42 research outputs found

    Table Structure Extraction with Bi-directional Gated Recurrent Unit Networks

    Full text link
    Tables present summarized and structured information to the reader, which makes table structure extraction an important part of document understanding applications. However, table structure identification is a hard problem not only because of the large variation in the table layouts and styles, but also owing to the variations in the page layouts and the noise contamination levels. A lot of research has been done to identify table structure, most of which is based on applying heuristics with the aid of optical character recognition (OCR) to hand pick layout features of the tables. These methods fail to generalize well because of the variations in the table layouts and the errors generated by OCR. In this paper, we have proposed a robust deep learning based approach to extract rows and columns from a detected table in document images with a high precision. In the proposed solution, the table images are first pre-processed and then fed to a bi-directional Recurrent Neural Network with Gated Recurrent Units (GRU) followed by a fully-connected layer with soft max activation. The network scans the images from top-to-bottom as well as left-to-right and classifies each input as either a row-separator or a column-separator. We have benchmarked our system on publicly available UNLV as well as ICDAR 2013 datasets on which it outperformed the state-of-the-art table structure extraction systems by a significant margin.Comment: Proceedings of the 15th International Conference on Document Analysis and Recognition (ICDAR) 2019, Sydney, Australi

    Old Content and Modern Tools : Searching Named Entities in a Finnish OCRed Historical Newspaper Collection 1771–1910

    Get PDF
    Named Entity Recognition (NER), search, classification and tagging of names and name-like informational elements in texts, has become a standard information extraction procedure for textual data. NER has been applied to many types of texts and different types of entities: newspapers, fiction, historical records, persons, locations, chemical compounds, protein families, animals etc. In general, the performance of a NER system is genre- and domain-dependent and also used entity categories vary [Nadeau and Sekine 2007]. The most general set of named entities is usually some version of a tripartite categorization of locations, persons, and organizations. In this paper we report trials and evaluation of NER with data from a digitized Finnish historical newspaper collection (Digi). Experiments, results, and discussion of this research serve development of the web collection of historical Finnish newspapers. Digi collection contains 1,960,921 pages of newspaper material from 1771–1910 in both Finnish and Swedish. We use only material of Finnish documents in our evaluation. The OCRed newspaper collection has lots of OCR errors; its estimated word level correctness is about 70–75 % [Kettunen and PÀÀkkönen 2016]. Our principal NE tagger is a rule-based tagger of Finnish, FiNER, provided by the FIN-CLARIN consortium. We also show results of limited category semantic tagging with tools of the Semantic Computing Research Group (SeCo) of the Aalto University. Three other tools are also evaluated briefly. This paper reports the first large scale results of NER in a historical Finnish OCRed newspaper collection. Results of this research supplement NER results of other languages with similar noisy data. As the results are also achieved with a small and morphologically rich language, they illuminate the relatively well-researched area of Named Entity Recognition from a new perspective.Peer reviewe

    An Abstraction Framework for Tangible Interactive Surfaces

    Get PDF
    This cumulative dissertation discusses - by the example of four subsequent publications - the various layers of a tangible interaction framework, which has been developed in conjunction with an electronic musical instrument with a tabletop tangible user interface. Based on the experiences that have been collected during the design and implementation of that particular musical application, this research mainly concentrates on the definition of a general-purpose abstraction model for the encapsulation of physical interface components that are commonly employed in the context of an interactive surface environment. Along with a detailed description of the underlying abstraction model, this dissertation also describes an actual implementation in the form of a detailed protocol syntax, which constitutes the common element of a distributed architecture for the construction of surface-based tangible user interfaces. The initial implementation of the presented abstraction model within an actual application toolkit is comprised of the TUIO protocol and the related computer-vision based object and multi-touch tracking software reacTIVision, along with its principal application within the Reactable synthesizer. The dissertation concludes with an evaluation and extension of the initial TUIO model, by presenting TUIO2 - a next generation abstraction model designed for a more comprehensive range of tangible interaction platforms and related application scenarios

    Robust Table Detection and Structure Recognition from Heterogeneous Document Images

    Full text link
    We introduce a new table detection and structure recognition approach named RobusTabNet to detect the boundaries of tables and reconstruct the cellular structure of each table from heterogeneous document images. For table detection, we propose to use CornerNet as a new region proposal network to generate higher quality table proposals for Faster R-CNN, which has significantly improved the localization accuracy of Faster R-CNN for table detection. Consequently, our table detection approach achieves state-of-the-art performance on three public table detection benchmarks, namely cTDaR TrackA, PubLayNet and IIIT-AR-13K, by only using a lightweight ResNet-18 backbone network. Furthermore, we propose a new split-and-merge based table structure recognition approach, in which a novel spatial CNN based separation line prediction module is proposed to split each detected table into a grid of cells, and a Grid CNN based cell merging module is applied to recover the spanning cells. As the spatial CNN module can effectively propagate contextual information across the whole table image, our table structure recognizer can robustly recognize tables with large blank spaces and geometrically distorted (even curved) tables. Thanks to these two techniques, our table structure recognition approach achieves state-of-the-art performance on three public benchmarks, including SciTSR, PubTabNet and cTDaR TrackB2-Modern. Moreover, we have further demonstrated the advantages of our approach in recognizing tables with complex structures, large blank spaces, as well as geometrically distorted or even curved shapes on a more challenging in-house dataset.Comment: Accepted by Pattern Recognition on 27 Aug. 202

    Technical Document Accessibility

    Get PDF
    Electrical and Electronic Engineerin

    Non-Visual Representation of Complex Documents for Use in Digital Talking Books

    Get PDF
    Essential written information such as text books, bills, and catalogues needs to be accessible by everyone. However, access is not always available to vision-impaired people. As they require electronic documents to be available in specific formats. In order to address the accessibility issues of electronic documents, this research aims to design an affordable, portable, standalone and simple to use complete reading system that will convert and describe complex components in electronic documents to print disabled users
    corecore