1,002 research outputs found

    A reconfigurable multi-mode mobile parallel robot

    Get PDF

    Adaptive and reconfigurable robotic gripper hands with a meso-scale gripping range

    Get PDF
    Grippers and robotic hands are essential and important end-effectors of robotic manipulators. Developing a gripper hand that can grasp a large variety of objects precisely and stably is still an aspiration even though research in this area has been carried out for several decades. This thesis provides a development approach and a series of gripper hands which can bridge the gap between micro-gripper and macro-gripper by extending the gripping range to the mesoscopic scale (meso-scale). Reconfigurable topology and variable mobility of the design offer versatility and adaptability for the changing environment and demands. By investigating human grasping behaviours and the unique structures of human hand, a CFB-based finger joint for anthropomorphic finger is developed to mimic a human finger with a large grasping range. The centrodes of CFB mechanism are explored and a contact-aided CFB mechanism is developed to increase stiffness of finger joints. An integrated gripper structure comprising cross four-bar (CFB) and remote-centre-of-motion (RCM) mechanisms is developed to mimic key functionalities of human hand. Kinematics and kinetostatic analyses of the CFB mechanism for multimode gripping are conducted to achieve passive-adjusting motion. A novel RCM-based finger with angular, parallel and underactuated motion is invented. Kinematics and stable gripping analyses of the RCM-based multi-motion finger are also investigated. The integrated design with CFB and RCM mechanisms provides a novel concept of a multi-mode gripper that aims to tackle the challenge of changing over for various sizes of objects gripping in mesoscopic scale range. Based on the novel designed mechanisms and design philosophy, a class of gripper hands in terms of adaptive meso-grippers, power-precision grippers and reconfigurable hands are developed. The novel features of the gripper hands are one degree of freedom (DoF), self-adaptive, reconfigurable and multi-mode. Prototypes are manufactured by 3D printing and the grasping abilities are tested to verify the design approach.EPSR

    MUSME 2011 4 th International Symposium on Multibody Systems and Mechatronics

    Full text link
    El libro de actas recoge las aportaciones de los autores a través de los correspondientes artículos a la Dinámica de Sistemas Multicuerpo y la Mecatrónica (Musme). Estas disciplinas se han convertido en una importante herramienta para diseñar máquinas, analizar prototipos virtuales y realizar análisis CAD sobre complejos sistemas mecánicos articulados multicuerpo. La dinámica de sistemas multicuerpo comprende un gran número de aspectos que incluyen la mecánica, dinámica estructural, matemáticas aplicadas, métodos de control, ciencia de los ordenadores y mecatrónica. Los artículos recogidos en el libro de actas están relacionados con alguno de los siguientes tópicos del congreso: Análisis y síntesis de mecanismos ; Diseño de algoritmos para sistemas mecatrónicos ; Procedimientos de simulación y resultados ; Prototipos y rendimiento ; Robots y micromáquinas ; Validaciones experimentales ; Teoría de simulación mecatrónica ; Sistemas mecatrónicos ; Control de sistemas mecatrónicosUniversitat Politècnica de València (2011). MUSME 2011 4 th International Symposium on Multibody Systems and Mechatronics. Editorial Universitat Politècnica de València. http://hdl.handle.net/10251/13224Archivo delegad

    A Foundation for Analysis of Spherical System Linkages Inspired by Origami and Kinematic Paper Art

    Get PDF
    Origami and its related fields of paper art are known to map to mechanisms, permitting kinematic analysis. Many origami folds have been studied in the context of engineering applications, but a sufficient foundation of principles of the underlying class of mechanism has not been developed. In this work, the mechanisms underlying paper art are identified as “spherical system linkages” and are studied in the context of generic mobility analysis with the goal of establishing a foundation upon which future work can develop.Spherical systems consist of coupled spherical and planar loops, and they motivate a reclassification of mechanisms based on the Chebyshev-Grübler-Kutzbach framework. Spherical systems are capable of complex, closed-loop motion in 3D space despite the mobility calculation treating the links as constrained to a single 2D surface. This property permits generalization of some multi-loop planar mechanisms, such as the Watt mechanism, to a generalized 3D form with equal mobility. A minimal connectivity graph representation of spherical systems is developed, and generic mobility equations are identified. Spherical system linkages are generalized further into spherical/spatial hybrid mechanisms which may have any combination of spherical, planar, and spatial loops. These are represented and analyzed with a polyhedron model. The connectivity graph is modified for this case and appropriate generic mobility equations are identified and adapted.The generic analyses developed for spherical system linkages are sufficient to inform an exhaustive type synthesis process. Generation of all configurations of a paper art inspired mechanism subject to constraints is discussed, and a case study generates all configurations of a spatial chain using specified link types. This design process is enabled by the developed notation and analyses, which are used to identify, depict, and classify kinematic paper art inspired mechanisms

    Parallel Manipulators

    Get PDF
    In recent years, parallel kinematics mechanisms have attracted a lot of attention from the academic and industrial communities due to potential applications not only as robot manipulators but also as machine tools. Generally, the criteria used to compare the performance of traditional serial robots and parallel robots are the workspace, the ratio between the payload and the robot mass, accuracy, and dynamic behaviour. In addition to the reduced coupling effect between joints, parallel robots bring the benefits of much higher payload-robot mass ratios, superior accuracy and greater stiffness; qualities which lead to better dynamic performance. The main drawback with parallel robots is the relatively small workspace. A great deal of research on parallel robots has been carried out worldwide, and a large number of parallel mechanism systems have been built for various applications, such as remote handling, machine tools, medical robots, simulators, micro-robots, and humanoid robots. This book opens a window to exceptional research and development work on parallel mechanisms contributed by authors from around the world. Through this window the reader can get a good view of current parallel robot research and applications

    Kinematics and Robot Design I, KaRD2018

    Get PDF
    This volume collects the papers published on the Special Issue “Kinematics and Robot Design I, KaRD2018” (https://www.mdpi.com/journal/robotics/special_issues/KARD), which is the first issue of the KaRD Special Issue series, hosted by the open access journal “MDPI Robotics”. The KaRD series aims at creating an open environment where researchers can present their works and discuss all the topics focused on the many aspects that involve kinematics in the design of robotic/automatic systems. Kinematics is so intimately related to the design of robotic/automatic systems that the admitted topics of the KaRD series practically cover all the subjects normally present in well-established international conferences on “mechanisms and robotics”. KaRD2018 received 22 papers and, after the peer-review process, accepted only 14 papers. The accepted papers cover some theoretical and many design/applicative aspects

    On the dynamics of human locomotion and co-design of lower limb assistive devices

    Get PDF
    Recent developments in lower extremities wearable robotic devices for the assistance and rehabilitation of humans suffering from an impairment have led to several successes in the assistance of people who as a result regained a certain form of locomotive capability. Such devices are conventionally designed to be anthropomorphic. They follow the morphology of the human lower limbs. It has been shown previously that non-anthropomorphic designs can lead to increased comfort and better dynamical properties due to the fact that there is more morphological freedom in the design parameters of such a device. At the same time, exploitation of this freedom is not always intuitive and can be difficult to incorporate. In this work we strive towards a methodology aiding in the design of possible non-anthropomorphic structures for the task of human locomotion assistance by means of simulation and optimization. The simulation of such systems requires state of the art rigid body dynamics, contact dynamics and, importantly, closed loop dynamics. Through the course of our work, we first develop a novel, open and freely available, state of the art framework for the modeling and simulation of general coupled dynamical systems and show how such a framework enables the modeling of systems in a novel way. The resultant simulation environment is suitable for the evaluation of structural designs, with a specific focus on locomotion and wearable robots. To enable open-ended co-design of morphology and control, we employ population-based optimization methods to develop a novel Particle Swarm Optimization derivative specifically designed for the simultaneous optimization of solution structures (such as mechanical designs) as well as their continuous parameters. The optimizations that we aim to perform require large numbers of simulations to accommodate them and we develop another open and general framework to aid in large scale, population based optimizations in multi-user environments. Using the developed tools, we first explore the occurrence and underlying principles of natural human gait and apply our findings to the optimization of a bipedal gait of a humanoid robotic platform. Finally, we apply our developed methods to the co-design of a non-anthropomorphic, lower extremities, wearable robot in simulation, leading to an iterative co-design methodology aiding in the exploration of otherwise hard to realize morphological design
    corecore