12,872 research outputs found

    Runtime Verification Based on Executable Models: On-the-Fly Matching of Timed Traces

    Full text link
    Runtime verification is checking whether a system execution satisfies or violates a given correctness property. A procedure that automatically, and typically on the fly, verifies conformance of the system's behavior to the specified property is called a monitor. Nowadays, a variety of formalisms are used to express properties on observed behavior of computer systems, and a lot of methods have been proposed to construct monitors. However, it is a frequent situation when advanced formalisms and methods are not needed, because an executable model of the system is available. The original purpose and structure of the model are out of importance; rather what is required is that the system and its model have similar sets of interfaces. In this case, monitoring is carried out as follows. Two "black boxes", the system and its reference model, are executed in parallel and stimulated with the same input sequences; the monitor dynamically captures their output traces and tries to match them. The main problem is that a model is usually more abstract than the real system, both in terms of functionality and timing. Therefore, trace-to-trace matching is not straightforward and allows the system to produce events in different order or even miss some of them. The paper studies on-the-fly conformance relations for timed systems (i.e., systems whose inputs and outputs are distributed along the time axis). It also suggests a practice-oriented methodology for creating and configuring monitors for timed systems based on executable models. The methodology has been successfully applied to a number of industrial projects of simulation-based hardware verification.Comment: In Proceedings MBT 2013, arXiv:1303.037

    Testing timed systems modeled by stream X-machines

    Get PDF
    Stream X-machines have been used to specify real systems where complex data structures. They are a variety of extended finite state machine where a shared memory is used to represent communications between the components of systems. In this paper we introduce an extension of the Stream X-machines formalism in order to specify systems that present temporal requirements. We add time in two different ways. First, we consider that (output) actions take time to be performed. Second, our formalism allows to specify timeouts. Timeouts represent the time a system can wait for the environment to react without changing its internal state. Since timeous affect the set of available actions of the system, a relation focusing on the functional behavior of systems, that is, the actions that they can perform, must explicitly take into account the possible timeouts. In this paper we also propose a formal testing methodology allowing to systematically test a system with respect to a specification. Finally, we introduce a test derivation algorithm. Given a specification, the derived test suite is sound and complete, that is, a system under test successfully passes the test suite if and only if this system conforms to the specification

    Discovery and Selection of Certified Web Services Through Registry-Based Testing and Verification

    Get PDF
    Reliability and trust are fundamental prerequisites for the establishment of functional relationships among peers in a Collaborative Networked Organisation (CNO), especially in the context of Virtual Enterprises where economic benefits can be directly at stake. This paper presents a novel approach towards effective service discovery and selection that is no longer based on informal, ambiguous and potentially unreliable service descriptions, but on formal specifications that can be used to verify and certify the actual Web service implementations. We propose the use of Stream X-machines (SXMs) as a powerful modelling formalism for constructing the behavioural specification of a Web service, for performing verification through the generation of exhaustive test cases, and for performing validation through animation or model checking during service selection

    Testing conformance of a deterministic implementation against a non-deterministic stream X-machine

    Get PDF
    Stream X-machines are a formalisation of extended finite state machines that have been used to specify systems. One of the great benefits of using stream X-machines, for the purpose of specification, is the associated test generation technique which produces a test that is guaranteed to determine correctness under certain design for test conditions. This test generation algorithm has recently been extended to the case where the specification is non-deterministic. However, the algorithms for testing from a non-deterministic stream X-machine currently have limitations: either they test for equivalence, rather than conformance or they restrict the source of non-determinism allowed in the specification. This paper introduces a new test generation algorithm that overcomes both of these limitations, for situations where the implementation is known to be deterministic

    Tester versus Bug: A Generic Framework for Model-Based Testing via Games

    Get PDF
    We propose a generic game-based approach for test case generation. We set up a game between the tester and the System Under Test, in such a way that test cases correspond to game strategies, and the conformance relation ioco corresponds to alternating refinement. We show that different test assumptions from the literature can be easily incorporated, by slightly varying the moves in the games and their outcomes. In this way, our framework allows a wide plethora of game-theoretic techniques to be deployed for model based testing.Comment: In Proceedings GandALF 2018, arXiv:1809.0241

    Metamodel-based model conformance and multiview consistency checking

    Get PDF
    Model-driven development, using languages such as UML and BON, often makes use of multiple diagrams (e.g., class and sequence diagrams) when modeling systems. These diagrams, presenting different views of a system of interest, may be inconsistent. A metamodel provides a unifying framework in which to ensure and check consistency, while at the same time providing the means to distinguish between valid and invalid models, that is, conformance. Two formal specifications of the metamodel for an object-oriented modeling language are presented, and it is shown how to use these specifications for model conformance and multiview consistency checking. Comparisons are made in terms of completeness and the level of automation each provide for checking multiview consistency and model conformance. The lessons learned from applying formal techniques to the problems of metamodeling, model conformance, and multiview consistency checking are summarized

    Formal Methods in Conformance Testing: A Probabilistic Refinement

    Get PDF
    This paper refines the framework of ‘Formal Methods in Conformance Testing’ by introducing probabilities for concepts which have a stochastic nature. Test execution is refined into test runs, where each test run is considered as a stochastic process that returns a possible observa- tion with a certain probability. This implies that not every possible observation that could be made, will actually be made. The development process of an implementation from a specifica- tion is also viewed as a stochastic process that may result in a specific implementation with a certain probability. Together with a weight assignment on implementations this introduces a valuation measure on implementations. The test run probabilities and the valuation measures are integrated in generalized definitions of soundness and exhaustiveness, which can be used to compare test suites with respect to their ability to accept correct, and to reject erroneous implementations

    Extending stream X-machines to specify and test systems with timeouts

    Get PDF
    Stream X-machines are a kind of extended finite state machine used to specify real systems where communication between the components is modeled by using a shared memory.In this paper we introduce an extension of the Stream X-machines formalism in order to specify delays/timeouts.The time spent by a system waiting for the environment to react has the capability of affecting the set of available outputs of the system. So, a relation focusing on functional aspects must explicitly take into account the possible timeouts.We also propose a formal testing methodology allowing to systematically test a system with respect to a specification. Finally, we introduce a test derivation algorithm. Given a specification, the derived test suite is sound and complete, that is, a system under test successfully passes the test suite if and only if this system conforms to the specification
    corecore