less than 1. Thus, one more RWP in such grids might lead to 

large error rate. 

 

Notice that the same granularity of the AUDG, 72 × 20, 36 × 20 , and 72 × 10 

were used in Yao’s work [Yao07] to match the observed congestion patterns to the 

pattern-solution pairs recorded in the case library. As mentioned in [Yao07], the CBR 

matching algorithm is not sensitive to the granularity, as the performance with 

36 × 20  granularity matching is very close to the performance with 72 × 20 
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granularity matching. According to results shown in Figure 4.16, the average 

population difference is 0.9985 when applying the 36 × 20 AUDG sets. With the 

population difference around 1.0, the predicted traffic pattern could be used in Yao’s 

CBR matching model to pick out the proper antenna beamforming for upcoming 

traffic patterns. 

 

Figure 4.17 shows the variation of the prediction performance with different k values 

in the Order-k Markov model. It can be seen that the cumulative error rate decreases 

along with increasing k value. However, there is no significant improvement in the 

prediction performance after the value of k reaches 5. 

 

 

Figure 4.17 Comparing the k values 

 

Figure 4.18 shows the variation of the average error rate when performing the 

predictions from 1-step ahead up to 6-steps ahead with the two proposed learning 

models.  
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Figure 4.18 Comparing the n values 

4.3.2 Simulation results for the mobile cluster forming scenario 

In this simulation, traffic events were introduced to help form mobile clusters in the 

simulation area. Similar to the simulation presented in the previous section, traffic 

patterns were learnt from the case library by 225 learning grids before the simulation 

and 100 traffic snapshots were generated as the observed traffic patterns in the 

simulation. 15000 RWPs were deployed uniformly into the simulation area. 

Upcoming patterns were predicted at each step based on previous observed patterns. 

Six GGEs were embedded with the same traffic event which restricted the movement 

speed from Step 16 to Step 55. Figure 4.19 (a) (b) (c) and (d) present the observed 

traffic patterns at Step 25, 35, 55 and 65 respectively. 
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Figure 4.19 (a) Traffic pattern observation at Step 25 

 

 
Figure 4.19 (b) Traffic pattern observation at Step 35 
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Figure 4.19 (c) Traffic pattern observation at Step 55 

 

 
Figure 4.19 (d) Traffic pattern observation at Step 65 

 

In the above figures, areas with the red frame indicate the areas that are affected by 

traffic events. It can be seen that mobile clusters were formed when events were 
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activated. After the termination of the events, the mobiles clusters dispersed to 

neighbour GGEs. Figure 4.20 shows the one-step-ahead prediction performance 

evaluated by 900 SUDGs; Figure 4.21 shows the one-step-ahead prediction 

performance evaluated by 4 sets of AUDGs (36 × 20).  

 

 

Figure 4.20 Prediction performances in the cluster forming scenario, evaluated by 900 

SUDGs (30 × 30) 
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Figure 4.21 Prediction performances in the cluster forming scenario, evaluated by 4 

sets of AUDGs (36 × 20) 

 

According to the above two figures, the sudden increase of the error rate with STPL 

model is seen when making prediction for the traffic pattern of Step 16. Then the error 

rate drops back to the normal range in the following steps. As mentioned above, 

traffic events were activated at Step 16, which lets the movement speeds of the RWPs 

in the affected areas drop tremendously. However, this sudden change could not be 

known by the STPL model at Step 15. From Step 16, this change could be seen 

gradually by the STPL model when predicting the movement speed with Equation 

3.15. When applying the Order-5 Markov model, the error rate remains higher than 

normal during the existence of the activated traffic event. If a RWP stays in the same 

GGE for more than four consecutive steps due to the low movement speed, the 

context trajectory sequence would be a sequence of same GGE IDs, which severely 

affects the prediction performance.  Thus, the STPL model can handle the prediction 

in the cluster forming scenario better than the Order-5 Markov model, and the 

reaction speed of the STPL model for movement pattern change is much faster than 

for the Order-5 Markov model. 
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Figure 4.22 and Figure 4.23 shows the prediction accuracy in terms of the number of 

congested UDGs with the STPL model; Figure 4.24 and Figure 4.25 show the 

prediction accuracy in terms of the number of congested UDGs with the Order-5 

Markov model. 

 

 

 

Figure 4.22 Predicted number of congested SUDGs with STPL, evaluated with 900 

SUDGs (30 × 30) 
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Figure 4.23 Predicted number of congested AUDGs with STPL, evaluated with 4 sets 

of AUDGs (36 × 20) 

 

 

Figure 4.24 Predicted number of congested SUDGs with Order-5 Markov Model, 

evaluated with 900 SUDGs (30 × 30) 
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Figure 4.25 Predicted number of congested AUDGs with Order-5 Markov Model, 

evaluated with 4 sets of AUDGs (36 × 20) 

 

From the above four figures, it can be seen that most of the numbers and locations of 

the congested UDGs are identified correctly. As mentioned above, well predicted 

distribution of the congested UDGs indicates the well predicted distribution of mobile 

clusters. In terms of the mobile cluster prediction in the cluster forming scenario, the 

performance of both models can be acceptable, and higher prediction accuracy can be 

obtained with the STPL model. Figure 4.26 (a) and (b) present an example of the 

observed traffic pattern and predicted traffic pattern at Step 20. The applied SUDGs 

and one set of AUDG (36 × 20) are deployed in the simulation area and the area 

with traffic event is highlighted by the red frame. Similar distributions of the observed 

traffic pattern and the predicted traffic pattern can be seen below. 
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Figure 4.26 (a) Observed traffic pattern at Step 20 

 

 
Figure 4.26 (b) Predicted traffic pattern for Step 20 
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4.3.3 Simulation result in the mobile cluster dispersing scenario 

Instead of deploying 15000 RWPs uniformly, 2000 RWPs were uniformly distributed 

in the whole simulation area and 8000 RWPs were uniformly distributed in the middle 

of the simulation area, as shown in Figure 4.27 (a). Besides, the four GGEs in the 

middle were configured manually to force RWPs disperse to the surrounding areas, as 

shown in Figure 4.27 (b), (c) and (d). This scenario is used to mimic the traffic 

patterns after a football match or a concert in real life. With this scenario, the 

capability of the proposed learning models for predicating the movement of mobile 

clusters is tested. In this simulation, predictions are made from Step 1. 

 

 

Figure 4.27 (a) The initial position of the RWPs 
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Figure 4.27 (b) Traffic pattern observation at Step 10 

 

 

Figure 4.27 (c) Traffic pattern observation at Step 20 
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Figure 4.27 (d) Traffic pattern observation at Step 30 

 

It is worth noticing that the movement of the mobile clusters are not the same as in 

Yao’s work [Yao07]. In [Yao07], a number of mobile users are configured to move in 

the same direction, and these mobile users are treated as moving mobile clusters. The 

moving cluster used in [Yao07] is illustrated in Figure 4.28.  
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Figure 4.28 Moving hotspot (Figure 4.26 in [Yao07]) 

 

In order to introduce more realistic traffic patterns, the movement direction and speed 

of the mobile clusters in this research are not predefined but are generated according 

to the walking rules and the relevant geographic conditions at each step. The location 

change of the mobile clusters represented by SUDGs and AUDGs are shown in Figure 

4.29. Notice that the red parts of the simulation area are the location of mobile 

clusters. 
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Figure 4.29 The observed disperse of mobile clusters 

Step 1 

Step 10 

Step 20 

Step 30 

Step 40 

Step 50 

Represented by SUDGs Represented by AUDGs 
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It can be seen that the 8000 RWPs that were deployed in the centre disperse to the rest 

of the simulation area in the simulation. Figure 4.30 shows the one-step-ahead 

prediction performance evaluated with 900 SUDGs; Figure 4.31 shows the 

one-step-ahead prediction performance evaluated with 4 sets of AUDGs (36 × 20). 

 

 

Figure 4.30 Prediction performances in the cluster dispersing scenario, evaluated by 

900 SUDGs (30 × 30) 
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Figure 4.31 Prediction performances in the cluster dispersing scenario, evaluated by 4 

sets of AUDGs (36 × 20) 

 

From the above two figures, it can be seen that the error rates of both the proposed 

models are considerably higher when making predictions for the first 20 steps. The 

error rate keeps decreasing until it reaches the normal value range. Notice that the 

high error rates in the first 20 steps are not caused by the poor prediction performance 

but the small number of RWPs in most of the UDGs. For the former part of the 

simulation, most of the RWPs are located in the central part of the simulation area. 

When using UDGs to measure the local user density, the number of RWPs is less than 

5 in most UDGs, as shown in Figure 4.32. Thus, even a small deviation will lead to a 

large error rate.  
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Figure 4.32 Local density of the RWPs at Step 10, evaluated by SUDGs 

 

Figure 4.33 and Figure 4.34 show the prediction accuracy in terms of the number of 

congested UDGs with the STPL model; Figure 4.35 and Figure 4.36 show the 

prediction accuracy in terms of the number of congested UDGs with the Order-5 

Markov model. 
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Figure 4.33 Predicted number of congested SUDGs with STPL, evaluated with 900 

SUDGs (30 × 30) 

 

 

Figure 4.34 Predicted number of congested AUDGs with STPL, evaluated with 4 sets 

of AUDGs (36 × 20) 
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Figure 4.35 Predicted number of congested SUDGs with Order-5 Markov Model, 

evaluated with 900 SUDGs (30 × 30) 

 

 

Figure 4.36 Predicted number of congested AUDGs with Order-5 Markov Model, 

evaluated with 4 sets of AUDGs (36 × 20) 
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Although the performance shown in Figure 4.30 and 4.31 does not look as good as the 

results in previous section from the perspective of the error rate value, the above four 

figures show that the performance is acceptable from the perspective of cluster 

movement prediction. It can be seen that most of the numbers and locations of the 

mobile clusters can be identified correctly, which means that the dispersion of most 

clusters can be tracked. Figure 4.37 shows the observed and predicted distribution of 

mobile clusters in five consecutive steps. 
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Figure 4.37 Observations and predictions of mobile clusters’ distribution 
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4.4 Summary 
In this chapter, the simulation results when applying the two proposed learning 

models to make predictions of the upcoming traffic patterns are presented. Three 

scenarios are introduced to test the performance of the learning models under different 

traffic situations. According to simulation results, it can be seen that both the STPL 

model and the Order-5 Markov model can accurately make predictions for the future 

traffic patterns and the distribution of mobile clusters.  

 

With the STPL model, the local movement characteristics can be learnt from many 

perspectives, such as the local road topology, the probability of movement direction 

changing, and the varying tendency of movement speed; the future geographic traffic 

distribution can be well estimated; and the location of mobile clusters can be 

accurately identified. Besides, short convergence time can be seen when irregular 

traffic conditions are observed by the STPL model.  

 

In the next chapter, a more sophisticated mobility model and an improved version of 

the STPL model are introduced. 
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5 INCREMENTAL PREDICTION 

In this chapter, the traffic pattern predictions are performed in more sophisticated 

ways. A more complex mobility model is presented at the beginning of this chapter. 

Then, an improved pattern learning model is proposed. Finally, the simulation results 

are discussed and the accuracy of the prediction is evaluated. Both the mobility model 

and the pattern learning model introduced in this chapter are novel. 

 

5.1 An Overview of the Incremental Pattern Prediction 
In this research, all the local movement patterns learnt by the learning models are 

based on the “dummy data” generated by the mobility model. In order to evaluate the 

feasibility of mining cell transition data to learn the local movement patterns so as to 

make predictions on the upcoming user distributions, it is ideal to use the intra-cell 

transition data captured by BSs in real life. As the cost of collecting the real-life data 

is significant, mobility models are introduced in this research to help generating the 

historical data for pattern learning use and the individual movement context for traffic 

prediction use. In order to let the dummy data be close to the real ones, more real-life 

factors are taken into account in the mobility model. 

 

In real life, the local geographic layout is complicated and movements of mobile users 

could be restricted by many obstacles. Besides, the movement patterns of mobile 

users are not unique. The user who travels in a car might move faster than pedestrians, 

but should follow the restriction of the road topology strictly. On the other hand, 

movements of pedestrians should not be seriously impacted by traffic jams, since the 

road restriction on pedestrians is mild and pedestrians can adjust their routes easily. 

Thus, a Multi-Movement-Pattern (MMP) mobility model is introduced to mimic more 

realistic traffic conditions. 

 

In the previous chapter, traffic pattern predictions are made with the Order-k Markov 
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model and the STPL model. Local traffic patterns are learning from the learning 

patterns extracted by each learning grid. As only one type of the mobile user is 

deployed in the simulation area, all the learning patterns could be considered as 

reflections to the same local traffic pattern. When multiple types of mobile users are 

deployed in the simulation area, the local traffic learning patterns extracted from the 

case library might contain more than one type of movement patterns in that area. 

Different types of the patterns should be distinguished and chosen wisely when 

making predictions. Thus, the Dynamic Traffic Pattern Learning (DTPL) model is 

proposed to make predictions with mixed learning patterns. 

 

5.2 The MMP Mobility Model 
As the name implied, the MMP mobility model has multiple types of users deployed 

in the simulation area and can generate cell transition data that contains multiple 

movement patterns. The method of building the MMP model is similar to the process 

of building the basic mobility model that is presented in the previous chapters. GGEs 

are used to build the simulation area and RWPs are deployed to mimic the moving 

mobile terminals. 

 

5.2.1 Simulation area 

One advantage of using GGEs is that the local geographic features can be easily 

configured. In the MMP model, three types of the movement area are involved, the 

low speed movement area, the high speed movement area, and the intersection area. 

The low speed movement area is for the movement of pedestrian users; the high speed 

movement area is for the vehicular users; the intersection area is the place vehicular 

users change their movement directions. All the three types of the movement area are 

composed of GGEs with different geographic layout and restrictions. Figure 5.1 

shows an example of the simulation area of the MMP model. 
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Figure 5.1 An Example of the simulation area 

 

As shown in the above figure, the same sets of parameters are applied in each GEE to 

represent the local geographic layout. The pink area represents the low speed 

movement area, in which all the settings are the same as the GEEs used in the 

previous simulations. The green area represents the high speed movement area, in 

which vehicular users move with the same direction of the road and the movement 

direction cannot be changed. Pedestrian users who move into the green area should 

keep the movement direction and move to the other side of the green area as fast as 

possible. The yellow area represents the intersection area, in which vehicular users 

can change the movement direction.  
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5.2.2 Moving terminals and walking rules 

The RWPs are deployed into the simulation area at the beginning of the simulation to 

mimic the moving mobile terminals. As mentioned above, two types of user are 

involved in the MMP model, pedestrian users and vehicular users. For pedestrian 

users, all the settings are the same as the RWPs used in the previous simulations. For 

vehicular users, Equation 3.5 and 3.6 are used to determine the walking parameters 𝜃 

and v.  

 

As vehicular users should strictly follow the direction of the road during the 

movement, the value of ω is set to 0 in Equation 3.5 to discard the bias when 

determining the movement direction. As vehicular users should move much faster 

than pedestrians, a larger vnormal  and vmax  are used in Equation 3.6 when 

determining the movement speed. Figure 5.2 shows an example traffic snapshot of the 

MMP model. The blue dots represent pedestrian users and the green dots represent  

vehicular users. 

 

 

Figure 5.2 A traffic snapshot of the MMP model 
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5.2.3 Other configurations 

One important modification in the MMP model is that the time interval between two 

consecutive steps is set to 30 seconds instead of 60 seconds. However, the time 

interval between two consecutive observations is still 60 seconds, which means the 

traffic snapshots will be captured in every two walking steps.  

 

In the previous simulations, the time intervals of the RWP moving and the snapshot 

capturing are both set to 60 seconds. With this setting, the learning model can easily 

calculate the movement speed and the movement direction of one RWP with its 

coordinates from consecutive steps, as shown in Figure 5.3 (a). This simplifies the 

pattern learning process. However, the movement of the mobile terminal might not 

follow the same pattern between two consecutive observations in real life, as shown in 

Figure 5.3 (b). Thus, the MMP model gives different time interval to the RWP moving 

and the snapshot capturing to increase the complexity of the pattern learning task.   

 
Figure 5.3 (a) Same time interval for the RWP moving and the snapshot capturing 
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Figure 5.3 (b) Different time intervals for the RWP moving and the snapshot capturing 

 

5.3 The DTPL Model 
In order to make traffic pattern predictions based on the more generalized movement 

observations, the Dynamic Traffic Pattern Learning (DTPL) model is proposed in this 

research. The concept of the DTPL model is inspired from the k-Nearest Neighbour 

algorithm and the Hidden Markov Chain model, and can be considered as an 

improved version of the STPL model. A combination of the on-line learning and 

off-line learning is applied in the pattern learning phase and pattern prediction phase. 

 

Similar to the pattern learning phase with the STPL model, a number of learning girds 

are deployed in the simulation area, and each learning grid extracts the learning 

patterns 𝐶𝑐𝑛𝑛𝑐𝑏𝑚𝑐 = {𝐶𝑓𝑟𝑛𝑚,𝐶1,𝐶2, … ,𝐶𝑛,𝐶𝑐𝑛} (𝑢 ≥ 1) from the case library to build 

the local pattern library. When using the STPL model, this step is crucial, as the 

predictions made by the STPL model in learning grid 𝐿𝐿𝑚  are all based on the 

learning patterns extracted by 𝐿𝐿𝑚 . The more learning patterns the learning grid 

records, the more traffic patterns it can recognize. When using the DTPL model, this 

step can be considered as indexing the substrings of the historical trajectories in the 

library. As the movement direction and speed calculated by two consecutive 

coordinate pairs (𝐶𝑘,𝐶𝑘+1)  are not necessarily accurate, no further actions are 

needed in this phase with the DTPL model. When the simulation starts, all the 
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learning grids capture the trajectories of the RWPs visiting them and record the 

relevant segments into their buffer to extend the local pattern library with the latest 

traffic conditions.  

 

In the pattern prediction phase, predictions are made for individual mobile terminals. 

Assume {𝐶𝑚,𝐶𝑚−1,𝐶𝑚−2, … ,𝐶𝑚−𝑘+1}  is the most recent k-length sequence of 

coordinates of a RWP at step i. The value of k indicates the needed length of the 

context sequence, and the length of the learning patterns need to be extracted from the 

local pattern library for one prediction. ℝ = {𝑢1, 𝑢2, … , 𝑢𝑘} is a set of threshold values 

that are used to filter out the similar traffic patterns from the local library. The 

learning patterns are filtered by the following procedures: 

 

• Step 1: let 𝐶𝑚 be the centre of the coverage area and 𝑢1 be the coverage radius. 

Any learning grids partially or completely covered by the above area are treated as 

relevant learning grids. 

 

• Step 2: For a learning pattern 𝐶𝑐𝑛𝑛𝑐𝑏𝑚𝑐 = {𝐶𝑓𝑟𝑛𝑚,𝐶1,𝐶2, … ,𝐶𝑛,𝐶𝑐𝑛} recorded in a 

relevant learning grid, denote it as 𝐶𝑐𝑛𝑛𝑐𝑏𝑚𝑐 = {𝐶0,𝐶1,𝐶2, … ,𝐶𝑛,𝐶𝑛+1} and 

calculate the distance 𝑟𝑚,𝑛 between 𝐶𝑚 and 𝐶𝑛  (𝑛 = 𝑢, 𝑢 − 1, … , 1) in descending 

order of l. When 𝑟𝑚,𝑛 < 𝑢1 , extract the substring 

𝐶′𝑐𝑛𝑛𝑐𝑏𝑚𝑐 = {𝐶0,𝐶1,𝐶2, … ,𝐶𝑛,𝐶𝑛+1} and load it into the buffer. Repeat Step 2 for 

all the learning patterns recorded in all the relevant learning grids. 

 

• Step 3: For a substring 𝐶′𝑐𝑛𝑛𝑐𝑏𝑚𝑐 = {𝐶0,𝐶1,𝐶2, … ,𝐶𝑛−1,𝐶𝑛;𝐶𝑛+1} obtained from 

the previous step, calculate the distance 𝑟𝑚−1,𝑛−1 between 𝐶𝑚−1  and 𝐶𝑛−1  . If 

𝑟𝑚−1,𝑛−1 < 𝑢2, mark the 𝐶′𝑐𝑛𝑛𝑐𝑏𝑚𝑐 as level-2 alive. Otherwise, mark the 𝐶′𝑐𝑛𝑛𝑐𝑏𝑚𝑐 

as level-2 dead. Repeat Step 3 for all the substrings obtained by Step 2. 

 

• Step 4: Repeat Step 3 to compare the  𝐶𝑚−𝑚+1 and 𝐶𝑛−𝑚+1, if there are more than 
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one substrings that are marked as level-(𝑢− 1) alive and if there are more than 

one substrings whose length are equal or longer than m. Otherwise, terminate Step 

4 and move forward to Step 5. 

 

• Step 5: Assume that Step 4 is terminated after the comparison of  𝐶𝑚−𝑚+1 and  

𝐶𝑛−𝑚+1. Then the substrings eventually marked as level-m alive and level-m dead 

are both used to estimate the next position of the target RWP. Figure 5.4 illustrates 

the steps above. 

 

Figure 5.4 Filtering learning patterns 

 

In the above figure, blue line represents the movement context of the target RWP; the 

orange lines represent the substrings marked as alive; the grey lines represent the 

substrings marked as dead.  As the fourth filtering is failed, both the level-3 alive 

substrings and the level-3 dead substrings are used to estimate the next position of the 

target RWP in the prediction phase. 

 

After filtering out the relevant level-m alive and the level-m dead 

substrings 𝐶′𝑐𝑛𝑛𝑐𝑏𝑚𝑐 = {𝐶𝑛−𝑚+1,𝐶𝑛−𝑚+2, … ,𝐶𝑛−1,𝐶𝑛;𝐶𝑛+1} , all the possible next 

locations 𝐶𝑛+1 are extracted and used to compose the possible next location set 𝕃. 

With the restriction of the same geographic layout, elements in 𝕃 should not be 

distributed randomly but in the limited number of areas. With proper classification of 
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the elements in 𝑐, locations of those areas can be revealed and the main movement 

patterns in the target area can be determined. Inspired by applications of the k-means 

clustering algorithm presented in [DH10], [EB08], [FNNAK10] and [KIS09], the 

k-means clustering algorithm is applied to classify the possible next locations into 

proper clusters in the DTPL model. 

 

Assume the m elements in 𝕃 are classified into k clusters; 𝑃𝑚(𝑢 = 1,2, . . . ,𝑘) denotes 

the ith cluster with 𝑢𝑚(𝑢 = 1,2, … ,𝑘) pairs of the coordinates of 𝐶𝑛+1; (𝑥𝑚𝑛,𝑦𝑚𝑛)(𝑢 =

1,2, … ,𝑘;𝑢 = 1,2, … ,𝑢𝑚) denotes the coordinates of the nth element in the ith cluster; 

𝐶𝑒𝑚(𝑢 = 1,2, … ,𝑘)  denotes the centroid of the ith cluster with the coordinates 

(𝑐𝑥𝑚, 𝑐𝑦𝑚). The process of applying the k-means clustering algorithm to classify the 

elements in 𝕃 can be described in terms of the following steps: 

 

• Step 1: Set the value of k and then randomly choose k elements from 𝕃 as the 

initial centroid of each cluster. 

 

• Step 2: Update the Euclidean distance matrix D with the current centroids by 

applying the following equations. (𝑥𝑚,𝑦𝑚)(𝑢 = 1,2, … ,𝑢) denotes the coordinates 

of the ith element in 𝕃. 

 

𝐷 = �
𝑟11,𝑟12, ⋯ 𝑟1𝑚

⋮ ⋱ ⋮
𝑟𝑘1,𝑟𝑘2, ⋯ 𝑟𝑘𝑚

� 

𝑟𝑚𝑗 = ��𝑥𝑗 − 𝑐𝑥𝑚�
2
− �𝑦𝑗 − 𝑐𝑦𝑚�

2
 (𝑢 = 1,2, … ,𝑘; 𝑗 = 1,2, … ,𝑢)  

(5.1) 

 

• Step 3: Update the clustering status matric S with the following equations. 

 

𝑆 = {𝑆1,𝑆2, … , 𝑆𝑚} 

𝑆𝑚 = 𝑟𝑢𝑎𝑢𝑢𝑢(𝑟1𝑚,𝑟2𝑚, … , 𝑟𝑘𝑚) (𝑢 = 1,2, … ,𝑢)  
(5.2) 
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• Step 4: Recalculate the location of the centroid for this cluster with the following 

equations. 

 

⎩
⎪
⎨

⎪
⎧𝑐𝑥𝑚 =

∑ 𝑥𝑚𝑛𝑛

𝑢𝑚

𝑐𝑦𝑚 =
∑ 𝑦𝑚𝑛𝑛

𝑢𝑚

  (𝑢 = 1,2, … ,𝑘;𝑢 = 1,2, … ,𝑢𝑚) (5.3) 

 

• Step 5: Repeat Step 2, 3, and 4 until the clustering status matric S keeps stable, or 

all elements in the Euclidean distance are less than a predefined threshold. 

 

• Step 6: Repeat from Step 1 if a new value of k needs to be configured. Figure 5.5 

illustrates an example of the clustering results. 

 

Figure 5.5 Clustering the possible next locations 

 

Let 𝑁𝑚, 𝑁𝑚𝑚 and 𝑁𝑚𝑝 (𝑢 = 1,2, … ,𝑘)denote the total number of possible next location, 

the number of possible next locations from the level-m alive substrings, and the 

number of possible next locations from the level-m dead alive substrings, respectively, 
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in the ith cluster. Then, the probability of moving to the ith cluster 𝑃𝑚  can be 

represented as: 

 

𝑃𝑚 =
𝛼 ∙ 𝑁𝑚𝑚 + 𝛽 ∙ 𝑁𝑚𝑝

∑ (𝛼 ∙ 𝑁𝑚𝑚 + 𝛽 ∙ 𝑁𝑚𝑝)𝑚
  (𝑢 = 1,2, … ,𝑘) (5.4) 

 

where 𝛼 and 𝛽 (0 < 𝛽 < 𝛼 < 1) are the weights of 𝑁𝑚𝑚 and 𝑁𝑚𝑝 which indicate 

the extent of the influence of the better matched substrings in the prediction phase. 

 

Let 𝑋𝑚 and 𝑌𝑚 (𝑢 = 1,2, … , 𝑘) denote the sample sets of the x-axis coordinates and 

the y-axis coordinates of the possible next locations in the ith cluster. With the 

purpose of simulating a realistic environment, the distribution of the possible next 

locations in each cluster is assumed to follow a normal distribution. Assume that 

samples in 𝑋𝑚 and 𝑌𝑚 are (𝑥𝑚1, 𝑥𝑚2, … , 𝑥𝑚𝑛𝑖) and (𝑦𝑚1,𝑦𝑚2, … , 𝑦𝑚𝑛𝑖), and 𝑢𝑚 denotes 

the number of samples in 𝑋𝑚 and 𝑌𝑚. Thus, the distributions of 𝑋𝑚~𝑁(𝜇𝑚𝑖 ,𝜎𝑚𝑖
2 ) and 

𝑌𝑚~𝑁(𝜇𝑦𝑖 ,𝜎𝑦𝑖
2 ) can be estimated by the following equations: 

 

⎩
⎪
⎨

⎪
⎧ �̂�𝑚𝑖 = �̅�𝑚 =  �𝑥𝑚𝑗  / 𝑢𝑚

𝑛𝑖

𝑗=1

𝜎�𝑚𝑖
2 =  

1
𝑢𝑚
�(𝑥𝑚𝑗 −  �̅�𝑚)2
𝑛𝑖

𝑗=1

     (𝑢 = 1, 2, … ,𝑘) 

(5.5) 

⎩
⎪
⎨

⎪
⎧ �̂�𝑦𝑖 = 𝑦�𝑚 =  �𝑦𝑚𝑗 / 𝑢𝑚

𝑛𝑖

𝑗=1

𝜎�𝑦𝑖
2 =  

1
𝑢𝑚
�(𝑦𝑚𝑗 −  𝑦�𝑚)2
𝑛𝑖

𝑗=1

     (𝑢 = 1, 2, … ,𝑘) (5.6) 

 

where �̂�𝑚𝑖 , 𝜎�𝑚𝑖
2 , �̂�𝑦𝑖  and 𝜎�𝑦𝑖

2  are the estimated parameters of the probability 

distribution of in 𝑋𝑚 and 𝑌𝑚. 
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When making a prediction for a given context {𝐶𝑚,𝐶𝑚−1,𝐶𝑚−2, … ,𝐶𝑚−𝑘+1}, the possible 

next locations 𝐶�̅�+1 are extracted by filtering out the relevant segments from the local 

case library of the learning grid. With the k-means clustering algorithm mentioned 

above, 𝐶�̅�+1 are classified into k clusters. Then, the probability of moving to each 

cluster is calculated with Equation 5.4, and the location distribution in each cluster is 

estimated with Equation 5.5 and 5.6. Finally, the cluster the target RWP is predicted to 

move to is chosen according to the probability distribution of all the clusters, and the 

coordinates of 𝐶�̅�+1 are generated with the estimated location distribution in the 

chosen cluster. 

 

Compared to the STPL model, the reason this model is named as Dynamic Traffic 

Pattern Learning model is that only the historical data that suits the given contexts are 

used to make predictions. The DTPL model can let the pattern learning phase focus on 

the individual movement patterns rather than the generalized patterns. 

 

5.4 Simulation Results 
In the simulation, the simulation area was built with 1296 GGEs (36 × 36), as 

shown in Figure 5.6. Each block of the low speed movement area was composed of 

25 GGEs (5 × 5) with different geographic layouts and is shown in pink. The high 

speed movement areas are in the middle of two adjacent low speed areas and are 

green. The yellow areas are the intersections, where vehicular users could change 

movement direction. The length and width of the simulation area are both 3.6km.  

 

 

 

 



151 
 

 
Figure 5.6 The simulation area of the MPP model 

 

15000 RWPs were distributed in the simulation area at the beginning of the simulation. 

The type of the RWP, pedestrian user or vehicular user, was decided by its initial 

location. RWPs deployed in the pink area were set to pedestrian user type; RWPs in 

the green and yellow area were set to vehicular user type. During the simulation, the 

user type could not be changed.  

 

Similar to the simulations presented in the previous chapter, UDGs were applied to 

evaluate the prediction performance. In this simulation, 1600 SUDGs (40 × 40) and 

8 sets of AUDGs (36 × 20) were deployed, as shown in Figure 5.7. The grey 

square-sharped grids are the SUDGs; the arc-shaped grids are the AUDGs. Each BS 

with the real-line coverage area owns a set of AUDGs. 

    

  

    

  

    
  

    

  

    

  

    

  

    
  

    

  

    

  

    

  

    

  

    

  

    

  

    
  

    

  

    

  

    

  

    

  

    

  

    

  

    

  

    

  

    

  

    

  

    

  

    

  

    

  

    

  

    

  

    

  

    

  

    

  

    

  

    

  

    

  

    

  



152 
 

 
Figure 5.7 SUDGs and AUDGs deployed in the simulation of the MPP model 

 

Two scenarios were included in the simulation, the normal walking scenario and the 

cluster forming scenario. The cluster dispersing scenario was not included in the 

simulation individually, as similar traffic patterns could be seen when the traffic 

restriction was finished in the cluster forming scenario. 200 snapshots were generated 

by the MMP model, but only the snapshots with an even order number are considered 

as valid observations. 324 learning grids (18 × 18) were deployed in the simulation 

area to capture and learn the traffic patterns. Notice that the size of the learning gird 

was the same as the one used in the previous simulations. The DTPL model, the STPL 

model and the order-5 Markov model were applied in the simulation to make 

predictions for the upcoming traffic patterns. In the simulation, all the models started 

to make predictions from the 5th observation. 

 

Figure 5.8 shows the one-step-ahead prediction performance evaluated by 1600 

SUDGs; Figure 5.9 shows the one-step-ahead prediction performance evaluated by 8 

sets of AUDGs (36 × 20) . Predictions evaluated here are made based on the 

observations from the normal walking scenario. 
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Figure 5.8 Prediction performances in the normal walking scenario, evaluated with 

1600 SUDGs (40 × 40) 

 

 

Figure 5.9 Prediction performances in the normal walking scenario, evaluated with 8 

sets of AUDGs (36 × 20) 
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According to the above two figures, it can be seen that the cumulative error rate 

𝐸𝑆𝑆𝑆𝑆  of the DTPL model is around 5% lower than the 𝐸𝑆𝑆𝑆𝑆  error rate of the STPL 

model, and is around 12% lower than the 𝐸𝑆𝑆𝑆𝑆  error rate of the Order-5 Markov 

model. When evaluating the prediction results with AUDG, the average difference 

between the predicted population of RWPs and the observation in every AUDG is less 

than 1 with the DTPL model. This average population difference is around 1.1 with 

the STPL model, and 1.45 with the order-5 Markov model.  

 

Compared to the prediction performance shown in Figure 4.7 and 4.8, it also can be 

seen that the prediction accuracy decreases when using the STPL model and the 

order-5 Markov model make predictions based on the observations from the MMP 

model. This is caused by the mixed movement patterns in the observed traffic 

snapshots, and the asynchronous frequency between the traffic snapshot observation 

and the traffic pattern generation.  

 

Figure 5.10 and Figure 5.11 show the prediction accuracy in terms of the number of 

congested UDGs with the DTPL model; Figure 5.12 and Figure 5.13 show the 

prediction accuracy in terms of the number of congested UDGs with the STPL model; 

Figure 5.14 and Figure 5.15 show the prediction accuracy in terms of the number of 

congested UDGs with the Order-5 Markov model. 
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Figure 5.10 Predicted number of congested SUDGs with DTPL, evaluated with 1600 

SUDGs (40 × 40) 

 

 

Figure 5.11 Predicted number of congested AUDGs with DTPL, evaluated with 8 sets 

of AUDGs (36 × 20) 
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Figure 5.12 Predicted number of congested SUDGs with STPL, evaluated with 1600 

SUDGs (40 × 40) 

 

 

Figure 5.13 Predicted number of congested AUDGs with STPL, evaluated with 8 sets 

of AUDGs (36 × 20) 
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Figure 5.14 Predicted number of congested SUDGs with Order-5 Markov model, 

evaluated with 1600 SUDGs (40 × 40) 

 

 

Figure 5.15 Predicted number of congested AUDGs with Order-5 Markov model, 

evaluated with 8 sets of AUDGs (36 × 20) 
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In the above six figures, the best performance can be seen when predictions are made 

with the DTPL model. With DTPL model in the normal walking scenario, the 

predicted number of mobile clusters is very close to the observed number. When 

evaluating the performance with 8 sets of AUDGs, around 80% of the predicted 

mobile clusters are in the same location as the observed ones. Compared to the 

performance presented in the previous chapter, the prediction accuracies of the STPL 

model and the Order-5 Markov model decrease, which is mainly caused by the mixed 

movement patterns in the observed traffic snapshots. 

 

Figure 5.16 shows the one-step-ahead prediction performance evaluated by 1600 

SUDGs when the simulation is carried out in the cluster forming scenario; Figure 5.17 

shows the one-step-ahead prediction performance evaluated by 8 sets of AUDGs 

(36 × 20) in the cluster forming scenario. Traffic events are triggered at Step 30, and 

can be seen from the 15th traffic observation. All the traffic events end at Step 80. 

 

 

Figure 5.16 Prediction performances in the cluster forming scenario, evaluated with 

1600 SUDGs (40 × 40) 
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Figure 5.17 Prediction performances in the cluster forming scenario, evaluated with 8 

sets of AUDGs (36 × 20) 

 

According to the above two figures, the lowest error rates 𝐸𝑆𝑆𝑆𝑆  and 𝐸𝐴𝑆𝑆𝑆  are 

obtained when applying the DTPL model, with average errors of 0.1320 and 0.9339 

respectively. For both the DTPL model and the STPL model, 𝐸𝑆𝑆𝑆𝑆  and 𝐸𝐴𝑆𝑆𝑆  

increase suddenly at the 15th step. This is caused by the change of the movement 

patterns in the areas affected by the traffic events. The error rates decrease to the 

normal range after the pattern changes are known to the DTPL and STPL model. For 

the Order-5 Markov model, the influence from the traffic events lasts longer, due to 

the comparative simple structure of the model. 

 

Figure 5.18 and Figure 5.19 show the prediction accuracy in terms of the number of 

congested UDGs with the DTPL model; Figure 5.20 and Figure 5.21 show the 

prediction accuracy in terms of the number of congested UDGs with the STPL model; 

Figure 5.22 and Figure 5.23 show the prediction accuracy in terms of the number of 

congested UDGs with the Order-5 Markov model. 
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Figure 5.18 Predicted number of congested SUDGs with DTPL, evaluated with 1600 

SUDGs (40 × 40) 

 

 

Figure 5.19 Predicted number of congested AUDGs with DTPL, evaluated with 8 sets 

of AUDGs (36 × 20) 
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Figure 5.20 Predicted number of congested SUDGs with STPL, evaluated with 1600 

SUDGs (40 × 40) 

 

 

Figure 5.21 Predicted number of congested AUDGs with STPL, evaluated with 8 sets 

of AUDGs (36 × 20) 
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Figure 5.22 Predicted number of congested SUDGs with Order-5 Markov model, 

evaluated with 1600 SUDGs (40 × 40) 

 

 

Figure 5.23 Predicted number of congested AUDGs with Order-5 Markov model, 

evaluated with 8 sets of AUDGs (36 × 20) 
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Similar to the performances obtained in the normal walking scenario, the best 

performance can be seen when predictions are made with the DTPL model. With the 

DTPL model, most of the mobile clusters can be located precisely in terms of the 

evaluations with SUDGs and AUDGs. Notice that the AUDGs are deployed according 

to the coverage of the semi-smart antennas, and the applied granularity (36 × 20) is 

enough to perform CBR-matching for the traffic patterns, which has been proved by 

Yao in [Yao07]. With the slight deviation of the population in each segment (0.9339 

per segment), the prediction results of the DTPL model could be used in the along 

with CBR-matching for radiation pattern optimisation. Figure 5.24 shows the 

comparison between five consecutive observed mobile clusters and the relevant 

predictions. 
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Figure 5.24 Comparison between observed and predicted locations of mobile clusters 

Observations Predictions 
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5.5 Summary 
In order to carry out the traffic pattern prediction in a more realistic environment, the 

MMP mobility model is proposed to provide observations of mixed traffic patterns. 

Besides, observations are captured asynchronously relative to the pattern generation 

to increase the uncertainty and complexity of the prediction task. Then, the DTPL 

model, an improved version of the STPL model, is proposed to learn traffic patterns 

and make predictions with fewer requirements in terms of historical data. Finally, 

simulation results are presented and discussed. According to the results, it can be 

concluded that the performance of the DTPL is comparatively stable and the accuracy 

of the prediction can be acceptable. 

 

So far, the applied mobility model can be considered as a semi-microscopic model, as 

there is no interaction between two mobile terminals. Without inter-user interactions, 

it is especially difficult to reproduce the real-life traffic patterns for vehicular users. 

Thus, an advanced cellular automaton model, which is widely used in statistical 

physics field, is introduced to regenerate the traffic behaviour of vehicles. 
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6 SIMULATING VEHICULAR TRAFFIC PATTERN WITH A 

CELLULAR AUTOMATON MODEL 

In the mobility prediction field, most research focuses on mining the inter-cell 

transition data. Generally speaking, inter-cell transition data consists of a sequence of 

transition events, which are pairs of cell identifiers and transition times. Thus, the 

main mobility models used for mobility prediction, as mentioned in [CBD02], can be 

considered as macroscopic models, which just concentrate on the inter-cell location 

changes of each mobile user, but not the intra-cell location change. In this research, 

microscopic models are needed to simulation both the inter-cell movement process 

and the intra-cell movement process. With microscopic models, more detailed traffic 

patterns can be captured to learn the local movement characteristics.   

 

When designing a mobility model, one difficulty is to let the model reproduce 

phenomena that happen in real life without excessively increasing the complexity of 

the model. So far, two mobility models that are built based on the Random Walk 

Model have been proposed to simulate real life traffic patterns. From a microscopic 

perspective, the Random Walk Model might be suitable for mimicking the movement 

of pedestrians, since the size of a walking user could be negligible. However, it is 

unrealistic if dozens of moving cars gather in a small area. In order to simulate the 

movement of vehicle users in the city area or in the highway, the cellular automaton 

model, which is widely used in the field of statistical physics, is introduced to 

reproduce the traffic behaviour of vehicles.  

 

6.1 An overview of the cellular automaton models 
From the perspective of statistical physics, there are two main conceptual frameworks 

for modelling vehicular traffic in real life [CSS00]. They are the fluid-dynamical 

description and the microscopic model. In the fluid-dynamical description, traffic is 

viewed as a compressible fluid formed by the vehicles but these individual vehicles 
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do not appear explicitly in the model. In the microscopic model, attention is explicitly 

focused on individual vehicles each of which is represented by a non-negligible 

particle. The movement influence among vehicles is simulated by the interactions 

among these particles. In the statistical physics field, the cellular automaton (CA) 

model is the most widely used framework to implement the microscopic models for 

vehicular traffic. Besides, the CA model also has been applied to mimic the 

movement of pedestrians, as shown in [BSS98], [ES97], [BA98] and [KMWS00]. 

 

In general, the CA models are an idealization of physical systems in which both space 

and time are assumed to be discrete and each of the interacting units can have only a 

finite number of discrete states [CSS00]. The concept of CA was introduced in the 

1950s by Von Neumann and popularized in the 1960s by Wolfram [Codd68]. Since 

then the concept of CA has been applied to model a wide variety of systems. The first 

CA model for vehicular traffic was introduced by Cremer and Ludwig in 1986 

[CSS00]. 

 

One of the most famous CA models used to simulate vehicular traffic is the 

Nagel-Schreckenberg (NaSch) model, which is first proposed in [NS92]. In the NaSch 

model, the positon, speed, acceleration and time are treated as discrete variables. 

Since this model is built for freeway traffic originally, the vehicle lane is represented 

by a one-dimensional lattice with L sites. Each site may either be occupied by one 

vehicle, or it may be empty. Nagel and Schreckenberg propose that each car occupies 

about 7.5m of space in a complete jam. Thus, 7.5m is used as the length of each site. 

Besides, they also choose 1 second to be the duration between each time stamp. 

Figure 6.1 illustrate the NaSch model. The number in the right up corner represents 

the speed of the residing vehicle. 

 
Figure 6.1 An example of the NaSch model 
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In the NaSch model, the speed v of each vehicle can take one of the 𝑣𝑚𝑚𝑚 + 1 

allowed integer values 𝑣 = 0,1, … , 𝑣𝑚𝑚𝑚. Suppose 𝑥𝑛 and 𝑣𝑛 denote the position 

and speed of the nth vehicle, then 𝑟𝑛 = 𝑥𝑛+1 − 𝑥𝑛 is the gap in between the nth 

vehicle and the vehicle in front of it at time t. At each time step 𝑡 → 𝑡 + 1, the 

arrangement of the N vehicles on a finite lattice of length L is updated in parallel 

according to the following rules[NS92]: 

 

 Step 1: Acceleration. If 𝑣𝑛 < 𝑣𝑚𝑚𝑚, the speed of the nth vehicle is increased by 

one, but 𝑣𝑛 remains unaltered if 𝑣𝑛 = 𝑣𝑚𝑚𝑚. 

 

                        𝑣𝑛 → 𝑢𝑢𝑢 (𝑣𝑛 + 1, 𝑣𝑚𝑚𝑚)                    (6.1) 

 

 Step 2: Deceleration. If 𝑟𝑛 ≤ 𝑣𝑛, the speed of the nth vehicle is reduced to 

𝑟𝑛 − 1. 

 

                         𝑣𝑛 → 𝑢𝑢𝑢 (𝑣𝑛,𝑟𝑛 − 1)                     (6.2) 

 Step 3: Randomization. If 𝑣𝑛 > 0, the speed of the nth vehicle is decreased 

randomly by unity with probability p. 

 

              𝑣𝑛 → 𝑢𝑟𝑥 (𝑣𝑛 − 1,0) with probability p                 (6.3) 

 

 Step 4: Vehicle movement. Each vehicle is moved forward according to its new 

velocity determined in Steps 1-3. 

 

                            𝑥𝑛 → 𝑥𝑛 + 𝑣𝑛                         (6.4) 

 

As mentioned in [NS92], the NaSch model is a minimal model, since all the above 

four steps are necessary to reproduce the basic characteristics of the real vehicular 

traffic. Step 1 reflects the general tendency of the drivers to drive as fast as possible 

without exceeding the maximum speed limit. Step 2 is used to avoid collision between 
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vehicles. Step 3 takes into account the random behaviour of drivers, such as 

nondeterministic acceleration and overreaction while slowing down. Step 4 performs 

the vehicle movement according to the parameters determined in the preceding steps.  

 

Although the NaSch model is a minimal model to mimic only basic freeway traffic 

features, it is convenient to extend this model to a sophisticated one by appending 

additional rules and adjusting the order of each rule to reproduce more traffic 

phenomena. As mentioned in [CSS00], many extensions of the NaSch model have 

been proposed in recent years, such as the slow-to-start model, the multi-lane highway 

models, bidirectional traffic model, etc. Inspired by the existing multi-lane models 

proposed in [RWH05], [CG10], [RNSL96], [KSSS02] and [LJGJ06], this research 

introduces a Multi-Lane City Traffic (MLCT) model, which can be considered as 

another extension of the NaSch model. 

 

6.2 Performing traffic pattern prediction in the MLCT model 
In this research, a MLCT model, extended from the city traffic model described in 

[CSS00], is introduced to mimic the movement of mobile users in vehicles. The 

original city traffic model is a combination of the NaSch model and the 

Biham-Middleton-Levine (BML) model. In this original model, there is only one 

traffic lane in each road and the possible movement directions are “east” and “north”. 

In this model, the number of traffic lanes is increased to two for each direction and 

four movement directions, “east”, “west”, “north” and “south”, are available for the 

vehicle users. A detailed description of the MLCT model is given in the following 

part. 

 

Figure 6.2 illustrates part of the MLCT model. By using the concept of the Manhattan 

model, the simulation area is divided into M regions. Each region consists of one 

intersection and four lanes in each direction that are connected with neighbour regions. 

Between every two intersections, there are D sites in each traffic lane to model the 
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segment of the streets in the same manner as modelling highways in the NaSch model. 

Thus, the methods used in the NaSch model for describing the speeds, accelerations, 

and interactions among vehicles can be used here. In this model, two parallel lanes are 

available for each direction, which means the lane changing rules should be taken into 

account. Besides, a traffic signal light is put in each intersection to control the traffic 

flow.  

 

 

Figure 6.2 An example of the MLCT model 

 

In the MLCT model, the value range of speed v is still 𝑣 = 0,1, … , 𝑣𝑚𝑚𝑚. 𝑎𝑟𝑔𝑛 =

𝑥𝑛+1 − 𝑥𝑛 is the gap in between the nth vehicle and the vehicle in front of it on the 

same lane. 𝑎𝑟𝑔𝑛+ and 𝑎𝑟𝑔𝑛− are the forward gap and backward gap of the nth 

vehicle on the neighbour lane. 𝑔𝑐ℎ𝑚𝑛𝑎𝑏 is the probability of a vehicle to move to the 

neighbour lane if all the conditions for lane changing are satisfied. 𝑎𝑟𝑔𝑛_𝑏𝑚𝑎 is the 

distance between the current vehicle and the next signal light that it is facing. Sig is 

used to present the colour of the signal light, which has two possible values, green and 
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red. In the MLCT model, each movement of a vehicle can be split into two sub-steps, 

moving sideways and moving forward. At each time step 𝑡 → 𝑡 + 1, the arrangement 

of the N vehicles in the four-direction-multi-lane model with periodic boundary is 

updated in parallel according to the following rules: 

 

 Step 1: Lane changing. A vehicle n changes to the neighbour lane with the same 

traffic direction if all of the following conditions are fulfilled: 

 

                       

⎩
⎪
⎨

⎪
⎧
𝑎𝑟𝑔𝑛 < 𝑣𝑛 + 1                                
𝑎𝑟𝑔𝑛+ > 𝑣𝑛 + 1                             
𝑎𝑟𝑔𝑛− > 𝑣𝑚𝑚𝑚                                
𝑎𝑟𝑔𝑛_𝑏𝑚𝑎 ≥ 𝑛𝑏𝑚𝑎                               
𝑢𝑟𝑢𝑟_𝑢𝑢𝑢𝑢𝑢𝑢𝑢(0,1) < 𝑔𝑐ℎ𝑚𝑛𝑎𝑏

              (6.5) 

 

 Step 2: Acceleration. If 𝑣𝑛 < 𝑣𝑚𝑚𝑚, the speed of the nth vehicle is increased by 

one, but 𝑣𝑛 remains unaltered if 𝑣𝑛 = 𝑣𝑚𝑚𝑚. 

 

                         𝑣𝑛 → 𝑢𝑢𝑢 (𝑣𝑛 + 1, 𝑣𝑚𝑚𝑚)                   (6.6) 

 

 Step 3: Deceleration. Suppose τ is the number of the remaining steps before the 

next signal light turns red. If τ is smaller than a threshold value (usually 5 

seconds), the speed of the nth vehicle is determined by: 

 

                     𝑣𝑛 → 𝑢𝑢𝑢 (𝑣𝑛,𝑎𝑟𝑔𝑛_𝑏𝑚𝑎 ,𝑎𝑟𝑔𝑛 − 1)               (6.7) 

 

If τ is larger than the threshold value, then 𝑣𝑛 is determined by: 

 

                          𝑣𝑛 → 𝑢𝑢𝑢 (𝑣𝑛,𝑎𝑟𝑔𝑛 − 1)                  (6.8) 

 

 Step 4: Randomization. If 𝑣𝑛 > 0, the speed of the nth vehicle is decreased 

randomly by unity with probability p. 
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                  𝑣𝑛 → 𝑢𝑟𝑥 (𝑣𝑛 − 1,0) with probability p             (6.9) 

 

 Step 5: Vehicle movement. Each vehicle is moved forward according to its new 

velocity determined in Steps 1-4. 

 

                             𝑥𝑛 → 𝑥𝑛 + 𝑣𝑛                        (6.10) 

 

With the above rules, it is possible for the MLCT model to simulate urban vehicular 

traffic in a realistic manner. Notice that the position of a vehicle in the MLCT model 

is denoted by the ID of the site in which the vehicle is staying, but not the Cartesian 

coordinates. As the movement trajectory of each vehicle can only be presented as a 

sequence of site IDs, the Order-k Markov learning model is applied to learning traffic 

patterns and make predictions. Learning grids are deployed in the simulation area to 

capture the 𝑘 + 1 length trajectory segments for the Order-k Markov models. 

 

6.3 Simulation results 
In the simulation, the simulation area was built with 4 regions. All the regions had the 

same intersection topology, and the number of sites between two intersections was set 

to 100. The switching period of the signal light in each intersection was set to 20 steps. 

700 vehicles were uniformly distributed in the simulation area at the beginning of the 

simulation. In order to perform the pattern learning and prediction locally, 676 

(26 × 26) learning grids were deployed in each region in the simulation area. In 

order to evaluate the accuracy of the predicted distribution, 169 (13 × 13) SUDGs 

were deployed to cover each region in the simulation area. Figure 6.3 illustrates an 

example of the simulation area after initialization. Notice that the square brackets 

represent empty sites; the integers represent occupied sites and the initial speed of the 

vehicle is an integer value.  
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Figure 6.3 The MLCT model after initialization 

 

In the simulation, the on-line learning mode was applied. The first 3000 snapshots 

generated by the MLCT model were used to train the deployed Order-6 Markov 

models without performing predictions. From then on, the historical trajectory library 

of each learning model was updated, and up to 6-step-ahead predictions were 

performed for the following 200 snapshots. No traffic event was triggered in the 

simulation. Figure 6.4 (a) to (f) show the cumulative error rates of the 

multi-step-ahead predictions in each region. Figure 6.5 shows the overall error rates of 

the multi-step-ahead predictions. 
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Figure 6.4 (a) Cumulative error rate of one-step-ahead prediction 

 

 

Figure 6.4 (b) Cumulative error rate of two-step-ahead prediction 
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Figure 6.4 (c) Cumulative error rate of three-step-ahead prediction 

 

 

Figure 6.4 (d) Cumulative error rate of four-step-ahead prediction 
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Figure 6.4 (e) Cumulative error rate of five-step-ahead prediction 

 

 

Figure 6.4 (f) Cumulative error rate of six-step-ahead prediction 
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Figure 6.5 Cumulative error rates of each region 

 

In Figure 6.4, the x-axis represents the order number of the valid SUDGs; the y-axis 

represents the value of the cumulative error rate. One SUDG is considered as valid if 

this SUDG covers part of the traffic lane. In Figure 6.5, the x-axis represents the 

number of steps that are predicted ahead; the y-axis represents the value of the overall 

cumulative error rate. Four different colours are used to distinguish the evaluation 

results of each region. 

 

If only looking over Figure 6.5, it can be seen that the error rate grows from the 

1-step-ahead prediction to the 6-step-ahead prediction. The results of the first three 

predictions can be accepted reluctantly. From the 4-step-ahead prediction, all of the 

rates are over 0.5. However, a different conclusion can be made after analysing the 

more detailed results in Figure 6.4. Figure 6.4 shows the cumulative error rates of 

each valid SUDG in each region. In all sub-figures, a considerably large error rate can 

be found at SUDG 84 in each region. In some cases, the error rates of UDG 84 are 

over 1.0. The reason of this phenomenon is that UDG 84 covers the conjunction area 

of the four-direction traffic. The traffic in this area mainly depends on the status of the 
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signal light, of which the switching period is 20 steps. As the maximal order number 

in the learning phase was set to 6, information of this switch period of the traffic 

signal light could not be contained in the learning patterns.  

 

Due to the simple structure of the Order-k Markov model, the upcoming vehicular 

traffic patterns in the MLCT model cannot be predicted accurately. Thus, a more 

sophisticated predictor should be designed and applied to learn the traffic patterns in 

the MLCT model.  
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7 CONCLUSION 

In this chapter, the conclusion of the research presented in this thesis is given. Then, 

relevant work that could extend this research is discussed. 

 

7.1 Conclusion 
This thesis has proposed an intra-cell traffic pattern prediction scheme for forecasting 

the distribution of mobile users and mobile clusters from microscopic perspectives, 

rather than the existing macroscopic mobility predictions that focus on the inter-cell 

transition status of mobile terminals. With accurate predictions of the upcoming 

geographic distribution of mobile users in each cell, semi-smart antenna techniques 

can be applied to guide the beamforming pattern adjustment so as to alleviate 

congestion in cellular networks. 

 

In order to implement this microscopic traffic pattern prediction, two mobility models 

are proposed originally in this research for generating intra-cell traffic patterns. 

Sophisticated walking rules are applied to let the traffic patterns be more realistic than 

patterns generated by the existing mobility models. The cellular automaton model is 

introduced to build the mobility model with inter-user interactions, which is mainly 

for reproducing the traffic patterns of mobile users in vehicles.  

 

The concept that learning the local geographic features and local movement patterns 

of mobiles users with cell transition trajectories so as to make predictions on intra-cell 

distribution is proposed in this research. By learning local features, the intra-cell 

traffic patterns can be revealed and future traffic patterns can be estimated. Three 

pattern learning models are proposed to mine the cell transition trajectories in a 

generalized way. With the STPL model, the local movement characteristics can be 

learnt from many perspectives; the future geographic traffic distribution can be well 

estimated; and the location of mobile clusters can be accurately identified; the 

convergence time for irregular traffic patterns is short. With the MTPL model, no 
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strict requirements are need for the observed traffic; and local traffic characteristics 

can be learnt from a mix of different traffic pattern observations. According to the 

simulation results, future distributions of mobile users and mobile clusters can be 

predicted with high accuracy. 

 

7.2 Future Work 
The reason of performing the intra-cell traffic pattern prediction is to benefit the 

beamforming pattern adjustment of semi-smart antennas with accurately predicted 

future distribution of mobile terminals. However, cooperation between the intra-cell 

traffic pattern prediction and load balancing of the semi-smart antennas is not 

included in this research. It is worth to extend the result of this research by letting the 

semi-smart antenna operating cooperatively with the local pattern learning models. 

 

More sophisticated pattern learning models are needed to increase the accuracy of the 

predictions made for the traffic patterns generated in the cellular automaton model. A 

set of Markov models with different delays is recommended for extending this part of 

the research. 
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APPENDIX 

 

In this section, the test procedures that undertaken to provide evidence that the 

simulation tools functioned correctly are presented first, followed by the introduction 

of the Random Number Generator (RNG) used in the simulation. 

 

A. Simulation Validation  

All the simulation tools used in this research are written from scratch in C++. In order 

to test the correctness of the codes, a set of validation checks are planted into the 

simulation tools to output intermediate results. When carrying out the validation, 

those intermediate results are checked manually.  

 

In the pattern generating phase, the validation checks are as follows: 

• In each step, the position of an RWP should not be outside the boundary of the 

simulation area; 

• The movement direction should not be changed if the time of direction change 

is larger than a threshold; 

• Intermediate results when invoking Equation 3.4, 3.5 and 3.6 are correct. 

 

In the pattern learning phase, the validation checks are as follows: 

• The movement contexts generated for each pattern learning model are correct 

and complete; 

• The number of substrings obtained with Equation 3.9 and 3.14 are the same as 

the manually counted number; 

• When using the STML model, intermediate results with Equation 3.10 and 

3.11 are correct; 

• When using the DTML model, intermediate results when extracting 

neighbouring movement trajectories are correct; 
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In the pattern prediction phase, the validation checks are as follows: 

• The k-length most recent movement trajectories generated for making 

predictions are correct; 

• When applying the second decision rule in the Markov model and the STML 

model,  intermediate results are correct and the value of  the target variable 

is chosen following the relevant probability distribution; 

• When using the DTML model, intermediate results when invoking Equation 

5.1, 5.2, 5.3, 5.4, 5.5 and 5.6 are correct. 

 

 

B. The Mersenne Twister Random Number Generator 

The Mersenne Twister RNG was first proposed by Makoto Matsumoto and Takuji 

Nishimura in 1997 [1] [2]. This generator is based on a matrix linear recurrence over a 

finite binary field. Many variants are widely used, such as the Mersenne Twister 

MT19937, the Mersenne Twister MT19937-64, and the SIMD-Oriented Fast 

Mersenne Twister. The RNG used in this research was developed based on Mersenne 

Twister MT19937.  

 

The main features of the Mersenne Twister RNG are [1] [3]: 

• The period of the Mersenne Twister RNG is very long, 219937 − 1; 

• It is k-distributed to 32-bit accuracy for every 1 ≤ 𝑘 ≤ 623; 

• Mersenne Twister RNG is fast. It avoids multiplication and division; and it 

benefits from caches and pipelines. 

 

The Mersenne Twister RNG used in this research was written based on the codes 

published on [4]. Amendments are made to make functions from [4] suitable to be 

operated under VC2005 and to be invoked by other original functions.  
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