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ABSTRACT 

Grippers and robotic hands are essential and important end-effectors of robotic 

manipulators. Developing a gripper hand that can grasp a large variety of objects 

precisely and stably is still an aspiration even though research in this area has been 

carried out for several decades.  

   This thesis provides a development approach and a series of gripper hands which can 

bridge the gap between micro-gripper and macro-gripper by extending the gripping 

range to the mesoscopic scale (meso-scale). Reconfigurable topology and variable 

mobility of the design offer versatility and adaptability for the changing environment 

and demands. By investigating human grasping behaviours and the unique structures of 

human hand, a CFB-based finger joint for anthropomorphic finger is developed to 

mimic a human finger with a large grasping range. The centrodes of CFB mechanism 

are explored and a contact-aided CFB mechanism is developed to increase stiffness of 

finger joints. An integrated gripper structure comprising cross four-bar (CFB) and 

remote-centre-of-motion (RCM) mechanisms is developed to mimic key functionalities 

of human hand. Kinematics and kinetostatic analyses of the CFB mechanism for multi-

mode gripping are conducted to achieve passive-adjusting motion. A novel RCM-based 

finger with angular, parallel and underactuated motion is invented. Kinematics and 

stable gripping analyses of the RCM-based multi-motion finger are also investigated. 

The integrated design with CFB and RCM mechanisms provides a novel concept of a 

multi-mode gripper that aims to tackle the challenge of changing over for various sizes 

of objects gripping in mesoscopic scale range.  

   Based on the novel designed mechanisms and design philosophy, a class of gripper 

hands in terms of adaptive meso-grippers, power-precision grippers and reconfigurable 

hands are developed. The novel features of the gripper hands are one degree of freedom 

(DoF), self-adaptive, reconfigurable and multi-mode. Prototypes are manufactured by 

3D printing and the grasping abilities are tested to verify the design approach.   
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CHAPTER 1 – Introduction 

1.1 Background  

With the development of robots, the price of utilisation is becoming cheaper than 

before. Robots work in hostile, complex and dirty environments to replace humans in 

arduous and repetitive tasks at high speed to reduce labour costs and to ensure 

consistent quality control of process, such as agriculture, textile industry and logistics 

storage. For both hazardous environment and rapid production change, research on 

reconfigurable, adaptive, affordable mechanisms is a necessary new direction. 

   A survey identified six grand challenges for manufacturers that present gaps between 

current practices and the vision of manufacturing in 2020 [1]:  

   Grand Challenge 1. Achieve concurrency in all operations.  

   Grand Challenge 2. Integrate human and technical resources to enhance workforce 

performance and satisfaction. 

   Grand Challenge 3. “Instantaneously” transform information gathered from a vast 

array of diverse sources into useful knowledge for making effective decisions.  

   Grand Challenge 4. Reduce production waste and product environmental impact to 

“near zero”. 

   Grand Challenge 5. Reconfigure manufacturing enterprises rapidly responding to 

changing needs and opportunities. 

   Grand Challenge 6. Develop innovative manufacturing processes and products 

with a focus on decreasing dimensional scale. 

   Reconfigurable topology and variable mobility of manufacturing offer versatility, 

adaptability and low cost for the changing environment and demand. Currently, 

manufacturing technology is expected to be much more flexible than it was several 

decades ago. Because product life cycles are counted in months for some products in 

consumer electronics industry, i.e. mobile phones. The handling process of work pieces 

in manufacturing is often underrated as simple or even trivial technologically in fixed 

manufacturing line. Handling is considered to be secondary to technical solutions in the 

manufacturing process. The time necessary for manufacturing is separated into machine 

time and handling time (see Figure 1.1). Manufacturing planning aims to synchronize 

handling time and machine time in order to reduce cycle time and optimize machine 

time or minimise handling time and to move as many work pieces as possible per time 

unit [2]. 
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Post-operating

Operating time

Pre-operating time

Clamp

Position

Sort

Test

Place

Pick

Unclamp

Machine time = total operating time Handling time = auxiliary process time
 

Figure 1.1. Machine time/ handling time [2] 

   The gripping task is mainly influenced by the work piece, its features and status, i.e. 

shapes, displacement, orientation. The moving task is determined by combination of 

gripper and work piece, as shown in Figure 1.2.  

gripping moving placing

Influencing factors: ambient conditions: type, temperature; 

                                    work pieces: orientation, quantity, position, size, type, shape; 

                                    gripper: versatility, adaptability.  

Figure 1.2. Phases of a handling process and its ambient conditions 
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   Versatility provides the capability to manage a defined range of tasks in a 

manufacturing process. Adaptability means that the transfer from one work process to 

the next within a manufacturing system accrues less time and cost. From the analysis of 

versatility and adaptability, a robot is able to perform a task adequately only when it is 

assigned proper tooling, adequate methods of grasping and associated work pieces. If 

the shape of the object to be handled varies for each task then the gripper must also be 

changed, thus versatility is required. In proportion to its size in a manufacturing system, 

a gripper provides a definitive contribution to the practical success of an automated 

and/or robotized solution, therefore the innovative design of the gripper is of 

fundamental importance. Generally speaking, the design of a gripper must take into 

account several aspects of the system together with the peculiarities of the given 

application or a multi-task activity.  

   Hazardous environments and rapid production change need manufacturing systems 

that can rapidly and frequently adapt in the field of manufacturing processes. This is 

recognized as operational flexibility and requires a quick reaction to any change in 

production. Manufacturing systems must enable product process innovation and variety 

by providing cost effective flexibility and adaptability to environment variations and 

changes.  

1.2 State-of-Art Robotic Hands and Applications 

A robotic hand is an important and much desired component for a robot to communicate 

and contact flexibly and adaptively with the ambient environment. The competence of 

human hand, with millions of years’ evolution, is one of the central advantages that 

humans possess. Therefore, providing this human hand like functionality to improve the 

capabilities of robots is an essential goal. The following section reviews technologies on 

robotic hands including industrial hands, dexterous hands, prosthetic hands, 

underactuated-adaptive hands and micro-nano hands. Reviewing the forms and 

functions of these different types of hand can provide research inspirations for the 

design of adaptive and reconfigurable end-effectors for miniaturized product assembly.  

1.2.1 Robotic Grippers for Industry 

Early work in manipulator design focused on the development of mechanisms and 

human hand-like grippers of different types. Research into the kinematic synthesis of 

industrial gripper design used versatile mathematical approaches to provide variants of 

mechanisms for a range of grasping applications [3, 4, 5, 6, 7, 8, 9 and 10]. A two-

fingered gripper corresponds to the minimum number of fingers and minimum 

complexity of a hand. Most industrial grippers are actuated by linear actuators. 
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However, two actuators can be useful when the finger can operate independently with 

symmetric or unsymmetrical behaviours. Typical grippers used in industry comprising 

linkage mechanisms are shown in Figure 1.3. Detailed specifications can be found in 

Appendix A. This type of gripper is simple and durable, some of which can produce 

very a high gripping force. However, their capabilities as simple claws on their 

industrial applications are limited to simple pick-and-place functions.  

 

(a) Robohand (b) PHD (c) Schunk (d) SMC

(e) Univer (f) Festo (g) Sommer (h) AIA
 

Figure 1.3. Industrial gripper 

1.2.2 Robotic Hands for Fragile Grasping  

For flexible or fragile object grasping the use of compliant material, vacuum or 

magnetic grippers are preferable. Either a magnetic field [11] or a vacuum [12, 13] is 

applied as the surface of the gripper in contact with the object. However, any errors in 

placement of the object will be reflected at the destination. Therefore, these grippers 

cannot be used for high accuracy applications. Recently, some compliant, vacuum or 

magnetic grippers exist as shown in Figure 1.4. The vacuum gripping system in Figure 

1.4(a) is equipped with suction cups for objects. Figure 1.4(b) shows a magnetic gripper 

which can only grip magnetic substances. Figure 1.4(c) is a rubber ball jammed with 

small granular materials. It conforms to the object's natural contours by jamming 

transition. Figure 1.4(d) shows flexible fingers with Fin Ray structures. Figure 1.4(e) is 

an octopus-inspired soft gripper with two rows of suction cups on the inside of the 

silicone tentacle. The last one, in Figure 1.4(f), is a gripper with electroadhesion process 
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which uses electrodes to generate positive and negative charges on a surface. The 

gripping system induces charges in its own surface as well when it touches its target 

object.  

 

(a) Vacuum gripper 

by Schmalz

(c) Versaball gripper

by Empire Robotics

(b) Magnetic gripper 

by Pascal

(d) Multi Choice Gripper

by Festo

(e) Octopus Gripper 

by Festo

(f) Electroadhesion Gripper 

by Grabit  

Figure 1.4. Latest gripper with vacuum and magnetic features.  

1.2.3 Robotic Hands for Dexterity Research    

Dexterous hands always have at least 3 fingers and multiple degrees of freedom. They 

achieve features like quick response and accurate grasp. Renowned dexterous hands 

include the Stanford/JPL hand [14], UTAH/MIT hand [15], Southampton hand [16], 

DLR series hand [17], Robonaut hand [18], Shadow series hand [19], UB series hand 

[20], Cyber Hand [21], Gifu series hand [22, 23], BH series hand [24], DLR/HIT series 

hand [25], Metamorphic hand [26], see Figure 1.5. However, these types of robotic 

hands have dozens of actuators, control is quite complicated and the costs are usually 

very high, even though they have the ability to manipulate complex objects. 
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(g) UB hand 

(a) Stanford/JPL hand (b) UTAH/MIT hand (d) DLR hand

(f) Shadow hand (h) Cyber Hand

(i) Gifu hand (j) DLR/HIT hand

(c) Southampton hand

(e) BH hand

(k) Robonaut hand (l) Metamorphic hand
 

Figure 1.5. Dexterous hands. 

1.2.4 Prosthetic Hand 

Prosthetic hands are developed for cosmetic, utilitarian and functional applications. 

Sometimes such a hand can also be called an anthropomorphic prosthetic hand or upper-

limb prostheses, which interfaces with the arm of an amputee. The development of a 

prostheses is much more difficult compared to dexterous hands with major limiting 

factors such as weight, power, size constraints and control. Prosthetic hands have been 

well developed, taking advantage of the latest technological advances over the last two 

decades. However, even the state-of-art hands still lack durability, functionality, 

cosmetic and affordability. Figure 1.6 shows the latest commercial prosthetic hands.  
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(a) Vincent hand 2

by Vincent Systems

(b) iLimb hand 

 by Touch Bionics

(c) Bebionic hand 

by RSL Steeper

(d) Michelangelo hand 

by Otto Bock  

Figure 1.6. Commercial myoelectric prosthetic hands. 

1.2.5 Underactuated Adaptive Hand 

An adaptive approach used is to develop clever hardware with passive elements such as 

springs that automatically envelope objects without any sensor feedback. An 

underactuated hand refers to a hand with less actuators than degrees of freedom [27]. As 

a consequence of these advantages, under-actuation and self-adaption are widely 

accepted and many underactuated hands have been developed with anthropomorphic 

graspings. Many of self-adaptive hands can grasp objects with different sizes and 

shapes. The underactuated hands with adaptive characteristics including the Laval hand 

[28, 29], TBM hand [30], Manus-Hand [31], LARM hand [32], GCUA hand [33, 34], 

SDM hand [35], i-HY hand [36], Meka H2 hand [37], Velo hand [38], Kinova hand 

[39], Barrett hand [40], etc (Figure 1.7). The Robotiq hand [41] developed based on 

Laval hand is widely used because it can grasp a wide variety of objects with a very 

simple control structure. The last four gripper hands [42, 43, 44, 45] developed in this 

thesis aims to merge the gap between micro and macro gripping ranges. Their 

functionalities mimic the human hand and works in adaptive or reconfigurable 

configures with various gripping modes. This type of hand provides numerous 

advantages in terms of cost, size, weight, and mechanical/electrical complexity while 

offering a large range of shape-adaptive grasping. Therefore, more and more hands of 

this type exist. One drawback of underactuated hands is might be human-like dexterity 

for manipulation which relies more on mobility or actuators of the hand.   



 

14 

 

(a) Laval hand

(l) Robotiq hand

(d) LARM hand (b) TBM hand (c) Manus hand

(e) GCUA hand 

(i) Meka H2 hand

(f) SDM hand

(j) Velo gripper (k) Kinova hand

(h) i-HY hand(g) Barrett hand

(m) Anthropomorphic gripper (n) Meso-gripper (o) Optimized meso-gripper (p)  Modular gripper  

Figure 1.7.  Underactuated adaptive hands 

1.2.6 Micro-Nano Gripper  

Nowadays high precision positioning systems involve many applications from micro-

assembly to medical instruments. In the past few years, micro-assembly technology has 

advanced greatly. Such a system generally consists of two parts: an end effector and a 

position system [46]. For micro-grippers, there are three requirements: grasp, force and 

sense. In some applications, it is possible to handle or manipulate very small objects, 

such as living cells or semiconductor electronics. The order of magnitude may be 

micro- or nano-scale. The approaches for dealing with these small objects are in terms 

of precision control systems and miniature structures. The latter have been developed 

very much in the past few years because of the advantages of delicate force and 
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accuracy control. All these are possible thanks to the development of theoretical 

research on compliant mechanisms and fabrication methods, such as silicon processing, 

photolithographic techniques, X-ray lithographic and wire electro-discharge. Four 

engineering issues need to be addressed in building micro-robotic systems: the power 

source, the propulsion method, control integrated with sensing and communications 

with the macro-world [47]. A list of micro-nano grippers is given in Appendix B. There 

are two-fingered micro-hand [48], electroadhesive microgripper [49], compliant 

microgrippers [50, 51, 52, 53, 54, 55], electrostatic/gecko-like adhesive gripper [56], 

microrobotic tentacles [57], colloidal asters [58] and self-folding gripper [59].  

   Research on robotic grippers/hands is a very large area in robotics. According to the 

types and applications of grippers/hands, the flexibility, adaptability and economic 

efficiency of the hand should be the most primary characteristics considered before 

development.  

1.3 Project Motivation 

The demand for digital multimedia products has been growing rapidly. With the focus 

shifting to 3C (computing, consumer electronics & communications) and IA 

(Information application) related products, there are two major production problems in 

3C electronics industry production: a shortage of skilled labour and a need for design 

flexibility. Robots can help factories to optimize production, improve product quality 

and lower operating costs which in turn increases factory profits. According to survey 

[60], the use of robots and automation can reduce the number of works by a 30% with a 

15%-20% growth in work-based salaries. Then the corporate profits for factory are 

beneficial for the growing costs. Currently customised manufacturing needs more 

human fabrication rather than machine automation. Because low production volumes 

mean that it is uneconomical to automate process with skilled factory operators. 

However, this greatly increases the cost and lead time for fabrication. Therefore, 

versatile, adaptive and low-cost gripper hands should be developed to meet the flexible 

manufacturing process and miniaturized product assembly. . 

1.3.1 Motivation Scenario 

Today, the perfect model for technology as an end-effector in automation is still a 

constant challenge to engineering. In the early stages, a gripper had to adapt to robot 

capacities before standardized components were set in motion for reliable factory 

production. After this universal grippers were developed for grasping most of the 

different sizes or shapes in unconstructed ambient. Even though many hands or grippers 

were developed during the past decades, gripper hands with a mesoscopic-scale range 
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(meso-scale for short) with mm to macroscopic-scale range (macro-scale for short) with 

tens of mm haven’t been available for product assembly. Most of the assemblies 

working on the smartphone or in consumer electronics are within this range. So the 

research and development on this requirement is necessary.to reduce industry cost.  

   The gripper required for the product assembly shown in Figure 1.8 has manipulation 

ranges as follows: from 1mm with few grams payload to 55 mm with 1kg payload; a 

large gripper force range from 1N to 33N. 

 

Figure 1.8. Practical requirement of product assembly 

   According to the commercial literature, there is currently no one that can achieve this 

range, see Appendix A. Therefore, a novel mechanical design for this application, 

incorporating a hand, should be researched. A flexible, adaptive and reliable structure of 

the finger should be considered by using mathematical and modelling software. To 

match up with the finger design, the transmission mechanism and the control system 

should be modified according to previous commercial products or researched hands.  

1.3.2 Key Challenges and Unmet Needs 

Robotic grippers or multi-fingered hands are a wide-ranging subject in robotics 

research. Each robot possesses one or more manipulators in order to handle material 

panels of various shapes, sizes and weight and unstructured functions such as 

agriculture [61], surgical devices [62], textile facilities [63] and industrial assemblies 

[64]. The critical issues facing manufacturers and the assembly industry are three foci: 

versatility, adaptability and low cost. Therefore the future research foci should be:  

   1. Mimicking natural grasps, especially the human hand, to develop gripping schemes 

in which the functionality of the gripper should be identified by considering the 

structure design.  
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   2. Mechanical grippers which have a simplified structure and redundant degree of 

freedom for large scale of dimensions.  

   3. Making a manipulator without the complexities of hardware and software to 

accommodate variously uncertain grasping tasks in unstructured ambient with the 

characteristics of reliability, low cost and high speed; 

   4. Taking the advantages of intelligent mechanisms, electronics, software and cyber-

hysical systems to fit the future modularity of smart factories. 

1.4 Development of Robotic Gripper 

To develop a robotic gripper for optimum gripping, several aspects need to be 

considered. The knowledge of gripped objects needs to be known before grasping and 

can also be used for the optimisation of grasping configurations. This information will 

affect the development of the structural and functional features of gripping systems. 

This section provides some investigations, a definition and a design process for a 

gripper hand.  

1.4.1 Classifications of Gripping Configurations and Gripped Objects 

The systematic way of classification shows that the two main directions of grasping 

(power and precision) have different functions in grasping. Power grip is a type of force 

grip which focuses on security and stability of prehension while precision grip 

emphasises dexterity. Currently, the understanding of human grasping objects, such as 

kinematic implications, limitations and patterns, is also important in many domains 

ranging from gripper design, interaction, rehabilitation, manufacturing and so on. In 

human-computer interaction design, how to adjust grasping postures to task demands is 

more important than understanding the posture itself [65, 66, 67]. The guiding 

interaction needs for haptic feedback are increasingly important in this area [68]. 

Prosthetic hands are often designed to have a set of grasp types to complete a practical 

grasping environment [69].  Based on the two concepts of power and precision grips 

introduced by Napier, a classification of configurations of human hand has been 

introduced by [70, 71, 72, 73]. Based on the previous grasp taxonomies, a grasp 

taxonomy containing 33 types was provided in [74]. Further work considering the 

grasping range that a human commonly uses is shown in [75] with some of grasp 

taxonomies shown in Appendix C.  

   The objects subject to gripping can vary in shape, size and weight, etc. as shown in 

Figure 1.9.   
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(a) Weight (b) Pinecone (c) Café cup

(d) Screw driver (e) Hex key (f) Push pin (g) Orange
 

Figure 1.9. Gripped objects.  
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Figure 1.10. Properties of gripping objects.  
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   Studies show that the identification of parts is based on the visibly geometrical 

features with the manner of grippings strongly influenced by the piece geometry and 

surface roughness [76]. As shown in Figure 1.10, the mass of the object affects the 

applied gripping force. The material properties may interfere with the gripping force 

measurement and gripping preparation for the ambient environment. The geometrical 

properties in terms of shape and size require changeable fingertips or gripping 

configurations. The surface function of the object depends on its coefficient of friction 

during gripping and how to increase this for stable gripping. For different objects 

gripping, the centre of gravity and stable gripping position can also be considered. This 

requires the gripper to have adaptive, changeable and reconfigurable capabilities for 

these various gripping requirements.  

1.4.2 Definition of Meso-Scale for Artificial Gripping 

According to the analysis of human grasping behaviours during a wide range of 

unstructured tasks by Yale GRAB lab [77]: 55% of the gripped objects have at least one 

dimension larger than 15cm; 92% of objects have a mass of 500g or less; 96% of grasp 

locations are 7cm or less in width; 94% of the instances subject to grasp the smallest 

dimension. Therefore, in general, domestic grasping is quite different from industry 

applications. There are some rules to follow if a robotic gripper is developed for these 

tasks for which a classification of artificial gripping is necessary.  

10-5 10-4 10-3 10-2
10-1 100 101 102 103 104 105 106

107 108 109 1010 1011

Length(nm)

SUBATOMIC ATOMIC MICRO MESO MACRO

Atoms GenesSubatomic particles

Chromosomes

Virus

Bacterium

Cellular life Organisms

                       Nano and Macromolecular Biology

Subatomic particles Atoms Molecules Aggregates

                        Material Science

                       Gripping Technology

Nano and Micro-gripping Meso-gripping

Macro-gripping

Figure 1.11 Schematic comparison of the length scales in material science, gripping 

technology and molecular biology 

   Generally speaking, the meso-scale comprises different length scales in different 

research areas. A comparison of the relevant length scales in material science and 

molecular biology shows that the mesoscopic length is 106-108 nm (1-100mm) [78]. 
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However, some specifically designed micro-grippers handle objects up to 500μm; 

therefore the minimum gripping size of a meso-gripper has been defined in this work as 

500μm. A meso-gripper bridges the gap between micro-grippers and macro-grippers by 

extending the macro-gripping range, preferably without switching grippers for industrial 

assembly. Therefore in Figure 1.11, a definition of the working gripping dimension 

range of meso-grippers is set at 0.5 to 100mm, based on typical requirements for the 

assembly of multimedia products and human hand grasping behaviours. 

1.4.3 Design Process of Gripper Hand 

A mechanical system or machine generally consists of a power source and associated 

mechanisms to transform forces and motion into desired forces and motion by the 

controlled use of power. A mechanism is assembled by moving components such as 

cams, gears, belts and linkages as well as friction devices such as brakes and clutches 

and structural components such as frames, bearing and springs. The linkage can consist 

of bars or links as well as joints which refer to lower pairs (revolute and prismatic joints) 

[79].  

   The gripper acts as a bridge between a robotic arm and the world around it. The 

design of a gripper should reflect its role and match up the functions to the tasks in the 

real world. Therefore, the ideal gripper should be synthesized by considering three 

considerations: the ability of arm, gripped object and manufacturing tasks some of 

which have been mentioned previously.      

   The design of such a task requires an in-depth knowledge of several interrelated 

subjects including: gripper design, gripper control and grasp configurations [80]. Even 

four decades ago, researchers emphasized the importance of versatility. A number of 

robot grippers were developed and tested. They were classified and separated as 

grippers with stiff fingers, grippers with spring or flexible fingers, vacuum grippers, 

magnetic grippers, grippers with sensors and miscellaneous grippers [10]. The control 

for a gripper includes force and position control, stiffness control and compliant motion 

control. The grasp configurations, referring to grasping plans, derive several approaches 

such as theoretical computational approaches and experimental approaches. 

   At the initial design stage, mechanism types and actuation methods have to be 

considered in priority. The design depends on the grasping task along with 

consideration of lightness, small dimensions, rigidity, multi-task capability, simplicity, 

reliability and lack of maintenance. These design characteristics can be achieved by 

considering specific end effectors or grippers.  
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   A mechanical gripper is an end-effector that uses mechanical fingers actuated by a 

mechanism to grasp an object (Figure 1.12). There are two main methods of 

constraining a part in a gripper:  

   1. Physical construction of parts within fingers where the finger encloses the part to 

some extent and thereby changing the contact surface of finger to be an approximate 

shape of the part geometry.  

   2. Holding the part by friction between fingers and work pieces. The finger must 

apply a force that is sufficient for friction to retain the part against gravity. For the 

friction method, the gripper must be designed to exert a force that depends on the 

weight of part, the coefficient of friction of fingertip and acceleration of placing.  

Gripper

Finger

Fingertip

Work part

Gripper

Finger

Fingertip

Work part

(a) Physical constriction method (b) Friction method
 

Figure 1.12. Two methods of constraining part in gripper 

   Angular and parallel mechanical grippers are categorized by the output kinematics 

transferred from their drives. A simple mechanical gripper always has two types of 

finger movement: pivoting/angular movement and linear/translational movement. To 

achieve these, five drive methods are considered: 1). linkage actuation; 2). gear and rack 

actuation; 3). cam actuation; 4). screw actuation; 5). pulley actuation. In some cases 

rotary drive movements need to be transferred into linear output movements. The input 

movements of drives transferred to the output movements of fingers are linear or rotary, 

respectively. It depends on the types needed and the transfer mechanisms between them 

[2], see Table 1.1.  
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Table 1.1 Comparison of input and output movements of different drive types [2]. 
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1.5 Objectives 

The main objective of the thesis is to develop a robotic gripper/hand with adaptive and 

reconfigurable characteristics, low-cost, accurate grasping position and payload and 

grasping ranges greater than any product on current market.  

   The objective of this research is to present a design methodology for robotic gripper 

design. To develop low-cost and adaptable hybrid manipulators for miniaturized 

product assembly, related advances should be investigated, such as disassembly-free 

reconfigurable manipulators [81], deployable and scalable systems [82], high-precision 

compliant motion systems [83] and adaptive grippers [84]. A theoretical framework on 

the design of a deployable/scalable and adaptive fixtures of adaptive hybrid 

manipulators will be established. 

   To obtain one gripper with a large size range and a hybrid mechanism containing 

mechanisms with multiple motion modes should be researched. The inspiration studied 

from nature provides excellent ideas for novel designs. Bio-inspired systems are much 

more complex than conversional mechanical engineering. Numerical methods will be 

applied in the study. Research will be done via a process of hypothesis and verification, 

including steps such as model, simulation and experimental measurements. According 

to this process, new mechanisms inspired by biological structures will be obtained. 

   It is hoped that the innovative design methodology and process presented in this thesis 

will provide some inspiration to adaptive robot design engineers and pave a way to 

develop new artificially intelligent devices by considering mechanical intelligence [85].  

1.6 Thesis Outline 

This thesis provides a development process of adaptive and reconfigurable gripper 

hands based on cross-four-bar (CFB) and remoter-centre-of-motion (RCM) mechanisms. 

The main objective is to design and research a class of robotic gripper hands which are 

capable of grasping a large variety of objects with meso-scale range.  

   This chapter has shown different categories of gripper hands for various applications. 

Reviewing these different types has provided research inspiration for the design of 

adaptive and reconfigurable end effectors for meso-scale gripping. Chapter 2 

investigates the human anatomy and human grasping behaviours. RCM linkage is 

adopted for mimicking finger joints. A two-fingered anthropomorphic hand is also 

developed to verify its functionality. Chapter 3 focuses on fingertip development. A 

multi-mode fingertip based on CFB linkage is discussed. The multi-mode gripping 

capability relates to the inherent characteristics by kinematic and kinetostatic analysis. 

Chapter 4 refers to a novel finger design based on RCM mechanism. According to 
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analysis of geometrical characteristics and motion of the RCM mechanism, it is the best 

choice as a finger with angular, parallel and underactuated modes. Static analysis and 

grasping stability analyses are also conducted. Chapter 5 outlines the development and 

testing of three types of adaptive or reconfigurable gripper hands. The general actuation, 

grasping system, transmission mechanisms and their selection are also considered. 

Chapter 6 concludes the thesis with an evaluation of the design and discusses future 

works.  

   The thesis focuses more on novel mechanisms development and analysis for grasping 

solutions rather than the detailed design of a system, i.e. stress analysis of synthesized 

mechanism, dimensional optimization, etc. Therefore, the main body of the work 

neither contains details of element design and calculations carried out during the design 

process nor includes standard element selection, such as bearing, springs, actuators and 

control boards. Some works refer to open source, such as coding for stepper motor 

control and the shape deposition manufacturing approach.  
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CHAPTER 2 – CFB-Based Anthropomorphic Finger 

Investigating anthropomorphic robotic hands aids the understanding of the human hand 

and vice versa. The grasping and manipulation abilities of current robotic hands are far 

less dexterous than the human hand, even though significant progress has been made in 

the past four decades [86, 87, 88]. The design considerations include the numbers of 

fingers, joints, degrees-of-freedom (DOFs), the range of motion for each joint, the speed 

of movement and the force generation capability [89]. The design of a versatile and 

robust robotic hand that has similar dexterity to the human hands is, an undisputedly, a 

challenging task.  

   Several biological features of a finger of the human hand are difficult to mimic [90]. 

They include: (1) the unique shape of bones at the joints; (2) the joint capsule formed by 

ligaments to limit the range of joint motion; (3) cartilage and synovial fluid low-friction 

contact; (4) non-linear interactions between tendons and bones to dynamically 

determine the finger motion.  

   In a human hand, the anatomical structure and nervous system make significant 

contributions to its versatility and adaptability. Anatomical studies show that finger 

joints have a complex structure formed by non-symmetric surfaces and usually produce 

much more complex movement than a simple revolute motion. Most existing robotic 

hands are connected with revolute joints between phalanges in order to achieve the 

required DOFs and kinematic characteristics, e.g. hinges, gimbals, cables, gears or belts. 

Compliant materials have been recently used as joints. Xu proposed one type of 

Matacarpophalangeal (MCP) joint whose biomechanics and dynamic properties are 

close to human counterparts [91]. The artificial joint is composed of a ball joint, 

crocheted ligaments and a silicon rubber sleeve which is distinctive to the other finger 

joints.  

   Many robotic hands are driven by gears [92, 93] or tendons [94]. There are also 

ultrasonic motor [95] and air muscle [96] types.  The function of these drive approaches 

is to make the trajectory of a fingertip similar to the typical human trajectory when 

reaching and grasping objects.  

   In this chapter, a novel type of anthropomorphic finger based on an RCM linkage is 

proposed. Unlike most current finger designs, this finger has characteristics, such as 

mimicking, nonlinear joints, fingernails and soft fingertips. This chapter is organized as 

follows. Firstly, the natural gripping system is investigated and the classification of the 

bio-gripper and the evolution of human hand presented. Then the articular system of the 

human hand is introduced referring to bones and joints. The physical parameters of the 
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finger skeleton and the approximate limits of joints’ motions are summarized. The 

simplest four-bar linkages for biological morphology are then investigated, followed by 

the kinematics of a cross four-bar (CFB) linkage. The motion of the cross four-bar 

(CFB) mechanism is then studied. Fixed and moving centrodes of the mechanism are 

also derived for building and identifying contact surfaces. The human joint is then 

mimicked using contact-aided CFB mechanism which can also be used for mimicking a 

prosthetic knee. Based on the structure of the human hand articular system, a two-joint 

thumb finger is developed. The proposed development process and associated design 

approach are able to mimic any type of joint. Finally, a two-fingered robotic hand 

prototype is built considering functional artificial fingers including 3D printed 

fingernails and soft fingertips. This is consequently tested for grasping of a large range 

of objects to verify its performance.  

2.1 Natural Gripping Systems and Evolution  

2.1.1 Classification of Bio-grippers 

In nature, there is a large variety of gripping systems, which is one source of inspiration 

for new knowledge and future technologies. A biogripping system generally consists of 

bioenergy as power source, the brain as processor, neural cells as sensors and 

hands/claws as end-effectors, all of which makes a closed loop for stable gripping, a 

diagram of which is as shown in Figure 2.1.  

Bioenergy

(Power source)

Brain

(Processor)

Sensor

(Neural cells)

Hands/claws

(End-effectors)
 

Figure 2.1. Diagram of a natural gripping system 

   The end-effector performs grasping and partial sensing functions based on specific 

structures and actuation methods. This is an important part of a biosystem and acts as a 

interface between the mainbody and its surroundings (Table 2.1). Depending on the 

grasping manner, natural gripping can be classified as coverage, jagged and fingered. 

From wrapping to fingered, gripping features an evolutionary process. For example, a 

typical coverage grip is used by an octopus, which lives in an aquatic environment. The 
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jagged grip generally appears in amphibious or terrestiral environments and is utilized 

by crabs, some birds and mammals. The most advanced fingered grip is the human hand; 

of course all  the primates are fingered.   

Table 2.1. Classification of grips according to gripping manner. 

Coverage 

Octopus 

  

Reptiles 

  

Elephant 

  

Jagged 

Shrimps & Crabs 

 

Some Birds 

 

Mammals 

 

Fingered 

Some Birds 

 

Primates 
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2.1.2 Evolution of the Human Hand 

The human hand is a sophisticated mechanism, the product of millions of years of 

evolution; versatile in its functionality and essential for humans to interact with the 

world. Major evolutionary transformational steps include the formation of a five-

fingered structure with opposable thumb, the development of flat nails from claws and 

increased sensitivity of a palm (inner hand) surface [97]. 

   Why mimic the human hand to solve grasping problems in robotics?  

   Charles Darwin’s theory of evolution may answer this question. Life, a process of 

natural selection, is a self-improving process which reinvents itself to solve problems in 

the natural world. These improvements and the natural selection process have 

accumulated over hundreds of millions of years in plants and animals. The “hand” is the 

key differentiator between humans and other species. 

   As the famed surgeon Frederick Wood-Jones said: “The difference between the hand 

of a man and the hand of a monkey lies not so much in the movements which the 

arrangement of muscles, bones and joints make possible…but in the purposive 

volitional movements which under ordinary circumstances the animal habitually 

exercises.”  

   The primate hands family tree shows the differences between these hands and why the 

human hand should be researched other than the other species (Figure 2.2).  

   The human hands and the other primate hands share many general characteristics; 

however, each primate sub-family has its unique characteristics. Almost all primates 

have retained five digits on the hand and foot. All, to different degrees, possess 

prehensile (grasping) hands and all (except humans) prehensile feet. Lemurs, for 

example, lack the functional duality of the hands of most apes and Old World monkeys 

(catarrhines). The hands of catarrhines (Old World monkeys and apes) show a larger 

range of precise manipulative activity than those of other primates. New World 

monkeys show a considerable advance over primitive primates in tactile sensitivity but 

they possess less functionally effective hands in prehensile terms than Old World 

monkeys.  

   Duality in hand function has been described in terms of precision and power grips 

which were proposed by John Napier organized the movements of the hand on an 

anatomical basis [98]. Precision and power grips can be represented by a throwing grip 

and clubbing, see Figure 2.3. The throwing and clubbing grips yield reproductive 

advantages for millions of years and drove natural selection to transform the ancestral 
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ape hand into the human hand [99]. A fully opposable thumb gives the human hand a 

power grip (left) and a precision grip (right). 

 

Figure 2.2. The Primate Hands Family Tree (The hands drawn inside the picture 

originate from A. H. Schultz, The Life of Primates, Universe Books, 1969; 

(http://www.handresearch.com/news/primatology-palm-reading-primate-hands-family-

tree.htm) 

 

http://www.handresearch.com/news/primatology-palm-reading-primate-hands-family-tree.htm
http://www.handresearch.com/news/primatology-palm-reading-primate-hands-family-tree.htm
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Power grip Precision grip

 

Figure 2.3. Power and precision grips. 

2.2 Articular System of Human Hand 

In order to mimic the human hand for grasping objects, its articular system is 

investigated. The skeletal structure of the hand is comprised of 27 bones (8 form the 

wrist, 5 are found in the palm, and 14 constitute finger phalanges). More than 30 

muscles in the hand and forearm actuate the hand commanded via signals from three 

major nerves, radial, median and ulnar, as well as more than 20 identified muscular 

branches. Accurate models of the human finger have been proposed based on 

anatomical studies [100, 101]. The bone and articular structure of human hand are two 

key components to be imitated because their structures and relative movements have 

essential effects when grasping objects. Human bones and articulations are now briefly 

introduced. The DoF and range of motion of each joint are summarized in literature 

[102, 103].  

   The following subscripts are used: I for the thumb, II for the index, III for the middle, 

IV for the ring, and V for the small finger. Three types of hand bones, carpals, 

metacarpals and phalanges are shown in Figure 2.4. The names of joints are defined 

according to hand bones, such as carpalmetacarpal joint (CMC) which locates between 

carpal and metacarpal. Hand fingers are separated into the proximal, middle and distal 

phalanges, excepting thumb finger which has only two phalanges. 
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Figure 2.4. Bones and joints (left hand anterior view). 

   The definition of each finger movement passing over the dotted line in terms of 

extension/flexion, abduction/ adduction and hyper-extension is shown in Figure 2.5. 

Extension: angle between the finger and the palm increased to straight; flexion: angle 

between finger and palm decreased to limited position; hyper-extension: finger 

extended over the straight line respect with palm; abduction: fingers moving away from 

midline; adduction: fingers moving towards the midline.  

Flexion

Extension

Hyper-Extension

Abduction

Adduction

(a) Flexion/extension of middle finger (b) Abduction/adduction of fingers   

Figure 2.5. Flexion/extension of middle finger and abduction/adduction of fingers [104]. 
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   Fingers play an important role in grasping and manipulation. Investigations of ranges 

of movement of human fingers and the general lengths of their phalanges provide us the 

objectives for mimicking human finger. These physical parameters are shown in Table 

2.2 and Table 2.3.  

Table 2.2. Ranges of movement of the finger joints (H refers to hyper extension) [104]. 

Fingers Joints Action Ranges(in degree) 

Thumb 

CMC 
Adduction/Abduction 0(contact)/60 

Extension/Flexion 25/35 

MCP 
Adduction/Abduction 0/60 

Extension/Flexion 10H/55 

IP Extension/Flexion 15H/80 

Index 

MCP 
Adduction/Abduction 13/42 

Extension/Flexion 0/80 

PIP Extension/Flexion 0/100 

DIP Extension/Flexion 10H/90 

Middle 

MCP 
Adduction/Abduction 8/35 

Extension/Flexion 0/80 

PIP Extension/Flexion 0/100 

DIP Extension/Flexion 10H/90 

Ring 

MCP 
Adduction/Abduction 14/20 

Extension/Flexion 0/80 

PIP Extension/Flexion 0/100 

DIP Extension/Flexion 20H/90 

Small 

MCP 
Adduction/Abduction 19/33 

Extension/Flexion 0/80 

PIP Extension/Flexion 0/100 

DIP Extension/Flexion 30H/90 

Table 2.3. Range lengths of the finger skeleton. 

Phalanges Length(in mm) 

Proximal phalanges 38-55 

Middle phalanges 24-35 

Distal phalanges 22-30 
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   Figure 2.6 shows human thumb and index finger during tip-to-tip and pad-to-pad 

precision grips. The figure shows the anatomy of the thumb distal phalanx and its 

relationship with soft structures related to manipulation: a huge proximopalmar fossa 

(orange) is associated with a palmarly protruding ridge (red) for insertion of the flexor 

pollicis longus; a compartmentalized digital pulp to accommodate the shape of the 

object being manipulated is reflected in the presence of an ungual fossa (green) 

associated with the large and mobile proximal pulp and as a wide apical tuberosity 

(blue) associated with the smaller and less mobile distal pulp; and finally, the ungual 

spines (yellow), where the collateral intraosseous ligaments sustain the nail bed insert 

[105].  Humans prefer tip-to-tip and pad-to-pad grips as shown: More than 92% and 

65% respectively in which the tips of the thumb and the index finger make contact 

[106].  

 

(a) Anatomy of precision posture of finger (b) Contact areas for a precision grip  

Figure 2.6. Human tip-to-tip and pad-to-pad grips configuration and contact areas for a 

precision grip. 

   Other research on human grasping behaviours shows that, during a wide range of 

unstructured tasks, 92% of objects have a mass of 500g or less; implying that a high 

payload capacity may be unnecessary to accomplish a large subset of human grasping 

behaviour [107]. In order to grasp 90% of the objects in the data set the way a human 

does, a hand should be able to grasp objects up to 7cm wide and up to a mass of 700g. 

Furthermore, it has been shown that the human has a clear tendency to grasp the 
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smallest dimension of an object. These results can translate directly to performance 

specifications for a robotic hand in terms of maximum grip aperture and payload 

capacity for handling a suitable percentage of common objects in human environments. 

These results come from the Yale human grasping dataset [107] which analyses human 

grasping behaviours during a wide range of unstructured tasks. 

2.3 Concave and Cross linkages for Biological Morphology 

In last two sections, natural grasping systems, especially human grasping systems, were 

investigated. As the most adaptable and versatile gripping system, human hand gripping 

was analysed in terms of gripping behaviours and anatomy. In the following sections, 

mimicking human hand grasping will be presented. Before that, some examples are 

provided which relate to biological mimicking using basic linkages.  

   Biological applications of the cross-four-bar (CFB) mechanism have been presented 

in the human knee joint. For example, a four-bar linkage system was shown in [108] to 

replicate the polycentric motion of the knee that occurs during passive knee flexion-

extension. A CFB mechanism was proposed in [109] for the knee design of bipedal 

robot. An artificial foldable hinged wing based on two CFB linkages was developed to 

mimic the behaviours of the beetle’s hind wing [110]. Applications on robotic hands for 

motion imitation also existed in [111, 112, 113]. As depicted in a lateral view in Figure 

2.7, the anterior and posterior cruciate ligaments connecting the upper femur and the 

lower tibia cross each other. AB and CD represent the femur and tibia while BC and AD 

represent two ligaments. The ideal configuration allows the femur to roll on the tibia 

without friction. The contact-aided CFB mechanism is a better option to design artificial 

knee joint prosthetics than pin joint. 

(b) final position of knee linkage

A

C

D

A B

C´ 

D´ 

B

(a) initial position of knee linkage   

Figure 2.7. CFB mechanism in human knee joint. 
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   There is a large amount of research on convex four-bar linkages aiming to produce a 

desired output motion for a specific input motion by kinematic analysis and synthesis. 

Concave linkages are little mentioned by scholars. Research shows that concave and 

cross four-bar (CFB) linkages play important role in animals’ skeleton systems [114]. 

   Biological linkages are widely distributed in animals, such as the following two 

examples which refer to concave four-bar linkages. Revolute joints are rare in biological 

systems and movement ranges are small due to mechanical constraints. Figure 2.8(a) 

shows a mantis shrimp’s strike which generates extremely rapid speed and high force 

[115]. Morphological analysis shows that a concave four-bar linkage is the main 

kinematic component which amplifies rotation in the system. Figure 2.8(b) is another 

concave isosceles four-bar linkage in teleost fish [116]. Force-amplification occurs 

when the hyoid bars are close to the in-line position. In this mechanism, a weak input 

can produce a very large output force.  

(a) (b) 

A

B

C

D

C´ 

A

C
C´ 

B

D

  

Figure 2.8. Concave four-bar linkages in biological systems: (a) mantis shrimp’s strike; 

(b) teleost fishes’ mouth. 

2.4 Kinematic Analysis of Contact-Aided CFB Mechanism 

In this section, the kinematics of a CFB mechanism is investigated. The centrodes of 

this mechanism are also explored and a contact-aided CFB mechanism proposed to 

mimic the complex movements of finger joints. This over-constrained structure also 

increases its stiffness. 

2.4.1 Fixed and Moving Centrodes of CFB Mechanism 

The centrode, an important characteristic in planar kinematics, is a path traced by the 

instantaneous centre of rotation of a rigid link moving in a plane [117]. The motion of 

the coupler link with respect to the ground link is pure rotation around the instantaneous 
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centre. The fixed centrode can be found by drawing the trajectory of the intersection of 

the crank link and follower link.  

   For crossing linkages, the length of one diagonal increases if, and only if, the other 

decreases [118]. Figure 2.9 shows the CFB linkage and its fixed and moving centrodes. 

Four links of the CFB mechanism AD, CD, BC, AB are indicates by a, b, c and d 

respectively. Cm and Cf respect moving and fixed centrodes respectively. θ2, θ3 and θ4 

are four orientation angles of link vectors. The links are now drawn as position vectors 

that form a vector loop with the vector loop equation is being: 

 

Figure 2.9. Position vector loop of CFB linkage and centrodes. 

2 3 4 1 0E E E E                                                    (2.1) 

   The solution of this equation can be derived [119] as following: 
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where 
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   Equations (2.2) and (2.3) have two solutions. According to Grashof condition, if the 

sum of the shortest and longest link of a planar quadrilateral linkage is less than or equal 

to the sum of the remaining two links, then the shortest link can rotate fully with respect 

to a neighbour link. That is to say, only those CFB mechanisms satisfied with the 

condition s l p q   are considered where s is the shortest link, l is the longest, and p 

and q are the other links. That means, the discrimination under the radical is positive 

and the solution is not complex conjugate. There are two values of 3  and 4  

corresponding to any one value 2 . These are referred to the crossed and open linkage 

configurations or the linkage two circuits (Figure 2.10) [120]. A Grashof linkage is 

defined as crossed if the two links adjacent to the shortest link cross one another and 

open if they don’t cross one another in this position [119]. In addition, the two shortest 

links (AB=CD) are also contained in the Grashof linkage. In other words, the CFB 

mechanisms can be obtained by using the Grashof condition and the shortest rule. 



 

38 

 

X

Y

A B

C

D

a

b

c

d

Cf

 

Figure 2.10. Two solutions to the crossed and open configurations of the four-bar 

linkage. 

   According to Kennedy-Aronhold Theorem [121], the centrode is found at the 

intersection of the extensions of the crank and the follower. In the case of CFB 

mechanism, the centrode is always between the coupler link and the ground link. As 

shown in Figure 2.10, AB is fixed as a frame and AD rotates clockwise with respect to 

A. The locus of centres of instantaneous rotation for D is a line along AD and for C is 

the line along CB. Therefore, the instantaneous centre of rotation for coupler link CD is 

Cf, the crossing point of AD and CB. Assuming A is the original position of the fixed 

coordinate system, the fixed centrode is the crossing point of two vector AD  and BC . 

Therefore, the locus of fixed centrodes can be expressed as 

4 4 2

4 2 4 2

tan tan tan

tan tan tan tan
f

a a
C j

  

   
 

 
                                   (2.14) 

where 2  is an independent variable, 4  can be obtained from Equation (2.2). 

   The moving centrodes can be obtained by attaching the coordinate system to coupler 

link CD with C as the original point and having the same rotation with angle DCB 

decreasing, as shown in Figure 2.11.  
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Figure 2.11. Moving centrodes at coordinate system X’CY’. 

   By using the same expression method, the vector of the moving centrode with respect 

to the coordinate system X’CY’ can be expressed as 
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   The transformation matrix of coordinate system X’CY’ with respect to XAY is 

expressed as 
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             (2.18) 

   The vector of moving centrode with respect to the coordinate system XAY can be 

expressed as 

'C

m A mC TC                                                   (2.19) 

   Partial trajectories of centrodes with a rotational angle of the crank link of 35° are 

shown in Figure 2.12. The motion of the coupler link with respect to the ground link is 
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duplicated by making these two centrodes roll against one another without slipping. Due 

to the pure rolling of the two curves, they have the same length. 

 

Figure 2.12. CFB mechanism and trajectories of its centrodes: (a) produced by 

trajectory of fixed centrodes; (b) produced by trajectory of moving centrodes; (c) 

trajectories integrated into one figure.  

2.4.2 Design of Contact-Aided CFB Mechanism 

The contact-aided mechanism was first introduced in [122]. Cannon and Howell 

proposed a novel design of a compliant rolling-contact element capable of performing 

the functions of a bearing and a spring [123]. The application of contact surfaces 

enhances the functionality of a compliant mechanism to be capable of performing 

certain kinematic tasks similar to a rigid body. Due to the characteristics of the 

centrodes, a contact-aided CFB mechanism with a much higher stiffness is created by 

adding a high kinematic pair between the coupler and the ground link. Figure 2.13 

shows a contact-aided CFB mechanism with a limited rotating range of 90°.  

 

Figure 2.13. Contact-aided CFB mechanism: (a) Initial position; (b) Final position; (c) 

Side view of the assembly. 
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Based on the above design process for centrodes and a contact-aided CFB linkage, a 

prosthetic leg can be developed with the bending angle of 90°, as shown in Figure 2.14. 

 

Figure 2.14. Prosthetic leg using a contact aided CFB linkage. 

2.5 Contact-Aided CFB-Based Anthropomorphic Finger 

This section first investigates gripping configurations of the human hand for different 

objects. The development process of a CFB-based anthropomorphic finger is then 

presented. Finally, a two-fingered gripper with the joint is prototyped and tested. 

2.5.1 Gripping Analysis and Design of Finger Joints 

 

Figure 2.15. Gripping process for objects in different sizes and shapes. 
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   Configurations of the human hand are different in gripping various sizes and shapes of 

objects. Nevertheless, the gripping processes are similar, typically including searching, 

reaching, gripping and moving [124]. Two gripping examples are considered and 

various configurations of fingers are observed. The two objects are a compression 

spring with a diameter of 2.5mm and a length of 15mm and a cylindrical block with a 

diameter of 22mm and a height of 11mm, as shown in Figure 2.15.  

   By analysing the gripping processes of the two objects, the fingernails and fingertips 

play significant roles. For a small diameter object, such as the spring, the fingernails and 

the fingertips cooperate to enclose and hold with a very small gripping force. For a 

larger part such as the plastic wheel, soft fingertips that deform during contacting apply 

a large range of frictional forces and moments [125]. Therefore, the design of the finger 

should combine the functions of a fingernail and a soft fingertip. 

2.5.2 Design Process of a Two-Joint Finger 

Taking the thumb finger as an example, the MCP and IP joints need to be considered 

during the design. The action ranges of extension/flexion as to MCP and IP joints are 

10H/55 and 15H/80 respectively (see Table 2.2 in section 2.2), as shown in Figure 2.16. 

The thumb finger is the only one which has hyper extension at the MCP joint which 

means it has the largest bending range of the five fingers. In order to mimic the ranges 

of motion of the two joints, two CFB linkages are adopted, one for mimicking the IP 

joint and the other for the MCP joint. 

(a)

MCP Joint

10° 55°

(b)

IP Joint

80°
15°

IP Joint

MCP Joint

(c)

l2

l1

l3

l4

(d)
 

Figure 2.16. Extension/flexion ranges of two joints of thumb finger and equivalent CFB 

mechanisms of the joints: (a) extension/flexion range of MCP joint; (b) extension/ 

flexion range of IP joint; (c) replacing of each joint with CFB linkage; (d) indication of 

each link of CFB linkage.  
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   According to the approach proposed in Sections 2.4.1 and 2.4.2, the extension/flexion 

ranges of these two CFB mechanisms determine their ranges of motion, the fixed and 

moving centrodes of the mechanisms can thus be obtained. The synthesized two-joint 

finger which has the same motion range as human thumb is shown in Figure 2.17.  

 

Figure 2.17. Side view of two-joint finger connecting with fixed and moving centrodes: 

(a) hyper extension of the finger; (b) flexion range of the finger. 

   Table 2.4 shows the geometric parameters of the two finger joints where l1 indicates 

ground link, l2 the drive link, l3 the follower link and l4 the coupler link, as shown in 

Figure 2.16(d).  

Table 2.4. Geometric parameters of the two-joint finger 

Property IP joint MCP joint 

l1 (mm) 18 25 

l2 (mm) 24 32 

l3 (mm) 16 22 

l4 (mm) 24 32 

Angular ranges (°) 15H/80 10H/55 

 

2.5.3 Prototype and Testing 

The gripping analysis of the human hand (see Section 2.5.1) indicates that fingernails 

and soft fingertip play critical roles in specific gripping tasks. A 3D model considering 

these details is designed in order to mimic the human finger. Two joints of the finger are 
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decoupled with a tendon for driving two phalanges. The finger is symmetrically divided 

into front and back halves which make manufacturing and assembly simple and 

efficient. The detailed design of the two-joint finger is shown in Figure 2.18. 

 

Figure 2.18. 3D model of a two-joint finger. 

   A 3D printed prototype is shown in Figure 2.19. The material used for the outside 

layer of the phalanges is silicone elastomer while the material for crank link and 

follower links of CFB mechanism is polylactide (PLA). Nylon rope passes through 

cable slots between which a compression spring is placed for returning it back to the 

original position.  

 

Figure 2.19. Contact-aided joints and motion of a robotic finger. 
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   A two-fingered hand developed for manual gripping test is shown in Figure 2.20. The 

palm holder contains a differential pulley which drives the two fingers in underactuated 

motion. A wide range of objects with various sizes and weights used for grasping 

include a plastic cup, tiny spring and pinecone, etc. as shown in Figure 2.21. The 

fingernail is used for gripping the tiny spring. The combination of fingernail and 

fingertip ensures successful gripping of a ballpoint pen. The soft fingertips provide a 

large friction force and moment for the cuboid-shaped battery. The differential drive 

contributes to the irregular non-centred pinecone gripping. The 3D printed gripper is 

utilized to grip a wide range of objects. Gripping configurations for different sizes and 

weights are various. The testing successfully verifies the feasibility of the design 

approach. 

 

Figure 2.20. Two-fingered hand at open and bending statuses. 

 

Figure 2.21. Gripping testing on a variety of objects (to be continued) 
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Figure 2.21. Gripping testing on a variety of objects (to be continued) 
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Figure 2.21. Gripping testing on a variety of objects (continued).  

2.6 Summary 

This chapter has provided a detailed analysis of human grasping behaviours and a novel 

design of anthropomorphic finger. The human articular system was presented and 

human grasping behaviours analysed. The biological mimicking methods provided an 

inspiration for a finger joint design. The kinematics of a contact-aided CFB mechanism 

was presented and a design approach for mimicking human finger joints proposed. The 

gripping process of the human hand indicates the significant role of the fingernail and 

soft fingertip which were proposed for prototyping. A two-joint thumb finger was 

developed to verify the proposed non-revolute design. The prototype was manufactured 

by 3D printing with rigid and soft materials and successfully tested with a variety of 

objects which verified the feasibility of the biomimetic design.  
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CHAPTER 3 – CFB-Based Multi-Mode Fingertip 

In chapter 2, a natural gripping system was investigated and articular system of human 

hand was presented. A novel type of anthropomorphic finger based on CFB linkage was 

proposed. By analysing the gripping processes of the synthesized anthropomorphic 

finger hand, fingernails and the fingertips play significant roles. This chapter will focus 

on a systematic analysis of RRRR linkage which has four rotating joints and included 

CFB linkage and its application as a fingertip with multiple gripping modes.  

3.1 Flexible Gripping in Manufacturing 

The flexibility of the gripper means that it can grip a large number of objects. The 

objects that can be gripped primarily depend on the fingertip (or jaw) of the gripper. 

The gripping force is also variable according to the form and condition of the active 

surfaces between the objects and the fingertip (such as coefficient of adhesive friction). 

So it is essential to ensure good contact between the objects and fingertip for safe 

gripping. In addition, an appropriate design of workpieces for robotic gripping is also 

important in industrial applications. The flexibility of the human hand would be more 

superior than any existing gripper system, as it can naturally cope with numerous 

objects from a thin needle to a basketball (if the hand is large enough). There are special 

fingertips for gripping only limited objects, such as a gripper for automotive assembly, 

see Figure 3.1(a). Industrial fingertips are always specialized to ensure compliance in 

manipulating several workpieces, see Figure 3.1(b). Some fingertips consider flexible 

contact or are self-adjustable to grip complex objects with different shapes, see Figure 

3.1(c). Obviously, the more flexible the fingertip, the more objects it can grip.   

(a) (b) (c)  

Figure 3.1. Special, specialized and flexible fingertips: (a) specific clamper for 

automobile assembly; (b) industrial robot gripper; (c) soft ball gripper.  

   One way to boost the flexibility of the gripper is by changing fingertips. Figure 3.2 

presents a set of fingertips [2]. The fingertips can be replaced manually or automatically 

to be able to meet specific handling tasks. For quick, correct conditions, an automatic 

quick-change operation is required. It also depends on the economic and technical 
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requirements. A specific unit between the finger and fingertips makes the change 

process smooth. However, the change cycle is inefficient during a manufacturing 

process.  

(a) (b)
 

Figure 3.2. A set of fingertips and the changing unit [2]: (a) various finger tips; (b) 

driving platform.   

   Another method of increasing flexibility is the use of rotary units to construct a multi- 

gripper group which can grip different objects without changing fingertips due to the 

multiple fingertips, see Figure 3.3. The grippers can be used simultaneously or 

successively for gripping. These grippers are able to work independently and are always 

used for handling one or multiple types of objects. According to Figure 1.1 in 

Introduction, operating time and handling time comprise the whole time consuming of 

the handling process. Multigrippers will multiply the operating time which is an 

efficient approach. To prevent this happening, a multi-mode concept works for various 

functions is presented.  

(a) (b) (c)
 

Figure 3.3. Multi-grippers: (a) multiple gripper for successively assembly; (b) multiple 

gripper in industrial picking; (c) multiple gripper for endurance test of keyboard. 
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   Small and medium-scale size or meso-scale size (see Section 1.3.1) manufacturing 

lines demand more flexible gripping technology. This is because the aim of this 

technology is always to grip a broad range of objects. This chapter provides a multiple-

mode (multi-mode) fingertip which is totally different from existing artificial fingertips. 

Due to the close relationship between the specific fingertip and four-bar linkage, the 

classification of planar four-bar linkage is first followed by the atlas of the simplest 

ones. Specifically, CFB mechanisms are investigated based on the same method. 

Kinematic equilibrium of CFB mechanism provides a new design vision for multi-mode 

development for practical application. The CFB mechanism as a multi-mode fingertip 

on a gripper increases its flexibility for meso-scale size objects gripping them with its 

angular mode and gripping macro-scale size objects with passive-adjusting mode. To 

standardize the novel designed fingertip, kinetostatic analysis of the CFB-based 

fingertip is conducted. Two tables referring to the transfer coefficient of a CFB-based 

fingertip for a two-fingered and three-fingered gripper hand are provided.  

3.2 Types of Planar Four-Bar Linkages 

The functions of linkages are classified into function, path and motion generation 

according to the primary goal of a design. A four-bar linkage is the simplest movable 

closed chain linkage and contains four links and a loop of four joints. According to the 

relationship of the four axes of the linkages, there are planar, spherical and Bennett four-

bar linkages with the axes parallel, intersecting at a single point or angular position, 

respectively. The planar four-bar linkage plays an important role in machines [126, 127] 

because of its wide variety of movements guided by the planar four-bar linkage. 

Applications include pantographs, train suspensions, stroke engine and biological 

system mimicking [114]. In this section, basic types of planar four-bar linkage are 

investigated. Coupler curves and cognate mechanisms of basic types of planar four-bar 

mechanism are presented by using Roberts-Chebyshev theorem (see Appendix D). The 

relationship of straight-line mechanisms of the most common type (approximate and 

exact) is summarized along with some new discoveries (see Appendix E). 

   A planar four-bar linkage comprises four links that can be seen as two levels 

connecting with one rod. The force rotates one level and the power transfers to another 

level through a center rod. In a four-bar mechanism, the torque is engaged to a drive 

link while the force and motion are transferred to a follower link through a coupler link. 

Therefore, the four links are named the drive link, coupler link, follower link and 

ground link where the drive and follower links are mounted to coupler and drive link, 

see Figure 3.4 (a). This type of planar four-bar mechanism is also named a planar RRRR 
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(4R) mechanism because of the four revolute (R) joints. These definitions are 

consistently used throughout this thesis.  

   The other two types of planar four-bar mechanisms (slider-crank and double slider 

mechanisms) are two special configurations with a follower link or drive and follower 

links infinite in length. The slider-crank linkage is connected by three R joints and one 

prismatic (P) joint, on RRRP linkage. The order of P and R can be changed to represent 

different versions of slider-crank mechanisms. For example, if the slider acts as a 

coupler link, the mechanism is called RRPR or RPRR mechanism. The RRRP 

mechanism is often used to transform rotary motion into translation motion, see Figure 

3.4(b). The double slider mechanism refers to two sliders which is connected by one 

coupler link. This mechanism is a PRRP mechanism which contains two R joints and 

two P joints and is always used to transform two translation motions into rotary motion, 

see Figure 3.4(c).  

drive link

coupler link

follower link

ground link

drive link
coupler link

slider

slider

slider

coupler link

ground link ground link

(a) (b) (c)
 

Figure 3.4. Three basic types of planar four-bar mechanisms: (a) RRRR mechanism, (b) 

RRRP mechanism, (c) PRRP mechanism. 

3.2.1 RRRR Mechanisms 

There are two classification approaches for a planar quadrilateral mechanism or RRRR 

mechanisms. The first approach depends on the dimension of each link (Grashof 

condition [128] and McCarthy expansion [129]). The other depends on configurations 

of the linkage.  

   The Grashof condition states:  

   If the sum of the shortest and the longest link of an RRRR linkage is less than or equal 

to the sum of the remaining two links, the shortest link can rotate fully with respect to 

neighbouring links.  

   It can be written as s+l≤p+q, where s is the shortest link, l is the longest link and p and 

q are the neighboring links. Types of RRRR linkages are shown in Figure 3.5.  

   If a link can rotate a full 360 degrees, it is called as a crank. For a limited range of 

angles which do not include 0 degrees or 180 degrees, it is called rocker.  
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Figure 3.5. Types of mechanisms resulting from the Grashof condition: (a) cank-rocker, 

s+l<p+q; (b) double crank, s+l<p+q; (c) double rocker, s+l>p+q; (d) parallelogram, 

s+l=p+q. 

   The configurations of an RRRR linkage are classified into three types: convex, 

concave and cross [130] (Figure 3.6). This classification considers the rotation angle of 

the vertices changing while the length of each link is preserved and the lengths of the 

diagonals. By analyzing the characteristics of the three types of configurations, it can be 

seen that:  

   (1) Convex and concave cases do not have crossed links. Only the cross cases have 

two crossed links. 

   (2) All four internal angles of the convex and cross cases are less than 180 degrees. 

The concave case has one reflex angle which is more than 180 degrees. 

   (3) The angle-changing trend of convex and cross cases is the same. The concave case 

has a different angle change from the other two. In detail, the ∠DAB of the convex and 

cross cases increases, while the opposite ∠BAD increases and the other two opposite 

∠ABC and ∠ADC decrease. The concave case shows that the ∠DAB increases while the 

opposite ∠DCB decreases and the other two opposite angles increase. 

   (4) For convex and cross cases one diagonal increases if and only if the other 

decreases; for concave case one diagonal increases if only if the other increases. 

A A A

B

C

D

B

C

D D

C

B

(a) (b) (c)  

Figure 3.6. Three configurations of a planar four-bar linkage: (a) convex, (b) concave, 

(c) cross.  
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3.2.2 Configuration Zones of RRRR Mechanisms 

A kinematic chain can be used to determine the configurations of a four-bar mechanism. 

Six postures can be calculated covering all solutions. A novel and comprehensive 

classification of RRRR linkage based on its configuration is proposed. 

   RRRR linkages can be looked as two sets of dyad which is the simplest kinematic 

chain of two binary links, one connecting joint and two free joints. The angles of the 

dyad can be zero, acute, right, obtuse, reflex and straight. Therefore, the dyad has six 

configurations in total, as shown in Figure 3.7. Zero and straight angles are special cases 

with folded and stretched in-line configurations. The right configuration transforms the 

position of the acute and obtuse angles. In this section, general configurations with 

acute, obtuse and reflex angles are mainly considered. Since a reflex angle is necessary 

for a concave four-bar linkage, acute and obtuse angles exist in all three configurations 

of a four-bar linkage.  

(a) (b) (c) (d) (e) (f)  

Figure 3.7. Six configurations of dyad with (a) zero, (b) acute, (c) right, (d) obtuse, (e)  

reflex and (f) straight angles. 

   To analyze the classification of RRRR linkage, take the acute-angle dyad as an 

example (Figure 3.8). This separates the planar area into seven areas and boundaries 

(dotted line). By connecting any single point located in each area and the two free joints 

of the dyad, it is possible to obtain three categories of RRRR linkage with different 

configurations i.e. convex, concave and cross.  

   If the one binary link (such as AB) is fixed as a ground link. These three categories of 

RRRR linkage can be further divided into seven subcategories, which contain two types 

of cross four-bar (CFB) mechanisms, four types of concave mechanisms and one type of 

convex mechanism. Convex mechanism has been extended, such as the Grashof 

conditions. Until now, the research on concave and CFB mechanisms has not been well 

explored, even though six out of seven categories are non-convex types.  
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CFB (Type 2)
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Figure 3.8. Classification of RRRR mechanisms based on acute-angle dyad. 

   In the same way, the other two configurations of the dyad with obtuse and reflex 

angles are used to classify RRRR mechanisms, as shown in Figures 3.9 and 3.10. The 

seven types of mechanisms comprise the same the three types of classification. The 

acute- and obtuse- angle have the same allocation of the seven types which means that 

the position of each type is identical. However, the classification based on reflex-angle 

have an inverse allocation direction.  

Concave

 (Type 1)

A B

Concave

 (Type 2)

Concave

 (Type 3) Concave

 (Type 4)

CFB

 (Type 1)

CFB

 (Type 2)

Convex 

C

 

Figure 3.9. Classification of RRRR mechanisms based on obtuse-angle dyad. 
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Figure 3.10. Classification of RRRR mechanisms based on reflex-angle dyad. 

   Further, if the two free joints A and C are connected with points located at the 

boundary (dotted lines), there exists some special configurations to transform between 

neighboring areas, see Figure 3.11. In these configures, two links align or coincide with 

each other, a torque applied on the other side cannot induce rotation to the coincident 

link, which is said to be at its dead or toggle point. There is also an undetermined 

position at joint B if two added links coincide with the dyad; these are known as 

singularity configurations.   

Concave

(Type 2)

Concave

 (Type 1)

CFB (Type 1)

Concave (Type 4)

CFB (Type 2)

Concave (Type 3)

Convex

A B

C

 

Figure 3.11. Configurations of the whole series of the RRRR mechanisms 
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   The most specific configuration of an RRRR mechanism is based on the folded and 

stretched in-line configurations of dyads. It is a branched or transition configuration, as 

shown in Figure 3.12. 

 

Figure 3.12. Transition configuration of RRRR mechanism.  

3.2.3 Basic Planar Four-Bar Mechanisms 

According to the classifications, configurations and related applications, the basic types 

of planar four-bar mechanisms are summarized in Figure 3.13. The five basic 

mechanisms can be transformed into various cases by using inversion, expansion, 

cognate and equivalent.  

(a) (b) (c)
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D
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C
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C

D

D

C

 

Figure 3.13. Basic four-bar mechanisms: (a) convex RRRR; (b) cross RRRR; (c) 

concave RRRR; (d) RRRP; (e) RPPR.  

3.3 Configurations Zones of CFB Mechanisms 

Biomimetics is a research area that imitates biological design to solve scientific 

problems. An American inventor Otto Schmitt first coined this word in the 1950s while 

trying to emulate the function of nerve cells in an artificial device. The word contains 

the Greek words bios (life) and mimetic (copy). The growth of biomimetic research has 

been rapid since 2001 and it has shown no sign of saturating until now. The endeavour 

of mimicking creatures is to understand the natural world and evolution through 

building models of natural processes. Therefore, the identification of configurations for 

planar four-bar mechanisms is better suited to the study of biological system than the 

Grashof-classification which is used for engineering. The identification of configuration 

zones in this section is more about the change of the structural elements through 

evolution. Four-bar linkages have been widely used in knee joint mimicking [131]. The 

CFB mechanism as a knee joint indicates less energy consumption than a revolute 

knee joint. The physical characteristics in terms of motors, weight, inertia and length 
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would be less for a knee mechanism based on a CFB linkage [132]. The classification of 

CFB mechanism results in a better understanding and application in the future design.  

   According to Section 3.2.2, there are two types of CFB mechanism classified based on 

configurations, see Figure 3.14 and is very easy to understand. The first shows a 

mechanism with a drive link and a follower link crossed, the other one with a crossing 

ground link and a coupler link. 

 

 

D

(a) (b)

A
B

C

A B

C

D

L1

L2

L3

L4

 

Figure 3.14. Two types of CFB mechanism: (a) Type 1 CFB mechanism with crossing 

drive and follower links; (b) Type 2 CFB mechanism with crossing ground and coupler 

links. 

  The planar four-bar mechanism is efficient at transferring motion and power. Four-bar 

linkages play significant role in machine design. Figure 3.15 shows one application of 

the CFB mechanism as a scale conversion, which is also called a function generator. 

The mechanism converts a linear scale into a logarithmic scale. Its error is less than 

0.0037° for a 60° range of rotation of both crank and follower.  

00.1

1.6

A
B

OB OA

60°

127.46°
101°

60°

y=log10x

OAOB = 1.000in.

OAA = 3.352in.

OBB = 3.486in.

AB = 0.846in.

 

Figure 3.15. Cross four-bar mechanism and applications: a generator of the logarithmic 

function y=log x and the arcs of oscillation;  
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   Two specific examples of these CFB mechanisms are antiparallelogram mechanism 

and Watt straight-line mechanisms (Figure 3.16). The curves of fixed and moving 

centrodes of the coupler link of antiparallelogram mechanism are two ellipses as shown 

in Figure 3.16(a). Figure 3.16(b) presents a coupler curve of the Watt straight-line 

mechanism which contains an approximate straight line segment.  

 (a) (b)  

Figure 3.16. Specifications of an antiparallelogram mechanism and a Watt straight-line 

mechanism.  

   Possible variations in link lengths and working ranges play important roles in 

biomimicking, animal mechanics and mechanical functioning; they also provide a 

method to simplify the study of complex biological systems. A CFB mechanism with 

crossing drive and follower links was used to mimic a knee joint and has a potential 

application in mimicking finger joints. Therefore, a systematic classification of the 

variety of lengths of a CFB mechanisms is beneficial for further applications. For a 

biological replacement the full rotation of the drive link is not necessary; only a 

segment of the coupler curve or centrodes’ trajectory is needed. The length of each link 

in the mechanism is a key factor in determining its type. According to this basic 

analysis, the relationship of the four links are shown in Table 3.1 where L1 = AB, L2 = 

BC, L3 = CD, L4 = AD (Figure 3.14(a)). The dimensional relation is separated into two 

columns, the first one lists a general relationship of two links (L1 and L2) and the other 

column lists the subdivided relations of all potential dimensional relationship of the 

CFB mechanism. The existence column lists whether there exists a configuration or not. 

The feature column lists the area graph of the connecting joint of the added dyad. The 

dimensions of a given dyad are represented by L1 and L2. The different equivalence of 

the links can be separated into two types, L1 = L2 and L1 ≠ L2. The types of CFB 
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mechanisms and the position zones with different dimensional relationships are shown 

in Figures 3.17 and 3.18.  

Table 3.1. Dimensional relation of each link and their position zones. 

Dimensional Relation (= or ≠) 
Existence 

(Yes/No) 
Position Zone 

L1 = L2 

L1 = L2, L3 = L4 
L1 = L2 = L3 = L4 No None 

(L1 = L2) ≠ (L3 = L4) No None 

L1 = L2, L3 ≠ L4 

L1 = L2 = L3 ≠ L4 Yes 2-segment curve 

Two areas 
L1 = L2 = L4 ≠ L3 Yes 2-segment curve 

(L1 = L2) ≠ (L3 ≠ L4) Yes 
Areas exception of 

the above lines 

L1 ≠ L2 

L1 = L3, L2 = L4 (L1 = L3) ≠ (L2 = L4) Yes 1 point (antiparallelogram) 

L1 = L3, L2 ≠ L4 
L1 = L3 = L4 ≠ L2 Yes 1 point 2-segment 

curve (L1 = L3) ≠ (L2 ≠ L4) Yes 3-segment curve 

L1 = L4, L2 = L3 (L1 = L4) ≠ (L2 = L3) No None 

L1 = L4, L2 ≠ L3 
L1 = L4 = L3 ≠ L2 Yes 1 point 2-segment 

curve (L1 = L4) ≠ (L3 ≠ L2) Yes 3-segment curve 

L2 = L3, L1 ≠ L4 
L2 = L3 = L4 ≠ L1 Yes 1 point 1-segment 

curve (L2 = L3) ≠ (L1 ≠ L4) Yes 3-segment curve 

L2 = L4, L1 ≠ L3 (L2 = L4) ≠ (L1 ≠ L3) Yes 3-segment curve 

L3 = L4, L1 ≠ L2 (L3 = L4) ≠ (L1 ≠ L2) Yes 3-segment line 

L1 ≠ L2 ≠ L3 ≠ L4 Yes 
Areas that exception of the above 

segments and points 

 

   Figures 3.17 and 3.18 show two types of CFB mechanisms with different lengths of 

each link. According to the zones, there is only one anti-parallelogram CFB mechanism 

with given dyad and their opposite links unequal, however a parallelogram mechanism 

with four identical links can be obtained. It is impossible for a CFB mechanism to have 

four identical links. The position zones of L1 = L2 are equal to (L1 = L2, L3 ≠ L4), 

because there is no CFB mechanism with L1 = L2, L3 = L4. The geometrical synthesis 

processes of the position zones of a CFB mechanism is the same as the above 

mentioned synthesis process for RRRR mechanisms. 
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CFB (Type 1 )

CFB (Type 2 )

L1 = L2 = L3 ≠ L4

L1 = L2 = L4 ≠ L3

L1
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L1
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(L1 = L2) ≠ (L3 ≠ L4)

 

Figure 3.17. Position zones of CFB mechanism with L1 = L2. 
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Figure 3.18. Position zones of CFB mechanism with L1 ≠ L2.  
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3.4 Kinetic Equilibrium of a CFB Mechanism 

In Chapter 2, the concept of the centrode has been presented as a path traced by an 

instantaneous centre. The fixed centrode is a path traced by the instantaneous centre of 

the coupler link. Therefore, a given position of a CFB mechanism will always have a 

force equilibrium configuration if a force is applied to the coupler link. If the acting line 

of the force direction passes through the instantaneous centre, the mechanism is in 

equilibrium. However if a distance e exists between the instantaneous centre and the 

line of force direction, the CFB mechanism will move until the centre and force are 

coincident. The two conditions are shown in Figure 3.19.  

   Two theorems of equilibrium of a CFB mechanism can be stated: 

   Theorem 1: 

   A requirement of static equilibrium is that the line of force direction is coincident with 

the instantaneous centre.  

   Theorem 2: 

   If the angle between the line of force direction and coupler link is fixed, the 

mechanism will move until the line of force direction coincident with the instantaneous 

centre.   

(b)

F

e

F

(a)

F

(c)

F

e

F

 

Figure 3.19. Two conditions of equilibrium of a CFB mechanism (F is perpendicular to 

the contacted link): (a) static equilibrium; (b) and (c) dynamic equilibrium at two sides.  

3.5 CFB Mechanism for Multi-Mode Gripping 

Gripping with the human hand is activated because the neural and visual systems work 

as sensors with the brain operating as a control and processing system. Progress in 

research and development for grippers has been made in underactuated grasping; for 

example, Birglen and Gosselin have used a five-bar linkage and a four-bar linkage 

connected in series for three-phalanx underactuated fingers [133]. Ceccarelli has 
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designed three-phalanx underactuated fingers with cross four-bar (CFB) linkages in 

series [134]. To create stable, encompassing grasps with subsets of fingers, soft 

fingertips that deform during contact and apply a larger special spread of frictional 

forces and moments than their rigid counterparts have been studied [135]. The CFB 

linkage is found to be an excellent candidate to achieve passive-adjusting motion and 

has similar characteristics to a soft fingertip. A passive-adjusting mechanism system has 

characteristics such as adaptivity, under-actuativity, efficiency and multifunction 

whereby it can adjust itself automatically depending on the locations and shapes of 

objects.  

   A CFB linkage is shown in Figure 3.20(a). Crank link AD rotates from initial angle γ 

with respect to vertical line to angle γ′ and the coupler link CD reaches position C′D′. In 

turn, the mechanism can adjust passively when one point of link CD contacts an object. 

If the positions of two points of the coupler link CD are determined, the configuration 

of the whole mechanism will be fixed. Reorientation of the CFB mechanism shows that 

the triangle BAD decreases while the other opposite triangles ABC and ADC increase. 

The diagonal AC increases while the other diagonals BD, decreases.  

   A soft-fingertip model comprising a CFB-damper-spring component is shown in Fig. 

3.20(b). Friction is represented as f at the fingers’ contact surfaces. The normal force 

applied on each fingertip is Fn. The masses of object and the CFB linkage are Gm and Gl 

respectively. Ks and Rd represent the stiffness of the spring and the damper ratio 

respectively. Analysis of contact positions should be conducted when applying it as a 

fingertip for gripping. Furthermore if the motion of one endpoint of link CD contacts 

with its symmetrical opposite then these two CFB mechanisms will be angular 

fingertips. 

(a) CFB mechanism

A

B

C

D

C' 

D' 

γ 

γ'    

(b) CFB-damper-spring components

Ks

RdRd

Ks

Gm

ff

FnFn

GlGl

 

Figure 3.20. CFB mechanism as passive-adjusting fingertip 
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3.6 Equilibrium Analysis of a CFB Mechanism for Gripping 

Section 3.4 has presented the dynamic equilibrium feature of the CFB mechanism and 

Section 3.5 discusses the potential application of a CFB to replace a human fingertip for 

passive-adjusting gripping. A detailed discussion of the CFB mechanism gripping 

application is presented in this section.  

3.6.1 Simplified CFB Mechanism with Point Contact    

According to the dynamic equilibrium analysis in Section 3.4, there are two potential 

directions of rotation for each CFB mechanism. One direction is for gripping and the 

other for position limitation. Other characteristics for gripping are that at least one point 

of the object contacts with the coupler link and the contact force is always perpendicular 

to the contact surface.  

   This gripping scenario is shown in Figure 3.21, where Figure 3.21(a) includes an 

initial position and half of the gripper. Suppose AB is a ground link of the CFB linkage 

with an angle α respective to the symmetrical line. The detailed length of each link and 

angle between nearby links are as shown. The spring and damper as integrated 

components of the system are ignored since space is limited. A simple method using 

magnet material will be proposed in development of meso-gripper in Chapter 5. In order 

to limit movement to one direction, a contact surface is imposed to the limited distance 

between B and D is shortest as shown, while the other side distance between A and C is 

free to change. In other words, there is only anticlockwise motion of the link CD 

starting from the initial position. A planar coordinate system xy has been created at 

point A with ground link AB placed on axis x. Rotate the xy system to make the axis x 

level. The four link lengths a, b, c, d and angles α, β, δ are now as shown in Figure 

3.21(b). I is an intersection point of AD and BC; this is known as the instantaneous 

centre of coupler link CD. Auxiliary line HI is always perpendicular to the coupler link 

CD. For the directions of the position vectors in Figure 3.21(b), θ2, θ3, θ4 are the angles 

of links AD, DC and BC respectively in relation to the  x-axis, the objective being to 

determine the position of point H (or e).  Suppose the coordinate of point H is (x, y). 

   The coordinates of point I can be determined 4 4 2

4 2 4 2

tan tan tan
, ) ( , )

tan tan tan tan

a a
I x y

  

   


 
（   

   The angle θ3 can be represented according to geometrical analysis as 

3=                                                                  (3.1) 

   The vector loop equation of the CFB mechanism is as follows: 

0AD DH AB BC CH                                               (3.2) 
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    Equation (3.2) can be separated into its real and imaginary components and set to 

zero. 

2 3 4 3cos cos cos ( )cos 0a e d c b e                                      (3.3) 

2 3 4 3sin sin sin ( )sin 0a e c b e                                          (3.4) 

   The equation representing HI perpendicular to DH is as follows (“•” inidcates dot 

product of two vectors): 

 
0HI DH 

                                                              
(3.5) 

   Substituting Equation (3.5) into Equation (3.6). 

   4 4 2
2 2

4 2 4 2

tan tan tan
( )( cos ) ( )( sin ) 0
tan tan tan tan

a a
x x a y y a

  
 

   
     

 
             (3.6) 

   The length of DH is: 

DH e                                                                     (3.7) 

   Therefore, 

2 2 2

2 2( cos ) ( sin )x a y a e                                                 (3.8) 

   Substituting Equations (3.1), (3.3), (3.4), (3.6) and (3.8). There are six unknowns in 

five equations. Therefore e can be determined.  
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Figure 3.21. Initial position of CFB mechanism within coordinate system 

   By applying the same approach, another position with coupler link CD vertical is 

shown in Figure 3.22(a). The position of H1 (or e1) can be determined by the following 

equations. 

3=                                                                     (3.9) 

0AD DH AB BC CH                                                (3.10) 
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0HI DH                                                              (3.11) 

1DH e                                                                  (3.12) 
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Figure 3.22. Coupler link vertical position of CFB mechanism  

3.6.2 General CFB Mechanism with Point Contact   

In real design cases, we need to leave some margin for link CD as contact surface. 

Therefore, as shown in Figure 3.23, a quadratic link BCQP can be constructed by 

extending link BC to CP with length c1 and AD to DQ with length a1 and connecting the 

two end points P and Q as a contact surface.  

A

P

D

C

B

Q

α

d

a

b

c

a1 

c1  

b1 

β

γ

δ

ls

F

F1

F2

I
H1

H2

H

e

l

 

Figure 3.23. Force positions applied for CFB mechanism. 
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   Force F is applied at point H and directs towards the instantaneous centre I when the 

CFB mechanism is in static equilibrium. If F1 shown above F is applied at position H1, 

the mechanism will make an anticlockwise rotation, while F2 makes the mechanism 

static because of the limitation between points B and D.     

   As shown in Figure 3.23, distance between B and D is ls, which can only be extended.    

The length of ls can be calculated using: 

2 2 4 cossl a b ad                                                     (3.13) 

   According the geometrical parameters, ∠ABC can be derived as  

ABC                                                               (3.14) 

   The length of AI is calculated: 

sin( )

sin( )

d
AI

  

   

 


  
                                                   (3.15) 

   Meanwhile, 

1IQ AQ AI a a AI                                                    (3.16) 

 IQP                                                               (3.17) 

cose IQ IQP                                                            (3.18) 

   Therefore, the distance e can be derived by solving Equations (3.15) to (3.18): 

 1

sin( )
cos

sin( )

d
e a a

  
  

   

  
     

   
                          (3.19) 

   The distance between the contact point H of force F and the vertical line passing 

through P is: 

1( )cosl b e                                                   (3.20) 

    According to Equations (3.19), distance e is influenced by distances a, a1 and d; the 

method for augmenting the angular mode is to increase the lengths a, a1 or to decrease 

the ground link length d. The way to enlarge ranges of the two gripping modes is to 

increase b1 or decrease e.  

3.6.3 General CFB Mechanism with Surface Contact   

For the gripping application shown in Figure 3.24, any one condition is regained when 

the contact surface PQ is in vertical direction which is typical of grasping for vertical 

surface objects, such as a cube. There is always one gripping point on PQ, above point 

H such as H1 which achieves vertical gripping at static equilibrium. If the contact point 

above H1 is contacting point for cube gripping, then gripping becomes even more stable 

than the static equilibrium condition, because there is a contact segment on PQ (or at 

least at two contacting points).  
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   Assuming that AB moves towards being level and force F1 is applied to point H1, the 

CFB mechanism is in static equilibrium exactly when PQ is vertical, that is to say H1 is 

the exact point at which it is at its final configuration. The static equilibrium position of 

the mechanism is shown in Figure 3.24.  
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Figure 3.24. Gripping configuration with PQ in vertical position. 

   In this configuration, β' and ls' are used to denote the altered position respectively. The 

instantaneous centre is I'. ADQ and BCP are not on a straight line in this configuration.  

3.6.4 Summary of Multi-Mode Gripping with CFB Fingertip 

According to the above analysis, for single contact point gripping with a CFB-based 

fingertip, there are two gripping modes separated into three segments, as shown in 

Figure 3.25, passive-adjusting (passive-stable and passive-equilibrium) mode and 

angular mode. The whole contacting surface can be separated into three segments. A 

gripping position lower than point H is angular mode while the upper positions are in 

passive-adjusting mode that the gripper passively adjusts its configuration depending on 

contact position of an object.  

   The configuration of the CFB mechanism is static at angular-gripping mode. Friction 

between PQ and contacted objects is applied to lift the latter. The coupler link PQ of the 

CFB mechanism rotates passively to the static equilibrium position if the gripping 

position is between H and H1. The coupler link PQ of the CFB mechanism passively 

rotates to contact the surface of the object with at least two points if the contact point is 

above point H1. Even though the configuration of the CFB is at a nonequilibrium 

position, lifting is more stable due to two points gripping on the coupler link maintains 
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the configuration of the CFB mechanism fixed.  The outline of these two modes and 

three position zones are shown in Figure 3.25.  
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Figure 3.25. Two gripping modes and three position zones. 

3.7 Gripping Capabilities of a CFB Mechanism 

3.7.1 CFB Mechanism for Passive-Adjusting Gripping    

Figures 3.26 to 3.28 illustrate the gripping process of different objects in passive-

adjusting modes with a CFB-based gripper. Each claw of the gripper is integrated using 

a CFB linkage which works as a fingertip for passively adjusting the pad to the contact 

point of the object. There are two types of gripping configurations (passive-stable and 

passive-equilibrium) depending on the contact positions at the fingertip.  

   Figure 3.26 shows passive-stable gripping for vertical surface with more than two 

points on the contact surface where the gripping point is above H1. The configuration of 

the coupler link is fixed safely on the vertical surface of the object. 

 

Figure 3.26. Passive-stable gripping for vertical friction of CFB-based fingertip. 

   Another passive-stable type is when the reaction force is at the contact point opposite 

to gravity. The configuration of CFB mechanism as a lifting posture in vertical gripping 

scheme is half mechanical locking and more stable than gripping only with friction. One 

example of this type is shown in Figure 3.27.  
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Figure 3.27. Passive-stable gripping for lifting posture of CFB-based fingertip. 

   Passive-equilibrium gripping is shown in Figure 3.28. The gripping points are located 

between H and H1, which is a quite small range. Therefore it is quite difficult to 

distinguish this figure with Figure 3.26 in first two steps. However, when the contact 

position locates at this range, the CFB mechanism will move slightly and automatically 

to search the equilibrium position fixing the configuration in an angular configuration. 

The lifting force depends only on the friction between the coupler link and the contact 

point of the object. 

 

Figure 3.28. Passive-equilibrium gripping of CFB-based fingertip. 

3.7.2 CFB Mechanism for Angular Gripping 

Compared with passive-adjusting mode, two types of angular gripping mode depend 

more on the size of the objects. The mechanical intelligence makes the gripper adapt its 

configuration to the various objects. The following figures illustrate the gripping 

process for different objects.  

    Figure 3.29 shows a small object with dimension less than the maximum size in the 

angular configuration of the gripper. The coupler link of each side moves when it 

contacts the object. The object is lifted when the friction is big enough to support its 

weight.  

 

Figure 3.29. Contact-angular gripping of CFB-based fingertip (for small objects).  
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   Another type of angular mode is as a gripping point below H, that is to say, the size is 

larger than the open size of the gripper in a contact-angular configuration, as shown in 

Figure 3.30. This gripping process is similar to small object types. The main difference 

is that two coupler links do not contact with each other, the angle between two 

contacting surface will not change.  

 

Figure 3.30. Contactless-angular gripping of CFB-based fingertip (for large objects). 

3.8 Gripping Zone of CFB-Based Gripper 

According to the configurations of the gripper analysed in Section 3.6, there are three 

zones on the contacting surface with different gripping configurations. The basic 

geometrical parameters and signs of the schematic are shown in Figure 3.31. There are 

two basic modes (passive-adjusting and angular) which can be further classified into 

four sub-modes (passive-stable, passive-equilibrium, contact-angular and contactless-

angular).  Gripping modes and the range of dimensions of gripped objects are 

summarized in Table 3.2. 
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Figure 3.31.  Schematic of gripper with multiple gripping positions.  
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   By analysing the gripping ranges of various modes in Table 3.2, both the design 

criteria and functionality of the designed gripper are obtained. The height of the object 

is also an important parameter to consider. The higher the object, the easier and safer it 

is to be gripped with passive-stable mode. For short object, angular mode is used. The 

gipping only considers the fingertip is stiff without deformation. The advantages of the 

novel multi-mode gripper can be attributed to passive-adjusting, a type of mechanical 

intelligence. Before gripping, the size, weight and shape of the objects do not need to be 

considered. The gripper can passively adapt to them automatically. Auxiliary systems, 

such as a vision system, can be used to identify the gripping mode after equilibrium 

gripping and for determining the gripping force applied to objects.   

Table 3.2. Gripping ranges of the four gripping modes 

Category 
Contacting 

position 
Width Height 

Passive-

adjusting 

mode 

Passive-

stable 
H1P 

>2(L-m-l1) n1 – N 

>0 ≥N 

Passive-

equilibrium 
HH1 

2(L-m-l) – 2(L-m-l1) n – n1 

>2(L-m-l1) >n1 

Angular 

mode 

Contactless-

angular 
HQ 

> 2(L-m-l) 0 – n 

2(L-m-l1) – 2(L-m-l) n – n1 

Contact- 

angular 
HQ 

0–2(L-m-l) >n 

0–2(L-m-l) 0 – n 

3.9 Kinetostatic Analysis of CFB-Based Fingertip 

Kinetostatic analysis of the CFB fingertip involves the instantaneous kinematics and 

static condition of the CFB-based fingertip to react to the force produced by a finger 

(finger force in short). It refers to the relationship between the finger force and 

corresponding the reaction forces. The schematics at the static equilibrium condition of 

the fingertip are first determined. The objective of the analysis is to discover the 

relationship between the finger force and reaction force. 

   Based on the gripping processes and gripping ranges of various modes of the CFB-

based fingertip, three configurations of CFB-based gripping are addressed to analyse the 

relationship between finger force and the reaction force at the contact surface, as shown 

in Figure 3.32. The vertical line passing through point P as a boundary separates all the 
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links on the left side, the second one with PQ coincident with the boundary, the last 

with PQ on the right hand. This classification concludes all four modes presented in 

Section 3.6. The Type I configuration shown in Figure 3.32(a) includes two angular 

modes and passive-equilibrium mode. The Type II configuration refers to passive-stable 

mode with vertical friction, see Figure 3.32(b). Type III, shown in Figure 3.32(c), is 

passive-stable mode with the half mechanical-locking characteristic. All configurations 

match with different force reaction situations.  
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Figure 3.32. Type I, II and III configurations of CFB-based fingertip. 

   In total, there are three location areas of reaction forces on the contact surface between 

Q and H1 ( shown in Figure 2.30) in the first configuration of the CFB-based fingertip. 

Positions between Q and H (including H) are in the same situation since the 

configuration is rigid with distance of BQ fixed. Positions at the passive-equilibrium 

range are different because of the free motion. However, the reaction forces involved in 

all the gripping processes are the same. There are the normal force Fn and friction force 

Ff, both of which are related to the angle δ of PQ with respect to vertical line.  

   The second configuration is a type of gripping with PQ against the vertical surface. Its 

force equilibrium equation is very simple, the magnitudes of normal force Fn and finger 

force F are equal. 

   The third configuration is the half mechanical-locking posture, normal force (Fn) and 

friction (Ff) force influencing each other according to a force analysis. Force diagrams 

of these three configurations are shown in Figure 3.33.  
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Figure 3.33. Force diagrams of three types of gripping configurations. 

3.10 Gripping Force Analysis of CFB-Based Fingertip 

A gripper should produce necessary forces to overcome the weights of objects and keep 

them against the fingertip during the gripping process. Safe gripping is a basic 

requirement. In other words, a gripper should not produce an excessive force which may 

damage the object especially if fragile. The gripping force is related to the shape of the 

fingertip and the posture of a gripper. The gripping environment is complicated, which 

also makes the force applied to grab an object complicated as this may depend on the 

solo finger forces, finger and friction forces on the fingertip or only the friction forces.   

   Due to its multi-mode characteristic, the corresponding force situations of the CFB-

based fingertip are more complicated. Considering a two-fingered gripper with CFB-

based fingertips, three types gripping are defined, as shown in Figure 3.34.   

(b) (c)(a)

Fingers

Fingertips mg

mg mgObject

y

x

z

y

z

z

  

Figure 3.34. Three postures of gripping: (a) a horizontal gripper with horizontal object; 

(b) vertical gripper with horizontal object; (c) horizontal gripper with vertical object. 

   In order to calculate the gripping force required during a transportation process. The 

finger force and weight of the object are considered and their correlation analysed 

[136]. The necessary finger force can be calculated by the formula: 

a= e sF K K K mg                                                              (3.21) 

where  

   1 /aK a g  ; 
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   sK = safety factor, varying from 1.2 to 2.0, which should be enhanced if a robot has a 

strong acceleration/deceleration or the possibility of impact during movement;  

   eK = transfer coefficient, which is shown in Table 3.3 (Page 74);  

   F refers to the finger force per finger to hold an object with weight m at an 

acceleration a.  

   g = 9.8m/s2, acceleration due to gravity. Required if acting against a.  

   Safety factor Ks depends on the application itself, the transporting route, workspace, 

arrangement of objects and human safety considerations. Factor Ka depends on the 

maximum acceleration of the gripped object. Ke is the transfer coefficient and relates to 

the fingertip configurations and the gripping postures; it is the ratio between the finger 

force F and object gravity force mg.  

   According to Section 3.7, the CFB-based fingertip has two main modes with three 

corresponding configurations, which depends on the size, shape and contact point of the 

object, shown in Figure 3.35. Meanwhile, there are three postures of a gripper in terms 

of horizontal gripper with a horizontal object, vertical gripper with a horizontal object 

and horizontal gripper with a vertical object.  

δ δF F

Various size,

shape,

contact point.

 

Figure 3.35. Gripping with CFB fingertip. 

   The following examples will present how factor Ke is derived with various 

configurations and gripping postures. In order to simplify analysis process, gripped 

objects are simplified with regular round surface or parallel surface for angular and 

parallel configurations of fingertip respectively.   

   Case 1:     

   Figure 3.36 shows a vertical gripper with a Type I configuration fingertip applying 

finger force F per finger to hold a horizontal object of weight m to move at an upward 

acceleration a. δ refers to the angle of the configuration in Types I and III. Friction force 

Ff is produced by Fn and equal to μFn, the coefficient of friction between fingertip and 

object is denoted by μ.  
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Figure 3.36. Vertical gripper with Type I configuration fingertip holding a horizontal 

object and decomposing forces on the object.  

   The force equilibrium equations in the vertical directions are as follows: 

   Vertical direction:  

2 cos 2 sinn nF F mg ma                                              (3.22) 

   According to Figure 3.33(a), 

cos nF F                                                                         (3.23) 

   Substituting Equation (3.23) into (3.22), we have 

22 cos 2 sin cosF F mg ma                                             (3.24) 

2

1
(1 )

2( cos sin cos )

a
F mg

g   
 


                                        (3.25) 

   By considering Equations (3.21) and (3.25): 

2

1

2( cos sin cos )
eK

   



                                                (3.26) 

    

Case 2:  

   A vertical gripper with Type II configuration fingertip applying finger force F per 

finger to hold a horizontal object of weight m to move at an upper acceleration a, as 

shown in Figure 3.37. Decomposing forces on object is also provided. 
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Figure 3.37. Vertical gripper with Type II configuration of fingertip holding a 

horizontal object and decomposing forces on the object. 

   Ke for this configuration can be derived as: 

1

2
eK


                                                                 (3.27) 

   Case 3:     

   A vertical gripper with Type III configuration of fingertip applying finger force F per 

finger to hold a horizontal object of weight m to move at an upper acceleration a. A 

minimum force needed to hold the object is to make the object to have a trend of 

moving downward. Therefore friction of the objects is pointing to upward. The 

decomposing forces of object is shown in Figure 3.38. 

22 sin cos +2 cosF F mg ma                                                            (3.28) 

2

1

2(sin cos + cos )
eK

   
                                                    (3.29) 

  

F

δ

F

δ

mg

a
Ff FfFnFn

 

Figure 3.38. Vertical gripper with Type III configuration fingertip holding a horizontal 

object and decomposing forces on the object. 

   Case 4:    
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   For a horizontal gripper with horizontal object, the situation is quite different. The 

magnitudes of finger force exerted by the upper finger and the lower finger are not 

equal because the difference between them is always the static weight of the object, as 

shown in Figure 3.39. An extreme static case is when F1=0 and F2=mg. Therefore, for 

an acceleration a, the force equilibrium equation is: 

Fn-mg=ma                                                     (3.30) 

According to Figure 3.33(b), 

F=Fn                                                                                        (3.31) 

From Equations (3.30) and (3.31), the value of Ke is 

Ke=1                                                           (3.32) 

F

F

a
mg

Fn1

Fn2

 

Figure 3.39. Horizontal gripper with Type I configuration fingertip holding a horizontal 

object and force analysis. 

   Case 5:    

   A diagram of a horizontal gripper with a vertical object is shown in Figure 3.40. A 

CFB-based fingertip is attached to each finger.  
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Figure 3.40. Diagram of a horizontal gripper with vertical object and a plan view. 

   Forces exerted to the object are analysed in the horizontal and vertical planes, as 

shown in Figure 3.40. Friction forces in the horizontal and vertical planes are denoted 

by Ffh, and Ffv, respectively. From the horizontal plane, two equations are derived: 

sin cosn fhF F                                                         (3.33) 

cos sinn fhF F F                                                     (3.34) 

   From the vertical plane, two equations are obtained: 

2 fvF mg ma                                                            (3.35) 

fv nF F                                                                (3.36) 

   By substituting Equations (3.35) and (3.36), one has 

1
(1 )

cos

a
F mg

g 
                                                   (3.37) 

   Therefore, transfer efficiency factor in this situation is 

1

cos
eK

 
                                                              (3.38) 

   Other cases:   

   By using the same analysis process, the other two configurations for a vertical gripper 

can also be calculated. A total of nine situations considering the three configurations of 

the CFB-based fingertips and their transfer coefficients are summarized in Table 3.3 

The same analysis process produces the results of a gripper with three fingers as shown 
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in Table 3.4. These equations summarized in table only consider regular cylinder, 

spherical or cubic blocks. It is impossible to consider all regular shapes even irregular 

shapes. Because the objects are various and this work is also not the focus of the thesis. 

Examples considered in this chapter are also what commercial gripper vendor always 

provided. The purpose of providing the detailed calculating process is to compare with 

present fingertips of commercial gripper tips. CFB fingertip is also a potential 

commercial product that can be chosen by end user. Relative patent on CFB fingertip 

has been applied.  

Table 3.3. Transfer coefficient of CFB-based fingertip (two fingers). 

Ke 

Type I  

configuration 

Type II 

configuration 

Type III 

configuration 

δ

  

δ

 

Horizontal 

gripper 

with 

horizontal 

object 

mg

y

z a

 

1 1 1 

Vertical 

gripper 

with 

horizontal 

object 

mg

x
z

a

 

2

1

2( cos sin cos )   
 

1

2
 2

1

2(sin cos + cos )   

 

Horizontal 

gripper 

with 

vertical 

object 

mg

y

z a

 

1

2 cos 
 

1

2
 

1

2 cos 
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Table 3.4. Transfer coefficient of CFB-based fingertip (three fingers). 

Ke 

Type I  

configuration 

Type II 

configuration 

Type III 

configuration 

δ

  

δ

 

Horizontal 

gripper 

with 

horizontal/ 

vertical 

object 

 

mg

y
x

a

 

1 1 1 

Vertical 

gripper 

with 

horizontal 

object 

 

mg

x
z

a

 

2

1

3( cos sin cos )   

 

1

3
 2

1

3(sin cos cos )   

 

 

3.11 Summary 

A geometrical approach in 2D space was used to investigate the classification of the 

planar four-bar mechanisms and included CFB mechanisms. The atlas of planar four-bar 

and CFB mechanisms were provided. A multi-mode fingertip based on a CFB linkage 

was presented. Firstly, the kinetic equilibrium as a specific characteristics and its 

potential application for gripping was investigated. A new type of fingertip based on 

CFB linkage was then developed for multi-mode gripping and the gripping range and 

force of each configuration analysed. Finally, a methodology of calculating the CFB-

based gripping force was provided and tables on transfer coefficient summarized for 

typical shapes and configurations. 
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CHAPTER 4 – RCM-Based Multi-Motion Finger 

In Chapter 3, a multi-mode CFB-based fingertip was presented. The contact position 

between the novel tip and the object determines the configuration of the tip and gripping 

effect. As a novel type of fingertip, the calculation of the gripping force is also required. 

Therefore, the force calculation equation and transfer coefficient were also provided. In 

addition to the fingertip, the finger itself is an entry point for the novel development of a 

robotic gripper hand, since finger grippers are the most commonly used grippers.  

   Generally, a gripper has two opposing fingers or three fingers can be postured as in a 

lathe chuck. Sometimes the fingers are driven simultaneously in order to centre a 

gripped part, while differential gripper benefits gripping of irregular shaped parts [28]. 

Centred gripping provides some flexibility in the location of components at the pick-up 

point. Traditional two-fingered grippers can be split into parallel motion and angular 

motion. The underactuated finger is one type of mechanically adaptive design that is 

widely used in the development of gripper or robotic hands [137]. Some of these 

underactuated designs are based on linkages while others are tendon-driven systems 

[138, 139]. It is recognized that tendon systems are limited to small grasping forces and 

not suitable for manipulations.  

   Grasping tasks for flexible or fragile objects are however handled using either vacuum 

or magnetic grippers. The gripper tip is placed in contact with the object either in a 

magnetic or a vacuum field. Any pick-up point errors in placement of the object will 

result in a similar error at the destination; therefore, these types are not appropriate for 

high accuracy applications. In this chapter, a remote-centre-of-motion (RCM)-based 

finger solution is provided and analysed. Angular, parallel and underactuated motion of 

the RCM-based gripper is presented. The static force of the finger for various 

applications is investigated. The development of RCM-based finger provides a novel 

design which has unique reconfigurable characteristics with parallelogram linkages.   

4.1 Kinematic Analysis of Double-Parallelogram RCM Mechanism 

The RCM mechanism is a form of minor-mobility mechanism with constructing 

linkages rotating around a fixed point distal from it. It is a kind of parallelogram-based 

mechanism which can be applied in several different backgrounds. Due to its 

mechanical safety for surgery, RCM mechanisms are widely used as a wrist of 

minimally invasive surgery (MIS) robots [140] to provide a fixed point moving around 

the surgical incision. 
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   A telerobotic system manipulator with a remote centre of motion was first developed 

by Taylor [140], with a variety of RCM robots subsequently developed in the area of 

surgery equipment (Figure 4.1). The concept and mechanism were also used in MIS for 

precision operations as a steady hand [141, 142]. Bai extended the mechanism to 

multiple RCMs for complicated applications by investigating the relationship between 

the RCM mechanism and a deployable mechanism. A multiple RCM mechanism [143] 

was proposed and some applications demonstrated, such as foldable stages and a 

surgical helmet for ophthalmology [144].  

 

Figure 4.1. RCM Robot for laparoscopic surgery developed by Taylor [140]. 

   For the purpose of analysing the kinematics and structural characteristics of a multi-

RCM mechanism, it is necessary to analyse a special configuration of six-bar linkage as 

shown in Figure 4.2. 

 

Figure 4.2. Schematic of a six-bar linkage 
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   In Figure 4.2, the coordinate system xAy is fixed to the six-bar linkage. The x-axis is 

fixed at side link AB. A is at the origin and y-axis is perpendicular to x. The dimensions 

of six links and rotation angles are represented as shown in Figure 4.2 where AC is the 

input link, and EG is the output link. 

   Two crossed links (CDE and BDF) are angulated links with bend angles ψ and φ. The 

other four angles β, θ, δ and γ are the rotation angles of each link, while angle α is the 

input angle. 

   This six bar linkage has two four-bar loops (loop ABDC and loop DEGF). The 

displacement equations of the linkage are as follows: 

   Loop ABDC: 

 = +AC CD AB BD                                                  (4.1) 

j j jae ce b de                                                    (4.2) 

acos cos b cos

sin sin sin

c d

a c d

  

  

  


 
                                        (4.3) 

   Loop DEGF: 

= +DF FG DE EG                                              (4.4) 

( ) ( ) ( )j j j jfe he ee ge                                             (4.5) 

cos( ) hcos( ) ecos( ) gcos

sin( ) sin( ) sin( ) sin

f

f h e g

     

     

     


     
                       (4.6) 

   Equations (4.3) and (4.6) represent a system of 4 equations with 5 unknowns and can 

also be viewed as 4 equations with 4 unknowns if input angle α is a given variable.  

   The trajectories of E and G can be calculated by the following equations, 

   Trajectory of point E: 

( )j j jAE AC CD DE ae ce ee                                         (4.7) 

cos cos cos( )

sin sin esin( )

E

E

x a c e

y a c

   

   

   


   
                                 (4.8) 

   Trajectory of point G: 

( ) ( )j j jAG AB BF FG b de fe he                                   (4.9) 
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cos cos( ) hcos( )

sin sin( ) sin( )

G

G

x b d f

y d f h

   

   

     


    
                         (4.10) 

   Let the numerical dimensions of the mechanism be: a=30, b=40, c=50, d=45, e=45, 

f=30, g=40, h=40, φ=20°, ψ=70°. A crank-and-rocker mechanism (loop ABDC), is 

obtained with input angle α changing from 0° to 360°. The trajectories of joints E and G 

are simulated as shown in Figure 4.3.  

 

Figure 4.3. Trajectories of joints E and G 

   If loops ABDC and DEGF are parallelograms, then the geometric relations of this 

mechanism should maintain constrains where a=d, b=c, α=β, θ=0, f=g, e=h, δ=ψ, γ=α-

φ. Equations (4.7) and (4.9) then become: 

j jAE c ae he                                                 (4.11) 

( )j j jAG c ae he fe                                             (4.12) 

   From Equations (4.11) and (4.12), we obtain 

( ) =jEG fe DF                                                    (4.13) 

   Equation (4.13) reveals that EG  is always equal to DF because link BDF rotates 

around a fixed point B, so link EG will also rotate around a fixed point 1O  with the 

same geometric characteristics (Figure 4.4). The geometric condition ensures DBO1E is 
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a parallelogram, subsequently forming a six-bar mechanism with two parallelograms 

and a virtual remote centre.  

 

Figure 4.4. A type of six-bar mechanism with one remote centre 

4.2 Motion Transmission of RCM-Based Fingers  

Gripper fingers are set in motion to build up gripping forces on objects. Angular, 

parallel and underactuated motion of the finger is commonly generated for object 

gripping. Angular motion refers to the end part of fingers pivoting on one point virtually 

or actually. Parallel motion of finger is always driven in a linear slot to move towards 

each other. Underactuated motion means the number of actuators is less than the full 

degrees of freedom to be driven [145]. 

   The most investigated underactuation is actually position limitation with springs. 

Underactuation is an intermediate solution between full-actuation (each joint has one 

independent motor and complex control for versatile motion) and simple-actuation (few 

actuators and simple control for specific motion). An underacutated gripper or hand is 

also an intermediate type which may not be so versatile or stable across the full range. It 

is less expensive, providing average control and requiring few actuators to do more 

complicated work [146]. The number of actuators of an underactuated hand is less than 
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the DOF of the hand. The gripper mechanism requires an intelligence which allows it to 

envelope the shape of objects automatically using its fingers. The intelligence is usually 

governed and implemented by the springs and mechanical limits for position control. 

The control strategy is simple and direct without any specification.  An example of a 

two-DOF finger is shown in Figure 4.5. The diagram of the finger shows a five-bar 

linkage which has two coincident joints with one link length 0. Closing is enabled by a 

force acting at the arrow position. Before the first phalange contacts the object, the 

second joint of the five-bar linkage is mechanically limited and the adjacent two links 

connected by spring. The mechanism is actually a one DOF four-bar linkage. After 

contact of the first phalange, the mechanical limit is released and one link fixed. In 

another configuration a one-DOF four-bar mechanism is generated until the second 

phalange contacts with the object.  

 

Figure 4.5. Gripping sequence of the underactuated gripper [141]. 

   In this section, the motion transmissions of RCM-based finger with angular, parallel 

and underactuated are investigated. This is the first mechanism which includes three 

types of the gripping motion and can be further used to develop fingers with multi-mode 

gripping capabilities.  

4.2.1 Angular Motion of RCM-Based Finger 

The kinematic diagram of the RCM mechanism is shown in Figure 4.6. Point O is a 

remote centre of the RCM mechanism. The initial position (solid lines) of the RCM 

mechanism is determined by the ground link AB which is at angle θ between AB and the 

horizontal line. Links BDF and CDE are angulated with angles α and β respectively. 

The main lengths of the mechanism are a, b, c and d. 

   According to the kinematic analysis of the RCM mechanism in Section 4.1, links BDF 

and GEO are identical in dimension and have the same rotating motion. Angles CAC’ 
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and EOE’ are identical and equal to δ. Link EG acting as a fingertip for grasping has 

angular motion. The rotating velocity of link EG is the same as driving link AC.  
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Figure 4.6. Kinematic diagram of two positions of the RCM mechanism. 

4.2.2 Parallel Motion of RCM-Based Finger 

Parallel motion applies to another link, DE, in the RCM mechanism. A viewing position 

of single finger is to make the DE or BO vertical. Comparing with Figure 4.6, two 

approaches can be used, one by rotating the whole mechanism until BO vertical, see 

Figure 4.7 (a); the other by changing the angles or directions of angulated links BDF 

and CDE. The former one is much easier for constructing an angular-parallel 

reconfigurable gripper. According to Figures 4.6 and 4.7 (a), the rotational angle of the 

whole mechanism with respect to frame point B is / 2    , which is solely related 

to the initial position of the angle of angulated link CDE.  
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Figure 4.7. Two approaches to obtain parallel gripping. 
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4.2.3 Underactuated Motion of RCM-Based Finger 

Underactuated motion of the mechanism is obtained by changing the position of A to be 

movable. As shown in Figure 4.8, point A is a frame point, AC is a drive link and BO is 

vertical. DE of the RCM mechanism provides a translation motion and the RCM-based 

gripper imparts parallel gripping. If link BDF is stopped due to an obstacle, and point A 

is free with a circular motion, link CDE will continue to move.  The rotating angle of 

link CDE is the same as link AB and equals to γ. The remote centre O also rotates an 

angle γ along a circle with radius d.  
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Figure 4.8. RCM-based mechanism for underactuated grasping. 

   From Sections 4.2.1 to 4.2.3, the following conclusions can be drawn: the angular 

motion of the RCM-based finger can be obtained from the furthest link EG; the 

extended coupler link CDE of the first four-bar loop can be used for parallel gripping if 

the initial position of BO is vertical. Releasing of one frame point A generates 

underactuated motion. Therefore, the RCM-based finger has three motion-modes: 

angular, parallel, and underactuated. The angular and parallel modes are specific 
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characteristics of the six-bar linkage. If point A is released, the six-bar linkage is 

transformed into a seven- bar linkage with underactuated mode.  

4.3 Static Analysis of RCM-Based Finger 

The kinematic analysis of the RCM shows that the furthest link (e.g. link EG in Figure 

4.6) of the mechanism has the same rotation angle as the drive link no matter how many 

links connecting between them. The coupler link can be changed for parallel motion. 

These characteristics enable the mechanism to provide various gripping modes. In this 

section, the reaction forces in angular, parallel and udneractuated modes will be 

determined when the RCM mechanism is used as a middle and proximal phalanx of 

finger to provide a gripping force and clamping motion. 

4.3.1 Static Analysis of RCM-Based Finger with Angular Motion 
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Figure 4.9. Static analysis of RCM-based finger with angular motion (friction free). 

Figure 4.9 shows a random position of the RCM finger with grasping torque τ. The 

reaction force at position H with offset e to point E is F (friction free model).  

Applying the principle of virtual work: 

= xFv                                                        (4.14) 

   The right side of the equation can also be written as: 

=xFv Fl                                                      (4.15) 
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   Substituting Equation (4.14) into Equation (4.15),  

 Fl                                                          (4.16) 

where ω is the angular velocity of drive link, vx is the velocity of acting point and 

parallel to GE, l is the perpendicular line between rotating centre and force direction.  

   In Figure 4.9, OH can be derived as, 

2 2 2 cosOH b e be                                            (4.17) 

   According to geometrical parameters, l is obtained:  

cosl b e                                                    (4.18) 

   The relationship between the output of the actuator and the gripping force is 

( cos )F b e                                                 (4.19) 

   If the friction between the contact surface and the grasped object is considered, as in 

Figure 4.10, the following equation is obtained by applying virtual work, 

= x yFv fv                                                     (4.20) 

   Using a similar calculating process, the relationship between the actuator output and 

the gripping force and friction is as follows, 

( cos ) sinF b e fb                                            (4.21) 
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Figure 4.10. Static analysis of RCM-based finger with angular motion (considering 

friction). 



 

92 

 

4.3.2 Static Analysis of RCM-Based Finger with Parallel Motion 

A kinematic representation of the RCM-based parallel gripping finger is shown in 

Figure 4.11 (friction free model). F is the action force of the mechanism at the specific 

position. The velocity polygon of link CDE is constructed at the right hand side. 

Applying the principle of virtual work,  

= yFv                                                       (4.22) 

   The vertical component of v is 

sinyv b                                                    (4.23) 

   Substituting Equation (4.23) into Equation (4.22), we obtain 

= sinFb                                                      (4.24) 

where ω is the angular velocity of drive link BD and b, its length. 
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Figure 4.11. Static analysis of RCM finger with parallel motion (friction free). 

   By considering the friction at the contacting point between the fingertip and the 

grasped object (Figure 4.12), the input and output virtual powers of the finger is 

obtained 
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= x yFv fv                                                    (4.25) 

   In the same way, the relationship between the actuator output and the gripping force 

and friction is obtained 

= sin cosFb fb                                                (4.26) 
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Figure 4.12. Static analysis of RCM finger with parallel motion (considering friction). 

4.3.3 Static Analysis of RCM-Based Finger with Underactuated Motion 

The analysis method for the underactuated finger what it generates an external wrench 

onto a fixed object was presented in [145]. The stable and unstable grasps of two-

phalanx underactuated fingers of general architecture were analysed. Figure 4.13 shows 

a two-phalanx finger with two contacts and its stable and unstable configurations. The 

analysis disclosed that the process of closing will force the finger to lose contact with 

one of the phalanges, usually the proximal one. Because the wrench of distal link 

caused by contact force has the same direction with drive torque. The parallel 
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configuration of the two-phalanx finger is also shown to be unstable in paradoxical 

equilibrium [146], a peculiar unstable behaviour that no equilibrium possible, see Figure 

4.14; this refers to distal contact only.  
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Figure 4.13. Stable and unstable configurations with two contact points. 
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Figure 4.14. Unstable design of underactuated finger in paradoxical equilibrium without 

and with friction. 

   For linear contact with distal phalanx, it is shown that the two phalanx self-adaptive 

finger is stable if and only if the location of the equilibrium position is between both 

contact points of the line [147] as shown in Figure 4.15.  
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Figure 4.15. Stability of planar pinch grasp depending on the equilibrium location. 

   The above stability analysis refers to fingertip upward. In practical gripping for 

assembly, there is always vertical grasping as shown in Figure 4.16 where the 

configurations in paradoxical equilibrium, unstable and stable status without friction are 

shown. Three different-shaped objects are grasped by the same two-phalanx finger in 

three different configurations. The instant centre of the parallel-configuration gripper is 

a point at infinity position. Therefore if the direction of the action force is parallel-to-

parallel links, it is a paradox equilibrium position as presented before. Figure 4.16 (b) 

shows an unstable position with angle α between drive link and the action force far from 

the finger. Figure 4.16 (c) is a stable configuration with an angle β as shown. A larger 

angle ψ and deeper gripping position make the stable configuration much easier to 

obtain.  
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A
B

C

D

Fn2
ψ 

Fn1

AB

C D

Fn2

α 

Fn1

A

B

C

D Fn2

β 

Fn1

 

Figure 4.16. Vertical grasping in paradoxical equilibrium, unstable and stable statuses 

without friction. 
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   The underactuated parallel finger with friction is analysed as shown in Figure 4.17. 

The equilibrium position of the finger with parallel condition between the parallel links 

and action force is shown in Figure 4.17(a). In the same configuration of gripping, 

however, if the friction between the gripping surface and the gripped object is higher, 

then the gripping action is changed to a stable state. That is to say, the larger the 

coefficient of friction of the fingertip, the more stable the underactuated gripping.    

stable grasping with frictionparadoxical equilibrium 
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C D
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μFn
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C D
Fn

μ' Fn
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Figure 4.17. Vertical grasping in paradoxical equilibrium and stable grasping with 

friction. 

   Figure 4.18 shows two configurations of the RCM-based underactuated finger. The 

input torque of drive link AB is τ. One end of spring with stiffness K is fixed at point A. 

The rotating angle of link AB is γ. The contact points of the two-phalanx finger have 

grasping forces of F1 and F2 respectively and their location with offset lengths e1 and e2 

are as shown in the figure.  

   The increased length of spring can be simplified. As shown in Figure 4.19, the initial 

length of spring is x and the final length after extension is A'P. The increased length Δ is 

A'P – x, which can be replaced by length AA'. Therefore: 

' 2 tan( / 2)AA a                                              (4.27) 
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Figure 4.18. Kinematic representation of RCM-based underactuated gripping. 
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Figure 4.19. Spring changing in the two-phalanx finger.  

   Here force F1 make the proximal phalanx contact the object without any motion, 

therefore the virtual power is 0. If there is a constant angle θ passing simultaneously by 

links AC and BD, then equating the input and output virtual power of the system, 

1 1 2 2cos( / 2)K a Fe F e       && & &                                (4.28) 
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   The parallel type of a two-phalanx underactuated finger is reported to be unstable for 

grasping [145] because of the instant centre between the ground link and coupler link is 

located at on infinite position with only distal contact. The instant stability analysis of 

two-phalanx configurations with point contact is shown in Figure 4.20. The “lock” 

symbol has been used to indicate which joint holds the triggered element and the 

“unlock” symbol for a released joint [148]. In these two diagrams, the stable and 

unstable regions of the gripper are marked. Both of them are five-bar mechanisms, 

where axis of the ground link is coincident in Figure 4.20(a).  
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Figure 4.20. Stable grasping region of the two configurations.  

   By applying the approach shown in Figure 4.20(b), a modified grasping underactuated 

RCM-based finger is proposed, see Figure 4.21. In this mechanism, joint G is locked 

before the proximal phalanx contact objects. The joint is actuated if the proximal 

phalanx encounters an obstacle. There are two pivot points for this structure when 

compared to the structure shown in Figure 4.18.  
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Figure 4.21. Modified design of RCM-based underactuated finger. 

4.4 Summary 

This chapter has provided a novel finger design which is based on an RCM mechanism. 

The kinematics of the RCM was firstly investigated. Due to its geometrical 

characteristics, its multiple modes of motion were investigated in terms of angular, 

parallel and underactuated. The RCM mechanism was first developed for robotic finger 

design as a class of reconfigurable finger. Static analysis of the three configurations was 

also conducted. For the underactuated type, grasping stability was then investigated. It 

has been shown that the grasping position and coefficient of friction of the fingertip are 

influential factors for stable grasping.  
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CHAPTER 5 – Development and Testing of Robotic Gripper Hands 

The gripper acts as a bridge between the robotic arm and the world around it. The 

design of a mechanical gripper requires an in-depth knowledge of mechanism design 

including kinematic analysis and dimensional synthesis. Chapters 2, 3 and 4 discussed 

significant components of mechanical grippers in terms of finger joints, fingertips and 

fingers. The finger joints are unique for anthropomorphic finger design. Fingertip and 

adaptive fingers are two novel applications for gripper design, thanks to their multi-

mode and multi-motion characteristics. This chapter mainly focuses on the development 

of adaptive and reconfigurable gripper hands based on the aforementioned multi-mode 

fingertip and multi-motion finger and aims to develop a type of meso-scale gripper for 

miniaturized product assembly.   

5.1 Gripper Hands with Meso-Scale Gripping  

(a) Industrial gripper (b) Precision gripper (c) Underactuated gripper  

Figure 5.1. Three general types of gripper hands 

Grippers and robotic hands are essential end-effectors of robotic manipulators. The 

development of grippers or robotic hands able to pick up various objects has attracted 

much attention within the research community over the last four decades. Grippers vary 

from simple configurations, such as parallel/angular two-jaw designs, to complex, 

dextrous hand with advanced sensors, control units and servomotors. The initial gripper 

application used in industry was for picking up raw and finished parts [10]. The 

majority of grippers are variations of three fundamental designs, namely: parallel, 

angular and three-fingered grippers. A two-fingered gripper has the minimum number 

of fingers and the minimum complexity of a hand. According to typical types of 

industrial gripper applications, the minimum gripping force of a parallel gripper is 

difficult to control especially for small objects with quite low weights. Angular grippers 

can be adjusted to various angles according to workpieces and space limitations. 

Robotic grippers that mimicking human hands have also been investigated and applied 

in industry. Within such systems, fingers are the most important components of a 

precision grasping “hand” [149]. These can mainly be classified into three types: low-
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cost grippers for industrial production, precision grasping and underactuated grasping 

[27], as shown in Figure 5.1. Recent research on universal high flexibility, multi-

functional robotic grippers has been carried out and some systems have been developed 

[150]. However, it is still difficult to accurately grip very small, fragile and light objects 

with such grippers. With the development of micro-scale technologies in electronics, 

optics and biology, micro-grippers are required for micro-robot and micro-assembly 

applications. Micro-grippers also require to grip and handle micro-objects securely and 

accurately with the range below 100μm, preferably with no gripper changes. Some 

specifically designed micro-grippers are able to handle objects ranging from nanometers 

up to 500μm. In a variety of circumstances a robot has to switch hands for gripping 

objects with various sizes, shapes and ranges of gripping force. A general purpose 

“hand” that can accomplish all of these tasks will make gripping much more efficient 

and reduce changeover time. This type of gripper hand will benefit a lot for the 

upcoming booming of collaborative robot for industrial application.   

   The main contribution of the thesis is to overcome the technical issues in design and 

develop grippers with mesoscopic gripping range to bridge the micro- and macro 

grippers. In recent years, applications in industrial assemblies within a size range from 

0.5mm to 100mm are increasing due to the large demands for new products, especially 

those associated with digital multimedia. Research on grippers or robotic hands within 

the meso-scale of this range has not been explored in any great detail. This chapter 

outlines the development process of a gripper to bridge the gap between micro-grippers 

and macro-grippers by extending the gripping range to the meso-scale, particularly 

without the need to switch grippers during industrial assembly. To address this gap, a 

meso-scale gripper (meso-gripper) which has metamorphic characteristics and two 

gripping modes is proposed, developed and tested. A definition of meso-scale artificial 

gripping has been presented in the Introduction, Section 1.42. The meso-gripper 

researched in this work has two modes of operation: passive-adjusting and angular 

gripping, adapting to the various shapes of objects automatically using appropriate 

configurations. This form of gripping and the associated mechanism are both novel in 

their implementation and operation.  

   This chapter is organized as follows. Firstly, human gripping behaviours are 

investigated by considering variant shapes and sizes. Gripping processes for tiny and 

general sized objects are analysed. Then a detailed design and analysis of a type of 

meso-gripper are addressed by integrating an RCM mechanism with a CFB linkage. The 

passive-adjusting and angular gripping modes are then analysed and a dual functional 
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mechanism design proposed. In Section 5.2, a geometric constraint method is then 

demonstrated which facilitates task-based dimensional synthesis after which the 

kinematics of synthesized mechanism is investigated. The modified gripper is then 

developed by considering stiffness and layout. In Section 5.3, actuation and 

transmission mechanisms of gripper are selected for specific design requirements. Three 

types of differential mechanisms are used to increase the gripper’s flexibility according 

to underactuated requirements. Finally, physical prototypes are fabricated using 3D 

printing. Three types of gripper hands are developed. The first one is a meso-gripper 

with manual actuation. The second is precision-power integrated gripper which has 

been patented. The third is a reconfigurable gripper which is implemented by 

considering multiple modes of the RCM mechanism. The meso-gripper and 

reconfigurable gripper are successfully tested for universal object gripping. 

5.2 Development of a Meso-Gripper 

5.2.1 Analysis of Human Grasping Behaviours  

Two manual gripping examples were considered and various configurations of fingers 

observed to help define the functionality of the proposed meso-gripper. These examples 

comprise two parts, a very thin hex socket screw with a diameter of 1.5mm and a plastic 

cuboid with dimensions 28mm × 24mm × 17 mm. Both were observed to be processed 

in four steps, namely: searching, reaching, gripping and moving [124] (Figure 5.2). First 

step searching refers to a combination work with visual system, same function as human 

eye during human gripping process. The objective for each step in assembling these two 

parts is the same but the configurations are different due to size and shapes of the parts.  

   The gripping process of a hex socket is as follows:  

   a. Distal segments of thumb and index fingers contact each other, then move to the 

hex socket; 

   b. The contacted fingers reach above the hex socket; 

   c. The hex socket is gripped by fingertips; 

   d. The hex socket is moved; 

   The gripping process for plastic cuboid is 

   a. The thumb and index fingers move to the plastic cuboid;  

   b. Distal segments of thumb and index fingers reach and contact two edges of the 

cuboid; 

   c. Pads of thumb and index fingertips grip the sides of the part for clamping; 

   d. The cuboid is moved. 
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Figure 5.2. Gripping processes for a hex socket and plastic cuboid 

   Comparing these two processes, gripping the hex socket screw requires only one DOF 

while gripping the cuboid requires two DOFs (see Figure 5.2). This analysis greatly 

simplifies the finger design for gripping these objects. Two DOFs, one for positioning 

and another for clamping, are the minimum number of DOF required in these gripping 

processes. 

   By considering the analysis of gripping processes and the proposed CFB fingertip and 

RCM finger, an overall gripper model was obtained. The gripping process mimics the 

human hand as shown in Figure 5.3. The process shows that the integrated mechanism 

passively adapts to parallel sides of a cuboid. 

Damper

Spring

RCM mechanism CFB mechanism

 

Figure 5.3. Sequential gripping process of the integrated mechanism 
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5.2.2 Metamorphic Gripping of the Multi-Mode Gripper 

Considerable development in theoretical research on metamorphic mechanisms [151] 

has been made in the past 15 years such as the metamorphic hand [152] and walking 

machines. Schematic of a meso-gripper during passive-adjusting mode as shown in 

Figure 5.4(a), has two DOFs when considering one side of the gripper. The DOFs of the 

mechanism will reduce to one if one point of CFB mechanism touches the object. If two 

points of the coupler link in the CFB linkage touch an object, the DOF degrades to -1, 

i.e. it is over-constrained. Therefore, the meso-gripper is an example of metamorphic 

mechanism. A detailed analysis of this characteristic is now outlined.  

   The process of cuboid gripping (shown Figure 5.3) is similar to the four steps shown 

in Figure 5.2. The object M is supposed to be fixed to the frame while point I of the 

CFB mechanism slides on the surface of the object until point H contacts it as shown in 

Figure 5.4(a). The solid line diagram shows the point at which the mechanism reaches 

the cuboid and the dashed diagram the final configuration. The equivalent mechanism 

during the gripping process is shown in Figure 5.4(b). The DOF (F) analysis of this 

mechanism during this process is calculated using the Gruebler’s equation where n = 

number of moving links, pl = number of lower pairs, ph = number of higher pairs: 

   Searching step: F=3n-2pl-2ph=3x8-2x11=24-22=2 

   Reaching step: F=3n-2pl-2ph=3x9-2x13=27-26=1 

   Gripping step: F=3n-2pl-2ph=3x7-2x11=21-22=-1 
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Figure 5.4. Metamorphic gripping and equivalent mechanism 

   The number of movable links of the mechanism changes during the gripping process, 

causing a subsequent change in its topology. 
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   The angular gripping mode of the gripper has a similar motion to the passive-

adjusting mode. The DOFs and topology of the mechanism vary at different gripping 

steps. 

5.3 Dimensional Synthesis of the Meso-Gripper 

Geometric constraint programming was proposed to solve the general kinematic 

synthesis problem, such as planar four-bar linkages for motion generation, path 

generation and function generation [153]. Detailed dimensional synthesis and kinematic 

analysis of the multi-RCM mechanism can be found in [143]. The design process of a 

meso-gripper relating this approach will be presented in this section.  

5.3.1 Task-Based Dimensional Synthesis 

The objective of dimensional synthesis is to determine the value of each geometric 

parameter of a mechanism by taking account of its desired performance. Geometric 

parameters vary with the design criteria. Gripping range is one of the most important 

criteria which differentiate the meso-gripper from other designs. The dimensions of the 

mechanism are dependent on the task requirements. 

   A geometrical constraint approach is proposed to help design mechanisms over a 

specific gripping range. The approach is closely related to the synthesis of multi-RCM 

mechanisms [143]. It is a specific dimension synthesis approach relating to RCM-based 

mechanisms. The differences mainly lie on the considerations of the prototype design 

and the manufacturing requirements. According to motivation scenario in section 1.3.1, 

a gripper for product assembly needs to grip objects ranging from a minimum of 1mm 

to a maximum of 55mm. To design a precision gripper with the aforementioned RCM 

and CFB mechanisms with multiple gripping modes, task requirement for a multiple 

ranges of objects are defined as follows: 

   (1) The gripping range of the meso-gripper should be 0-55mm.  

   (2) The range of angular gripping mode is 0-6mm. 

   (3) The range of passive-adjusting mode is 6-55mm.  

   (4) The mechanism of the gripper should be compact. 

5.3.2 Dimensional Synthesis Process 

A flow diagram of synthesis approach for meso-gripper is shown in Figure 5.5. 

   The seven-step synthesis process incorporating the geometrical constraint approach is 

outlined as follows: 

   Step 1. Determination of initial positions according to the task requirements: 

Figure 5.6 provides an enlarged range of 0-60mm, with 5mm margin for the 

optimization. The RCM point and the first frame point are determined by considering 
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the compactness of the whole gripper. Because of symmetrical structure of the gripper, 

3mm and 30mm in the figure show half side of it and are introduced in section 5.3.1.  

   Step 2. Design of the CFB linkage: The dimensions of the CFB linkage are shown in 

Figure 5.7. The length of follower link should be longer than the crank link to build an 

appropriate angular configuration for angular gripping. The other dimensions aims to 

make the mechanism compact enough and easy to manufacture. The connecting link 

will connect with the RCM mechanism. 
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Figure 5.5. Flow diagram of synthesis approach for meso-gripper. 

   Step 3. Determination of position at angular gripping mode: The CFB linkage is 

incorporated into the graph obtained from Step 1. The length of drive link is set at 

40mm i.e. larger than 30mm which is at the borderline limit. A circle of 40mm radius is 
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drawn with the RCM point its centre. The two endpoints of the coupler link are 

positioned on the symmetrical line and 3mm borderline respectively. One endpoint of 

connecting link is placed on the circle and a line drawn from the RCM point to the end 

of the circle, making the angle between it and connecting link of the CFB linkage 150°. 

The position of the CFB linkage at angular gripping mode is then determined, as shown 

in Figure 5.8. An initial position according to the task requirement is determined in this 

step. 

First frame point

Frame position

RCM position

RCM point

Half of enlarged range Half of minimum range

 

Figure 5.6. Objective gripping range and key points   

Connecting link

Crank link

Coupler link

Follower link

 

Figure 5.7. CFB linkage with integer dimensions 
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   Step 4. Determination of position at initial passive-adjusting mode: As is shown in 

Figure 5.9, one end of the coupler link is positioned at the 30mm borderline, connecting 

one endpoint of the connecting link at the circle. This makes the angle between the 

connecting link and the RCM line 150°. 

Coupler link
Connecting link

RCM link

Drive link

 

Figure 5.8. Position determination of CFB linkage (initial position according to task 

requirement) 

Start position

30

 

Figure 5.9. Initial position of CFB linkage 
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Figure 5.10. Synthesis of initial position of mechanism. 

   Step 5. Synthesis of the RCM mechanism: By using the synthesis method [144] for 

the RCM mechanism, the dimensions of it can be determined (Appendix F). Based on 

the first frame point, the second frame point with a frame dimension of 10mm and a 

135° angle is drawn about the horizontal line. Parallelogram 1 is constructed according 

to the two-point frame line and drive link. Parallelogram 2 is constructed using the 

connecting link and the RCM position line. Based on these two parallelograms, 

parallelogram 3 is then determined as shown in Figure 5.10. 

   Step 6. Verification: Three angles should be verified to determine the feasibility of 

the synthesized mechanism. If ∠δ is larger than ∠θ then the synthesized mechanism can 

reach the pre-set position as shown in Figure 5.11. ∠Ψ should be smaller than 90° to 

make the 55mm object gripping successful. Therefore the configuration in Figure 5.11 

should be modified. 

   Step 7. Modification: The initial position of the RCM mechanism is changed in order 

to reduce the verification angle γ to 90° by rotating the crank link of the CFB 

mechanism as shown in Figure 5.12. As a consequence, the final design meets the 

maximum gripping size requirement of 55mm. 
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Figure 5.11. Verification of designed mechanism.   

Verified angle Ψ  

Verified start position   

Verified end position   

 

Figure 5.12. Final design after verification. 
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5.3.3 Kinematic Analysis of the Synthesized Meso-Gripper 

In order to verify the parameters of the synthesized mechanism, a kinematic analysis of 

the mechanism is carried out. The most important geometric parameters are the drive 

angle and the motion between the contact surface and the object. Two different modes 

of gripping: passive-adjusting and angular gripping are now analysed. The rotating 

angle of driving link and the distance moved by point I on the contacting surface are the 

basic parameters required for further design of the drive method and the subsequent 

gripping force analysis.  

   As shown in Figure 5.13, the solid line diagram shows the final position for gripping a 

55mm object and the dashed line diagram shows the initial position of the mechanism. 

Point I slides on the object surface using a slide link as shown. From this the rotating 

angle (RA) of the drive link is 6.42° and slide distance of point I about y axis (Uy) is 

4.3mm. 
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Figure 5.13. Gripping a 55mm object during passive-adjusting mode (a) Equivalent 

schematic; (b) Range of rotating angle of drive link AC and sliding distance of point I. 

   As shown in Figure 5.14, the gripping process for an object of 6mm requires a 

maximum rotating angle (RA) of drive link AC of around 2.9° and contacting point I 

sliding around 1.28mm. 
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Figure 5.14. Gripping an object of less than 6mm at angular mode. (a) Equivalent 

schematic; (b) Range of rotating angle of drive link AC and sliding distance of point I. 

5.4 Modified Multi-Mode Gripper 

In Section 5.3, a geometrical constraint method was presented to design a gripper for a 

required gripping range. Kinematic analysis of the mechanism provides an 

understanding of the gripping process and determines the drive position. In this section, 

a modified design is presented by considering the mechanism and layout of the 

assembly for prototyping and manufacturing. 

5.4.1 Modified Schematic of the Gripper 

As shown in Figure 5.15(b), the integrated mechanism has four layers at the position of 

cross four-bar mechanism illustrated due to its multiple joints. This layout leads to the 

tip of the gripper being less stiff for accelerated gripping. So it is more advantageous to 

reduce the layers of the mechanism to provide a smaller gripping torque at the tip 

linkages. 
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(a) Front view (b) Side view  

Figure 5.15. Layout of the meso-gripper assembly. 

   The CFB mechanism should be modified by changing the multiple joint of the 

connecting link into a single joint with the coupler link of the mechanism reduced in 

size to provide adequate space for the tip contact surface, as shown in Figure 5.16.  

 

Figure 5.16. Modified schematic considering layers and contact surfaces. 

   Figures 5.17 and 5.18 show the kinematics of the meso-gripper at passive-adjusting 

and angular gripping modes. The rotating angles of the drive link at these two modes 

are around 8.65° and 2.91° and the sliding distances of contacting point I are 2.94mm 

and 1.24mm respectively.  



 

114 

 

x

y

A

B

C

D

E

F

G
H

I

J

K

L

(b)

Time [s]

1.00000

2.0

4.0

6.0

8.0

0.0
0.0 0.2 0.4 0.6 0.8 1.0

RA(AC)[deg]

Uy(I)[mm]

8.64736

2.94058

10.0

(a)  

Figure 5.17. Kinematic analysis of the meso-gripper at passive-adjusting mode. 
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Figure 5.18. Kinematic analysis of the meso-gripper at angular mode. 
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5.4.2 Modified RCM-Based Finger 

A typical RCM mechanism is a 6-bar over-constrained mechanism containing 3-

parallelogram loops as shown in Figure 5.19(a). The mechanism transfers to one DOF 

by removing one connecting link of the parallelogram loop as shown in Figure 5.19(b). 

However, this simplification reduces the stiffness of the mechanism because one 

supporting link is removed. At passive-adjusting mode, the weight of the object and 

associated acceleration may result in a very large torque on some links; meanwhile the 

meso-gripper must be designed to be compact with each component being very small. 

This requires that the stiffness of the whole mechanism must be considered. Jensen 

[154] provided a design with pulley coaxial with the pivot by fixing connecting links on 

the pulley wheel as shown in Figure 5.20(a). Tendon- or belt-actuated mechanisms are 

limited to small gripping forces and lead to increased friction and elasticity. In this 

section an alternative approach to increase the stiffness of RCM mechanism is proposed 

by using redundant links as detailed in Figure 5.20(b).  
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1

2
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(a)
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Figure 5.19. Simplification of RCM mechanism 

(a) (b)  

Figure 5.20. Pulley-driven mechanism and the equivalent mechanism 

   The modified RCM mechanism is developed as shown in Figure 5.21(a). Due to its 

geometric characteristics, the dimensions of the mechanism are determined by 

simplifying the angulated link, as shown in Figure 5.21(b).  
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Figure 5.21. Modified schematic and 3D drawing of RCM 

5.4.3 Modified CFB-Based Fingertip 

A CFB linkage in Chapter 3 was used for passive adjustment due to the complicated 

contacting surfaces. References [155, 42] propose a method to exactly duplicate the 

kinematic characteristics of a rigid-link four-bar mechanism by using the centrodes of 

the four-bar linkage. An overconstrained mechanism may be the best choice for 

machine design when larger and variable loads must be sustained by means of mass and 

compliance, especially when the maintenance of mechanical accuracy is important 

[156]. The continuous trajectories of fixed and moving centrodes are the contact-aided 

surfaces for exactly duplicating the kinematic characteristics of rigid four-bar linkage.  

   According to the kinematic analysis shown in Figure 5.22, the drive angles of the 

crank links are calculated as 18.06° and 5.65° for adjusting and angular modes 

respectively. The larger angle of 18.06° should be selected to generate trajectories of 

fixed and moving centrodes of the modified CFB mechanism. 

   The initial and final positions of the modified CFB mechanism are obtained while 

trajectories of the fixed and moving centrodes of the mechanism are generated. By 

copying the corresponding files of the trajectories to the 3D modelling software 

(Solidworks), the over-constrained mechanism, considering the dimensions of crank and 

connecting links, is generated as shown in Figure 5.23(c). 
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Figure 5.22. Relative angles of connecting and crank links for passive-adjusting and 

angular gripping modes 
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Figure 5.23. Initial and final positions of modified CFB Mechanism 

5.5 Actuation and Transmission 

5.5.1 Actuation 

Robotic actuation provides a gripping action performed by an energy source. 

Considering the characteristics, the energy can be pneumatic, hydraulic and electrical. 

Generally speaking, motors are used to convert electricity into translation or rotation 

motion to produce mechanical energy. The gripping action can be conducted by 

different elements such as vacuum cups or fingers. The relationship between the drive 

and motion is shown in Figure 5.24.  
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Figure 5.24. Relationship between drive and motion 

   The process of automation process is quite different from one to another. Choosing a 

gripper/hand there is a need to consider both economical and practical factors in 

automation projects, such as the task speed, gripping speed, parts, precision 

requirements and environmental needs.   

   A hydraulic drive needs hydraulic power generation components, complicated control 

equipment and perfect sealing technologies. Pneumatic drive are imprecise, difficult for 

positioning, speed and force/torque control. The maintenance requirements for both 

present significant costs. For instance, in some clean-area applications in electronic 

components manufacturing, the leaking oil or air contaminants are not acceptable. 

Electric drives with motors have more advantages when compared with the 

aforementioned two types. It is much easier to control position, speed and force/torque 

control, robust construction and high reliability, low cost, easy to integrate sensors and 

building distribution network. There are no air lines or oil pipes. The motor drive is 

much cleaner and available for a clean environment.  

   The speed and cost of a pneumatic drive are advantages. The disadvantages of it are 

that it has a slightly lower power to weight ratio than hydraulics and it is not as 

programmable or flexible as electricity.  

5.5.2 Differential Force Transmission 

The concept of underactuation [27] in robotic gipping with fewer actuators than DOFs 

allows the two fingers to adjust to irregular shapes without the need for complex control 

strategies and sensors. Differential mechanisms are used in robotic hands to provide 

underactuation, such as a movable pulley, seesaw mechanism, fluidic T-pipe and 

planetary and bevel gear differentials [157]. This differential system always locates at 

the transforming box of the gripper/hand. The most often used differential system would 

be a movable pulley. As shown in Figure 5.25, the two ends of the tendon are fixed 
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symmetrically in the two fingers’ pulley wheels. The actuated power is distributed to 

the two fingers to facilitate gripping of non-centred or irregularly shaped objects. 

Ftotal

F1 F2

Ftotal

F1 F2

 

Figure 5.25. Movable pulley for differential force transmission. 

   In order to obtain more outputs, multiple differential devices can be added in parallel 

as shown in Figure 5.26, a differential system with four outputs which leads to an 

underactuated transmission for more phalanges. These two types of movable pulley 

differential systems have been used in the meso-gripper and precision-power gripper 

developed in this thesis. Some other differential systems using planetary gears can be 

found in [158]. 
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Figure 5.26. Differential mechanisms with four outputs. 
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   Another differential or adaptive method for underactuation was presented in [159]. A 

breakaway clutch was provided by utilizing helical gears, as shown in Figure 5.27. As a 

consequence of the thrust load produced by a drive helical gear during motion, the 

driven gears can slide along the vertical axis. This motion may be triggered if one 

phalange is contacting an object while another is contactless or still on the way. The 

motion cannot reverse when the driven gear is not meshed due to the worm gear mesh 

in the next stage attached to each finger. This mechanism was used in reconfigurable 

hand development.  
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Figure 5.27. Breakaway clutch mechanism for differential transmission. 

5.6 Prototyping and Testing 

Based on the aforementioned design approaches and corresponding development 

process, three types of robotic grippers with different configurations and functions were 

developed. The first one is named meso-gripper following its main functions. This 

gripper has three different gripping modes for larger range gripping, specifically for 

meso-scale objects. The detailed idea generation, dimensional synthesis approach and 

optimization process have been provided in Sections 5.1, 5.2 and 5.3. The second 

gripper is a power-precision gripper, which has a power grasping capability compared 

to the meso-gripper due to the more complicated differential system. The third type is a 

reconfigurable gripper hand which has more functions with changeable fingertips for 

various objects. The modular finger makes the gripper easily transformable from two-

fingered to three-fingered. The three types of hand/grippers are shown in Figure 5.28. 
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(a) (b) (c)  

Figure 5.28. (a) passive-adjusting meso-gripper; (b) power-precision gripper; (c) 

reconfigurable gripper hand. 

5.6.1 Meso-Gripper 

The 3D model of the meso-gripper integrating passive-adjusting and angular gripping 

modes is shown in Figure 5.29. The whole design was scaled up to 200% for better 3D 

printing. The gripping range for passive-adjusting mode is 12-110mm and for angular 

gripping mode 0-12mm. The gripper hand is designed to mimic human grasping 

functions for handling solutions of meso-scale objects including small, fragile and light 

objects. It aims to provide a single hand or gripper that can handle components within 

the aforementioned meso-scale ranges to reduce assembly time and per unit cost of 

manufacture.  

(b)

12mm

(a)

110mm

(c)  

Figure 5.29. Meso-gripper with two modes 

   Most of the components of the gripper were manufactured via 3D printing. The 

material used for the gripper body is polylactide thermoplastic (PLA). For the coupler 



 

122 

 

link of the CFB linkage a silicone elastomer was used. The prototype of the gripper can 

grip various objects manually using both modes.  

   As shown in Figure 5.30, objects used for testing the gripper’s capabilities include 

regular shapes (cylinder, cone, hexagon) and irregular shapes (flat, sharp and pinecone). 

The sizes of these objects varied from 0.5 to 105mm with gripping loads varying from 

0.5g to 1000g. For different types of objects the gripping approach was different, e.g. 

vertical gripping, horizontal gripping, passive-adjusting mode gripping or angular 

gripping. In all cases the meso-gripper performed successfully. 

(https://www.youtube.com/watch?v=TceAuoeYDb0)  

 

(a) Weight, 1Kg, dimensions: Φ50mm*55mm 

 

(b) Café cup, 450g, dimensions: Φ105mm*120mm 

 

(c) Wafer, 9.5g, dimensions: Φ76mm*0.8mm 

Figure 5.30. Gripping tests for different objects (to be continued). 
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(d) Screw driver, 12g, dimensions: Φ7mm-Φ10mm 

 

(e) Hex wrench, 0.5g, dimension: Φ1.5mm  

 

(f) Stick pin, 0.5g, dimensions: Φ0.5mm-Φ1mm 

Figure 5.30. Gripping tests for different objects (to be continued) 
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(g) Pinecone, 10g, irregular shape 

Figure 5.30. Gripping tests for different objects (continued). 

5.6.2 Power-Precision Gripper 

A precision-power integrated gripper with four differential outputs is shown in Figure 

5.31. In addition to precision and passive-adjusting gripping modes, it can also be used 

for power grasping.  

(a) (b)

(c) (d)  

Figure 5.31. Four modes of power-precision gripper. (a) precision gripping; (b) passive-

adjusting modes;  (c) differential modes; (d) power modes.  
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   The diagram of four-output differential mechanism with two differential ends being 

connected to the left and right link drive members as shown in Figure 5.32. The diagram 

can also be found in Figure 5.26, Section 5.5.2. The internal proximal link has a first 

end rotatably attached to the link drive member and a second end attached to the first 

end of a distal finger member. Therefore, the differential force can be transformed from 

drive to the distal finger. This is the most different characteristic and related solutions 

for power gripping. More details can be found in the patent [44].  

Right finger

Link drive member 

Drive carriage

Left finger

Internal proximal link

Drive screw  

Figure 5.32. Transmission diagram and 3D drawing of four-output differential 

mechanism 

5.6.3 Reconfigurable Hand 

Static analysis of the RCM finger in Section 4.3.3 indicates that RCM mechanism has 

parallel and angular motion with respect to two inner links. This characteristic means 

that RCM mechanism can provide two types of motion as a gripper finger. The 

changeable tips provide the gripper reconfigurable functions that are able to grip a wider 

variety of objects.  

   Pre-configuration gripping always means the gripper can transfer their configurations 

before gripping. Take the Barrett hand as an example, objects are classified and the 

gripping simulations are used to optimize gripping activities. In practical objects 

grasping activities, a transformation from 2-fingered to 3-fingered is necessary. A 

platform with changeable fingertips and transformable fingers is developed, as shown in 

Figure 5.33.  
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(a) Two-fingered

     parallel hand

(b) Two-fingered

     angular hand

(c) Two-fingered

     passive-adjusting hand

(d) Three-fingered

     passive-adjusting hand  

Figure 5.33. Reconfigurable hand 

   The subassemblies of the main body of the reconfigurable hand are shown in Figure 

5.34. A platform with one end connecting with the actuator and the other coupled with 

helical gear can support two or three fingers. The finger assembly contains helical and 

worm gear sets for power transforming and fast-changing heads for fingertips. 

Fingertips are components or assemblies for different applications. Here three 

components are provided for three types of motion in terms of parallel, angular and 

passive-adjusting.  

(c) Fingertips(a) Platform (b) Finger  

Figure 5.34. Independent assemblies of the main body 

(a) Assembling (b) Assembled  

Figure 5.35. Finger assembly process 
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   These components or assemblies can be assembled freely by considering practical 

grasping activities. Equally, manufacturers only need to purchase one gripper hand 

which can transform from two to three fingers and can also grasp by changing fingertips. 

The fast-changeable design make the transformation process easy and efficient. This is 

also a low-cost and affordable approach for a reconfigurable gripper hand. The finger 

assembly process is shown in Figure 5.35.     

   The power transforming mechanism of the gripper is based on a breakaway clutch 

mechanism, see Figure 5.36. Three fingers are driven by a single actuator through the 

breakaway clutch mechanism comprising helical gears. This type of underactuated 

principle is able to provide full action of each finger for object contact. The process is 

such that if one finger is blocked by the contact object, some other fingers will continue 

the closing sequence until all the fingers make contact.  

 

Figure 5.36. Breakaway clutch mechanism for three-fingered hand 

  A prototype of the gripper hand and the hand’s grasping configurations are shown in 

Figure 5.37.  

(a) Parallel gripping (b) Angular gripping (c) Passive-adjusting gripping (d) Three-fingered gripping  

Figure 5.37. Prototype of reconfigurable hand 

   A comparison of these three types of gripper hands developed in the work is shown in 

Table 5.1. 
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Table 5.1. Comparison of developed gripper hands 

 Functional Mode Drive Control 

Meso-gripper 
Angular mode, 

Passive-adjusting mode. 
Manual N/A 

Power-precision 

gripper 

Angular mode, 

Passive-adjusting mode, 

Power gripping mode. 

DC motor Position 

Reconfigurable 

hand 

Angular mode, 

Passive-adjusting mode, 

Parallel mode, 

3-Fingered mode. 

Stepper & 

driver 

Position, speed, 

(torque) 

 

5.7 Summary 

This chapter has introduced the concept of the meso-scale for robotic gripper design as 

well as providing a formalization of a methodology for such gripping systems. It has 

also demonstrated and validated this methodology through the design, analysis and 

testing of a meso-gripper combining two integrated operational modes, passive-

adjusting and angular gripping. 

   In order to mimic the gripping process of the human hand, a meso-gripper integrating 

a RCM mechanism and CFB linkage was developed by using a geometrical constraint 

approach for dimensional synthesis of the mechanism. The kinematics of the 

synthesized mechanism were analysed. The modified design considered the stiffness 

and layout of the mechanism providing a self-checking approach before manufacturing. 

A 3D-printed operation prototype was tested for gripping different types of objects. The 

results show the gripper with passive-adjusting and angular gripping modes can achieve 

universal gripping within the meso-scale at scales as small as 0.5mm with a gripping 

load of as little as 0.5g. The general purpose meso-gripper successfully addresses the 

gap identified in the introduction. In addition, another two gripper hands based on the 

proposed design approach were also successfully developed and tested.  
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CHAPTER 6 – Conclusions 

6.1  General Conclusions 

This thesis has presented a design process for a class of novel robotic gripper hands or 

end-effectors. Reconfigurable topology and variable mobility of the design offer 

versatility, adaptability and low cost for the changing environment and demand. To 

meet requirements of fast-shifting and customised manufacturing in the 3C industry, 

affordable and adaptive end-effectors for miniaturized product assembly are necessary 

to research and develop.  

   The thesis first investigates the key challenges and unmet needs in this research area, 

analyses potential objects and defines a meso-scale gripping range. A general 

development process has also been considered. Based on the investigation and outlines 

of design process of a novel gripper, the following three chapters provide three 

important components and their novel development. Chapter 2 referred to a novel CFB-

based finger joint design for mimicking a human hand joint. Chapter 3 analysed CFB 

linkages and its potential application as fingertip. Chapter 4 provided an RCM-based 

finger which contains three motion modes in terms of angular, parallel and underactated 

grips. The previous chapter (Chapter 5) describes the detailed development process of 

the novel adaptive gripper hands. Three types of gripper hands have been developed as 

examples of the methodology and solutions.  

6.2 Contributions   

The development of adaptive or reconfigurable hands has been conducted by many 

groups worldwide, each one having distinctive characteristics. This thesis has defined a 

class of adaptive hands with their own novel and distinctive features. The miniaturized 

manufacturing process, especially an assembly process, by mimicking the human hand 

and then integrating meant that mechanisms synthesis and multi-mode, reconfigurable 

and metamorphic concepts, the functional gripper hands were finally invented. 

   Before the development of each significant component of the adaptive gripper hands, 

some simple and general four-bar or six-bar mechanisms were also reviewed. These 

mechanisms are fundamental for such novel applications and gripper design. Taking the 

CFB mechanism as an example, if the gripping capability is not brought into this simple 

mechanism, it is impossible to discover its multi-mode function for different type of 

object gripping and stability analysis. The RCM mechanism is in the same situation. 

This six-bar linkage had been specific to a steady-hand system for minimal invasive 

surgery (MIS). An extension for gripper finger design provides a more profound 

meaning. The RCM-based finger contains inherent angular, parallel and underactuated 
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modes and is a perfect choice for a gripper finger. No one had thought out or developed 

one gripper hand which integrates these three different motion modes until now. 

Another significant advancement is that all of these modes can be actuated with only 

one actuator.  

   The design of each type of gripper hand has many advantages: less complicated, 

cheaper, mechanical intelligence, less need for control. Even though the prospect cost 

for this type is not as low as some simple parallel or angular grippers. The general cost 

considers multiple modes for various objects, saving time for change over during the 

manufacturing process, etc. The design is also a valuable attempt to promote the 

development of adaptive gripper hands.   

   The critical issues facing manufacturers and the assembly industry are based around 

three challenges: versatility, adaptability and low cost. The adaptive gripper hands 

researched make versatile manipulators that can achieve combined tasks, decreased 

changing times and costs and accommodate uncertain grasping tasks and unstructured 

ambient conditions. The design of each type of gripper hand has achieved a phased 

objective.  

6.3 Future Work   

Much research work and technologies still need to be addressed in the future work.  

   All the gripper hands presented in the thesis were 3D printed. For precise force 

testing, these models are not sufficient.  

   The analysis must be extended to dynamic situations for reliable product 

development.  

   For complex handling tasks, adaptive control, tactile and vision sensings can 

significantly increase performance. Force and position control is not difficult for the last 

type of reconfigurable hand. In some situations, stiffness, compliance control and 

sensory feedback also need to be considered.  

   Grasping planning and manipulation are becoming more and more important because 

of the wide application of robots needing stable and fast motions when carrying out 

complex tasks as well as interaction with humans and the ambient environment. Current 

versions of gripper hands do not yet possess these functions.  
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Appendix A – Specifications of Commercial Robotic Grippers/Hands  

Company Type    Actuator Stroke(mm) Gripper force(N) Load(Kg) 
Figner 

length(mm) 
Weight(Kg) 

        Maximum Minimum Maximum Minimum       

Festo 

2-Finger parallel DHPS-6/35 Pneumatic 4/25   910 25     0.019-1.285 

2-Finger angular DHWS-10/40 Pneumatic Angle:40°   25/200 0     0.04-0.775 

2-Finger radial DHRS-10/40 Pneumatic Angle:180°   30/200       0.044-0.829 

3-Finger parallel DHDS-16/50 Pneumatic 5/12   87/750       0.096-0.92 

IAI 

2-Finger slider RCP Electric 30 4 220 10     0.085-1.6 

2-Finger lever RCP Electric Angle:180°   90 6.4     0.2-1.4 

3-Finger slider RCP Electric 14 10 102 22     0.6-1.2 

3-Finger lever RCP Electric Angle:19°   50 18     0.6-1.1 

PHD 

2-Finger parallel 

Preci-parallel Pheumatic 26 6.5 3581 124   191(max) 0.08-1.96 

Micro-parallel Pheumatic 13 4 123 11   100(max) 0.036-0.28 

Heavy Electric 26 6.5 1703 179   190(max) 1.22-6.12 

2-Finger angular Micro-angular Pheumatic Angle:40° Angle:40° 133 13   80(max) 0.034-0.244 

3-Finger parallel   Pheumatic 40 6 6459 196   200(max) 0.12-7.05 

Robohand 

2-Finger parallel 

DPE-400 Electric 20 10 1334 445   125(max) 2.52 

DPE-200 Electric 25 25 111 111   76.2(max) 0.53 

DPE-100 Electric 4 4 5 5   50(max) 0.23 

Preci-parallel Pneu/Hydra 30 10 11475 176   500(max) 0.5-8.7 

Industry Pheumatic 70 4 28000 36   406(max) 0.024-9 

Heavy Pheumatic 350 19.05 3520 222   813(max) 0.3-15.8 

3-Finger parallel   Pneu/Hydra 70 4 11190 422   406(max) 0.24-43.9 

2-Finger angular   Pheumatic Angle:180° Angle:0° 7911 32   280(max) 0.09-6.7 

Robotiq 
2-Finger adaptive 85 Electric 85/85 1/43 220 5 5 100 0.85 

2-Finger adaptive 140 Electric 140/140 1/90 110 10 2.5 150 1 



 

132 

 

3-Finger adaptive   Electric 155/155 1/20 60 15 2.5/10 150 2.3 

Schunk 2-Finger parallel 

EGP 40 Electric 12   140 40 0.7 50 0.35 

WSG 50 Electric 110   80 5 0.4 170 1.2 

PG-plus 70 Electric 60   200 30 1 140 1.2 

SMC 

2-Finger parallel MHQJ2 Pneumatic 28 4 227 7.8     0.9-1.96 

2-Finger toggle MHT2 Pneumatic Angle:28° Angle:-3° Moment:106N.m 
Moment: 

12.4N.m 
  32 0.79-2.9 

2-Finger angular MHC Pneumatic Angle:30° Angle:-10° Moment:0.038N.m 
Moment: 

0.017N.m 
  20 0.095-0.22 

3-Finger parallel MHR Pneumatic 18 6 59 12   50 0.1-0.76 

To be continued               

Continued 

4-Finger parallel MHS Pneumatic 64 4 537 23   40 0.08-1.13 

Sommer 

2-Finger parallel MGP80x Pneumatic 24 2 400 6     0.008-0.46 

2-Finger parallel GP12 Pneumatic 26 6 450 4     0.003-1.4 

3-Finger parallel MGD80x Pneumatic 24 2 1130 30     0.025-2 

3-Finger parallel GD Pneumatic 180 120 Moment:9N.m 
Moment: 

0.12N.m 
    0.038-2 

Univer 

2-Finger angular YMA10 Pneumatic Angle:30° Angle:10° Moment:3.05N.m 
Moment: 

0.2N.m 
  30-85   

2-Finger 180°angl YMA20 Pneumatic Angle:180° Angle:-3° 78 6   60-90   

2-Finger parallel YMP10 Pneumatic 16 6 81 5   30-85   

2-Finger parallel-G YMP20 Pneumatic 30 4 318 16       

3-Finger parallel YMP50 Pneumatic 32 4 1310 16       

Yamaha 

2-Finger parallel Single cam type Electric 23.5 3.2 40 5     0.09-0.58 

2-Finger parallel Double cam type Electric 19.3 5 250 50     0.2-0.8 

2-Finger parallel Screw type Electric 38 19 150 50     0.42-0.89 

3-Finger parallel   Electric 30 3.5 20 2.5     0.09-0.64 
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Appendix B – Micro - Nano Grippers 

Date Name Schematic/prototype specification Power/actuator manipulation application 

1999 Two-fingered micro-

hand [48] 

 

Parallel mechanisms; 

3 DOFs translational motion; 

3 dimension region; 

0.1μm accuracy. 

Piezoelectric 

device, 

16μm for 150V 

Master-slave 

system, 

 

Moving,  

catching, 

rotating,  

releasing 

Assembling micro-

machines, 

Manipulating biological 

cells, 

Performing micro-surgery. 

2003 Electroadhesive 

microgripper [49] 

 

400-900mm diameter half-

spherical lens. 

3KV/m power Air, gas or 

vacuum 

environment 

catching and 

moving.  

Delicate, polished and/or 

coated optical and electro-

optical microcomponents. 

 

2004 Contact-aided 

compliant 

mechanism[50] 

 

Translation input to output 

curves; 

130×36×136.35 mm； 

Homopolymer polypropylene 

sheet; 

2 dimension region; 

Stepper motor Curve paths Cell harvesting, 

Tissue culture sample 

cutting 

2007 Monolithic 

compliant-flexure-

based microgripper 

[51] 

 

Spring steel; 

Grasping size range: 200–

800m, 

Two dimension. 

Displacement amplification: 

3.0; 

Maximum stroke: 170μm 

Lead–

zirconate–

titanate 

(PZT) 

piezoelectric 

actuator; 

 

Clamping and 

releasing 

Assembly of miniaturized 

gear systems 

To be continued 
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Continued 

2009 Compliant-based 

microgripper [52] 

 

Translation to rotation; 

Amplification mechanism; 

wire electro-discharge 

machining 

Two dimension. 

amplification: 3.68 

maximum stroke:100 μm 

PZT actuator Clamping and 

releasing 

Manipulation 

2009 Hybrid flexure-

based microgripper 

[53] 

 

Parallel motion; 

wire electro-discharge 

machining 

Two dimension. 

amplification:2.85 

Maximum stroke: 100μm 

PZT actuator Clamping and 

releasing 

Assembly operations 

 

2014 Monolithic 

compliant 

gripper[54] 

 

Lever mechanism and 

parallelogram mechanism; 

Two dimension. 

control: PID algorithm, visual 

and force feedback; 

grasping range: 200μm; 

amplification: 6.0 

Stack 

piezoelectric 

ceramic 

actuator 

(SPCA) 

actuator 

Clamping and 

releasing 

Micro-assembly 

2014 SR-based compliant 

gripper[55] 

 

Scott-Russell mechanism; 

Control: labview real time; 

Two dimension and three 

dimension. 

Grasping range: 1000μm; 

amplification: 22.2; 

 

Stack PZT 

actuator 

Clamping and 

releasing 

Micromanipulation and 

microassembly 

To be continued 
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Continued 

2014 Electrostatic/gecko-

like adhesive 

gripper[56] 

 

Hybrid electrostatic/ dry 

adhesive; 

2-4KV high voltage; 

Microwedges; 

 

 

5kV DC-DC 

converter 

Pneumatic air 

slide actuator 

Manufacturing, 

mobile robots, 

and grappling objects in a 

space environment 

2015 Microrobotic 

tentacles [57] 

 

Shape-engineered elastomeric 

microtubes 

microtube inner diameter: 100-

125μm; tube-wall: 8-32μm; 

long: 5-8mm; 

liquid-phase poly 

(dimethylsiloxane) (PDMS) 

grasping radius range: 185μm; 

grasping force range: 0.78mN; 

 

Pneumatic 

actuator(PDMS

/polyimide-

based 

pneumatic 

balloon 

actuator) 

Spiraling 

motion 

Vivo biomedical 

manipilation 

2011 Colloidal asters [58] 

 

Colloidal structures; 

ferromagnetic colloidal 

suspension; 

viscous drag force: 10-6N; 

viscous torque: 10-9Nm; 

Alternating 

magnetic 

field 

Capture, 

transport, 

and position 

Self-assembled 

microrobots. 

2014 Self-folding 

Grippers [59] 

 

Material: biocompatible and 

bioresorbable silicon monoxide 

and silicon dioxide; 

Folding angle:100°; 

Folding radii: 765nm; 

Thickness: 3-27nm. 

Release of 

residual stress 

Folding and 

release 

Single cell capture, 
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Appendix C – Grasp Taxonomy 

 

Figure C.1. Cutkosky grasp taxonomy [71] 
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Figure C.2. GRASP taxonomy that incorporates all previous grasp classifications [71] 

(to be continued) 
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Figure C.2. GRASP taxonomy that incorporates all previous grasp classifications [71] 

(to be continued) 
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Figure C.2. GRASP taxonomy that incorporates all previous grasp classifications [71] 

(continued) 
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Appendix D – Cognate of Planar Four-bar Mechanisms and Their 

Extensions  

D.1 Coupler-Point Curves and Cognate Mechanisms 

The outputs of a four-bar mechanism can be derived from the follower link or the 

coupler link. The curve generated by the point located at the coupler link is named 

coupler-point curve. The curves with respect to the ground link are generally much 

more complex. In the early days when the computation at ability was not as fast as 

today, a large atlas of coupler curves for different points was published in a set of charts 

of over 7000 curves [160]. Designers needed these to predict the relative motion of 

machine components to select mechanisms that match up with the potential 

applications.  

   A more interesting fact of the coupler-point curves is that two other four-bar 

mechanisms have identically the same curves as the first one. These are known as the 

cognates or Roberts-Chebyshev cognates, which is revealed in a theorem by Roberts 

and Chebyshev. The cognate mechanisms are two additional alternatives which may be 

more favourable than the first four-bar mechanism with respect to transmission angle 

and space requirement.  

   These independent discoveries are attributed to the two scientists Roberts (1875 in 

UK) and Chebyshev (1878 in Russia) using geometric approaches. Figure D.1 shows a 

general four-bar mechanism and its cognate mechanisms. The proof of the Roberts-

Chebyshev theorem is not so difficult. If the approach is true, the only requirement for 

proof is to show that the derived pivot O3 is fixed and coincident with the other cognate 

mechanisms. A simplest approach using complex numbers was proposed by J. B. Schor 

(1941). This also shows that triangle O1O2O3 is similar to the coupler link ABC. Cayley 

provided a new way to simplify the determination of the link lengths of the cognate 

mechanisms, see Figure D.2.  

   The construction process of the cognate mechanisms is given by the following steps 

(Figure D.1): 

   (1) From O1 and C construct a parallelogram O1ACA1 locating A1 ; 

   (2) From O2 and C construct a parallelogram O1B1CB locating B1; 

   (3) Construct the triangle similar to triangle ABC and merge one edge with the A1C.    

Make the direction of the triangle the same as triangle ABC.  

   (4) Construct another triangle similar to triangle ABC and merge one edge with the C 

B1. Make the direction of the triangle the same as triangle ABC. 

   (5) From C1 and C2 construct a parallelogram CC2O3C1 locating O3; 
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   (6) O3 is the frame point, O1A1C1O3 and O2B1C2O3 are two cognate mechanisms. 

O1

O2

A B

C

3

α 

β 

γ 

(a) (b)
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O1

O2

A B

C C

A1

B1

C1

C2

1 1
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5
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7 1

8

9

10
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β 

γ 
α 

β 

γ 

α 

β 

γ 

 

Figure D.1. (a) General four-bar linkage (O1ABO2); (b) two cognate mechanisms 

(O1A1C1O3 and O2B1C2O3). 

α β 

γ 

α β 

γ 

α β 

γ 
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A1 B1
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Figure D.2. Cayley’s diagram plan. 

D.2 Extension of Translation-Body Six-Bar Mechanisms 

As shown in Figure D.3 (b), the whole system has ten links from 1 to 10. Assuming the 

angular velocities of links 2 to 10 are ω2 to ω10. respectively. Since the parallelograms 

O1ACA1, O2B1CB and CC2O3C1, the equivalent angular velocities of the links in the 

system are as followings: ω2 = ω6 =ω8; ω4 = ω9=ω7; ω5 = ω3 =ω10. 

   Because C and C  ́in Figure D.3 (a) has the same curve during the motion process and 

link 2 and link 8 have the same angular velocity, an important usage of cognate 

mechanism is to build a rigid body rather than a single point to trace a coupler curve. 

With regard to the relationship between anguler velocities ω2 = ω8, if the the right 

cognate mechanism is to move to make link 2 and link 8 merge into one link 2-8 and 

configure itself without change (Figure D.3 (b)), points C and C ẃill trace the same 
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curve. By connecting C and C ,́ the system is a seven-bar mechanism where CC  ́ is a 

translation body that traces the original cupler-point curve , see Figure. D.3 (c). The 

overconstrained link O2 B́1 can be removed to obtain a simplified six-bar mechanism as 

shown in Figure. D.3 (d).  

   The construction process for the traslation-body six-bar mechanism is as follows: 

   (1) Construct a cognate four-bar mechanism and detach it with an original four-bar 

mechanism; 

   (2) Keep the configuration of the cognate four-bar mechanism and move it to make 

links with the same angular velocity connect to each other; 

   (3) Draw a link to connect the two coupler-point; 

   (4) Remove one redundant link of the cognate four-bar mechanism. 

   (5) Another transformation-body six-bar mechanism can be constructed in the other 

side.  

   (6) The two transformation links can also be connected together to make a larger 

transformation body.  

   To determine the link lengths and structural features, a construction diagram plan is  

shown in Figure D.4. 
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Figure D.3. Construction process of transformation-body six-bar mechanism. 
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O1

C

α β 

γ 

A B

C  ́ C"  

β α 

π - γ 

O2

π - γ 

 

Figure D.4. Diagram plan for constructing transformation-body six-bar mechanism. 

D.3 Extension of Cognate Six-Bar Mechanisms 

Another interesting transforming approach to obtain a same coupler-point curve with 

the four-bar linkage is provided in [160]. A six-bar mechanism with the same coupler 

curve may avoid a bifurcation point existing in a four-bar mechanism. As shown in 

Figure D.5 (b), a cognate six-bar mechanism is constructed based on a four-bar 

mechansim O1ABO2.    

   The construction process of the cognate six-bar mechanism is as follows:  

   (1) From O1 and C construct a parallelogram O1ACA1 locating A1; 

   (2) From O2 and C construct a parallelogram O2B1CB locating B1; 

   (3) Construct a triangle similar to ABC and make it reverse and upside down. Merge 

the same lengthe edge with O1 A1. 

   (4) Draw a link by connecting B1 and the noconnecting point of the triangle named B .́  

   (5) Another cognate six-bar mechanism can be constructed in the other side.  

(a) (b)

O1

O2

A B

C

α 
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γ 

α 

β 

γ 

B´ 
B1

A1

O1

O2
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β 

γ 

C

D

B1B´ 

 

Figure D.5. (a) Construction process, (b) cognate six-bar linkage. 
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   A construction diagram plan for determining the link lengths and structural features is 

shown in Figure D.6. 

α β 

γ 

O1 O2A B

C
α β 

γ 

α β 

γ 

A1B´ A  ́B1

 

Figure D.6. Diagrammatic plan of cognate six-bar mechanism.  

D.4 Cognate Four- and Six-Bar Mechanisms of Basic Four-Bar Mechanisms 

In Section 3.1, the basic four-bar mechanisms are summarized. In order to investigate 

the coupler-point curve of these basic mechanisms, some useful specific types are 

constructed with a general triangle or a three-joint linear link as a coupler link. 

Diagrammatic plans for constructing cognate four- and six-bar mechanisms were also 

investigated according to the processes given in Sections D.1, D.2 and D.3.  

   Figure D.7 shows diagrams of a Type I four-bar mechanism which has a coupler link 

with the downward facing triangle head. The investigation shows that diagrams are 

rotated 180° with respect to the frame line.  

   Figure D.8 shows a four-bar mechanism with a three-joint linear coupler link. The 

internal triangles of the coupler link can be seen as α = 0, β = π, γ = 0. Figure D.8 (b) 

shows three four-bar mechanisms with the same curve at point C. Figures (c) and (d) 

have transformation-body CC ,́ which has the same tracing curve with point C. Real-

line sketches in Figures (e) and (f) show two cognate six-bar mechanisms.  

   Figure D.9 shows a general cross four-bar mechanism and its cognate mechanisms. 

The internal triangles of the coupler link can be seen as α = 0, β = 0, γ = π. Details of 

these diagrams are as shown in the figure.  

   A concave four-bar mechanism and its cognate mechanisms is shown in Figure D.9. 

The two cognate four-bar mechanism implies that the structures are similar to cognates 

of the CFB mechanism. The concave four-bar mechanism is actually a specific moving 

range of the CFB mechanism. Therefore, the transformation-body six-bar mechanisms 

and cognate-six bar mechanisms can be derived from similar process as for the CFB 

mechanism. 
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Figure D.7. Diagram plans of Type I four-bar mechanism: (a) sketch of the mechanism, 

(b) for cognate four-bar mechanism, (c) for transformation-body six-bar mechanism, (d) 

for cognate six-bar mechanism.  
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α = 0, β = π, γ = 0
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Figure D.8. Type II four-bar linkage and its cognate mechanisms: (a) four-bar linkage 

with three-joint linear coupler link, (b) cognate four-bar mechanisms, (c) and (d) 

transformation-body (CC )́ six-bar mechanisms, (e) and (f) cognate six-bar mechanisms. 
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α = 0, β = 0, γ = π
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Figure D.9. Type III (CFB) mechanism and its cognate mechanisms: (a) four-bar 

linkage with crossing drive link and follower link, (b) cognate four-bar mechanisms, (c) 

and (d) transformation-body (CC )́ six-bar mechanisms, (e) and (f) cognate six-bar 

mechanisms.  
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Figure D.10. Type IV (Concave) mechanism and its cognate four-bar mechanisms. 

   Figure D.11 shows a slider-crank mechanism with a coupler point C. Only one 

cognate four-bar mechanism is derived. It is also a slider-crank mechanism. The 

diagram plan for slider-crank mechanism is shown in Figure D.12.  
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Figure D.11. (a) Type V (Slider-crank) mechanism and (b) its cognate four-bar 

mechanism. 
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Figure D.12. Diagram plan of cognate slider-crank mechanism. 
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Appendix E – Cognate of Straight-Line Mechanisms and Their 

Extensions 

A four-bar mechanism and cognates with the same coupler-point curves have been 

presented in Appendix D. The mechanism, in early applications, composing revolute-

connected links was mainly used to transform the continuous rotation of a water wheel 

into reciprocating motion to suit piston pumps (Figure E.1). The mechanism works as a 

power transmission as well as a motion transformer.  

 

Figure E.1. Blowing engine by Vanuccio Biringuccio, about 1540. (From Theodor Beck, 

Beiträge zur Geschichte des Maschinenbaues, Berlin, 1899. p. 120) 

   The great interests in approximate straight-line mechanisms start from applications in 

steam engines. As noted, Watt had shown the way in 1784 when he invent a four-bar 

linkage whose couple point guided the upper end of the piston rod along an approximate 

straight line, see Figure E.2. The almost rectilinear portions of the curve or the 

approximate straight-line segments were emphasized for the application. After then the 

first analytical investigation of a coupler curve was undertaken by Prony [161]. The 

deviations of Watt’s straight-line mechanism were examined. Watt’s straight-line 

mechanism also inspired mechanical engineers and mathematicians to find a new way 

to use a planar four-bar linkage on the motion output of coupler not the follower link.  
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(a) (b) (c)  

Figure E.2. Watt’s mechanisms for double-acting engine: (a) straight-line mechanism; 

(b) crosshead and guide arrangement; (c) flexible cords mechanism. (From British 

Patent 1432, April 28, 1784)  

E.1 Straight-Line Mechanisms 

A large amount of usage of linkage-type use is closely allocated with “straight-line 

motion”. Almost all the textbooks on mechanisms or kinematics devote some space to 

introducing this “straight-line motion”. The first investigation of straight-line motion 

was led in sixteenth century by Cardano (1501-1571), as shown in Figure E.3 (a), a two 

circle system. The radius of the large circle is twice the small circle with the small one 

rotating inside the large one. The centre of the small circle is hinged with a link, the 

other end of which is hinged at the centre of large circle. All points of the circumference 

of the small circle trace straight-line segments. All points in the plane of the small circle 

describe ellipses. These facts were proved by De La Hire (1640-1718) at the end of the 

seventeenth century. Based on the hypocycloid, an English engineer James White 

developed a steam engine in 1801 (Figure E.3 (b)).  

 

Figure E.3. (a) Cardanic circle system and (b) James White’s hypocycloidal straight-line 

mechanism. (James White, A New Century of Inventions, Manchester, 1822, p l.7) 
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   Straight-line mechanisms can be classified into two groups: exact and approximate.  

   The only exact straight-line mechanism with four links was patented in 1803 by 

William Freemantle, an English watchmaker. The mechanism was latterly named the 

Scott Russell mechanism, after the name John Scott Russell (1808-1882), the prominent 

naval architect, see Figure E.4. In addition to this slide-crank exact straight-line 

mechanism, all the other exact types require six or more links, such as Peaucellier-

Lipkin linkage (in 1864, eight-bar mechanism), Hart’s inversor and A-rame 

mechanisms (in 1874, six-bar mechanism) and Quadruplannar Inversor or Sylvester-

Kempe mechanism (in 1875, six-bar mechanism).  

(a) (b)

a

aa

 

Figure E.4. (a) Freemantle straight-line mechanism. From British Patent 2741, Nov 17, 

1803. (b) Scott Russell mechanism.  

   The symbol “a” in the figures represents dimension of the each segment of the link. In 

the following figures “b” or “c” have the same function to be distinguished “a” from  

different lengths.  

   The Scott Russell straight-line mechanism is actually based on the aforementioned 

Cardanic circle, see Figure E.5 (a). Three types of slider-based mechanisms can be 

derived as shown in Figure E.5. According to analysis of Cardanic circle, any two 

points on its circumference can be used to draw a straight line. In Figure E.5 (a), an 

angular link with three joints, two of which are on the circumference of the small circle 

and the third one on the centre, is used to construct a straight-line mechanism. Figure 

E.5 (b) and (c) is Reuleaux exact straight-line mechanism where a three-joint link with 

three joints locating at the circumference of the small circle and any two joints 

connecting with two sliders are employed to construct straight-line mechanisms.  
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Figure E.5. Slider-based exact straight-line mechanisms: (a) Scott Russell straight-line 

mechanism; (b) angular Scott Russell straight-line mechanism; (c) double-slider 

Reuleaux straight-line mechanism; (d) angular double-slider Reuleaux straight-line 

mechanism.  

   The best know research on straight-line mechanisms was developed by James Watt 

(1736-1819) for guiding the piston of the early steam engines. In 1784, a patent of 

Watt’s steam engine disclosed a four-bar linkage in which the central point of the 

coupler link is constrained to travel in an approximate straight line (Figure E.6).  



 

153 

 

(a) (b)

a

a

b

b

 

Figure E.6. Watt’s approximate straight-line mechanism. 

   Some other approximate straight-line mechanisms were developed in the following 

years, see Figure E.7. Oliver Evans devised his straight-line mechanism (Evans linkage) 

in 1805 and used it on his Columbian engine. The practical advantage of lighter 

working beam than the Watt engines. Richard Roberts (1789-1864) invented a straight-

line mechanism for the first metal planing machines in 1820. In 1867, Chebyshev 

developed a new straight-line mechanism based on the investigation of Watt and Evan’s 

straight-line mechanism. Hoecken’s straight-line mechanism was first published in 1926 

by Karl Hoecken (1874-1962). The significant advantages are as follows: (1) Grashof 

crank-rocker; (2) nearly constant velocity along the center portion of the straight-line 

segment. 

(a) (b) (c) (d)  

Figure E.7. Some other approximate straight-line mechanisms: (a) Evans linkage; (b) 

Roberts linkage; (c) Chebyshev linkage; (d) Hoecken linkage. 

E.2 Cognate and Transformation-Body Mechanisms of the Straight-Line 

Mechanisms 

The symmetrical slider-crank straight-line mechanism is shown in Figure E.8. The 

mechanism is entirely defined by specifying the length a. The red trajectory is the 

straight line trace of coupler point C. The cognate mechanism is drawn as a dashed line. 

The following figures have similar expressions with this design.  
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Figure E.8. Cognates of two types of symmetrical slider-crank straight-line mechanism 

   The combined form of original and cognate mechanisms is a pantograph mechanism 

[162], which is used to trace a path to an enlarged or a reduced scale, see Figure E.8 (a). 

The motion of Point B1 is derived from point B, point O1 being the supporting point. 

The combined form shown in Figure E.8 (b) is a Sylvester plagiograph or skew 

pantograph, which can turn the graph through any required angle.  

   If the configuration of the cognate four-bar mechanism is kept and then moved to 

make links with the same angular velocity connected and welded to each other, the two 

types of four bar mechanism with the same straight line motion in the original 

mechanism are shown in Figure E.9. Connecting line B1C and BC  ́ of the scissor-like 

mechanism in Figure E.9 (a) are parallel with each other during the moving process. 

The angle α constructed by the connecting line B1C and BC  ́ in Figure E.9 (b) is 

constant. The most familiar usage of these two type of linkages are deployable/foldable 

mechanisms [163, 164], as shown in Figure E.10.  
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Figure E.9. Extending mechanisms of the two types of symmetrical slider-crank 

straight-line mechanism: (a) scissor-like mechanism; (b) angulated scissor-like 

mechanism. 
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(a) (b)  

Figure E.10. Deployable mechanisms constructed by pantograph and plagiograph 

linkages. 

   Cognate mechanisms and their correlation of approximate straight-line mechanisms 

have been comprehensively investigated in [165]. The four- and six-bar cognate and 

transformation-body mechanisms of the typical approximate straight-line mechanisms 

are constructed according to the processes provided in Appendix D.  

   The cognate mechanism of the Watt’s straight-line mechanism is a type of Evans 

mechanism as shown in Figure E.11. The length of O1A1 in Evan’s straight-line 

mechanism can be freely chosen; however a larger value reduces the deviation of the 

coupler point from a. Watt straight-line mechanism shown in Figure E.11 is usually 

considered the most accurate because of the two arms O1A and O2B are equal in length. 
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a = 2b

 

Figure E.11. Watt straight-line mechanism and its Evans cognate mechanism. 

   The six-bar cognate mechanism and transformation-body mechanism are shown in 

Figure E.12. Because of the symmetrical characteristic of this mechanism, there is only 

one mechanism for each category.  
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Figure E.12. Six-bar cognate and transformation-body of Watt straight-line mechanism. 

   A seven-bar transformation-body mechanism is synthesized by connecting the two 

sides of the transformation link is shown in Figure E.13.  
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Figure E.13. Seven-bar transformation-body mechanism 

   Cognates of the symmetrical Roberts straight-line mechanism (Figure E.14) is a type 

of Watt mechanism. The two cognates are the same mechanism. The same situation is 

also shown in Figure E.15. The connected transformation-body mechanism has a similar 

triangle C ĆC" with respect to ACB. O1A-O1B2 and O2B-O2B2 are two hinged links, see 

Figure E.16. A simulation model verifies the result of geometrical design. 
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Figure E.14. Symmetrical Roberts straight-line mechanism and its cognates 
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Figure E.15. Six-bar cognates of symmetrical Roberts mechanism. 
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Figure E.16. Transformation-body of the symmetrical Roberts mechanism. 

   Cognates of symmetrical Chebyshev mechanism are show in Figures E.17 and E.18. 

The transformation-body mechanism is shown in Figure E.19.  
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Figure E.17. Symmetrical Chebyshev straight-line mechanism and its cognates 
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Figure E.18. Six-bar cognates of symmetrical Chebyshev mechanism. 
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Figure E.19. Transformation-body of the symmetrical Chebyshev mechanism. 

   By considering the cognate relation of symmetrical Chebyshev and Hoecken straight-

line mechanisms, four-bar cognates of Hoecken mechanism have two types: one is 

symmetrical Chebyshev and the other is identical to itself, as shown in Figure E.20. 

However, six-bar cognates and transformation-body mechanisms of the Chebyshev 

mechanisms are different, shown in Figures E.21 and E.22. 
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Figure E.20. Hoecken straight-line mechanism and its cognates. 
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Figure E.21. Six-bar cognates of Hoecken mechanism. 
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Figure E.22. Transformation-body of the Hoecken mechanism. 
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E.3 Correlation of Straight-Line Mechanisms and Their Cognates 

Correlations of the exact and approximate straight-line four-bar mechanisms are 

summarized in Table E.1.  

Table E.1. Correlation of the exact and approximate straight-line four-bar mechanisms. 

Straight-line 

mechanisms 

Four-bar 

cognate 1 

Four-bar 

cognate 2 

Number 

of six-bar 

cognates 

Number of 

transformation-

body 

Scott Russell (Exact) Scott Russell None None None 

Symmetrical Watt Evans Evans 1 1 

Symmetrical Roberts Watt Watt 1 1 

Symmetrical 

Chebyshev 
Hoecken Hoecken 1 1 

Hoecken Chebyshev Hoecken 2 2 
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Appendix F – Synthesis of Multi-RCM Mechanism 

F.1 Analysis of a Mechanism with Multiple Remote Centres 

For the purpose of obtaining a mechanism with more remote centres, a parallelogram 

GHJI is added to the former schematic. In other words, another set of crossed links G-

EFIH is added to construct a parallelogram, as shown in Figure F.1.  

x

y

H

B

F

E

A

C D

I

G
J



O1

O2  

Figure F.1. A serially combined mechanism with planar scissor-like element 

   As shown in Figure F.1, a serially combined mechanism is constructed with two 

scissor-like elements (SLE) [143], D-BCFE and G-EFIH. There are altogether three 

parallelogram loops in this mechanism. The degree of freedom of this mechanism is 

obtained by Gruebler’s equation: 

M=3L-2J-3G=3×8-2×10-3×1=1                                     (F.1) 

where M = degree of freedom or mobility, 

           L = number of links, 

           J = number of joins, 

          G = number of grounded links. 

   Link CDE is driven by link AC with translational motion because of a parallelogram 

loop ABDC. In the same way, link FGH does translational motion for another 

parallelogram loop DEGF. ∠GEO1 is drawn to equivalent to ∠FDB. Since BO1 is 

parallel to DE with a constant direction. Then point B is a fixed as a rotation centre. As 

O1 within link GEO1 corresponding to B within link FDB; therefore, O1 is also a fixed 

point. Link JHO2 is equivalent to link IGO1 and rotates around a fixed point O2 as loop 

GHJI is a parallelogram. 

   According to this analysis, a conclusion is finally obtained: Links CDE, FGH and IJ 

make translational motion and the points on them have the same linear velocity. Links 
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FDB, GEO1 and JHO2, rotating around B, O1 and O2 respectively, have the same 

angular velocity. Point O1 and point O2 are virtual centres of the eight-bar mechanism.  

   The mechanism will also be movable, if links GEO1 and JHO2 are hinged to frame at 

O1 and O2, while the mechanism turns out to be over-constraint, as shown in Figure F.1. 

If seven links (AC, CD, DF, FG, GI, IJ and JH) are removed from three loops (ABDC, 

DEGF and GHJI), the simplified mechanism is a Watt-II mechanism (Figure F.2), a 

multi-loop kinematic chain with only one degree of freedom. It is concluded that RCM 

mechanisms and the mechanisms with multi-loop kinematic chain are interrelated.  
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Figure F.2. The simplified mechanism and Watt-Ⅱ mechanism. 

   According to the method provided, multi-RCM mechanisms can also be obtained by 

adding scissor-like elements and homologous mechanisms with multi-loop kinematic 

chain will also be obtained by removing links. A five-RCM mechanism is constructed 

by adding four scissor-like elements as shown in Figure F.3(a). A mechanism with a 

five loop kinematic chain is obtained by removing several links, as shown in Figure 

F.3(b). There exists five parallelogram loops in this mechanism (BP2O1C, EO1O2F, 

HO2O3I, KO3O4L and NO4O5P). 
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Figure F.3. A multi-RCM mechanism and its simplified mechanism.  
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F.2 Synthesis Procedure of a Multi-RCM Mechanism 

This section provides a systematic procedure for the synthesis of a multi-RCM 

mechanism with two remote centres, if several constraints are known. The procedure is 

based on the analysis presented in section F.1. The process can be programmed for 

future development. 

   A synthesis approach is based on a multi-loop kinematic chain, because a multi-loop 

mechanism comprises few links and is compact. It can be seen as parallelogram-loop 

chains.  

   1. Firstly, a multi-loop kinematic chain is constructed by using the given fixed 

positions on the frame and remote centres.  

   2. Then an RCM mechanism is constructed by adding links to construct 

parallelograms.  

   3. The links connecting to the remote centres are removed and a multi-RCM 

mechanism obtained.  

   From this procedure, a conclusion is drawn that the limited space of the mechanism 

can be obtained by reducing the dimensions of the links that rotate around the remote 

centres. The synthesis procedure is shown in Figure F.4. 

START

Provide task 

requirements of 

the design

Synthesize 

multi-loop 

kinematic chain

1. Work space

2. Fixed coordinates of the frame

3. Positions of remote centres

Design  

schematic 

graph of the 

mechanism

1. Add links to construct 

parallelogram.

2. Determine the dimension 

of the last driven link 

Improve RCM 

mechanism

1、Construct all sets of SLE

2、Remove links connected with 

remote centres

END

Verify the 

characteristics of 

the  mechanism

Determine dimension of the 

driven link 

 

Figure F.4. Procedure of the synthesis approach. 
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F.3 Synthesis Example of Two-RCM Mechanism 

It is assumed that a two-RCM positioning bracket is required with the connecting line 

P1P2 on the frame perpendicular to the connecting line O1O2 between two remote 

centres. The constraint condition is that all the links of the mechanism should be within 

the marked border lines in red, as shown in Figure F.5. 
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Figure F.5. Constraint condition and space for RCM mechanism.  
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Figure F.6. Synthesis process of two-RCM mechanism: (a) multi-loop kinematic chain; 

(b) schematic with several parallelograms; (c) synthesized two-RCM mechanism. 

   According to the procedure in Figure F.4, two-RCM mechanism can be synthesised 

by four steps as follows: 
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   Step1: Synthesize a multi-loop kinematic chain. 

   Suppose that an initial angle of driving link is 60°. A mechanism with two-loop 

kinematic chain is synthesized by connecting positions on the frame and two remote 

centres, as shown in Figure F.6(a). The dimension of the driven link ECO1 is 

determined by the left and base border lines that form a limiting space. When the 

mechanism is in the limiting position, link ECO1 will rotate an angle equal to ∠CO1P2. 

Let ∠ECO1=90º, CE=300mm and CO1=300mm to make sure that EO1<450mm. 

   Step 2: Construct parallelograms by adding links.  

   Figure F.6(b) shows the schematic graph of the constructed mechanism in which the 

dimension of HFO2 is determined by the right and top border lines. If the mechanism is 

within a limiting position, link ECO1 will rotate an angle equal to ∠GEF. Let 

∠GEF=30° and FH=200mm to make sure that HO2<600mm. 

   Step 3: Optimized RCM mechanism. 

   Four links connecting with revolute pairs B and E are evolved to be two SLE, and 

then remove the fixed points O1 and O2. Finally, a two-RCM mechanism is obtained in 

Figure F.6(c).  

   Step 4: Verification. 

   The mobility and motion range of the RCM mechanism are verified in Figure F.7. 

Figure F.7(a) shows an initial state of the two-RCM mechanism; Figure 17(b) shows the 

final state of two-RCM mechanism if the driving link rotates 60°. 
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Figure F.7. Simulation of a two-RCM mechanism in software of SAM: (a) initial state 

of the mechanism; (b) final state of the mechanism with a rotation angle of 60°. 
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Limit range of link ends
Displacement

 

Figure F.8. Displacements of three link ends vs input angle 

   Joints A, D and H will reach to the furthest position distal from the origin point P1 

during the rotation process of the mechanism. Figure F.8 illustrates displacements of 

three link ends, according to which all of them are within the space limits marked. The 

result shows that the synthesis method is correct and efficient enough to construct a 

two-RCM mechanism. This approach is also suitable for constructing a multi-RCM 

mechanism. A three dimensional model of the two-RCM mechanism is designed as 

shown in Figure F.9.  

 

Figure F.9. 3D model of a two-RCM mechanism. 
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Appendix G – Implementation of Cognate Mechanisms by Software 

The design processes of each type of cognate mechanism look very tedious. The final 

result is also very difficult to verify if geometric approaches were used manually. Some 

mathematical analysis software (such as Matlab, Mathematica) may work for 

development. However the coding process is also very tedious and slow. There are more 

than 1000 lines of Matlab code for the simple working model shown in Figure G.1. The 

programming for cognate mechanisms would be much more difficult to code using 

Matlab. In this section, a method using a combination of 3D modelling software 

(Solidworks) and planar mechanism analysis software (SAM) is presented to simplify 

the design and verification of such designs.  

 

Figure G.1. Analysis programing for a four-bar mechanism using Matlab. 

   The design process would be simple if 3D modelling software and mechanism design 

software could be adopted to form parallelograms and similarly for determining the link 

lengths. 

   A mathematical calculation is the first step for a design. If the dimensions of each link 

have been given or calculated, the sketch can be drawn in the drawing environment of 

the software. Properties such as parameters relationships can be added to the sketch. 

Figure G.2 shows a sketch of a four-bar mechanism with detailed dimensions. In the 

sketch, O1 is fixed to the original point and O1O2 is located on the horizontal line as a 

frame link, ABC is the coupler link and C thereof is the coupler point. All lengths of 



 

168 

 

each link of the mechanism are determined. According to the Grashof condition, this is 

a crank-rocker four bar mechanism. If the drive link is actuated, the mechanism will be 

movable; however, the curve trace of point C could not be captured in this modelling 

software unless a 3D model of each link is designed, using simulation for assembly. 

This is not a wise approach for complicated assemblies with an abundance of linkages. 

Another option is to import the sketch into a mechanism design software (such as 

Solidworks) for simulation. The outline sketch design for a mechanism is enough for 

simulation.  

 

Figure G.2. Sketch drawing in 3D modeling software. 

   The file format may be changed for importing into a mechanism design software. The 

prepared sketch is used to construct beam elements in the software. Construction would 

be easier to follow in the 3D model design than drawing it in the mechanism design 

software environment (Figure G.3). In addition to path tracing, most of mechanism 

design software also has some other analysis functions, such as centrodes, 

displacements, velocities, acceleration, force and hodograph. Figure G.4 shows 

displacements of coupler point C in the x and y axes with respect to time.  
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Figure G.3. Coupler-point curve of the four-bar mechanism.  

 

Figure G.4. Coupler-point curve of the four-bar mechanism.  
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   The following steps for constructing cognate four- and six-bar mechanisms, 

transformation-body six-bar mechanisms in the 3D modelling software environment are 

actually possible and straightforward to conduct. Parallel lines and similar triangles are 

most important characteristics of the construction processes. In the software, 

geometrical relationships such as parallel, vertical, horizontal or fixed, scaling up/down 

of features, adding parameters such as angles and link lengths, can help deal with all the 

requirements of construction. An example of a constructing cognate six-bar mechanism 

shows how to use the software to assist mechanism design, see Figure G.5. According 

to construction process provided in Appendix E, a triangle is similar to a coupler 

triangle, and reversed and turned upside down. If the three angles of a triangle are 

determined, the entity can be scaled up or down or rotated to any orientation, as shown 

in Figure G.5.  

 

Figure G. 5. Construction of cognate six-bar mechanism. 

   In the same way, the cognate six-bar mechanism is imported into the mechanism 

design software and the final construction result is quickly verified, see Figure G.6. In 

the simulating mechanism, in order to draw the same coupler-point curve with the four-

bar mechanism, the drive link should be link 2-6 which has the same angular velocity as 

the drive link of the four-bar mechanism.  
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Figure G. 6. Cognate six-bar mechanism constructed in mechanism design software. 
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