
A N A B S T R A C T I O N F R A M E W O R K F O R TA N G I B L E
I N T E R A C T I V E S U R FA C E S

martin kaltenbrunner

Cumulative Doctoral Dissertation

Doktor-Ingenieur (Dr.-Ing.)
Fakultät Medien

Bauhaus-Universität Weimar

Supervisor: Prof. Dr. Florian Echtler
Internal Reviewer: Prof. Dr. Eva Hornecker

External Reviewer: Prof. Dr. Johannes Schöning

20. November 2017 – version 1.0.1

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

Martin Kaltenbrunner:
An Abstraction Framework for Tangible Interactive Surfaces
Cumulative Doctoral Dissertation, Doktor-Ingenieur (Dr.-Ing.),
CC BY-NC-ND 20. November 2017

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

I don’t care to belong to any club
that will have me as a member.

— Groucho Marx

Dedicated to the memory of Engelbert Maria Dorfinger

1954 – 2001

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

A B S T R A C T

This cumulative dissertation discusses - by the example of four subse-
quent publications - the various layers of a tangible interaction frame-
work, which has been developed in conjunction with an electronic
musical instrument with a tabletop tangible user interface. Based
on the experiences that have been collected during the design and
implementation of that particular musical application, this research
mainly concentrates on the definition of a general-purpose abstrac-
tion model for the encapsulation of physical interface components
that are commonly employed in the context of an interactive surface
environment. Along with a detailed description of the underlying ab-
straction model, this dissertation also describes an actual implemen-
tation in the form of a detailed protocol syntax, which constitutes the
common element of a distributed architecture for the construction of
surface-based tangible user interfaces. The initial implementation of
the presented abstraction model within an actual application toolkit is
comprised of the TUIO protocol and the related computer-vision based
object and multi-touch tracking software reacTIVision, along with its
principal application within the Reactable synthesizer. The dissertation
concludes with an evaluation and extension of the initial TUIO model,
by presenting TUIO2 - a next generation abstraction model designed
for a more comprehensive range of tangible interaction platforms and
related application scenarios.

iv

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

Z U S A M M E N FA S S U N G

Diese kumulative Dissertation diskutiert - am Beispiel vier aufein-
anderfolgender Publikationen - die einzelnen Schichten eines gegen-
ständlichen Interaktionsmodells, das im Zusammenhang mit einem
elektronischen Musikinstrument mit gegenständlicher Benutzerschnitt-
stelle entwickelt wurde. Basierend auf den Erfahrungen die während
der Gestaltung und Implementierung dieser konkreten musikalischen
Anwendung gesammelt wurden, konzentriert sich diese Forschung
hauptsächlich auf die Definition eines generell einsetzbaren Abstrak-
tionsmodells für die digitale Repräsentation physischer Interfacekom-
ponenten welche üblicherweise im Kontext interaktiver Oberflächen
verwendet werden. Gemeinsam mit einer detaillierten Beschreibung
des zugrundeliegenden Abstraktionsmodells, behandelt diese Disser-
tation auch dessen konkrete Implementierung in Form einer detail-
lierten Protokollsyntax, die das verbindende Element einer verteil-
ten Architektur für die Realisierung von oberflächenbasierten gegen-
ständlichen Benutzerschnittstellen darstellt. Die eigentliche Implemen-
tierung des vorgestellten Abstraktionsmodells als konkretes Toolkit
besteht aus dem TUIO Protokoll und der damit verbundenen Compu-
tervision Anwendung für Objekt- und Fingergestentracking reacTIVi-
sion, gemeinsam mit deren primären Anwendung in der Realisierung
des Reactable Synthesizers. Die Dissertation schliesst mit einer Evalu-
ierung und Erweiterung des ursprünglichen TUIO Modells, mit der
Präsentation von TUIO2 - einem Abstraktionsmodell der nächsten
Generation, das für eine umfassendere Reihe von gegenständlichen
Interaktionsplattformen und die dazugehörigen Anwendungsszena-
rien entworfen wurde.

v

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

A C K N O W L E D G M E N T S

The research results presented within this thesis have been funda-
mentally motivated by the development of the Reactable, which took
place at the Music Technology Group1 at the University Pompeu
Fabra in Barcelona, Spain during the years from 2003 until 2009. The
project had been initially conceived by Sergi Jordà and has been real-
ized in collaboration with my colleagues Günter Geiger and Marcos
Alonso. The development of the reacTIVision framework would not
have been possible without the collaboration of Ross Bencina and
the initial contribution by Enrico Costanza, who both also partici-
pated together with Till Bovermann in the definition process of the
TUIO protocol. I’d like to thank my co-authors for their professional
support and friendship during these exciting years of research and
development. Furthermore I’d also like to thank Xavier Serra for sup-
porting this research as the director of the Music Technology Group
as well as Sile O’Modhrain for introducing me to the field of Tan-
gible User Interfaces during my research at the Media Lab Europe
in Dublin. Finally I’d also like to thank the participants of the TUIO
Hackathon at the ITS 2014 conference for their valuable feedback to-
wards the finalization of the TUIO 2.0 specification.

Figure 1: The Reactable by Jordà, Geiger, Alonso and Kaltenbrunner.
Photo: Reactable Systems

I am also grateful to my supervisors Florian Echtler and Eva Hor-
necker who supported me during the finalization of my dissertation
at the Bauhaus University Weimar.

1 http://mtg.upf.edu/

vi

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

http://mtg.upf.edu/

C O N T E N T S

i introduction 1

1 thesis statement 2

1.1 Research Thesis 2

1.2 Research Context 2

1.3 Research Contributions 3

1.4 Research Methods 4

2 motivation 5

3 platform definition 7

3.1 Post-WIMP Interfaces 7

3.2 Tangible User Interfaces 8

3.3 Tangible Object Models 9

3.4 Tangible Interface Toolkits 9

3.5 Tangible Interactive Surfaces 11

ii selected publications 12

4 tuio : a protocol for table-top tangible user in-
terfaces 15

4.1 Introduction 15

4.1.1 Co-Authors 15

4.1.2 Context 15

4.2 Original Publication 16

4.2.1 Abstract 16

4.2.2 General Observations 16

4.2.3 Implementation Details 16

4.2.4 Conclusion 19

4.2.5 Acknowledgments 19

4.3 Remarks & Analysis 20

4.3.1 Distributed Architecture 20

4.3.2 Model Robustness 20

4.3.3 Tangible User Interface Objects 21

4.3.4 Multi-Touch Interaction 21

4.3.5 Surface Interaction 22

4.3.6 Crowd-Sourced Development 22

5 reactivision : a computer-vision framework for

table-based tangible interaction 23

5.1 Introduction 23

5.1.1 Co-Author 23

5.1.2 Context 23

5.2 Original Publication 24

5.2.1 Abstract 24

5.2.2 Introduction 24

5.2.3 Architecture 24

5.2.4 Fiducial Engines 26

5.2.5 How to Build a Table Interface 28

5.2.6 Framework Usage 31

vii

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

contents viii

5.2.7 Example Projects Based on reacTIVision 33

5.2.8 Future Work 34

5.3 Remarks & Analysis 35

5.3.1 Modular Architecture 35

5.3.2 Diffuse Illumination Surface 36

5.3.3 Integrated Finger Tracking 36

5.3.4 Reactivision Projects 37

6 the reactable*: a collaborative musical instru-
ment 38

6.1 Introduction 38

6.1.1 Co-Authors 38

6.1.2 Context 38

6.2 Original Publication 39

6.2.1 Abstract 39

6.2.2 The reacTable* 39

6.2.3 Collaborative Music Models 41

6.2.4 TeleSon Invention #8 45

6.2.5 Networking Infrastructure 45

6.2.6 Acknowledgments 47

6.3 Remarks & Analysis 48

6.3.1 Contemporary Music Practice 48

6.3.2 Designers, Composers & Performers 48

6.3.3 Physical Embodiment 49

6.3.4 Multi-User Interaction 49

6.3.5 Networked Performance 50

6.3.6 Restaging Teleson Invention #8 50

6.3.7 Musical Application 51

6.3.8 Tangible Platform 51

7 reactivision and tuio : a tangible tabletop toolkit 52

7.1 Introduction 52

7.1.1 Context 52

7.2 Original Publication 53

7.2.1 Abstract 53

7.2.2 Introduction 53

7.2.3 Tangible Surface Abstraction 53

7.2.4 The Reactivision Engine 55

7.2.5 The TUIO Protocol 62

7.2.6 Conclusions And Future Work 67

7.2.7 Acknowledgments 67

7.3 Remarks & Analysis 68

7.3.1 Platform Updates 68

7.3.2 PortVideo Library 68

7.3.3 Blob Analysis 69

7.3.4 Finger Tracking 70

7.3.5 Yamaarashi Symbols 70

7.3.6 Performance Improvements 72

7.3.7 Library Integration 74

7.3.8 TUIO 1.1 Model 75

7.3.9 TUIO 1.1 Limitations 76

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

contents ix

iii model extension 77

8 tuio2 78

8.1 An Extended Abstraction Model 78

8.1.1 Global Context 79

8.1.2 Explicit Interface Components 81

8.1.3 Component Relation 83

8.1.4 Component Context 84

8.1.5 Component Gestures 84

8.2 Model Integration 85

8.3 TUIO 2.0 protocol specification 88

8.3.1 Message Structure 88

8.3.2 Global Messages 89

8.3.3 Component Messages 90

8.3.4 Geometry Messages 94

8.3.5 Content Messages 96

8.3.6 Association Messages 97

8.3.7 Custom Messages 98

8.3.8 Timing Model 99

8.3.9 Bundle Structure 100

8.3.10 Compact Message List 102

8.3.11 Server & Client implementations 103

8.3.12 Transport method 104

8.4 Example Platform Encodings 105

8.4.1 Pointer Identification: Diamondtouch 105

8.4.2 Pointer Types: iPad Pro 106

8.4.3 Pointers and Controls: Wheel Mouse 106

8.4.4 Pointers and Pressure Maps: Sensel Morph 107

8.4.5 Tokens, Pointers, Symbols & Bounds: Surface 107

8.4.6 Tokens as Pointer: Surface Studio 108

8.4.7 Tokens, Pointers and Geometries: reacTIVision 109

8.4.8 Symbols and Bounds: Papier Maché 109

8.4.9 Tokens and Controls: Slap Widgets 110

8.4.10 Spatial Interaction: Tisch 110

8.4.11 Physical Associations: Triangles 111

8.4.12 Logical Associations: Siftables 111

8.4.13 Signals: Tangible Sequencer 112

8.4.14 Tokens and Geometries: Scrapple 112

8.4.15 Actuated Tokens: Pico 113

8.4.16 Bonus Example: Marble Answering Machine 114

8.4.17 Conclusion 115

9 conclusion & future work 116

9.1 TUIO 2.0 Reference Implementation 116

9.2 reacTIVision Reference Platform 117

9.3 Device Support 118

9.4 Universal TUIO Tool 119

9.5 Conclusion 120

iv appendix 121

bibliography 122

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

Part I

I N T R O D U C T I O N

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

1
T H E S I S S TAT E M E N T

1.1 research thesis

This cumulative dissertation documents the research process and the
related design and development work to support the following thesis:

The introduction of an intermediate abstraction layer defining a
semantic classification and state encapsulation of interface com-
ponents that are employed within a tangible interaction envi-
ronment, is supporting the sensor and application independent
design of table-based tangible user interfaces, by providing an
infrastructure for the integration of low-level interface technolo-
gies with high-level application specific models.

1.2 research context

Today the tangible interaction paradigm already represents a rela-
tively well developed research area, where several application models
have been established[1] to describe the fundamental design princi-
ples that emerged from the research and development practice dur-
ing the past decades. Most of these models are concentrating on the
description of common design patterns or semantic classifications of
the function, content or relation of physical design elements at the
application layer from a user perspective.

Since tangible user interfaces by definition[2] couple the physical
world with digital information, most current approaches therefore
also conceptually unify the definition of tangible interface compo-
nents within the physical domain and their related application logic.
Although from a designer perspective these models provide a sound
theoretical foundation for tangible interface design through their con-
ceptual embodiment of digital information within physical artifacts,
they generally mask the involved technical background, which is nec-
essary for the realization of the complex physical interface hardware.

On the other hand, prospective developers of a tangible user inter-
face can take advantage of a growing pool of openly available hard-
ware and software toolkits, which can be employed for the construc-
tion of the manifold physical manifestations of tangible interface com-
ponents. These tools include computer-vision software, sensor and
actuator devices, micro-controller boards and consumer electronics
with advanced sensor technologies, which provide the necessary con-
trol input to track and describe the state of the physical interface
components and the related user interactions. Since these tools and
devices mostly provide raw sensor data, from the developer perspec-
tive this process involves the additional task of mapping the retrieved
raw input data to the according application layer.

2

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

1.3 research contributions 3

This dissertation intends to establish a model for the semantic de-
scription of the types, states and relationships of common tangible
user interface components, which can be applied to encapsulate the
raw input data of arbitrary interface technology employed for the
construction of the physical interface. This abstraction layer estab-
lishes a generalized interface description and provides the state and
attributes of its tangible and intangible components to the application
layer, which consequently can build upon the provided semantics for
driving its application model. This model therefore serves as an in-
termediate glue layer for coupling the physical environment with the
digital application model, providing a consistent tangible interface
representation from a developer, designer and user perspective.

1.3 research contributions

This research has been conducted in various incremental steps, which
include the design, implementation, application and final evaluation
of an initial model, leading to the definition of the extended abstrac-
tion model presented in the final chapter of this dissertation. The
following contributions are the result of these research phases:

• The definition of a basic abstraction model providing a semantic
description of the physical interaction environment that serves as
a mediator between the physical interface components and the dig-
ital application logic, defining a sensor and application invariant
classification of physical and gestural interface elements in the con-
text a tangible interactive surface.

• The implementation of the above mentioned abstraction model
within the open source TUIO protocol definition and the related ap-
plication programming interface, defining a dedicated syntax and
semantic descriptors for the communication of the identified tangi-
ble interface component states to an underlying application layer.

• A hard- and software infrastructure provided by computer-vision
based reacTIVision reference platform of the proposed physical ab-
straction model, which is taking advantage of the actual implemen-
tation of the previously established protocol infrastructure.

• The interaction design of the table-based tangible musical instru-
ment Reactable, illustrating the practical implications and usage of
the proposed model within the application domain for musical in-
teraction, through the manipulation of sound that is conceptually
embodied within physical artifacts.

• The refinement of the initial abstraction model based on the analy-
sis of various additional tangible interaction platforms and its sub-
sequent extension and implementation within the TUIO 2.0 pro-
tocol in order to reflect the feature space of state-of-the-art table-
based tangible interaction models.

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

1.4 research methods 4

1.4 research methods

Throughout the development of the presented framework concept, its
protocol implementation and reference design I consistently applied
an Open Science methodology by providing a Public Domain protocol
specification along with an Open Source toolkit to the scientific com-
munity, also supporting the activities of creative Open Design commu-
nities. In this context the term Public Domain refers to the royalty-free
usage of the TUIO protocol, while the Open Source concept provides
full access to the source code of its implementation. Open Design
extends this idea by providing further details on the specific hard-
ware design aspects that are relevant for the actual application of
these technologies. This in combination with the formal publication
of all relevant scientific results and the according documentation con-
stitutes an elementary Open Science toolset for the field of Human
Computer Interaction.

This open methodology is additionally facilitated by the modular
design of the documented framework, which also allowed for the in-
tegration of various community contributions into my own research
practice. Furthermore an open science approach generates compara-
ble results that are based on a shared research infrastructure, which
allows the evaluation and further improvement of individual research
aspects within a common ecosystem. The research practice therefore
not only consists of the peer-reviewed publication of scientific re-
sults, but in addition to that of the peer-improved publication of their
according open-source implementation, which I consider the neces-
sary elements for the establishment of a community supported open-
experiment situation, also including crowd-sourced contributions.

The specific application of the presented framework has been eval-
uated through a practice-based research approach within the specific
musical application scenario of the Reactable, a table-based modu-
lar synthesizer with a tangible user interface. This also included the
employment of artistic-research methods, through the integration of
composers and performers into the design process. The experiences
collected from my own performance practice in combination with the
feedback from several artistic collaborators, were integrated into an
iterative design process for the continuous improvement of both the
technical foundations and interaction design concepts of this musical
instrument.

The final abstraction framework developed within this thesis is
based on the comprehensive analysis and classification of various
tangible interactive surfaces and their principle physical components
and has been evaluated through the exemplary reciprocal represen-
tation of several tangible interface platforms and applications within
this model.

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

2
M O T I VAT I O N

The daily practice of an interaction designer, computer scientist and
digital artist is primarily defined by the daily work with computers.
While these devices represent the most common and versatile tools of
our community, the digital user interface today not only dominates
the environment of intellectual and creative workers, but has also
become the center of many productive and recreational activities of
our industrialized society.

Since the industrial revolution of the 19th century, machines not
only have increased our productivity, but since then also dominate
our everyday life. Early mechanical machine design was generally
driven by technical possibilities and requirements and thus often
required specific skills and training from their operators. This was
also the case after the advent of digital computers in the middle of
the 20th century, which were still largely defined by the mechanical
constraints of their early interface design. With the increasing digi-
tal complexity and the resulting computing capabilities, the machine
interface design radically changed towards a more human-centered
approach, resulting in the foundations of human-computer interac-
tion research. Based on the early idea of the "electronic brain" and the
connotation of an artificial intelligence, this lead to the development
of the first programming languages and the according text-based user
interfaces, which nevertheless still required significant expertise from
their operators.

The following introduction of screen-based user interfaces along
with the according direct manipulation devices, eventually led to the
introduction the graphical WIMP interface at Xerox with its digital
representation of an office desktop metaphor, which today still dom-
inates the design philosophy of most standard computing platforms.
The increasing availability of affordable desktop computers in combi-
nation with these more intuitive user interfaces, have fundamentally
driven the digital revolution of the late 20th century.

While the ongoing digitalization of many professions, such as print
production and architecture, now provided tools and products with
higher quality along with an increased productivity, this process also
resulted in the loss of many cultural techniques that had previously
dominated these sectors. Eventually the digitalization also emerged
into the private domain, converging many activities such as media
consumption, communication and recreational play into single multi-
purpose computing devices. This of course also resulted into a vir-
tualization of these professional and recreational activities, and the
according reduction of interaction potential to screen-based graphical
user interfaces. While this clearly demonstrates the universal poten-
tial of these devices, there also exist several sectors, which do not only
benefit from this tendency towards a standard virtual interface.

5

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

motivation 6

Taking the example of musical instrument design, we can observe
a similar digitalization tendency during the past decades. The fun-
damental design of acoustic musical instruments for centuries had
been largely defined by the physical principles of sound production
in vibrating bodies, along with the resulting design constraints that
defined the material, size and shape of the instrument, along with its
according interaction possibilities. The advent of electronic musical
instruments in the late 19th century eventually broke these physical
design constraints, allowing the generation of virtually any possible
sound structure, which also paved the way for completely novel user
interfaces such as the gesture-controlled Theremin.

The availability of general purpose desktop and mobile computers
also resulted in a radical digitalization of musical instrument design.
While these powerful computing devices on the one hand provide
nearly endless sonic capabilities, the convergence towards the graph-
ical interface on the other hand also led to a limitation of expressive
user interactions. Within our own digital instrument design practice,
we therefore intended to combine the digital sound production po-
tential of the digital computer with the primarily physical interface
aspects of musical interaction design.

While some trends in human-computer interaction such as virtual
reality are pushing towards a further digital virtualization, there are
also several fields such as ubiquitous computing, physical computing
and most importantly tangible computing, which are focussing on
the particular physical design aspects of the human-machine inter-
face. Although these research fields generally intend to maintain the
benefits of the digital domain, they rather focus on the representation
of digital information within physical artifacts or its embodiment into
an everyday environment. These approaches therefore stand for the
complete opposite to the ongoing virtualization of our life into digital
metaphors, and rather intend to augment our physical activities with
the potential of digital technologies.

Although the mentioned fields already look back to several decades
of research, they still have not reached the technical and conceptual
maturity to perpetrate our everyday life in a similar way as the graph-
ical user interface. Apart from an increased technical complexity of
a physical interface compared to a mere graphical representation, to-
day’s standard computing platforms also come with a mature set of
tools that facilitate the design and implementation of state-of-the-art
graphical user interfaces with little effort.

Our motivation for this research was therefore not only the devel-
opment of novel tangible user interface concepts for the design of
digital musical instruments. Since the realization of our instrument
already required the bottom-up creation of a complete tangible com-
puting environment, my research also focused on the design of a gen-
eralized toolset in order to facilitate the creation of general purpose
tangible user interfaces. Apart from the according software infrastruc-
ture, this toolset also provides the according theoretical foundations
for the definition of tangible interactive surfaces.

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

3
P L AT F O R M D E F I N I T I O N

This brief overview about the early research on tangible interaction
models is focusing on the role of physical objects that are commonly
employed as the principal interface components. This intends to sum-
marize various object schemes, application models and design paradigms
of tangible interfaces with the goal to narrow down our target plat-
form of tangible interactive surfaces and identify common strategies
for the description of generic types, attributes and relationships of
physical user interface components in this context.

Figure 2: Examples of Interactive Surfaces: horizontal, vertical and mobile

3.1 post-wimp interfaces

Starting with the first experiments on Graspable User Interfaces by
Fitzmaurice et al.[3], the following research lead to the development
of several models, which intended to identify the various classes,
functions and relationships of tangible objects as physical represen-
tations of digital application models. Initially Fitzmaurice introduced
graspable design elements, which allowed the user to interact more
directly with a virtual interface environment, extending Shneider-
man’s principle of Direct Manipulation[4] to the physical domain,
allowing for direct physical manipulation by using both hands for
working with several physical artifacts at once. The design of the
physical interface elements within the Bricks interface intended to
translate the metaphors from Graphical User Interfaces (GUI) to the

7

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

3.2 tangible user interfaces 8

physical domain. Physical handles replaced Mouse pointers and the
palette tool found its way back into the physical desktop. While the
color palette commonly employed in GUI drawing applications al-
ready borrowed the tool metaphor from its real world equivalent, the
physical drawing palette in the Bricks interface augmented a replica-
tion of the original tool with digital means. Ishii’s subsequent work
on the metaDesk platform[5] continued the direct translation of in-
terface components previously known from the desktop and WIMP
metaphor to the physical domain, by creating an interactive desk-
top environment providing a platform for various physical design
elements, such as the passive lens as physical representation of a win-
dow, as well as a collection of tangible artifacts named phicons serv-
ing as symbolic physical representations of digital data. Furthermore
a set of physical tools allowed the direct manipulation of the under-
lying digital application models. This early work establishes several
classes of physical objects that are employed as pointers (handles),
symbolic tokens (phicons) and physical tools (color palette).

3.2 tangible user interfaces

Ishii et al.[6] later established the term Tangible User Interfaces (TUI),
which was supported by the fundamental idea of coupling the phys-
icality of tangible objects with digital information. By connecting
atoms and bits, symbolizing the physical and digital domain, TUIs
thereafter concentrate on the interaction with physical objects sup-
ported with digital media. The meaning of the term tangible as de-
rived from the Latin verb tangere - to touch does not primarily refer
to the haptic aspects of the interface, but rather the interaction with
its physicality. This actual meaning is also well expressed within the
German definition[7] Gegenständliche Schnittstellen, which emphasizes
the central role of the manipulated physical object as Gegenstand.

The ongoing development of the now established research area
within the Tangible Media Group, yielded several rather distinct projects
that evolved the idea of tangible interaction away from the desk-
top metaphor. While projects such as the URP[8] platform still or-
ganized the physical interface components within the spatial con-
text of an augmented surface environment, further projects such as
Ullmer’s MediaBlocks[9] concentrated on the relationship of physi-
cal objects and their role as containers for digital media. Furthermore
Gorbet’s Triangles[10] represent constructive assemblies, allowing the
construction of physical structures based on mechanical connections
without explicit spatial reference. Ullmer et al. summarize[11] the var-
ious approaches of organizing physical objects within spatial systems
defined by Cartesian positions, angles and distances, relational sys-
tems defined by their adjacencies and content and constructive as-
semblies defined by their physical topologies. I intend to add here
a fourth category of autonomous artifacts, which are representing
self-contained physical objects, such as Ishii’s et al. Music Bottles for
example.[12]

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

3.3 tangible object models 9

3.3 tangible object models

Ullmer et al. later define the fundamental Control-Representation
Model, which emphasizes the primary function of physical objects
as control and representation of the underlying digital application
model, which can additionally be supported by ambient digital me-
dia. This conceptually defines the physical object as input device
providing control data to an application model, which it physically
embodies. Fishkin[13] establishes a high-level taxonomy of Embodi-
ment and Metaphor, such as elementary grammars defining nouns as
symbolic objects or verbs as functional objects for example, as well
as various levels of distant, nearby or full embodiment reflecting the
"immersion" of digital content into a physical container. In addition to
defining the general design paradigms and the organization of phys-
ical objects that are employed for the construction of tangible user
interfaces, the subsequent research concentrated on the semantic def-
inition of the object content, function and their relationship to each
other. First of all several object types needed to be identified, yielding
terms such as phicons, containers, tools or props, which concentrated
on the application specific content or function of each individual
object. Ullmer introduced the concept of Token-Constraint Systems,
which defined the function and behaviour of basic interface elements
as elementary tokens within the context of enclosing physical con-
straints.[14] Shaer et al. elaborate this concept with the establishment
of design patterns based on the physical association of several tokens
in the form of dedicated Token and Constraint Systems (TaC).[15]
This work leads to the specification of the Tangible User Interface
Modeling Language (TUIML)[16] which formalizes the TUI design
process at the application level. TUIML has been implemented within
the Tangible User Interface Management System TUIMS, which also
defines additional lexical handlers for the various input technologies.
Nevertheless we can observe that most recent models concentrate on
the establishment of design patterns within the application domain,
and are therefore implicitly masking the physical domain and the
necessary sensory data acquisition methods for the description of the
physical environment and object states.

3.4 tangible interface toolkits

Compared to the top-down approach of the application oriented ob-
ject models most software and hardware toolkits on the other hand
provide a bottom-up abstraction of the physical input layer. Although
there exists a myriad of advanced sensor hardware, computer vision
libraries and physical computing platforms which generally facilitate
the design and development of tangible user interfaces, these tools
often require substantial customization and extension to be suitable
for a specific application scenario. Nevertheless there also exist some
toolkits and platforms, which not only provide the necessary hard-

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

3.4 tangible interface toolkits 10

and software infrastructure, but also define a set of elements that en-
capsulate the common tangible interface components.

Today many external sensing systems employ generic computer
vision libraries such as OpenCV1, which provides the basic function-
ality to detect physical objects in an environment, by analyzing their
colour and shape for example. More specific applications, such as the
popular ARToolkit[17] or its various descendants provide the track-
ing of visual markers, which can be also attached to physical objects.
This not only allows the identification of marked physical tokens, but
also the precise tracking of their position and orientation. Apart from
standard digital cameras, there also exist specific optical sensing de-
vices such as the Leap Motion or Microsoft Kinect. Although these
sensors had been primarily designed for gestural interaction, they are
also commonly employed for the analysis of physical environments
and object tracking and recognition tasks.[18] While the individual
technology and algorithms of these external sensing approaches may
differ, from a tangible interface perspective they provide generic com-
ponents for Tokens (tangible objects), Symbols (markers) and Geometries
(descriptors) as well as Pointers (gestures).

Physical computing platforms, such as the Phidget Toolkit[19] pro-
vide a modular approach for the construction of self-contained phys-
ical objects with embedded sensors and actuators. While today there
exist many hardware environments that provide a low entry level
for the assembly and programming of complex electronics, specific
tangible interface toolkits such as Bdeir’s Little Bits[20] also provide
substantial abstraction in the material domain, allowing for a direct
physical programming paradigm. Generally we can observe that most
of these tangible platforms, also including Merrill’s [21] Sifteo Cubes
can be defined through physical Tokens with associated Controls.

Klemmer’s early multi-sensor toolkit Papier-Maché[22] defines Phobs
that represent physical objects, marked with an RFID tag or other
symbols. VisionPhobs on the other hand encapsulate computer vision
objects, including the image bitmap for further processing. Papier-
Maché therefore handles the basic classes of Tokens, specified by Sym-
bols and simple Geometries. The toolkit also implements a fundamen-
tal event model for physical object handling: addPhob, updatePhob and
removePhob provide the interaction data according to the general ob-
ject manipulation events.

Interactive tabletop systems today are primarily focused on gestu-
ral multi-touch interaction with digital content. Only few commer-
cially available platform such as the Microsoft SUR40, also provide
the interaction with physical interface components to the application
developer. In addition to generic multi-touch input, the platform is ca-
pable of tracking visual markers, tagged objects as well as untagged
objects or blobs, resulting in a component structure of Symbols, Tokens,
Pointers and Geometries. The platform SDK additionally provides a set
of high level multi-touch gestures based on the finger input in rela-
tion to the surface plane and the tangible objects.

1 http://opencv.org/

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

http://opencv.org/

3.5 tangible interactive surfaces 11

3.5 tangible interactive surfaces

As shown above, tangible user interfaces have been implemented in a
variety of form factors, which commonly share the design paradigm
of the direct manipulation of physical artifacts and gestural input
based on the analysis of body, hand or finger movements or the di-
rect tracking of physical objects with embedded or external sensor
systems. While there exist a variety of implementations where the
tangible artifacts are self-contained and can be manipulated indepen-
dently, many tangible interfaces place these physical objects into the
context of a certain spatial environment or physical reference frame.
This environment can be either a dedicated physical container object,
which constrains the behavior of simple physical tokens, where in
other cases this environmental context can be an entire room, a wall
or simply a table surface. I will concentrate on the description of the
specific case of interactive surfaces, such as a vertical blackboard or
wall, or a horizontal table or floor.

These interactive surface environments generally provide a versa-
tile and augmentable (e.g. through digital sound and image) refer-
ence frame for manifold application scenarios, where tangible tokens
can be placed, moved and manipulated in direct contact with the
surface or within the space that extends above or in front of that sur-
face. Users can directly interact with the physical objects, or directly
with the surface and within the whole spatial environment, which
usually incorporates a hardware specific sensor system, capable of
tracking the current state of all involved interface components and
the gestures performed by the user on the surface itself or through
the physical manipulation of objects.

Interactive surfaces usually provide additional visual feedback us-
ing common screen or projection technologies. In many cases the vi-
sual or physical surface design is also partially predefined with graph-
ically printed or physically crafted design elements, where in some
cases any computationally generated visual feedback may be even
fully omitted. Since tangible interfaces also can incorporate multi-
modal feedback, the environment, the surface structure and even the
tangible objects themselves can also embed additional digitally con-
trollable acoustic or visual feedback. In addition to the passive hap-
tic quality of the physical interface components, these can also be
equipped active haptic feedback using tactile or kinetic actuators.

This thesis will concentrate on the comprehensive description of
such a tangible surface environment, by defining an abstraction model,
which encapsulates a continuously updated state description of an in-
teractive surface including all its physical interface components. This
model is represented through a specific protocol syntax, which com-
municates the semantic abstraction to an underlying digital appli-
cation layer. This allows the implementation of generally platform-
independent tangible user interfaces, taking advantage of its general-
ized multi-platform and application-invariant interface abstraction.

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

Part II

S E L E C T E D P U B L I C AT I O N S

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

3.5 tangible interactive surfaces 13

The following four first-author papers, which were published dur-
ing the years from 2005 until 2009, form the central part of this cu-
mulative dissertation. According to Google Scholar this research as
of today has accumulated more than 1100 citations since its publica-
tion.2

[1] Martin Kaltenbrunner, Till Bovermann, Ross Bencina, and En-
rico Costanza. “TUIO - A Protocol for Table Based Tangible
User Interfaces.” In: Proceedings of the 6th International Workshop
on Gesture in Human-Computer Interaction and Simulation (GW
2005). Vannes, France, 2005.

[2] Martin Kaltenbrunner, Sergi Jordà, Günter Geiger, and Marcos
Alonso. “The reacTable: A Collaborative Musical Instrument.”
In: Proceedings of the Workshop on Tangible Interaction in Collabora-
tive Environments (TICE). Manchester, U.K., 2006.

[3] Martin Kaltenbrunner and Ross Bencina. “reacTIVision: A Computer-
Vision Framework for Table-Based Tangible Interaction.” In: Pro-
ceedings of the first international conference on Tangible and Embed-
ded Interaction (TEI07). Baton Rouge, Louisiana, 2007.

[4] Martin Kaltenbrunner. “reacTIVision and TUIO: A Tangible Table-
top Toolkit.” In: Proceedings of the ACM International Conference
on Interactive Tabletops and Surfaces (ITS2009). Banff, Canada, 2009.

These core publications constitute the model definition within the
TUIO protocol, its implementation within the reacTIVision frame-
work, an application within the Reactable and the final evaluation
of the proposed abstraction model for tangible interactive surfaces
through a subsequent evolution of the reacTIVision and TUIO frame-
work. Each publication chapter is preceded by an initial clarification
of my contributions in the particular research context and is followed
by a concluding analysis and further clarifications that have become
relevant since the initial publication of each paper. The comment sec-
tion of the final chapter in this section provides a deeper strength and
weakness analysis in the context of all four publications and also doc-
uments several improvements to the reacTIVision and TUIO frame-
work since their original release.

Disclaimer: Due to the separate publication dates of these papers, this
cumulative dissertation may include some redundant our superseded
information, which will be clarified from a historical perspective in
the comment section after each individual publication.

2 http://scholar.google.com/citations?user=G7rN7JUAAAAJ

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

http://scholar.google.com/citations?user=G7rN7JUAAAAJ

3.5 tangible interactive surfaces 14

These additional eight, and only partially first-authored publications
are also relevant in the context of this dissertation, but have been
omitted in order to avoid redundancies.

[1] Martin Kaltenbrunner, Günter Geiger, and Sergi Jordà. “Dy-
namic Patches for Live Musical Performance.” In: Proceedings of
the 4th Conference on New Interfaces for Musical Expression (NIME04).
Hamamatsu, Japan, 2004.

[2] Martin Kaltenbrunner, Sile O’Modhrain, and Enrico Costanza.
“Object Design Considerations for Tangible Musical Interfaces.”
In: Proceedings of the COST287-ConGAS Symposium on Gesture
Interfaces for Multimedia Systems. Leeds, UK, 2004.

[3] Ross Bencina and Martin Kaltenbrunner. “The Design and Evo-
lution of Fiducials for the reacTIVision System.” In: Proceedings
of the 3rd International Conference on Generative Systems in the Elec-
tronic Arts (3rd Iteration 2005). Melbourne, Australia, 2005.

[4] Ross Bencina, Martin Kaltenbrunner, and Sergi Jordà. “Improved
Topological Fiducial Tracking in the reacTIVision System.” In:
Proceedings of the IEEE International Workshop on Projector-Camera
Systems (Procams 2005). San Diego, USA, 2005.

[5] Sergi Jordà, Martin Kaltenbrunner, Günter Geiger, and Ross
Bencina. “The reacTable*.” In: Proceedings of the International Com-
puter Music Conference (ICMC 2005). Barcelona, Spain, 2005.

[6] Sergi Jordà, Günter Geiger, Marcos Alonso, and Martin Kaltenbrun-
ner. “The reacTable: Exploring the Synergy between Live Music
Performance and Tabletop Tangible Interfaces.” In: Proceedings
of the first international conference on Tangible and Embedded Inter-
action (TEI07). Baton Rouge, Louisiana, 2007.

[7] Martin Kaltenbrunner and Florian Echtler. “TUIO Hackathon.”
In: Proceedings of the ACM International Conference on Interactive
Tabletops and Surfaces (ITS2014). Dresden, Germany, 2014.

[8] Florian Echtler and Martin Kaltenbrunner. “SUR40 Linux: Re-
animating an Obsolete Tangible Interaction Platform.” In: Pro-
ceedings of the ACM International Conference on Interactive Surfaces
and Spaces (ISS2016). Niagara Falls, Canada, 2016.

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

4
T U I O : A P R O T O C O L F O R TA B L E - T O P TA N G I B L E
U S E R I N T E R FA C E S

4.1 introduction

The first publication of this cumulative thesis includes the original
specification of the TUIO protocol in its initial version 1.0, represent-
ing the definition of the initial Tangible Abstraction Framework.
The following paper has been reformatted and corrected without any
changes to its original content.

4.1.1 Co-Authors

In addition to my core contribution of the TUIO abstraction model
and its draft protocol implementation as first author, the following
co-authors collaborated in the inter-operability aspects with their tan-
gible interaction platforms, and the related design issues:
Till Bovermann lfsaw@lfsaw.de
then: Neuroinformatics Group, Bielefeld University, Germany.
now: Time-based Media, Berlin University of the Arts, Germany.
Ross Bencina rossb@audiomulch.com
then: Music Technology Group, University Pompeu Fabra, Spain.
now: Sonic Fritter Pty Ltd, Melbourne, Australia.
Enrico Costanza e.costanza@ucl.ac.uk
then: Liminal Devices Group, Media Lab Europe, Dublin, Ireland.
now: Interaction Centre, University College London, UK.

4.1.2 Context

Together with Till Bovermann, this publication has been presented
as a poster at the 6th International Workshop on Gesture in Human-
Computer Interaction and Simulation1 which took place from May 18-20

2005 at the Berder Island in France. Although this poster today rep-
resents the most cited publication from the proceedings of this work-
shop, it unfortunately had not been included in the final "revised
selected papers" book, which was published in the Lecture Notes in
Computer Science series by Springer later in 2005[23].

This publication and the final TUIO specification are the result
of an intensive workshop organized upon my initiative, which took
place during the first week of November 2004 at the Music Technol-
ogy group in Barcelona, Spain. The participation of two external co-
authors was supported through a Short Term Scientific Mission by
the Cost287-ConGAS2 program on Gesture Controlled Audio Systems.

1 http://www-valoria.univ-ubs.fr/gw2005

2 http://www.cost.eu/COST_Actions/ict/287

15

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

mailto:lfsaw@lfsaw.de
mailto:rossb@audiomulch.com
mailto:e.costanza@ucl.ac.uk
http://www-valoria.univ-ubs.fr/gw2005
http://www.cost.eu/COST_Actions/ict/287

4.2 original publication 16

4.2 original publication

4.2.1 Abstract

In this article we present TUIO, a simple yet versatile protocol de-
signed specifically to meet the requirements of table-top tangible user
interfaces. Inspired by the idea of interconnecting various existing ta-
ble interfaces such as the reacTable [24], being developed in Barcelona
and the tDesk [25] from Bielefeld, this protocol defines common prop-
erties of controller objects on the table surface as well as of finger
and hand gestures performed by the user. Currently this protocol
has been implemented within a fiducial marker-based computer vi-
sion engine developed for the reacTable project. This fast and robust
computer vision engine is based on the original d-touch concept [26],
which is also included as an alternative to the newer fiducial tracking
engine. The computer vision framework has been implemented on
various standard platforms and can be extended with additional sen-
sor components. We are currently working on the tracking of finger-
tips for gestural control within the table interface. The TUIO protocol
has been implemented using OpenSound Control [27] and is therefore
usable on any platform supporting this protocol. At the moment we
have working implementations for Java, C++, PureData, Max/MSP,
SuperCollider and Flash.

4.2.2 General Observations

This protocol definition is an attempt to provide a general and ver-
satile communication interface between tangible table-top controller
interfaces and underlying application layers. It was designed to meet
the needs of table-top interactive surfaces, where the user is able to
manipulate a set of objects. These objects are tracked by a sensor sys-
tem and can be identified and located in position and orientation
on the table surface. Additionally we defined a special cursor object,
which doesn’t have a unique ID and doesn’t provide rotation informa-
tion. The protocol’s flexible design offers methods for selecting which
information will be sent. This flexibility is provided without affecting
existing interfaces, or requiring re-implementation to maintain com-
patibility.

4.2.3 Implementation Details

The TUIO protocol defines two main classes of messages: set mes-
sages and alive messages. Set messages are used to communicate in-
formation about an object’s state such as position, orientation, and
other recognized states. Alive messages indicate the current set of ob-
jects present on the surface using a list of unique session IDs. To avoid
possible errors evolving out of packet loss, no explicit add or remove
messages are included in the TUIO protocol. The receiver deduces
object lifetimes by examining the difference between sequential alive

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

4.2 original publication 17

messages. In addition to set and alive messages, fseq messages are de-
fined to uniquely tag each update step with a unique frame sequence
ID. To summarize:

– object parameters are sent after state change using a set message
– on object removal an alive message is sent
– the client deduces object addition and removal from set and alive

messages
– fseq messages associate a unique frame id with a set of set and

alive messages

4.2.3.1 Efficiency & Reliability

In order to provide low latency communication our implementation
of the TUIO protocol uses UDP transport. When using UDP the possi-
bility exists that some packets will be lost. Therefore, our implementa-
tion of the TUIO protocol includes redundant information to correct
possible lost packets, while maintaining an efficient usage of the chan-
nel. An alternative TCP connection would assure the secure transport
but at the cost of higher latency. For efficiency reasons set messages
are packed into a bundle to completely use the space provided by a
UDP packet. Each bundle also includes a redundant alive message to
allow for the possibility of packet loss. For larger object sets a series
of packets, each including an alive message are transmitted. When the
surface is quiescent, alive messages are sent at a fixed rate dependent
on the channel quality, for example once every second, to ensure that
the receiver eventually acquires a consistent view of the set of alive
objects. The state of each alive but unchanged object is periodically
resent with additional set messages. This redundant information is
resent at a lower rate, and includes only a subset of the unchanged
objects at each update. The subset is continuously cycled so that each
object is periodically addressed. Finally, each packet is marked with a
frame sequence ID (fseq) message: an increasing number which is the
same for all packets containing data acquired at the same time. This
allows the client to maintain consistency by identifying and dropping
out-of-order packets. To summarize:

– set messages are bundled to fully utilize UDP packets
– each bundle of set messages includes an alive message contain-

ing the session IDs of all currently alive tangible objects
– when the surface is quiescent the alive message is resent period-

ically
– the state of a cycling subset of alive but unchanged objects is

continuously resent via redundant set messages
– each bundle contains a frame sequence (fseq) message

It should be noted that the retransmission semantics described here
are only one possible interpretation of the protocol. Other possible
methods include: (1) weighting the frequency of retransmission ac-
cording to recency of value changes using a logarithmic back-off
scheme and, (2) trimming the set of values to be retransmitted using
asynchronous acknowledgments from the client.

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

4.2 original publication 18

4.2.3.2 Message Format

Since TUIO is implemented using Open Sound Control (OSC) [27]
follows its general syntax. An implementation therefore has to use an
appropriate OSC library such as oscpack [28] and has to listen to the
following message types:

/tuio/[profileName] set sessionID [parameterList]

/tuio/[profileName] alive [list of active sessionIDs]

/tuio/[profileName] fseq (int32)

4.2.3.3 Parameters

The parameters defined in this section reflect the object properties
we considered important for an interactive surface interface. Some of
these parameters (id, position and angle) are retrieved directly by the
sensor. Others (speed, acceleration) are derived from these primary
parameters using timing information. Computing these parameters
on the low level side of a tangible user interface system allows a
more efficient computation, since the necessary timing information
does not need to be transferred to clients.

s sessionID (temporary object ID) int32

i classID (fiducial ID number) int32

x, y, z position (range 0...1) float32

a, b, c angle (range 0..2PI) float32

X, Y, Z movement vector (motion speed & direction) float32

A, B, C rotation vector (rotation speed & direction) float32

m motion acceleration float32

r rotation acceleration float32

P free parameter (type defined by OSC header) variable

Table 1: semantic types of set messages

A session ID number is assigned to each object. This is necessary
to uniquely identify untagged objects across successive frames, and
in the case where multiple objects tagged with the same classID are
simultaneously present on the surface. The semantic types allowed in
a set message are shown in Tab.1.

4.2.3.4 Profiles

We define a set of profiles, which apply to most table-style tangible
user interfaces. This allows the tracking of objects and cursors on two
dimensional surfaces and in special cases also in the 3D space above
the table surface. If one of these predefined profiles doesn’t meet a
system’s requirements we also allow so-called raw profiles that send
the raw sensor data, as well as free form profiles, which allow a user
defined set of parameters to be transmitted.

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

4.2 original publication 19

2D interactive surface

/tuio/2Dobj set s i x y a X Y A m r

/tuio/2Dcur set s x y X Y m

2.5D interactive surface

/tuio/25Dobj set s i x y z a X Y Z A m r

/tuio/25Dcur set s x y z X Y Z m

3D interactive surface

/tuio/3Dobj set s i x y z a b c X Y Z A B C m r

/tuio/3Dcur set s x y z X Y Z m

raw profile

/tuio/raw_[profileName]

/tuio/raw_dtouch set i x y a

custom profile

/tuio/_[formatString]

/tuio/_sixyP set s i x y 0.57

For the last two profiles the parameters of the set message are in a
user defined format. Raw profiles correspond to a specific sensor type,
such as d-touch, and carry its standard parameters. The completely
free-form profile carries its format within its name, similar to the
OSC header.

4.2.4 Conclusion

A protocol called TUIO was presented which supports communica-
tion of all required information between the object recognition layer
and interaction layer of a tangible user interface system. This proto-
col supports communication between several totally different tangible
user interfaces including the reacTable and the tDesk. It thus facilitates
interaction between people at different locations, including the possi-
bility of distributed musical performance.

4.2.5 Acknowledgments

This work has been partially supported by the European Commission
Cost-287 ConGAS action on Gesture Controlled Audio Systems and
will be released under an open source license.

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

4.3 remarks & analysis 20

4.3 remarks & analysis

4.3.1 Distributed Architecture

The original motivation for the development of the TUIO protocol
was largely based on performance limitations, which didn’t allow
for the concurrent execution of a then still demanding computer-
vision algorithm along with real-time sound-synthesis and complex
graphics on a single CPU. Therefore the first experimental imple-
mentations of the Reactable had to be based on a distributed archi-
tecture, separating the computer-vision sensor component from the
actual instrument component including the synthesizer and visual
feedback. These components were initially running on two separate
network-connected machines, but soon replaced by a dual-cpu desk-
top machine and later a dual-core laptop. Nevertheless this modular
approach through an internal messaging infrastructure between the
various system components proved to be quite practical for the fur-
ther development process, since it allowed for the easier evaluation
and integration of alternative sensor and synthesizer components.

4.3.2 Model Robustness

After initial implementations of a custom UDP based messaging in-
frastructure, we chose the then emerging Open Sound Control encod-
ing, mostly due to its relation to our musical application scenario, and
its easy integration into Pure Data, which was used for the first imple-
mentation of the Reactable synthesizer. OSC generally prefers UDP
transport over TCP in order to minimize the overall latency, which
is critical for an interactive sonic system. Later tests have shown that
on a local system the accumulated latency of the network layer is ne-
glectable when compared to the input and output delays from the
complete camera-projector system.

Early event-based experiments, sending explicit messages for each
add, update and remove event with every component update, had proven
rather error-prone due to the very likely loss of UDP packets on noisy
WIFI networks. While a lost add event still could be reconstructed
from a following update event, a lost remove event would inevitably
lead to an inconsistency on the client side. Therefore we chose a
state-based model for the TUIO protocol, where in addition to update
events through the TUIO set message, the actual add and remove events
have to be implicitly derived from the ID changes in the TUIO alive
message, which is sent along with each TUIO bundle. This model al-
lows for a consistent surface component representation on the client
side, while an eventual packet loss only leads to a lower update rate
in a worst case scenario. Closing a TUIO bundle with an additional
fseq message including an incremental frame ID, not only marks the
end of each sensor update cycle, but allow assures further consistency
in case of an out-of-order arrival.

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

4.3 remarks & analysis 21

4.3.3 Tangible User Interface Objects

As the TUIO acronym - Tangible User Interface Objects - suggests, the
main focus of the TUIO protocol actually lies in the physical domain
of tangible interactive surfaces. This most importantly includes the
manipulation of physical objects in direct contact or above an inter-
active surface. Touch interaction as such therefore was originally in-
tended to provide a complementary interaction modality, by support-
ing the primary object manipulation gestures with additional touch
gestures performed around these physical objects. TUIO objects in
the original conception refer to formless physical tokens, which can
be located on the surface through normalized cartesian coordinates
and their absolute orientation, as well as identified through an ar-
bitrary marker. While our implementation was based on computer
vision and fiducial markers attached to the tokens, the actual object
ID can also be determined from color or shape as well as alternative
markers such as RFID tags. Apart from that TUIO 1.0 did not yet
provide any further information about the actual object size and ge-
ometry, which therefore had to be handled entirely at the application
layer.

4.3.4 Multi-Touch Interaction

Through its definition of an additional cursor profile, TUIO 1.0 also al-
lows multi-touch interaction on platforms without any object-tracking
capabilities, which in fact turned out to be the more attractive feature
provided by the protocol. By the time of its publication mainstream
operating systems and mobile computing platforms did not yet pro-
vide any kind of multi-touch hardware nor an official application pro-
gramming interface. With the advent of smart-phone platforms such
as the Apple iPhone as well as Jeff Han’s iconic FTIR based [29] im-
plementation, multi-touch interaction concepts gained a widespread
popularity, although its conceptual foundations and basic gestural
ideas had already been explored [30] earlier in the late 20th century.
Due to the initial lack of commercially available hardware platforms,
researchers[31] and other professionals engaged in an open source
DIY community, implementing custom made hardware and software
platforms, mostly based on computer vision in camera-projector con-
figurations. This also led to the first third-party TUIO tracker imple-
mentations, such as touchlib and community core vision (then tBeta),
taking advantage of the various TUIO client implementations that
we had provided in conjunction with reacTIVision. Although nowa-
days many mobile platforms such as iOS and Android, as well as
mainstream operating systems such as Windows and Linux already
provide integrated multi-touch support, mostly in conjunction with
capacitive touch displays, TUIO still plays a relevant role for sys-
tem integrators of large-scale multi-touch platforms, which are pri-
marily used in museum exhibitions and the advertisement industry.
Most commercial manufacturers of capacitive touch-foils and optical

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

4.3 remarks & analysis 22

touch-frames also provide native TUIO support in addition to a stan-
dard HID interface. While commercial camera-based systems3 have
become less common than capacitive touch-only displays, they still
offer the advantage of additional marker-based object tracking capa-
bilities. In addition to that, some manufacturers have also started to
implement capacitive object tracking capabilities4 into their interac-
tive display solutions. Hence the lack of alternative representations
of the tangible object layer in mainstream operating-systems, has led
to the full implementation of the TUIO touch and object profiles
in these commercial products. Other proprietary tangible interaction
platforms, such as the now abandoned Microsoft Surface also have
been extended with third-party TUIO support, taking advantage of
the wide range of TUIO-enabled programming environments.

4.3.5 Surface Interaction

The original TUIO specification has a primary focus on tangible ob-
jects and touch gestures in direct contact with the tangible interactive
surface, which are represented in the two primary /tuio/2Dobj and
/tuio/2Dcur profiles. Nevertheless the overall TUIO concept not only
defines on-surface interaction, but also includes above-surface inter-
action through its fish-tank metaphor. In order to avoid the transmis-
sion of excess 3D attributes in on-surface configurations and in order
to also allow the explicit distinction of on-surface and above-surface
interactions, the TUIO protocol also defines additional 2.5D and 3D
profiles that include the necessary additional attributes to encode the
distance and orientation for tangible objects. Our TUIO reference im-
plementations primarily focus on the 2D profiles though, also due
to reduced availability of tangible interaction platforms with three-
dimensional sensing capabilities. Nevertheless there also exist some
experimental platforms with above surface tracking capabilities[32],
which also implement the TUIO 3D profiles[33] necessary in such as
scenario. Other platforms incorporate 3D pointing devices such as
the Nintendo WiiMote through the 2.5D cursor profiles, as well as ad-
ditional spatial object tracking capabilities with the Microsoft Kinect
depth sensor through the 3D object profiles.

4.3.6 Crowd-Sourced Development

Due to the open availability of the protocol specification and its dis-
tributed architecture, today there exists a vast variety of community
supported TUIO client and server implementations in addition to our
own open-source reference implementations. An updated list of these
third-party contributions, including many open-source and commer-
cial software applications and libraries as well as hardware platforms,
is maintained on the TUIO website, which was established in 2009.5

3 http://www.multitaction.com/hardware

4 http://www.interactive-scape.com

5 http://www.tuio.org

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

http://www.multitaction.com/hardware
http://www.interactive-scape.com
http://www.tuio.org

5
R E A C T I V I S I O N : A C O M P U T E R - V I S I O N
F R A M E W O R K F O R TA B L E - B A S E D TA N G I B L E
I N T E R A C T I O N

5.1 introduction

The second paper of this cumulative thesis includes the first compre-
hensive publication of the reacTIVision framework in its version 1.3,
representing the implementation of the initial Tangible Abstraction
Framework. The following paper has been reformatted and corrected
without any changes to its original content.

5.1.1 Co-Author

Ross Bencina rossb@audiomulch.com
then: Music Technology Group, University Pompeu Fabra, Spain.
now: Sonic Fritter Pty Ltd, Melbourne, Australia.

5.1.2 Context

This paper has been selected for publication at the First International
Conference on Tangible Interaction1 which took place from February 15-
17 2005 in Baton Rouge, Louisiana. Together with its companion pa-
per on the Reactable[34] it represents one of the most cited publica-
tions of this conference series and has been awarded with the Lasting
Impact Student Award2 at the 10th edition of the TEI conference.

Following two initial publications which primarily focused on the
definition[35] and generation[36] of the fiducial tracking engine, this
publication discusses the overall design of the reacTIVision frame-
work itself as a feature complete reference implementation of the ini-
tial TUIO specification.

While the included amoeba fiducial design and libfidtrack imple-
mentation by Ross Bencina represent an improved implementation
of the initially employed d-touch[26] concept by Enrico Costanza,
the core design of the reacTIVision framework is generally invari-
ant of the actual fiducial tracking method. Therefore reacTIVision is
described as an extensible computer vision framework for various
marker-based object and finger tracking methods, which primarily fo-
cuses on the representation of abstract tangible interface components
on interactive surfaces. In addition to the standalone application, this
also constitutes an initial reference implementation of the complete
TUIO framework through a series of client implementations for sev-
eral programming languages and environments.

1 https://tei.acm.org/2007/

2 https://tei.acm.org/2016/

23

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

mailto:rossb@audiomulch.com
https://tei.acm.org/2007/
https://tei.acm.org/2016/

5.2 original publication 24

5.2 original publication

5.2.1 Abstract

This article provides an introductory overview to first-time users of
the reacTIVision framework – an open-source cross-platform computer-
vision framework primarily designed for the construction of table-
based tangible user interfaces. The central component of the frame-
work is a standalone application for fast and robust tracking of fidu-
cial markers in a real-time video stream. The framework also defines
a transport protocol for efficient and reliable transmission of object
states via a local or wide area network. In addition, the distribution
includes a collection of client example projects for various program-
ming environments that allow the rapid development of unique tan-
gible user interfaces. This article also provides a discussion of key
points relevant to the construction of the necessary table hardware
and surveys some projects that have been based on this technology.

5.2.2 Introduction

The reacTIVision framework has been developed as the primary sen-
sor component for the reacTable [37], a tangible electro-acoustic mu-
sical instrument. It uses specially designed visual markers (fiducial
symbols see Fig.4) that can be attached to physical objects. The mark-
ers are recognized and tracked by a computer vision algorithm opti-
mized for the specific marker design [36] improving the overall speed
and robustness of the recognition process. These fiducial marker sym-
bols allow hundreds of unique marker identities to be distinguished
as well as supporting the precise calculation of marker position and
angle of rotation on a 2D plane.

reacTIVision and its components have been made available under a
combination of open source software licenses (GPL, LGPL, BSD) and
can be obtained both as ready to use executable binaries and as source
code from a public SourceForge site. This document describes the
features of reacTIVision 1.3 which has been released in conjunction
with the publication of this article. The reacTable software website3

provides further information about the project.

5.2.3 Architecture

reacTIVision has been designed as a distributed application frame-
work rather than an object code library. Each component of the sys-
tem is implemented as a separate executable process. Communication
between components is achieved using a published protocol. This de-
sign simplifies use for novice programmers and facilitates integration
with popular programming environments such as Processing and
Pure Data. The architecture also allows the execution of framework

3 http://reactivision.sourceforge.net/

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

http://reactivision.sourceforge.net/

5.2 original publication 25

components on different machines, which can be useful in certain
installation contexts.

Figure 3: reacTIVision diagram

This article provides an introductory overview to first-time users of
the reacTIVision framework – an open-source cross-platform computer-
vision framework primarily designed for the construction of table-
based tangible user interfaces. The central component of the frame-
work is a standalone application for fast and robust tracking of fidu-
cial markers in a real-time video stream. The framework also defines
a transport protocol for efficient and reliable transmission of object
states via a local or wide area network. In addition, the distribution
includes a collection of client example projects for various program-
ming environments that allow the rapid development of unique tan-
gible user interfaces. This article also provides a discussion of key
points relevant to the construction of the necessary table hardware
and surveys some projects that have been based on this technology.

Recognition Component The reacTIVision application acquires im-
ages from the camera, searches the video stream frame by frame for
fiducial symbols and sends data about all identified symbols via a
network socket to a listening application. The reacTIVision applica-
tion has been designed in a modular way, making it easy to add new
image recognition and frame processing components. The code base
is cross-platform with builds for all three major operating systems,
Windows, Mac OS X and Linux. It has been written in portable C++
code, combined with platform-dependent frame acquisition compo-
nents. The video acquisition framework is also available separately
as open source software under the name PortVideo.4

5.2.3.1 Communication Component

ReacTIVision defines its own communication protocol TUIO [38] that
was specifically designed for the needs of tabletop tangible user in-
terfaces: encoding and transmitting the attributes of tangible artifacts

4 http://portvideo.sourceforge.net/

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

http://portvideo.sourceforge.net/

5.2 original publication 26

that are found on a table surface. In order to provide fast and reliable
communication with local and remote client applications the protocol
layers a redundant messaging structure over UDP transport. TUIO
defines a set of Open Sound Control [27] protocol messages. These
messages constantly transmit the presence, position and angle of all
found symbols along with further derived parameters. On the client
side these redundant messages are then decoded to generic add, up-
date and remove events corresponding to the physical actions that
have been applied to each tangible object. In order to achieve max-
imum compatibility with existing musical application environments
reacTIVision can alternatively send MIDI [39] control messages that
can be individually configured for each fiducial symbol. However,
due to the various limitations of MIDI, such as bandwidth and data
resolution, TUIO is the recommended and default transport layer.

5.2.3.2 Client Components

In order to facilitate the development of tangible interface applica-
tions the reacTIVision framework provides a large collection of exam-
ple clients for a variety of programming languages including C++, C#,
Java, Processing and Pure Data. Example clients provide a full TUIO
client implementation that decodes the messages to generic interface
events and draws the results into a graphical window or simply prints
them to the console. Additional unsupported example projects are
available for SuperCollider, Max/MSP and Flash. The TUIO simula-
tor written in platform independent Java can be used to simulate a
table environment during the initial development phase.

5.2.4 Fiducial Engines

This section gives some background regarding the history, design,
evolution, and capabilities of the marker tracking implementations
employed by reacTIVision. After some initial experiments with pub-
licly available marker systems such as ARToolkit [17], the first re-
acTable prototype made use of E. Costanza’s original D-touch [26]
code, which was kindly provided by its author. Further development
of the reacTable generated requirements for more compact symbol
sizes as well as improved processing speed for real time musical in-
teraction. This first lead to a reimplementation of the d-touch track-
ing algorithm with significant performance gains. Subsequently the
fiducial marker geometry was redesigned to take advantage of a ge-
netic algorithm, which minimized marker size and facilitated a more
efficient tracking algorithm. All three fiducial recognition engines (d-
touch, classic and amoeba) are available within the reacTIVision appli-
cation, with the most recent and reliable amoeba engine as the default.
In all three fiducial engines the source image frame is first converted
to a black & white image with an adaptive threshold algorithm. This
image is then segmented into a region adjacency graph reflecting the
containment structure of alternating black and white regions. This
graph is searched for unique tree structures, which are encoded into

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

5.2 original publication 27

the fiducial symbols. Finally the identified trees are matched to a dic-
tionary to retrieve unique marker ID numbers.

5.2.4.1 Amoeba Engine

The highly compact geometry of the amoeba fiducials was obtained
by a genetic algorithm. This GA optimized the fiducial appearance
using a set of fitness functions targeting shape, footprint size, center
point and rotation angle accuracy. The current set distributed with re-
acTIVision contains 90 different symbols that have been chosen from
a pool of 128 with certain tree structure constraints. In this case all
symbols have 19 leaf nodes and a maximum tree depth of 2. The lim-
itation to specific tree structure constraints allows the exclusion of
other structures found in noise, providing higher robustness of the
algorithm by avoiding the detection of false positives. The position
of an amoeba symbol is calculated as the centroid of all found leaf
nodes (small circular monochrome blobs), which provides sub-pixel
accuracy. The orientation of the marker is calculated as the vector
from the marker centroid to the centroid of all black leafs which are
distributed in the upper part of the symbol. A second fiducial set used
internally for reacTable installations provides roughly 300 extra sym-
bols that are usually printed onto business cards and handed out to
the public. Just as with the standard symbol set, unique fiducial IDs
are derived by comparing the detected tree structure to a dictionary
of known trees.

5.2.4.2 Finger Tracking

As an initial solution for the tracking of fingertips in a multi-touch
surface the simplest amoeba fiducial, with a single tree branch (see
Fig.4d) can be used as a small finger sticker. While this method is not
as elegant as other optical finger tracking methods [40] it has proven
to be simple and robust without any additional computational over-
head since it can be detected using the existing fiducial tracking algo-
rithm. Due to the minimal nature of the symbol, no rotation angle can
be calculated from its structure, although in the case of tracking the
finger as a simple pointer the position information alone is sufficient.
One drawback of this symbol’s simple tree structure is the possibility
of finding false positives in noise. In most cases false-positives can be
filtered by taking into account the presence and trajectory of potential
finger markers in past frames and neglecting the appearance of false
positives in isolated frames. Recent reacTIVision development builds
contain an improved plain finger tracking component, without the
need of the described finger symbol sticker. This layer is fully taking
advantage of information already provided by the segmenter in order
to identify and track fingertips that are touching the table surface, at
no significant additional computational cost. This additional plain ob-
ject tracking also provided a method of double-checking objects that
have been lost by the fiducial tracking core, which significantly im-
proved the overall tracking robustness. Due to the relatively recent

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

5.2 original publication 28

addition to the code base, this feature along with formal compara-
tive results on its performance will be made available together with a
future reacTIVision release.

Figure 4: symbols a) amoeba b) classic c) d-touch d) finger

5.2.4.3 Classic Engine

The "classic" fiducial tracking engine uses the original d-touch fidu-
cial set (figure 2b) and geometry evaluation scheme while its code-
base has been re-implemented from scratch. The dice shaped fiducial
symbols can represent 120 different identities that are obtained by
permutations of the positions of regions with two to six sub-regions.
The primary region with a single sub region is used for the deter-
mination of the rotation angle and is therefore always placed in the
upper left corner of the symbol. As already mentioned above, the dice
symbols do not optimally use the available space and the calculation
of the fiducial center point and rotation angle is not as accurate as
with the amoeba set.

5.2.4.4 D-Touch Engine

The original d-touch code was eventually released publicly under
the GPL license and has since been integrated into reacTIVision. Al-
though D-Touch can use a variety of different topology based sym-
bol sets, including the original dice set used by the classic fiducial
tracking engine, the implementation embedded in reacTIVision uses
a reduced subset of the dice style symbols with 24 permutations of
regions with one to four sub-regions. The extra region needed for
angle calculation is a single empty box on top of the symbol, which
occupies less space then the main code regions.

5.2.5 How to Build a Table Interface

5.2.5.1 Table Construction

The design of a table depends on both general application require-
ments and the installation environment. For a musical instrument the
table needs to be mobile and easy to assemble and disassemble, for
public installation the table needs to be robust and accessible. In many
cases a standard glass table might be sufficient for building a first pro-
totype. Apart from the general structure, the table’s most important

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

5.2 original publication 29

component is its surface. Whether used with or without projection,
it is recommended that the table’s surface be semitransparent, such
as sanded glass or Plexiglas with a blurring coating. One simple way
to achieve a blurring surface is to place a sheet of ordinary tracing
paper on the table. The reason a blurring surface is desirable is that
on transparent surfaces objects can be tracked above the table until
the image loses focus, sometimes leading to unpredictable detection
results. It is usually desirable that the objects are detected only when
they are in contact with the table’s surface, such that they disappear
from the camera’s view immediately when lifted. In addition to im-
proving sensor behavior a semitransparent surface serves as an ideal
projection screen for projected visual feedback, which in many cases
is needed for table-based tangible user interfaces.

5.2.5.2 Camera & Lens

reacTIVision in general will work with any type of camera and lens.
Most of the better quality USB or FireWire webcams with a resolu-
tion of 640x480 at 30fps will be sufficient. For larger tables, indus-
trial grade USB2 or FireWire cameras provide higher resolutions and
frame rates. If DV or video cameras are to be used, they need to
support full frame mode, since an interlaced video signal completely
destroys the structure of fiducial symbols in motion. When work-
ing with any computer vision system, the overall recognition per-
formance is strongly dependent on the source image quality. Image
quality results from a combination of various factors, which include
the camera sensor, the lens quality, the illumination and other impor-
tant camera and lens settings. In general we have found that cameras
with CCD sensors provide much better overall image quality than
CMOS sensors. Cameras with an exchangeable lens mount are to be
preferred. To decrease the minimum distance to a sufficiently large
surface the system needs to use wide-angle lenses. The necessary fo-
cal length of the lens can be calculated as a function of the sensor size,
the distance to the surface and the diameter of the viewable area of
the surface. Be aware that some consumer grade "wide-angle" lenses
may not focus consistently across the full viewing area which can
have detrimental effects on tracking performance. To set up the best
image quality obviously requires that the lens is focused. A simple
focusing procedure is to fully open the iris and then try to achieve
the best possible focus. After that the iris can be slowly closed until a
perfectly sharp image is achieved. In addition to focus, the camera’s
shutter speed needs to be fast enough to avoid motion blur, since long
exposure times will cause blurry images of moving fiducial symbols,
making them more difficult or impossible to recognize. Both narrower
iris and faster shutter speeds result in less light reaching the sensor,
which needs to be compensated by stronger illumination. Low light-
ing levels can also be corrected slightly by increasing the sensor gain,
although too much gain will decrease the image quality by introduc-
ing grainy noise.

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

5.2 original publication 30

5.2.5.3 Illumination

In a camera-projector system the two visual components need to oper-
ate in different spectral bands so they do not interfere with each other.
Since the projector obviously needs to operate in the visible range, the
camera has to work in the infrared (IR) spectrum only. CCD camera
sensors are perfectly sensitive to infrared light, but most of the time
are protected with an IR filter which needs to be removed from the
sensor housing or lens. At the same time the table setup needs to
be illuminated with strong and diffuse IR light, which is completely
invisible to the eye and therefore does not interfere with the table
projection. Suitable light sources are IR LED arrays which are avail-
able in different intensities, alternatively one could use halogen lights,
which produce a lot of IR but need to be equipped with IR pass filters
which can be purchased in any photography shop. These IR pass fil-
ters also need to be applied to the camera in order to filter all visible
light, most importantly from the projection, since the projected image
would otherwise overlay and interfere with the fiducial symbols. In
the case where no projection is required, the setup can operate in the
visible spectrum, significantly simplifying the illumination process.

5.2.5.4 Mirrors and lens distortion

If a camera or projector does not have a sufficiently wide-angle lens,
placing a mirror into the table helps to achieve a larger active sur-
face while maintaining a relatively low table height. Unfortunately
mirrors as well as wide-angle lenses produce distorted images both
for the projection and the camera image.4 reacTIVision comes with
a built-in calibration component which offers a simple mechanism
to correct these distortion errors. In the case of projection the image
needs to be pre-distorted by applying the image as a texture onto
a virtual surface in order to again appear straight on the table sur-
face. The TUIO distortion example code provides a simple graphical
feedback component with built-in distortion engine. Both distortion
components, the reacTIVision sensor application as well as the appli-
cation providing the visual feedback, need to be calibrated in order
to match the physical object position with the virtual projection posi-
tion. See the usage section below for more details on the calibration
process.

5.2.5.5 Computer Hardware

The rest of the hardware can be built from standard off-the-shelf com-
ponents. In many cases a modern dual-core computer will be more
than sufficient to handle both the computer vision component along
with the actual tangible interface application. For self-contained table
setups a laptop or small shuttle PC might be the right choice if ev-
erything needs to fit inside the table. The projector usually resides
underneath the projection surface pointing at a mirror on the table’s
bottom edge, therefore a small form-factor combined with a strong
lamp and an appropriate wide-angle lens are its most important fea-

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

5.2 original publication 31

tures. Since projectors can produce a considerable amount of heat,
appropriate ventilation must be assured to avoid overheating within
the table.

5.2.5.6 Tangibles

Almost any object, including simple wooden or plastic geometric
shapes, everyday objects or artifacts, and even food or vegetables can
be turned into an easily trackable tangible interface component by at-
taching a fiducial marker to it. Ideally the symbol has to be attached
on the bottom side of the object in order to hide it from the user’s
attention and also to avoid possible hand occlusion problems. The
fiducial symbol set can be printed with a laser printer onto ordinary
white office paper. Gray recycled paper is less desirable as it tends
to degrade symbol contrast. Some ink-jet inks are invisible in the
infrared domain and therefore unusable for IR illuminated setups, al-
though such ink can be used to add additional user-readable color
codes to the symbols that stay invisible to the computer vision com-
ponent. In order to protect the symbols from scratches, and color loss,
the printed paper surface can be coated with transparent adhesive
foil, which also simplifies cleaning of the symbol’s surface from dirty
spots that can degrade recognition.

5.2.6 Framework Usage

5.2.6.1 reacTIVision application handling

The main reacTIVision application only provides a very simple GUI
showing the actual camera image and some visual feedback on the
fiducial detection performance. It is generally configured by calling
the application with various command line options at startup and can
be controlled with some key commands during execution. Startup
options include the configuration of the following features. See the
documentation that comes with the application for more details.

• Distortion mode and calibration file
• Fiducial engine alternatives
• TUIO host name and port number
• Optional MIDI transport and configuration file
• Parameter inversion (when using mirrors)

During runtime the following features of the reacTIVision application
can be controlled using simple key commands.

• Switch to calibration mode
• Change the display type
• Verbose on screen and console feedback
• Application control: pause and exit

5.2.6.2 Distortion calibration procedure

This section briefly explains the calibration procedure using the reac-
TIVision sensor application in conjunction with the TUIO distortion

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

5.2 original publication 32

example, made available by Marcos Alonso as part of the reacTIVi-
sion framework. This example application can be extended to take
advantage of its distortion correction functionality. In the calibration
folder that comes with the application package there are two calibra-
tion sheet examples for rectangular and square table setups, which
can also be used for round tables. Print the desired document scaled
to match the size of your visible table surface and place the sheet
onto the table with the calibration grid facing downwards. Start the
TUIO_Distort application and switch to calibration mode by hitting
the ’c’ key. Using the keys ’a,w,d,x’ adjust each vertex on the projected
grid to match the vertices on the sheet. You can navigate between ver-
tices using the cursor keys. After finishing this first calibration step
you can switch the TUIO_Distort application to normal mode by hit-
ting the ’c’ key again while leaving the calibration sheet untouched
in its positions on the table. Now start the reacTIVision application
in distortion mode by providing a grid file with the ’-g’ option. Once
started, switch into calibration mode by hitting the ’c’. In the same
ways as for the calibration procedure of the projected graphics, you
now need to adjust each vertex to match the grid on the sheet by us-
ing the keys mentioned above. After finishing this second calibration
step and exiting the calibration mode by hitting the ’c’ key, both appli-
cations will be synchronized and the projected visual object feedback
should exactly match the physical object positions. You can see a pre-
view the resulting image distortion within reacTIVision by hitting the
’g’ key.

5.2.6.3 Application programming

All of the TUIO client examples for standard object oriented program-
ming languages, such as C++, C#, Java and Processing implement an
event based callback mechanism that notifies registered classes when
objects are added, moved or removed from the table. The same events
are generated for (finger tracking) cursor operations. In general, appli-
cation logic has to implement the TuioListener interface, which defines
various callback methods such as addTuioObj(), updateTuioObj()

and removeTuioObj(). These methods are called by the framework-
supplied TuioClient class, which derives events from the continuous
stream of status information received from the sensor application.
The TuioClient class has to be instantiated and started using the connect()
method at the beginning of the session. It is also necessary to register
all TuioListener classes that need to be notified by the TuioClient using
the addTuioListener() method. The TuioClient operates in its own
thread in the background until it is terminated using the disconnect()
method. For environments such as PureData or Max/MSP, TUIO
client objects are provided that decode events from the TUIO pro-
tocol stream and provide them to the environment via appropriate
messages.

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

5.2 original publication 33

5.2.7 Example Projects Based on reacTIVision

5.2.7.1 reacTable

This table-based instrument has been the driving force for the devel-
opment of the reacTIVision framework, since the reacTable’s real-time
music interaction and expressivity demand very high performance
and recognition robustness from the sensor component. The physi-
cal artifacts on the reacTable surface allow the construction of dif-
ferent audio topologies in a kind of tangible modular synthesizer or
graspable flow-controlled programming language. Several users can
simultaneously manipulate various objects and control additional fea-
tures with finger gestures. The reacTable web documents the various
instrument features in greater detail.5

5.2.7.2 recipe-table

This project, which was shown during the Ars Electronica Festival 2005,
has been developed by a group of students within the Interface Culture
Lab at the University of Art and Industrial design in Linz. The recipe
table is a fully working prototype of a future kitchen environment,
where food and food products placed onto an interactive surface are
detected and the system suggests a series of possible recipes that can
be cooked with those ingredients. Changing the ingredients position
in relation to each other allows the user to navigate within the possi-
ble recipes according to his or her personal preferences. reacTIVision
has been used to identify and track the labeled products, simulating
a barcode tracking system. In the near future such an environment
could identify and track RFID labels that will soon be incorporated
into standard consumer products. Further information about this in-
telligent environment and its creators can be found on the project
web page.6

5.2.7.3 Blinks & Buttons

Blinks is a table-top interactive installation by the German artist Sascha
Pohflepp, where projected photos are distributed on an interactive sur-
face. Moving a glass prism over a photo causes it to refract the light
to the sides of the table. This light contains projections of other pho-
tos taken at exactly the same moment in other locations. The user can
browse the image collection over time. reacTIVision has been used to
track the prism controller in conjunction with the Processing appli-
cation. You can find more information about this installation at the
project’s web site.7

5 http://mtg.upf.edu/project/reactable

6 http://www.recipe-table.net/

7 http://blinksandbuttons.net

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

http://mtg.upf.edu/project/reactable
http://www.recipe-table.net/
http://blinksandbuttons.net

5.2 original publication 34

Figure 5: examples a) reacTable b) recipe-table c) blinks

5.2.8 Future Work

The reacTIVision framework is still being actively developed and the
existing code-base will be improved and new features added. An im-
portant improvement in the next release will be the inclusion of the
plain finger tracking layer, which doesn’t require fiducial stickers on
the fingertips. We are also planning to include additional fiducial en-
gines such as ARToolkit, Barcodes and Semacode decoding into re-
acTIVision. Video acquisition under Linux needs to be extended to
support a wider range of cameras, eventually by incorporating the
promising unicap8 library, which provides a uniform camera access
method for Linux operating systems.

5.2.8.1 Acknowledgments

The authors would like to thank the Music Technology Group at the
Universitat Pompeu Fabra for supporting the development of this
publicly available software, as well as the rest of the reacTable team,
Sergi Jordà, Günter Geiger and especially Marcos Alonso who support
and contribute to this framework in various ways. We would also like
to thank the numerous reacTIVision users for their suggestions and
encouragement. Last but not least we are grateful for the initial sup-
port of Enrico Costanza by making the development of this framework
possible with his earlier D-Touch contribution.

8 http://unicap-imaging.org/

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

http://unicap-imaging.org/

5.3 remarks & analysis 35

5.3 remarks & analysis

This paper describes the feature set and architecture of reacTIVision
in its historical version 1.3, which was released in November 2006.
Constituting a feature complete reference implementation of a TUIO
1.0 tracker, it serves as a standalone computer-vision based applica-
tion framework, providing generic object and finger tracking function-
ality, which is then encoded and transmitted through the /tuio/2Dobj
and /tuio/2Dcur profiles.

5.3.1 Modular Architecture

While Bencina’s libfidtrack implementation provides the core fidu-
cial tracking functionality in addition to Costanza’s original d-touch
tracker, reacTIVision fundamentally serves as a generic and modu-
lar framework, which was designed for the integration of arbitrary
computer-vision based tracking tasks not only limited to visual mark-
ers attached to physical tokens, and has as such been designed inde-
pendently from any specific symbol types. It therefore establishes a
modular architecture, which consists of several layers:

• PortVideo constitutes an underlying cross-platform camera ac-
quisition layer, which provides a simple and uniform applica-
tion programming interface for various digital cameras. In ad-
dition to the initial camera configuration and setup, it delivers
an 8bit greyscale (or alternatively RGB color) frame buffer (in-
cluding its efficient conversion from native camera formats) to
the upper layers.

• The core image processing layer allows the integration of vari-
ous FrameProcessors, which perform various tasks such as image
calibration, binary thresholding, image segmentation as well as
the integration of the actual fiducial tracking algorithms. These
FrameProcessors provide basic buffer in- and output interfaces,
as well interactive controls for the initial and online configura-
tion of internal parameters.

• The FiducialTracker module retrieves the raw fiducial symbol
data from each individual tracking library, and intends to main-
tain a robust global representation of all presently available sym-
bols. This also includes additional position and angle filtering
methods, as well as the application of a general heuristic model
in order to improve the overall tracking stability.

• After the the analysis of each camera frame, the final TuioServer
module encodes all currently present tangible object states through
the /tuio/2Dobj profile attributes, which are transmitted to the
TUIO client for further processing at the application layer.

• A global VisionEngine module manages the camera frame acqui-
sition and the processing order of the following FrameProcessor
queue. In addition to a simple XML configuration, it also pro-
vides a graphical user interface for the interactive application
control and visualization.

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

5.3 remarks & analysis 36

5.3.2 Diffuse Illumination Surface

Due to the rather experimental nature of our early Reactable hard-
ware and the resulting performance limitations such image distortion
(caused by the use a convex mirror instead of a wide-angle lens) and
limited contrast (caused by the use of tracing paper as projection sur-
face), a robust native finger tracking implementation was virtually
impossible to achieve. As stated in the paper, the Reactable is based
on diffused infrared illumination, which at that time also resulted in
additional hot-spot reflections disturbing the overall image quality.
This problem could have been partially resolved by the integration
of an additional FTIR based illumination system, and thus increasing
the contrast of the finger blobs, although this would have affected the
overall system complexity and cost.

Eventually our solution was the engineering of a dedicated table
surface, which was optimized for the use in a camera-projection sys-
tem with diffuse infrared illumination. On the one hand this acrylic
surface was internally pigmented in order to achieve a proper projec-
tion quality, and also had a matte finish on the lower side in order to
avoid the previously disturbing reflections. A properly adjusted dif-
fused top surface also maintained one of the major advantages of the
tracing paper, which provided a clear image for fiducial symbols in
contact with the surface, but on the other hand blurred all symbols
when lifted. The additional use of high quality wide-angle lenses in
conjunction with an industrial camera system finally resulted in an
adequate image quality and contrast, which allowed a sufficiently ro-
bust fiducial tracking and finger identification.

5.3.3 Integrated Finger Tracking

After these improvements to the Reactable hardware, our initial hack
of using a set of small fiducial symbols as finger stickers, could be
replaced with a more natural native finger tracking method. On the
other hand, one of the (few) benefits of the fiducial-sticker workaround
was to avoid an additional image processing step for the finger track-
ing. In order to maintain this significant performance advantage, we
were actually employing the existing image segmentation data from
the fiducial tracking engine, by retrieving possible candidate blobs
within a certain size range without the need for any additional ex-
pensive image processing. These candidate regions were then simply
analyzed by calculating the deviation error from the typical circular
and/or elliptic finger shape, when in contact with the surface.

While this method proved to be sufficiently robust, when used in
conjunction with the above surface configuration, many casual reac-
TIVision users found it difficult to achieve a stable finger tracking
performance. On the one hand this was mainly caused by hardware
factors mentioned above, such as reflection problems, limited image
quality and contrast as well as poor infrared illumination and envi-
ronmental light. On the other hand, this was also partially caused

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

5.3 remarks & analysis 37

by our Locally Adaptive Thresholding algorithm, which had been opti-
mized to achieve an optimal binary image for the primary fiducial
tracking task. In some circumstances this method unfortunately pro-
duces image artifacts, which may negatively affect the quality of our
finger tracking method. Since to date we couldn’t find an improved
thresholding algorithm with appropriate results for both tasks, we
resolved these issues by improving the overall image contrast, using
stronger infrared illuminators, high quality cameras and lenses, band-
pass filters and the above mentioned surface structure.

5.3.4 Reactivision Projects

In addition to the Reactable, this paper also lists a few example projects
which at the time of writing had been realized by using the reacTIVi-
sion and TUIO framework. Since apart from its principal research
focus, this application framework also had been developed for teach-
ing purposes in the field of Tangible User Interfaces, some of these
assignments had been developed by our own students at the Interface
Culture Lab in Linz, the Pompeu Fabra University in Barcelona and
Catholic University of Porto as well as many other universities world-
wide. After this publication, and partially also due to the growing
popularity of the Reactable, this software has been employed for the
realization of numerous scientific, artistic and educational interactive
table projects from an active community. Apparently this was also
supported by its ease of use, free availability, and the open-source
nature of the whole framework, which also provided a collection of
example projects to start with.

Although reacTIVision primarily had been designed for the particu-
lar use case of horizontal tabletops, it had been interesting to observe
alternative usage scenarios of its tangible token tracking technology.
While vertically oriented surface environments are usually designed
for touch-only interaction due to to gravitational limitations, the Roy
Block game by Sebastian Schmieg9 incorporates the difficulties of ver-
tical tangible interaction design into the actual game mechanics. An-
other noteworthy example is the expansion of the interaction space to
the dimensions of a whole room, incorporating large-scale tangibles
such as in the BuildaSound[41] application by Monika Rikić. Finally
Tristan Hohne resolved the challenge of the seamless integration of
fiducial tracking into the graphic design of his experimental interac-
tive book project Hirngespinster10 with highly aesthetic results.

As of today this individual publication has accumulated more than
420 citations according to Google Scholar, which are primarily from
researchers that employ the reacTIVision platform for tangible inter-
face research. But since outside the scientific community there are
hundreds of otherwise unreferenced reacTIVision projects, we are
maintaining a continuously updated list of selected examples on a
dedicated Vimeo channel.11

9 http://file.org.br/file_prix_lux/sebastian-schmieg

10 http://vimeo.com/6329622

11 http://vimeo.com/channels/reactivision

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

http://file.org.br/file_prix_lux/sebastian-schmieg
http://vimeo.com/6329622
http://vimeo.com/channels/reactivision

6
T H E R E A C TA B L E * : A C O L L A B O R AT I V E M U S I C A L
I N S T R U M E N T

6.1 introduction

The third publication of this cumulative thesis discusses the collabora-
tive aspects of the tangible modular synthesizer Reactable, represent-
ing an application of the initial Tangible Abstraction Framework.
The following paper has been reformatted and corrected without any
changes to its original content.

6.1.1 Co-Authors

The following co-creators of the Reactable contributed to the overall
musical instrument design, sound synthesizer implementation and
visual feedback design, while my role as first author concentrates on
the interaction design aspects and the tangible platform development.
Sergi Jordà sergi@reactable.com
then: Music Technology Group, University Pompeu Fabra, Spain.
now: Reactable Systems SL, Barcelona, Spain.
Günter Geiger gunter@reactable.com
then: Music Technology Group, University Pompeu Fabra, Spain.
now: Julius Blum GmbH, Höchst, Austria.
Marcos Alonso marcos@reactable.com
then: Music Technology Group, University Pompeu Fabra, Spain.
now: Apple Inc., Cupertino, California.

6.1.2 Context

This publication has been presented at the 15th IEEE International
Workshop on Enabling Technologies: Infrastructure for Collaborative Enter-
prises1 which took place from 26-28 June 2006 in Manchester, UK.

While there exist several relevant previous[37] and posterior[34]
publications by the authors’ collective on the Reactable, including two
first-authored publications on the interaction design[24] and the ob-
ject design[42] of this tangible musical instrument, this publication
discusses the more relevant collaborative design aspects in the con-
text of a distributed tangible interaction framework.

Although the Reactable is not in the main focus of this dissertation,
its feature requirements were the motivation for the development of
the fundamental tangible interaction technologies provided through
the TUIO and reacTIVision framework. Thus the Reactable represents
a comprehensive application scenario, showcasing the tangible object
representation and multi-user interaction capabilities of the platform.

1 http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4092163

38

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

mailto:sergi@reactable.com
mailto:gunter@reactable.com
mailto:marcos@reactable.com
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4092163

6.2 original publication 39

6.2 original publication

6.2.1 Abstract

The reacTable* is a novel multi-user electro-acoustic musical instru-
ment with a tabletop tangible user interface. In this paper we will
focus on the various collaborative aspects of this new instrument as
well as on some of the related technical details such as the networking
infrastructure. The instrument can be played both in local and remote
collaborative scenarios and was designed from the very beginning to
serve as a musical instrument for several simultaneous players.

6.2.2 The reacTable*

The reacTable*, is a novel multi-user electro-acoustic musical instru-
ment with a tabletop tangible user interface. Several simultaneous
performers share complete control over the instrument by moving
physical artefacts on the table surface while constructing different au-
dio topologies in a kind of tangible modular synthesizer or graspable
flow-controlled programming language.

The instrument hardware is based on a translucent round table. A
video camera situated beneath, continuously analyzes the table sur-
face, tracking the nature, position and orientation of the objects that
are distributed on its surface. The tangible objects, which are phys-
ical representations of the components of a classic modular synthe-
sizer, are passive, without any sensors or actuators; users interact by
moving them, changing their position, their orientation or their faces.
These actions directly control the topological structure and parame-
ters of the sound synthesizer. A projector, also from underneath the
table, draws dynamic animations on its surface, providing a visual
feedback of the state, the activity and the main characteristics of the
sounds produced by the audio synthesizer. The idea of creating and
manipulating data flows is well acquainted in several fields, such as
electronics, modular sound synthesis or visual programming, but the
reacTable* is probably the first system that deals with this connec-
tivity paradigm automatically, by introducing Dynamic Patching [24]
where connections depend on the type of objects involved and on the
proximity between them. By moving these objects on the table sur-
face and bringing them into proximity with each other, performers
construct and play the instrument at the same time, while spinning
them as rotary knobs allows controlling their internal parameters.

6.2.2.1 Current State

The reacTable* structure and components have been discussed in de-
tail in some earlier publications.[37] Since then, apart from general
refinements of the synthesizer and the general system stability, the
most significant improvements have been made to the table hard-
ware itself and to the computer vision sensor component, which we
have published recently as an open source software framework. The

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

6.2 original publication 40

reacTIVision application along with example projects for various pro-
gramming environments is available online.2

The reacTable* currently exists in two variations: the concert table,
which sports a highly sophisticated and precisely controllable syn-
thesizer for the professional musician. This table setup was used for
the first reacTable* concert. The second version has been configured
for public installations, with a more playful and popular sounding
synthesizer, which was mostly designed for entertainment and edu-
cational purposes. This configuration has been shown at the AES and
ICMC conferences in Barcelona, ICHIM in Paris and the Ars Electron-
ica Festival in Linz and was received very positively by the audience.
The graphics synthesizer also is flexibly configurable through XML
configuration files, which allow the simple adaptation of the visual
appearance for various installation contexts. As a showcase demo
we developed a commercial advertisement installation for a popular
brown soft-drink manufacturer.

6.2.2.2 Learning from Musical Control and Performance

Various reasons turn real-time computer music performance into an
ideal field for the experimental exploration of novel forms of human-
computer-interaction:

• It is an environment that combines outstandingly, expression
and creativity with entertainment; freedom with precision, rigor
and efficiency [43]

• Users are required to have an open but precise and rather com-
plex control over multi-parametric processes in real-time.

• Playing and creating music with the help of digital tools can be
a social and collective experience that integrates both collabo-
ration and competition. Moreover, this experience can also be
addressed to children.

• Music performance provides an ideal test bed for studying and
comparing use and interaction by both dilettantes and experts,
both children and adults.

Early and definite examples of this music-HCI synergy can be found
for example, in the research and development taken by William Bux-
ton during the 70s and 80s (e.g [44] [45]). We believe that music per-
formance and control (both traditional and computer supported) can
constitute an ideal source of inspiration and test bed for exploring
novel ways of interaction, specially in highly complex, multidimen-
sional and continuous interaction spaces such as the ones present
when browsing huge multimedia databases. In these types of fuzzy
interaction environments, exploration can follow infinite paths, re-
sults can hardly be totally right or wrong, and the interaction pro-
cesses involved could be better compared with playing a violin that
being reduced to the six generic virtual input devices that constitute
the GKS standard (locator, stroke, valuator, pick, string and choice).

2 http://reactivision.sourceforge.net/

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

http://reactivision.sourceforge.net/

6.2 original publication 41

Figure 6: reacTable* collaboration scenarios

6.2.3 Collaborative Music Models

6.2.3.1 Quick Overview

There are almost no traditional and just a few contemporary digital
collaborative instruments available at the moment. Some traditional
Instruments like the piano can be played by four hands although
they were not primarily designed for that task. In recent years many
musical instrument designers came up with the idea of creating in-
struments specifically for collaborative music.[46] An early example
closely related to the reacTable* is Blaine’s Jam-O-Drum [47], a musi-
cal installation which encourages visitors to collaboration. In extreme
cases, such as the Tooka [48], the instrument only works at all when
played by trained and synchronized players.

An illustrative example of a collaborative sound installation is the
Public Sound Object [49], which tries to explore several models of re-
mote collaboration in the context of musical practice. The PSO allows
network musicians to join a virtual jam session in an abstract musi-
cal space, where proxy bouncing ball objects can be remote controlled
via a web application. The actual sound synthesis is performed on the
installation site and streamed back to the players. Although the PSO
architecture has to deal with a significant amount of network latency
(time between control action and acoustic result) it overcomes this
latency by integrating it as an essential part of the installation. For
a more detailed review of collaborative music concept see Barbosa’s
survey on "Displaced Soundscapes" [50]

6.2.3.2 Collaborative reacTable* Models

The reacTable* already had been planned as a collaborative instru-
ment from the very beginning. A table can be considered to be an al-
ready culturally defined collaborative space. Tables are places where
various people can meet and discuss and where people together can

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

6.2 original publication 42

develop their ideas and work on joint projects. Architects work over
their plans and models, managers develop their project plans and
generals used to move their troops on strategic table models.

These concepts have been widely used and translated to the digi-
tal domain by the introduction of Tangible User Interfaces (TUI) [2],
where a large group of projects and interfaces as well have been im-
plemented using table interfaces just because of their collaborative
nature. Physical objects on a table surface, especially on a round table
set-up, are equally accessible for direct manipulation for any partici-
pant at the same time.

Figure 6 shows a summary of some possible collaboration models.
This includes local collaboration on the same table, and remote collab-
oration using distant physical or virtual table setups. Additional mu-
sical instruments or the audience can collaborate with the reacTable*
players on stage.

Local Collaboration

The current reacTable* is a round table with a diameter of exactly
one meter providing an active surface with a diameter of 80cm. With
this size the ideal amount of simultaneous players ranges from two to
four players at the same time. Of course one could imagine even more
players being involved but due to the spatial limitations of a table of
the current size, the surface of a quarter of a table represents the bare
minimum for reasonable playing. For local players two collaboration
styles have emerged so far:

• Spatial separation:
An additive collaboration [46] style, where each player plays in
a dedicated zone of his choice, rather defending the territory
than collaborating directly with the other players. Each player
builds and plays personal instrument patches aside with the
other players. The interaction between players basically is simi-
lar to that of the members of a band or an orchestra.

• Shared space:
An multiplicative collaboration [46] scenario, where the players
are building and playing their instrument patches together in a
real collaborative process. One player can construct a basic in-
strument, while the second interferes by adding, removing or
manipulating additional objects of the patch. Due to the very
volatile nature of the dynamic patching paradigm this collabo-
ration has to be planned and performed very carefully in order
to maintain a constructive nature.

Additional musical instruments on stage, such as a trombone or vi-
oloncello for example, can participate in a reacTable* session by rep-
resenting their musical output as a sound source on the table. In the
most simple scenario the reacTable* players alone have the full con-
trol over the further processing and mixing of such a sound source
as physically available object on the table. One could also imagine

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

6.2 original publication 43

though, that the instrument players themselves can control the posi-
tion of a virtually present (projection only) sound source on the table,
as well as controlling some other control parameters by moving on
stage and other additional gestural control performed by the player.

Remote Collaboration

The second reacTable* collaboration scenario involves the connection
of two or more table instruments placed at distant locations. In the
concert configuration two reacTables one in Austria and one Spain
were connected via a conventional internet connection, though techni-
cally the maximum number of interconnected tables can be ex-tended
easily. Conceptually the two physical table surfaces virtually melt into
a single table surface, where players at both locations are playing
within the same logical table space. This extends the properties of the
local collaboration scenarios we mentioned above to a global context.

Physical objects that are moved on the local table in Barcelona ap-
pear as a virtual (projected) object on the remote table in Linz. Both
local and remote objects behave the same way, the only difference is
that local players of course can not touch or move the virtual objects
from the distant table. In a typical collaborative instrument building
scenario, a player in Barcelona can place a sound generator object
on his table. The object is recognized and located on the surface by
the sensor component and a graphical representation of the object is
projected underneath the physically present object. At the same time
this object’s properties data is transmitted to the remote table in Linz,
where the same graphical representation is projected at exactly the
same position as on the table in Barcelona. Then the player in Linz can
place a sound effect on the table surface and after the same process of
recognition, transmission and display, the sound effect appears pro-
jected on the table in Barcelona. As we will explain in the techni-
cal section below, the tables just interchange low-bandwidth control
data and no audio data at all. The actual resolving of the dynamic
patches and the final sound synthesis are performed independently
on both installation sites. Preliminary tests during the development
phase showed that under normal conditions with deterministic syn-
thesis objects the resulting musical output was virtually the same on
both locations, with minimal differences in the time of appearance
and removal of synthesizer modules. Some modules causing a non-
linear behavior such as a feedback object could temporarily lead to
significantly different sonic results.

In a concert situation the players themselves are quite aware of the
fact that those spooky projected objects are moved by some real hu-
man players at a distant location. For the audience though this might
not be that clear at all. Hence in order to improve the sense of pres-
ence an additional projection of a live video transmission showing
the table and the players performing at the remote location proved
to be a rewarding addition to the overall experience of this remote
collaborative performance.

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

6.2 original publication 44

Regarding the maximum amount of players in a networked session
we found that the same rule of thumb as for the local collaborations
scenario can be applied: Due to the spatial limitations of the table
surface four players are a reasonable maximum. Eventually even four
tables with one to two players each would be possible, although not
all players are should be active at the same time. The players during
the TeleSon concert entered and left at predefined points of the piece,
while only during the finale all four players were present at the same
time.

Remote Participation

During the early development phase of the reacTable* prototype, the
whole dynamic patching and synthesizer infrastructure was designed
without an actual physical reacTable*. The use of a software simula-
tor of the complete physical table and its sensor component allowed
the rapid development of the basic instrument features without the
need of caring too much about possible real world limitations. This
software simulator proved also to be quite useful for the composer
of the inauguration piece, because it provided a much more conve-
nient infrastructure for experimentation and rehearsal. This software
simulator, which actually also includes all the necessary network-
ing infrastructure, has been written in the platform-independent Java
programming language as well as the synthesizers also are imple-
mented in cross-platform environments such as Pure Data (PD) [51].
This portable design allows an easy distribution and installation of
the client software to remote machines. Since the development of the
Pure Data browser plug-in [52] by the reacTable* team, even a distri-
bution of an embedded web-application has become possible.

In a typical remote participation scenario, the software simulator
clients can join an existing remote collaboration session of one or
more physical reacTables. The software simulator fully simulates a
complete reacTable* setup and therefore shows exactly the same be-
havior as a real table, although this simulations cannot provide the
interaction flexibility of a tangible interface. Simulator objects equally
appear as projected virtual objects on the remote tables; remote ob-
jects equally appear in the simulator, but cannot be moved by the
users. Again the dynamic patch generation and the actual sound syn-
thesis are fully performed within the local simulator software.

In an alternative participation scenario, some members of the lo-
cal audience at a reacTable* concert who are equipped with a PDA
or modern smart-phone could download a stripped down version
of the Java table simulator and then control a few virtual synthesis
objects on stage via a wireless network or Bluetooth connection. We
have developed a preliminary prototype for an off-the-shelf PocketPC
handheld computer by porting the existing software to this platform
and adapting the interface to the limitations of a small touch-screen
interface.

We are also currently working on another setup where a second
tangible interface is sending pitch or temporal control to a connected

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

6.2 original publication 45

reacTable*. The scoreTable* basically is a sequencer, where objects
placed on the table trigger musical events when they are detected
by a radar-style sweep. Additional players can compose musical or
rhythmical patterns that directly interact with the synthesizer objects
on the reacTable*.

6.2.4 TeleSon Invention #8

During the preparations for the International Computer Music Confer-
ence 2005, which took place in Barcelona and was organized amongst
others by the Music Technology Group it was decided to commission
the composition of a piece for the reacTable* from a professional com-
poser. As the result of an official competition Chris Brown was chosen
to write and perform this piece for the inauguration concert of the
ICMC 2005. Brown has been closely involved in the final development
of the reacTable* and his constant feedback during the development
of the piece and the synthesizer provided valuable input for the final
instrument mappings itself.

The resulting piece TeleSon, a composition for two reacTables and
four players was finally performed twice in a networked performance
between Austria and Spain. Chris Brown and Günter Geiger were per-
forming in Barcelona, while Martin Kaltenbrunner and Marcos Alonso
were playing in Linz. The first concert was the actual ICMC inau-
guration concert, which took place on Sunday, September 4th in the
premises of the SGAE in Barcelona and at the Interface Culture exhibi-
tion in Linz. The second concert was performed the following Mon-
day, September 5th between the Galeria Metronom in Barcelona and
the Ars Electronica Centre Sky Media Loft, and was attended in sum
by around 600 persons at both locations.

6.2.5 Networking Infrastructure

Networked reacTables interchange their objects’ ID, location and ori-
entation by transmitting UDP packages via a conventional IP network
using the TUIO [38] protocol which is based on Open Sound Control
(OSC) [27] messages. UDP assures the fastest transport and the lowest
latency method, while TUIO provides the necessary redundancy to
guarantee a stable and robust communication. Connected tables just
pass on their raw control data, which they receive from the sensor
component, without transmitting any audio data at all. The resolving
of the synthesizer patches and the actual sound synthesis is done lo-
cally at each installation site, which reduces the impact of possible
latency problems to a minimum. Each client just treats the control
data from objects of a remote table the same way as from the ones on
the local table. We assign for example the IDs 1 to n to a set of n tan-
gible objects on our local table. Any table in the network is expected
to use the same set of objects with the same functional properties. As
a consequence we can define the total set of objects in this network
session by multiplying number of local objects by the number of ta-

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

6.2 original publication 46

Figure 7: Local and remote synth objects

bles in a network session. A second remote table then for example
appears with IDs from n+1 to 2*n for its set of tangibles. Adding an-
other remote table to the session just increments the number of total
objects by n in our example.

Basically tables are connected in a peer-to-peer network topology:
Each table sends its control data to any table that has been configured
to participate in a network session. Yet to facilitate the connection
procedure between tables and to overcome potential connection prob-
lems caused by routers or firewall configurations, the reacTable* net-
working infrastructure is using Ross Bencina’s oscgroups.3 This soft-
ware package consists of a server and client component. The server
component informs any connected client that is forming part of a pre-
defined group about the connection details of all other clients that be-
long to the same group. The oscgroups client component then broad-
casts any outgoing OSC message to the remote clients of all currently
known group members, and passes all incoming OSC messages to the
local OSC application. Oscgroups is very portable and was tested un-
der Win32, MacOS X and Linux operating systems and was recently
ported to the Windows Mobile platform as well.

The reacTable* management component in general just reflects the
incoming OSC messages from the reacTIVision vision engine compo-
nent, but adds a supplementary tag that identifies the source with a

3 http://www.rossbencina.com/code/oscgroups

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

http://www.rossbencina.com/code/oscgroups

6.2 original publication 47

sufficiently unique string. This message is an actual extension to the
TUIO protocol which does not appear in the original paper. It became
necessary because OSC itself does not provide any information about
the source of the OSC messages and additionally the oscgroup client
appears as a local source anyway.

Therefore we add a new message to each bundle which follows the
format /tuio/2dobj source username@host. This message allows the
reacTable* client software to assign each OSC bundle to the correct
origin.

6.2.6 Acknowledgments

Many people and institutions have been involved in the preparations
of the reacTable* concert. First of all we would like to thank Chris
Brown for the composition of this exciting musical piece and his valu-
able input during the reacTable* development. Without any particular
order we would also like to thank the Phonos Foundation, the Galeria
Metronom and the SGAE in Barcelona as well as the Ars Electronica
Center and Christa Sommerer from the Interface Culture Lab in Linz for
their great support.

The authors specially would like to thank the former team mem-
ber Ross Bencina, who made several crucial contributions to the final
reacTable*. Without Ross’ brilliant implementation of the computer
vision component and his contribution to the OSC infrastructure the
reacTable* would not be the robust instrument it is today. We also
would like to thank the former interns Ignasi Casasnovas and Gerda
Strobl for their valuable work for this project.

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

6.3 remarks & analysis 48

6.3 remarks & analysis

This publication is documenting the particular collaborative design
aspects of the Reactable, and the experiences gathered from the first
public performances with our initial research prototype, which took
place in September 2005 after roughly three years of research and de-
velopment. In this and other historical publications the instrument is
commonly referred to as reacTable*, although this peculiar camel-case
naming scheme today has been abandoned since the commercializa-
tion of the Reactable in 2009.4

6.3.1 Contemporary Music Practice

The principal design objective for the Reactable was the creation of
a novel musical instrument, which allowed electronic music perfor-
mances overcoming the interaction deficits of traditional synthesizer
hardware or complex music software, while maintaining the feature
set of a professional instrument. During the past decades the con-
temporary electronic music practice has largely converged to using
laptop-based software interfaces in live performance. While these de-
vices offer near endless possibilities of musical expression, they also
provide a rather limited interaction bandwidth for expressive perfor-
mance. Therefore we adopted the tangible interaction paradigm in
order to leverage the full potential of a human performer when inter-
acting with physical representations instead of a virtual interface.

6.3.2 Designers, Composers & Performers

As a team of Digital Luthiers (electronic instrument designers) our
goal was not only to design a device for mere research purposes, but
to create an actual musical instrument that can be used live on stage.
While the first development phase until 2005 was largely dedicated to
the design and implementation of the core instrument functionality,
we spent the years after our first public concert refining the instru-
ment literally on stage.

According to Buxton[53] "there are three levels of design: stan-
dard spec., military spec., and artist spec.: Most significantly, I
learned that the third was the hardest (and most important), but
if you could nail it, then everything else was easy."

While gathering our own experiences from performing our instru-
ment on stage, we also decided to collaborate with other professional
artists in order to gather external feedback in addition to our own
technical and artistic viewpoints. This was also the main reason for
our collaboration with Chris Brown, who was commissioned to com-
pose the piece, which was then performed at our first concert. This de-
signer - composer - performer relationship was crucial for the success of
the Reactable, which culminated in our collaboration with Björk[54].

4 http://www.reactable.com

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

http://www.reactable.com

6.3 remarks & analysis 49

6.3.3 Physical Embodiment

The core concept of the Reactable is a translation of the modular
synthesizer paradigm to the tangible domain. Visual signal-flow pro-
gramming languages such as Pure Data already introduced virtual-
ized graphical representations of the various sound generators, fil-
ters and controllers found in a typical modular synthesizer. The Re-
actable basically brings this virtualization back to the tangible domain
through the physical embodiment of these synthesizer components
into simple tangible objects. Therefore the Reactable can be conceptu-
ally also considered as tangible sound programming language, which
allows to establish and manipulate the sound-flow through the rela-
tion and orientation of graspable objects that are distributed on top of
its interactive table surface. Although the actual sound is synthesized
in a computer, this conceptual notion of sound, which appears to be
embodied into physical objects, is further emphasized by the visual-
ization of the sound-flow between the connected synthesizer objects.
Visual programming languages on a virtual graphical user interface
also have certain advantages, such as the instant loading of preset
configurations or the creation and manipulation of sub-patches, such
functionality is limited in the physical domain due to the persistence
of tangible objects, which actually depend on the manipulation by the
user. We resolved some of these limitations through the constitution
of a Dynamic Patching Paradigm[24], which basically defines a simple
ruleset for the connection of our tangible synthesizer objects, based
on type, distance and availability. This also determines that the in-
strument patches on the Reactable have to be built and played at the
same time.

6.3.4 Multi-User Interaction

Although the Reactable is often referenced as a multi-touch instru-
ment, is has to be emphasized that the actual iteration of the instru-
ment, which is presented in this paper didn’t even implement any
touch functionality at this point. The version we presented during the
first public concert was purely based on tangible object manipulation
without any interaction with the surface itself, which only provided
the sound visualization and connection feedback. Touch functionality
was of course added soon after, since it allowed the control of further
sound parameters around each object in addition to the mere manip-
ulation of object position and orientation. Although the introduction
of touch-interaction then also allowed additional gestural control of
the individual sound dynamics or the cutting of sound flow with a
simple stroke gesture, up to today the Reactable does not implement
any multi-touch or multi-stroke gesture at all. Therefore the possi-
bility of concurrent object manipulation and multi-touch interaction
primarily facilitates the collaborative multi-user interaction scenarios,
which we discussed in this paper. This parallel access to all available
resources also constitutes a Direct Physical Manipulation paradigm.

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

6.3 remarks & analysis 50

6.3.5 Networked Performance

Apart from the various local collaboration scenarios described in this
publication, one of its most significant contributions was the design
and implementation of a networked performance configuration, which
was largely designed around the UDP based remote communication
capabilities of the TUIO protocol.

Considerable network latencies are a major obstacle for the realiza-
tion of remote musical performances and improvisations, rendering it
difficult or rather impossible to establish a functional musical collabo-
ration by transmitting real-time audio streams. Therefore we chose to
transmit only the interaction data, which (although it suffers from the
same network delays) has been applied to control a more consistent
and synchronous local synthesis on both sides. For this configuration
the reacTIVision instance running locally underneath each of the two
Reactables, transmits all of its detected object states, positions and
orientations not only locally but at the same time to the second dis-
tant instrument. Since both tables share the same interactive object
configuration, but only have half of the tangibles physically available
on-site, this configuration can be conceptually considered as a single
Reactable with two control interfaces. As mentioned earlier, the ad-
vantages of TUIO/UDP protocol are its low bandwidth requirement
and fast transmission latency, while its major disadvantage is the re-
quired compensation method for possible (and in our performance
also certain) packet loss. From our experience in this critical perfor-
mance situation, we can now say that the required protocol robust-
ness in order to achieve a consistent model view on both sides has
been met entirely. Preparing this performance, we also defined the
mentioned TUIO source extension, in order to allow for a proper dis-
tinction between the local and remote instances. This extension has
been later included in the official TUIO 1.1 revision, which is docu-
mented in the following paper.

6.3.6 Restaging Teleson Invention #8

After a meeting with Chris Brown past summer, we are now after 12

years considering restaging a reconstruction of his original composi-
tion. Since the Reactable hardware platform and its original software
platform has been redesigned and significantly improved since, this
will also require an adaptation of the piece. While first the original Re-
actable prototype from Barcelona is unfortunately lost, we already re-
furbished its second iteration, which was created for the performance
in Linz for this purpose. Eventually the piece should be performed
again in its networked configuration connecting Linz and San Fran-
cisco, which had not yet been repeated since its original performance
between Barcelona and Linz in 2005.

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

6.3 remarks & analysis 51

6.3.7 Musical Application

Since its initial conception in 2003 the Reactable synthesizer had been
primarily designed as a feature complete tangible application for live
musical performance. Most of its underlying hard- and software tech-
nology therefore had been developed for this demanding musical ap-
plication scenario with its specific requirements for performance and
stability. While other tangible interaction platforms mostly represent
a technical exercise which usually include simple demo applications
showcasing its capabilities, the Reactable today still represents one of
the few working examples of a comprehensive real-world tangible-
tabletop application.

The public interest that was generated after our collaboration with
several artists and the following Ars Electronica5 award, also resulted
in a growing demand for an actual commercialization of the instru-
ment. After the further improvement of the Reactable hardware for
third-party usage and its installation at various science centers and
digital art museums around the world, it eventually became impossi-
ble to meet this demand with the infrastructure of a small university
research group. Therefore in 2009 our team of four Reactable creators
finally decided to establish a spin-off company with the support of
the Pompeu Fabra University.

This company Reactable Systems6 since then has been dedicated
to the further hard- and software refinement of the Reactable, lead-
ing to the design and implementation of the Reactable Live system,
which today can be considered as version 2.0 of the original Reactable.
This instrument provides a more mobile hardware configuration and
more versatile software features, and has has been sold more than a
hundred times until today. In order to reach a larger audience our
company recently also diversified the synthesizer concept of the Re-
actable into a mobile application, which can be controlled through
simple capacitive tokens on a tablet surface.

6.3.8 Tangible Platform

Apart from its principal musical application scenario the Reactable
hardware obviously can be also employed as a generic tangible inter-
action platform, where the reacTIVision and TUIO framework pro-
vide its basic software development kit for the design and imple-
mentation of custom applications. Although the Reactable hardware
provides a distinctive round form factor and an outstanding mobility
(the instrument can be packed into two travel bags), our company has
decided to concentrate on the development of the actual musical in-
strument rather than providing a generic tangible hardware platform
only. This decision had been also supported by the massive intrusion
of major companies such as Microsoft into the market of interactive
tabletops, which left little room for smaller start-ups in that area.

5 http://archive.aec.at/prix/#12462

6 http://reactable.com/

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

http://archive.aec.at/prix/#12462
http://reactable.com/

7
R E A C T I V I S I O N A N D T U I O : A TA N G I B L E
TA B L E T O P T O O L K I T

7.1 introduction

The forth publication of this cumulative thesis discusses various im-
provements to the reacTIVision framework as well as an extended
version 1.1 of the TUIO framework, and is also representing an evalu-
ation of the initial Tangible Abstraction Framework. The following
paper has been reformatted and corrected without any changes to its
original content.

7.1.1 Context

This publication has been presented at the ITS2009 International Con-
ference on Interactive Tabletops and Surfaces1 which took place from 23-
25 November 2009 in Banff, Canada.

Following the two initial separate publications on the TUIO proto-
col and the reacTIVision application, this paper represents a first re-
flection on the initial iteration of the tangible interaction framework in
a combined perspective. Apart from the documentation of the various
improvements to the reacTIVision engine, including a more robust
heuristic fiducial tracking approach as well as a proper multi-touch
implementation it also provides a detailed performance evaluation of
the framework.

After an analysis of the emerging third-party implementations of
the TUIO protocol, the paper also proposes an extension to the orig-
inal specification, which adds a third blob profile, providing an ad-
ditional geometry description of the tangible interface components.
Following the experiences gathered from the previous networked per-
formances, an additional source message was added in order to allow
the multiplexing of various TUIO trackers.

Furthermore this paper also identifies the several shortcomings of
the original TUIO specification, which leads to the rudimentary pro-
posal of the next generation TUIO 2.0 protocol, intending to provide
a more comprehensive feature set for the representation of state-of-
the-art tangible interaction platforms.

The discussion section after this paper will present the more recent
development of the reacTIVision framework, which in its current ver-
sion 1.6 finally implements the TUIO 1.1 specification presented in
this paper. The actual TUIO 2.0 specification and the according defini-
tion of an extended tangible interaction framework is then discussed
in the following final chapter of this dissertation.

1 http://www.acm.org/its/2009

52

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

http://www.acm.org/its/2009

7.2 original publication 53

7.2 original publication

7.2.1 Abstract

This article presents the recent updates and an evaluation of reac-
TIVision, a computer vision toolkit for fiducial marker tracking and
multi-touch interaction. It also discusses the current and future de-
velopment of the TUIO protocol and framework, which has been pri-
marily designed as an abstraction layer for the description and trans-
mission of pointers and tangible object states in the context of inter-
active tabletop surfaces. The initial protocol definition proved to be
rather robust due to the simple and straightforward implementation
approach, which also supported its widespread adoption within the
open source community. This article also discusses the current limita-
tions of this simplistic approach and provides an outlook towards a
next generation protocol definition, which will address the need for
additional descriptors and the protocol’s general extensibility.

7.2.2 Introduction

The TUIO protocol and reacTIVision framework comprise a toolkit
for the rapid development of tabletop tangible user interfaces and
multi-touch surfaces. Both components have been initially developed
for musical applications in the context of the reacTable [37] project,
a tangible modular synthesizer based on an interactive table surface.
After the presentation of this instrument and also Jeff Han’s multi-
touch demos based on FTIR [40] had created considerable public
interest in gesture-controlled surfaces, the TUIO protocol was even-
tually adopted by several open source initiatives with the goal to re-
verse engineer large multi-touch surfaces. Access to such a variety
of freely available tools based on a shared protocol supported the de-
mocratization of the emerging tangible and multi-touch user interface
technology. Since their initial publication and release in 2005, TUIO
[38] and the reacTIVision toolkit have been successfully used for the
design and implementation of numerous research, commercial and
hobbyist projects, supporting the widespread adoption of the tangi-
ble interaction paradigm.

7.2.3 Tangible Surface Abstraction

The initial goal of the TUIO protocol definition was to provide a sim-
ple description of pointer and token states in the context of a two
dimensional table surface, where pointers are defined as untagged
points with normalized Cartesian coordinates, while tangible tokens
provide an additional identification tag and rotation angle. Although
this is a very simplified view of an interactive surface context, this
description provides a basic solution for the implementation of multi-
touch surfaces and the tracking of tagged physical objects. Such a
basic model has of course its limitations, which became even more

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

7.2 original publication 54

evident with its adoption within other application areas as well as
with the further development of the reacTIVision engine itself. We
will discuss these limitations and the consequent future extensions to
this model further below.

After evaluating existing alternatives for the controller context [55],
the TUIO protocol was based on Open Sound Control (OSC) [27],
which has been widely adopted for the encoding of control data from
musical instruments and general-purpose interactive devices. OSC
successfully intends to overcome the performance limitations of the
musical standard MIDI protocol, specifically regarding its bandwidth
and data resolution, hence allowing for a more fine-grained control
of advanced musical instrument designs. On the other hand the open
approach of OSC compared to MIDI, makes it more difficult to inter-
connect arbitrary controller systems, therefore OSC based protocols
such as TUIO need to define a clear semantics of the specific usage
scenario within a separate message name space. TUIO in this case de-
fines a range of profiles for the description of token and pointer state
changes. Although OSC itself does not specify a default transport
layer, most implementations including TUIO, are currently based on
the delivery of UDP packets, which allow the necessary low latency
delivery over commonly available local, wired or wireless IP network-
ing infrastructure.

The initial application scenario for the TUIO protocol was defined
by the interchange of control data between two or more table inter-
faces, which had been constructed for the first series of reacTable con-
certs, where four players were performing on two instruments located
in different cities. Therefore the protocol design needed to be fast and
robust enough for a musical performance over a standard Internet
connection. Since the transmission of natural events – such as adding,
moving and removing objects – could cause inconsistencies when cer-
tain events, most importantly the remove messages, are lost during
transport, the protocol structure was specifically designed to stay con-
sistent even when used on a fast but error prone UDP channel. Hence
TUIO implements a state model instead of transmitting events, all cur-
rently active token and pointer identifiers are transmitted within each
message bundle, which allows the continuous reconstruction of add
and remove events on the receiving side by comparing the local and
received identifiers.

The specification of such a descriptive network based protocol sug-
gests the design of a distributed architecture, separating the tracking
sensor component from the actual user application. This distributed
approach enables the interoperability of various sensor technologies,
platforms and programming environments. Apart from earlier con-
siderations regarding the limited processing power of a single CPU
system, which nowadays have become less important with the advent
of powerful multi-core processors, another motivation for choosing
this architecture was the use of the framework for teaching purposes.
Dealing with students from different backgrounds and with varying
technical skills, ranging from engineers to artists, providing a col-
lection of TUIO client implementations for programming languages

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

7.2 original publication 55

such as C++. Java and C# and more importantly multimedia author-
ing tools such as Processing, Pure Data, Max/MSP, Quartz Composer
and Flash, allowed the involved students to concentrate on the actual
interface design task using the most appropriate tool.

7.2.4 The Reactivision Engine

Since its last open source software release2 and the previous publi-
cation of its general functionality [56], the reacTIVision engine has
undergone major feature and performance improvements. In addi-
tion to the significant improvement of the overall symbol tracking
robustness, the recently published public version 1.4 also supports
basic multi-touch finger tracking. While the initial versions of reac-
TIVision only performed the direct tracking of amoeba style fiducial
symbols, which have been specifically developed in conjunction with
the fiducial tracking core libfidtrack, the latest release introduces var-
ious tracking layers, which significantly enhance the symbol tracking
performance. This is especially important in conditions with fast mov-
ing objects due to expressive gestures in musical performance.

7.2.4.1 Fiducial Tracking

The principal fiducial tracking method used within reacTIVision is
based on the analysis of region adjacency graphs, originally derived
from Costanza’s d-touch concept [26]. After applying a local adaptive
threshold to the original camera image, the resulting binary image is
then segmented into a graph of adjacent black and white regions.
Hence the identification of the amoeba symbols is based on a dictio-
nary search of previously defined tree structures that are encoded
into the marker topology, and the actual symbol layout carries addi-
tional information, which allows the precise calculation of the symbol
centre point and its rotation angle [35].

Figure 8: a) fiducial tree and two possible representations
b) encoded center point and angle information

Since the symbol structure allows an almost arbitrary representa-
tion of the actual geometry, we used a genetic algorithm [36] for the
automatic generation of optimally shaped fiducial symbols, which
eventually resulted in the organic amoeba appearance of the presently
used fiducial marker collection. This genetic algorithm is driven by a
fitness function that selects the generated symbols based on their size,
symmetry and position and angle precision. The symbol position is

2 http://reactivision.sourceforge.net/

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

http://reactivision.sourceforge.net/

7.2 original publication 56

calculated from the average of all leaf nodes, while the orientation
vector points from the center point to the average of all black leaf
nodes only. The current default set is for example defined by 18 nodes
within a tree with maximum depth of two layers, which results in a
possible range of 128 sequences, from which only 108 symbols have
been selected to meet the minimum size and precision requirements.

The limitation to dedicated tree spaces, with a clearly defined node
count and tree depth ensures the overall tracking robustness, since
it is rather improbable to find these complex tree structures within
arbitrary image noise, which limits the probability of finding false
positives. We also separate the currently used alternative symbol col-
lections by at least three nodes in order to avoid wrong symbol iden-
tification due to erroneous image data.

On the other hand this strict analysis is prone to minor changes
of the symbol structure, such as addition and loss of individual leaf
nodes, which can often appear in noisy or blurred images. While in
these cases the algorithm is still capable of identifying the presence
of a fiducial symbol in general, the identification of the individual
symbol has become impossible, since the actual tree structure has
been broken. Nevertheless we use the presence of unknown fiducial
symbols within a secondary fuzzy fiducial tracking layer, where we
simply assign unidentified erroneous symbol structures to the ones
previously tracked nearby, which helps to improve the total symbol
recognition rate.

Fast expressive movements, which are very common within musi-
cal performance, unveil the limitations of optical tracking methods.
Problems such as motion blur can only be partially resolved with
shorter camera exposure times and stronger illumination. Since these
parameters are limited, very fast object movements yield a blurry
fiducial image and hence result in a complete destruction of the fidu-
cial structure, making it impossible for both the standard and fuzzy
tracking method to identify an actual symbol. Therefore a third layer
is tracking the position of the root node region, the usually white fidu-
cial background. With the knowledge of the previous fiducial position
and the displacement of the region centre from the actual symbol cen-
tre, the position of fast moving fiducial markers can be updated very
accurately using just the root node tracking method. To summarize,
the trajectory of fast moving objects, can be tracked accurately with a
combination of the three methods outlined above, where the symbol
can be tracked in all individual frames without additional filtering
methods. Currently we are allowing a single frame without tracking
result, which we are using to calculate the correct speed and acceler-
ation updates before the object is finally removed from the list if not
found in the following frame. Since the actual position during this
single frame is not updated, we are planning to introduce an addi-
tional Kalman filter [57] in order to estimate the position of the lost
symbol, which then also can be reassigned more easily to a nearby
root region.

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

7.2 original publication 57

Figure 9: The three tracking modes a) full b) fuzzy and c) root region,
depending on the retrieved symbol quality

7.2.4.2 Finger Tracking

The complementary multi-touch tracking layer introduced with the
latest reacTIVision release takes advantage of the existing image pro-
cessing infrastructure, without introducing a significant CPU over-
head for this additional task. We are simply retrieving all white re-
gion candidates with a given size from the available image segmenta-
tion data and calculating the error comparing the candidate region to
a round region prototype. The average finger size and maximum er-
ror can be adjusted within the application, yielding good tracking re-
sults in well-adjusted conditions. Compared to sole multi-touch track-
ers, reacTIVision is required to maintain the full fiducial structure in-
tact, and therefore cannot afford the application of destructive image
filters such as Gaussian blur in order to smooth the finger blob con-
tour. Since this approach does not introduce any additional or parallel
image filtering in order to enhance the source image, the initial con-
figuration task of the camera settings and illumination environment
has to be done more carefully than with comparable multi-touch only
solutions. On the other hand this combined method ensures a low la-
tency performance for musical applications, while providing simulta-
neous fiducial and finger tracking within the same image processing
thread. The currently used tiled local adaptive threshold [58] method
yields good results, and further improves the performance by neglect-
ing tiles with a gradient below a configurable value. Unfortunately
this method introduces square artifacts around low contrast regions,
which can degrade the finger tracking accuracy. In order to improve
the initial image quality we are currently evaluating alternative local
adaptive threshold algorithms though, which should equally meet
the requirements of the marker and blob tracking tasks.

7.2.4.3 Blob Tracking

With the following release, we introduce an additional generic blob
tracking layer, which is also taking advantage of the existing com-
putational infrastructure, by selecting white regions within a given,
configurable size range from the available segmentation data struc-
tures, while previously detected finger and fiducial root regions are
excluded. In order to avoid additional image processing tasks, these

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

7.2 original publication 58

Figure 10: Original camera image and binary threshold image
with finger and fiducial tracking feedback

regions are already encoded into a linked list of line spans during
the segmentation process, which also annotates the final pixel area
of each region. This data representation allows the reconstruction of
the region contour and area without additional analysis of the actual
source image itself, which again avoids additional processing over-
head for this complementary tracking task. The span list implicitly
encodes the full blob contour information in a compact format for fur-
ther processing. The derived list of contour points can be efficiently
reduced to the outer (and inner) blob contour, and consequently to
a simplified list of contour points, which describes the overall blob
geometry in sufficient detail. Finally for each of these retrieved re-
gions, the oriented bounding box is calculated, which is providing
an approximate description of its position, size and orientation. Cur-
rent reacTIVision development builds already implement these basic
geometry descriptors for untagged objects, which as a consequence
have been also included within a third additional blob profile in an
updated revision of the TUIO protocol, which we will describe in
more detail below. The additional and more detailed geometry de-
scriptors will be included in a future TUIO 2.0 specification though.

7.2.4.4 Amoeba Symbols

In addition to the updates to the core tracking software described
above, some significant improvements to the fiducial symbol layout
and rendering have been implemented, which enhance the overall
tracking performance in boundary conditions such as low camera
resolutions, reduced symbol sizes or increased surface distance, all
of which result in a smaller size of the symbol in the actual camera
image.

The number of symbols provided with the default set has been
increased from the original 90 amoeba symbols to a total of 108 us-
able symbols out of the possible range of 128 within the described
tree space. An improved fiducial generation algorithm, which intro-
duces – already during the generation process – the final selection
rules based on the symbol size and orientation vector length, yielded
20% more usable symbols that met the imposed criteria. By apply-
ing a high penalty to symbols that did not meet the initial size and

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

7.2 original publication 59

vector boundaries, the genetic algorithm also converged much faster
towards a usable symbol, thus reducing the overall generation time.

The newly created symbol set had its minimum orientation vector
length improved by almost 5%, which generally supports the more
robust calculation of the symbols’ rotation angle. Also the maximum
symbol size has been reduced by more than 10%, while as well show-
ing a more uniform and narrow size distribution.

Figure 11: Distribution of the orientation vector length

Figure 12: Distribution of the symbol footprint size

We also introduced an alternative set of smaller symbols from a
different tree space with 12 nodes only. While this tree space con-
tains 15 possible variations, we selected 12 symbols that met the size
and vector length criteria. This additional set can be used for appli-
cations that only require a limited set of different symbols IDs, but
has the advantage of a reduced maximum symbol size by another
10% compared to the default amoeba set. In general, reacTIVision al-
lows the usage of any arbitrary set of tree sequences, although we
currently only provide these two subsets for the moment. Additional
symbol collections can be added with a simple configuration file, but

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

7.2 original publication 60

we recommend separating the selected tree spaces by at least three
tree nodes, in order to avoid wrong symbol identifications. It should
be also considered, that smaller symbol sets will not provide suffi-
ciently precise position and rotation information, while these simpler
tree configurations are also more likely to be found in arbitrary noise,
and are therefore prone to yield false positives compared to the care-
fully selected standard symbols. Alternatively there are already third
party fiducial generators available, which allow the generation of al-
ternative symbols of any desired tree size.

Figure 13: comparing the original symbol rendering (top row)
to the improved rendering method (bottom row)

An improved graphical rendering method for the amoeba symbols
introduces relatively enlarged leaf node proportions, which also sup-
port a better tracking performance of small scale or distant markers.
Finally this new symbol set has been released in a vector based PDF
format, which allows a high quality printing of the marker collection
in any arbitrary size.

In order to increase the number of available marker IDs, the collec-
tion of 108 plus 12 standard symbols has been doubled though the ad-
dition of the inverted symbols with an initial black root node, result-
ing in a total number of 216 plus 24 standard symbols that are deliv-
ered with the current public release. This total of 240 distinguishable
default markers should be sufficient for most application cases, con-
sidering that the individual marker IDs can also be repeated within
the same context.

7.2.4.5 Performance Evaluation

The combination of the three marker tracking methods yield a satis-
factory tracking performance even with fast moving objects, provided
the camera and illumination settings are optimally configured with
an appropriate short exposure time, which also guarantees a low la-
tency image acquisition. The following chart illustrates the improve-
ments in these boundary conditions, where the symbol structure is

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

7.2 original publication 61

partially destroyed due to motion blur caused by expressive object
handling as shown above.

Figure 14: Tracking modes at varying speeds

An evaluation of the tracking accuracy of resting symbols showed
a standard deviation of around 0.05 pixels for the symbol centre point
and a standard deviation of around 0.5 degrees for the rotation angle.
These results allow for single pixel position accuracy and a rotation
angle accuracy of three degrees in normal conditions, without signif-
icant jitter problems. We expect to improve the tracking accuracy for
the rotation angle with the introduction of an additional Kalman filter
component.

Performance measures of the latency of the current image process-
ing chain depend on various factors, such as the camera resolution
and resulting buffer size, the platform, compiler and CPU speed of
the test system. Evaluating the frame latency on a 2GHz Core Duo
Macbook on Linux, the median processing, analysis and delivery time
for a VGA sized frame ranges around 5ms, which results in an ac-
ceptable system latency considering the complexity of the task. The
following table illustrates the evolution of the processing latency for
fiducial tracking adding the additional finger and blob tracking lay-
ers.

ICC 11.0 GCC 4.4

Fiducial tracking 4.8 ms 5.6 ms

Fiducial & touch tracking 5.0 ms 6.0 ms

Fiducial & touch & contour 5.4 ms 6.5 ms

A more detailed analysis and review of the tracking performance
for various conditions such as fiducial size, and comparison with
other marker systems would unfortunately exceed the limits of this
article and will be therefore addressed in a subsequent publication.

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

7.2 original publication 62

7.2.5 The TUIO Protocol

The original TUIO protocol specification was concentrating on the
specific needs of the reacTable project, mainly focusing on tagged
object and finger tracking in the context of a remote collaboration
scenario, while ensuring the overall robustness of the networked dis-
tributed system. During the development and feature enhancements
of our own tracking application, as well as with the integration of the
TUIO protocol into further projects, several issues regarding miss-
ing features within the present profiles and the need for additional
protocol extensions emerged. The extension of the existing message
structure needs to be planned carefully though, considering the stabil-
ity of all current implementations that rely on solid shared protocol
definition.

7.2.5.1 Original TUIO Specification

A TUIO profile defines two central messages: set messages and alive
messages. Set messages are used to communicate information about
a token’s state such as position, orientation, velocity and acceleration.
Alive messages indicate the current set of tokens present on the sur-
face using a list of unique session IDs. Additional fseq messages are
defined to tag each frame update with a unique sequence ID. At typ-
ical TUIO bundle is therefore typically comprised of at least three
messages, while the set messages can be accumulated in order to
fully use the available space of a UDP packet. TUIO messages are
commonly delivered to UDP port 3333 in the default configuration,
although alternative transport methods are equally allowed. Please
note that the following clear text message representations are only
for demonstration purposes, the actual OSC message is transmitted
in a compact binary format.

/tuio/[profile] alive [active session_IDs]

/tuio/[profile] set [session_ID attributes]

/tuio/[profile] fseq [int32]

There are two basic profiles for the description of pointers and to-
kens (here cursors and objects), which are commonly used within
the context of a 2D surface. There exist additional profiles for 2.5D
environments, which include the distance to the surface, as well as
3D environments, which also provide 3D rotation information for the
object profiles. All profile types are generally designed to describe
the surface or the space above an interactive table environment. Most
currently available TUIO implementations are concentrating on the
2D profiles though. The specific set message syntax for the cursor
and object profiles include attributes such as position, velocity and
acceleration and is structured as following:

/tuio/2Dobj set sid id xpos ypos angle xvel yvel rvel macc racc

/tuio/2Dcur set sid xpos ypos xvel yvel macc

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

7.2 original publication 63

7.2.5.2 Updated TUIO 1.1 Specification

In order to provide a smooth transition path we are introducing an in-
termediate and backwards-compatible TUIO 1.1 specification, which
adds two new features to the existing protocol specification, without
breaking the existing client implementations: A third profile for the
description of untagged objects and the possibility of multiplexing
multiple tracker sources.

The complementary blob profile allows the further distinction be-
tween identified tagged symbols and unidentified plain blob objects,
which are also providing basic additional geometric information.

Figure 15: Simple description of a blob enclosure

/tuio/2Dblb set sid xpos ypos angle width height area xvel yvel

rvel macc racc

The profile’s set message format describes the inner ellipse of an
oriented bounding box, with its center point, the angle of the longer
axis, its width and height as well as the blob area. Hence this compact
format describes the approximate elliptical blob enclosure, which also
allows the reconstruction of the oriented bounding box. The blob area
is normalized by pixels/width*height, providing quick access to the
overall blob size. The blob dimensions are defined as normalized val-
ues after performing an inverse rotation by -angle.

/tuio/[profile] source [name@address]

In order to allow the multiplexing of several TUIO trackers on the
client side, an optional source message can be transmitted within each
TUIO bundle, which enables the identification of the bundle’s origin.
The name@address argument is a single string that specifies the ap-
plication name and any unique source address.

An issue, which currently cannot be addressed within a backward
compatible TUIO extension, is the lack of reliable timing information.
Assuming that OSC does already provide a sufficient time tag within
the actual bundle header, we decided to not include a redundant time
tag into the TUIO message structure. Unfortunately OSC implemen-
tations interpret the bundle time as a delivery time, which in some
cases could cause the OSC layer to drop bundles with an earlier time
stamp. The current TUIO implementations partially intend to com-
pensate this with the inclusion of velocity and acceleration attributes
within the set message structure.

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

7.2 original publication 64

Since several TUIO developers are working with Actionscript, the
need for an alternative communication model for Flash, which cur-
rently does not support UDP sockets has emerged. The presently
used workaround, which expands TUIO/OSC messages to an XML
format that can be interpreted by Flash, is not comparable to the good
performance results delivered by the common UDP transport method.
As an alternative, TUIO can support an additional TUIO/TCP mode
or a Flash local connection, which can be used for connecting to this
kind of closed environments. The transparency of alternative trans-
port methods is an advantage of the chosen OSC encoding.

7.2.5.3 Future TUIO 2.0 Specification

It has become clear that even with the intermediate protocol exten-
sions the current simplistic approach is by far not sufficient for the
description of a generalized tangible interaction environment. While
TUIO 1.1 already addresses the basic needs for an additional descrip-
tor for the object geometry, the strict separation of cursor, object and
blob profiles is one of the mayor limitations for the future protocol
extensions. Also, the existing object profile is lacking the possibility
of transmitting marker content data while the cursor profile is miss-
ing important attributes such as cursor ID and pressure data. Finally
TUIO is also missing detailed timing information, which unfortu-
nately cannot be retrieved from the OSC bundle time tag as originally
intended. The number of potential enhancements and changes to the
current protocol structure justifies the introduction of a new TUIO 2.0
protocol specification, which eventually will resolve the shortcomings
and design limitations of the current protocol generation.

As a consequence TUIO 2.0 will allow a more substantial update
for the existing TUIO infrastructure. A flat and more extensible pro-
file structure, which also integrates better into the overall OSC bundle
and message formatting, will allow future incremental message up-
dates which can add additional descriptors and functionality. Token,
Pointer and Geometry messages can now be handled in parallel and
can share the same session ID if these are actually referring to the
very same object. Therefore for example Pointer messages can be ex-
tended with a bundled Bounds message, which transmits the actual
geometry in addition to the generic pointer information. The basic
geometry descriptors, which are similar to the format introduced in
TUIO 1.1, can be incrementally extended with additional messages
describing the Contour, Skeleton or full Area of the described region.
It depends on the capabilities of the tracker implementation or the ac-
tual application setup. Tokens will carry an additional type ID, which
allows the multiplexing of various symbol types within a session. A
Token can be extended with more detail by an optional Symbol mes-
sage that encodes the information about the actual marker type and
content, which will allow the introduction of alternative marker types,
such as data matrix (or QR) codes or RFID tags. Pointers will include
various additional attributes, such as pointer ID and type ID as well
as pressure and region of influence, and can be also extended with

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

7.2 original publication 65

optional Control messages, which allow the encoding of additional
control dimensions from buttons, wheels, knobs or sliders. Finally
the new TUIO protocol generation will also allow the description
of object associations, such as container relationships or mechanical
connections between individual objects. This for example allows the
encoding of token-constraint systems as well as constructive object
assemblies, which will extend the overall encoding possibilities from
the purely spatial approach of the original specification and will there-
fore extend the scope of the protocol to support a broader range of
tangible user interfaces.

Although there are recent developments towards the clarification
of the OSC bundle timing with the introduction of a revised OSC 1.1
specification [59], TUIO 2.0 will add a redundant time tag to the fseq
message of each frame, providing fine-grained timing information,
which is necessary for correct gesture analysis. Since TUIO is based
on OSC, any implementation can already choose to define its private
message space in order to transmit custom controller data. TUIO aug-
ments this possibility with the definition of a Custom message syntax,
which allows associating these custom attributes to the existing TUIO
objects. There have been suggestions to introduce a back channel for
the configuration of the tracker environment, but there are currently
no plans to abandon the simplicity of the current unidirectional pro-
tocol approach.

The TUIO 2.0 specification draft is already close to its finalization,
although we will wait until the consolidation of the intermediate
TUIO 1.1, before we will start with the implementation of this next
generation protocol. In order to support the migration towards the
new version, the according client implementations will support both
protocol generations.

7.2.5.4 Third Party Tuio Implementations

During the early stages of the TUIO development, the available tracker
and client implementations were limited to the reacTable and similar
environments, for which we initially designed this protocol. The first
external project, which picked up the TUIO protocol as an abstraction
for multi-touch interaction, was the touchlib library by David Wallin.
This was also one of the first publicly available multi-touch tracking
applications, since reacTIVision only implemented the touch function-
ality at a later point. Since then, a growing number of multi-touch and
tangible interaction platforms have implemented the TUIO protocol,
which lead to its more widespread adoption. A recently established
community website provides detailed information about the current
and future TUIO specifications, implementation notes for the devel-
opment of TUIO enabled software as well as a growing list of client
and tracker applications that support our protocol.3 Please also refer
to this website for further information about the projects mentioned
in the following software selection.

3 http://www.tuio.org/

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

http://www.tuio.org/

7.2 original publication 66

7.2.5.5 TUIO Trackers

The currently available tracker implementations mostly include multi-
touch software based on computer vision, such as touché, BBTouch
and Community Core Vision (formerly tBeta). Further TUIO tracker
implementations are based on controller hardware such as the Wi-
imote controller device, where WiimoteTUIO for example allows the
rapid development of Whiteboard applications using only the IR track-
ing capabilities of a Wiimote controller and a suitable TUIO client
application. In addition to that, there exist TUIO bridges for dedi-
cated multi-touch hardware, such as the devices from N-trig, which
are presently used for most available multi-touch tablet PCs. Similar
integration initiatives have been started for Windows 7 and the Mi-
crosoft Surface, which have been extended to provide TUIO support
at the system level [60]. Finally there also exist a variety of iPhone
applications, which allow the usage of this hand-held device as a re-
mote multi-touch controller that can send the TUIO over its wireless
network connection. It has been shown that especially for this appli-
cation case, the TUIO state model proved to be very robust on this
error prone channel.

7.2.5.6 TUIO Clients

Apart from the primary TUIO client implementations, which are avail-
able for most mainstream programming languages and multimedia
environments, the community contributed a large collection of ad-
ditional TUIO implementations for several other environment that
were not directly support by ourselves. This includes programming
languages such as Objective C, Python, Smalltalk, Ruby and Action-
script as well as sound and media environments such as VVVV, Su-
perCollider, Chuck or Open Frameworks, and there are also several
higher-level programming environments for gesture recognition and
tangible interface development for Java, C# or C++ available, that are
using TUIO as the common input layer. Based on the TUIO client ref-
erence implementations, which basically decode the touch and object
events from the protocol, there is also a growing number of end user
applications available, taking advantage if these input events as an
alternative controller interface. Applications such as NASA World-
Wind, Google Earth, Second Life or the Blender game engine have
been enhanced with multi-touch control with the help of the TUIO
protocol.

Most recent versions of mainstream operating systems such as Win-
dows 7 and Mac OS X 10.6 already include system level support for
multi-touch input. Within the X-Window system, which is commonly
used on Linux operating systems, the multi-pointer X-Server MPX
[61] has recently been included into the main branch and will there-
fore soon become a standard component of all major Linux distri-
butions. We are currently involved in the integration of the TUIO
framework into MPX through the development of the xf86-input-tuio
driver component, which will allow the seamless integration of the

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

7.2 original publication 67

existing tracker software and libraries into the operating system in-
frastructure.

7.2.6 Conclusions And Future Work

We have shown and documented the improvements and current func-
tionality of the reacTIVision framework and provided an outlook to
the future blob geometry extension that will be included within the
next public version, which is also reflected within an intermediate
update to the TUIO 1.1 protocol. In parallel there is ongoing work
towards the definition and implementation of a future TUIO 2.0 pro-
tocol, which will hopefully provide a solid base for the realization
of more versatile interactive surface environments. The future work
on the tangible interaction framework will also shift the focus to a
more generalized view of the overall TUIO platform, where reacTIVi-
sion will serve as a common reference implementation for the newly
defined protocol features, which intends to open the further develop-
ment to third party implementations based on alternative technolo-
gies.

Robust tracking performance regarding speed, latency and relia-
bility are even more important in the context of expressive musical
performance. Although our improvements have shown to be suitable
for live performance conditions, optical tracking systems have also
clear limitations regarding their temporal resolution. State of the art
industrial cameras can deliver images at frame rates between 60-200

Hz, hence while we are adding further features to our tracking engine,
we will ensure that frame rates up to 200 Hz can be processed in real
time and at a reasonable latency. Apart from the common image anal-
ysis, we are currently evaluating the incorporation of dedicated GPU
programming methods, which promise to deliver improved image
processing performance. This approach will provide a responsive con-
troller for musical performance and will allow the implementation of
more fine-grained musical control gestures, such as performing a vi-
brato or the tapping of a rhythm. Additionally we are also looking
into alternative sensor methods, which can augment and improve the
overall input performance.

7.2.7 Acknowledgments

This research has been conducted in the context of the reacTable
project, which is a team effort and has been developed in collabo-
ration with my colleagues Günter Geiger, Marcos Alonso and Sergi
Jordà within the Music Technology Group at the Pompeu Fabra Uni-
versity in Barcelona, Spain. The reacTIVision fiducial tracking engine
and amoeba symbols have been developed in collaboration with Ross
Bencina, and I’d also like to thank Enrico Costanza for his initial con-
tribution to its development, as well as Till Bovermann for his partici-
pation in the TUIO initiative, which had been partially supported by
the European Commission Cost287 ConGAS action.

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

7.3 remarks & analysis 68

7.3 remarks & analysis

The publication presented above, documents the various feature and
performance improvements that had been provided by the now his-
torical reacTIVision version 1.4, which was released in May 2009.
Since then I have released one major update to reacTIVision 1.5 in
October 2014, followed by a revised reacTIVision 1.5.1 release in May
2016. I am currently working on the finalization of the next major
reacTIVision version 1.6, which will represent the final reference im-
plementation of a feature complete TUIO 1.1 tracker application. In
the following the most significant improvements that will be included
in this upcoming version will be discussed, which should be due to
official release soon after the submission of this thesis. The source
code of this currently already rather stable development version can
be retrieved from its public Github repository.4

7.3.1 Platform Updates

After five years without any publicly available updates to reacTIVi-
sion, the existing application binaries unfortunately started to show
several compatibility issues on newer operating systems and with
more recent digital cameras. While the core fiducial tracking engine
and multi-touch tracking features were fully operational, a major up-
date to the overall operating system support as well as for the cam-
era acquisition layer became necessary. Apart from updates for the
feature set of more recent OS versions, such as then MacOS X 10.8
and Windows 7, now there are also binaries for the 64bit versions of
these two major platforms since version 1.5. Since these previously
already had been available for the Linux version, the 64bit binaries
also showed notable performance advantages on MaxOS X and Win-
dows without many necessary changes to its multi-platform code
base. With the availability of popular single board computers such as
the Raspberry Pi, I also added some minor tweaks to the Linux port in
order to support those ARM based embedded computing platforms.
Additional updates became also necessary to support the Samsung
SUR40 (Microsoft Pixelsense) platform[62] under Linux.

7.3.2 PortVideo Library

The overall architecture of the PortVideo camera acquisition layer,
which has already been described earlier has seen two major updates.
reacTIVision 1.5 provided an updated AVFoundation camera driver
on MacOS X, as well as an improved DirectShow driver for Windows,
which greatly improved the overall camera performance on these sys-
tems, also providing higher frame rates for newer digital cameras
with compressed image formats such as MJPEG. This also added na-
tive support for the still popular PS3eye camera, and for affordable
industrial cameras implementing the IIDC-over-USB protocol.

4 http://github.com/mkalten/reacTIVision

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

http://github.com/mkalten/reacTIVision

7.3 remarks & analysis 69

The next version of PortVideo currently developed within reacTIVi-
sion 1.6, has seen a major overhaul of its internal architecture, pro-
viding a much improved camera configuration interface on all plat-
forms, as well as the convenient enumeration of available camera for-
mats and features, in order to allow interactive camera selection and
configuration. Along with the upcoming release of reacTIVision, the
PortVideo layer will be released again as a separate LGPL licensed
library along with multi-platform example projects, allowing its inte-
gration into third-party computer-vision projects.

7.3.3 Blob Analysis

One of the major design objectives of any feature extensions for re-
acTIVision was to avoid unnecessary CPU overhead caused by ex-
pensive computer-vision algorithms. Therefore our implementation
of the additional Blob tracking feature - introduced with the TUIO
1.1 specification update - intends to use the already existing high-level
data structures from the image-segmentation that is employed for our
fiducial tracking algorithm. This includes the region-adjacency graph,
which provides an ordered access to all available image regions (or
blobs), along with a span-line representation for each region[35].

Figure 16: Blob analysis: a) source b) threshold c) spans d) contour
e) convex hull f) bounding box g) enclosure h) abstraction

In order to retrieve candidate regions for our blob analysis, we
therefore simply have to traverse this region-adjacency graph, and se-
lect all white-coloured regions within a determined size range, which
is already associated to each region. From these selected regions, we
now have direct access to a linked span-list, which constitutes the full
area for each individual blob, by marking the start- and end-points
for each span as well as a link to the following span. Traversing this
span list, we can efficiently reconstruct a compact list of the relevant
outer contour points of each candidate region. From this outer con-
tour list, we then calculate a convex hull, which serves as the basis for
the calculation of the four corner points of an oriented bounding box.
This oriented bounding box is finally described by its center point,
along with its width, height and rotation angle.

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

7.3 remarks & analysis 70

7.3.4 Finger Tracking

Based on the blob analysis method described above, it became also
possible to improve the performance and precision of the finger-tracking
algorithm. In order to detect finger blobs, we first select all white
regions within a configurable size range, matching the average foot-
print of a finger blob. After analyzing each finger blob candidate with
the method described above, we can now calculate the deviation from
all outer contour points from the enclosing ellipse defined by the ori-
ented bounding box. This not only allows the robust exclusion of
malformed false-positives, but also greatly increases the precision of
the position tracking of each finger, compared to the center point of
a simple bounding box, which was used in previous versions.

Figure 17: Touch blob analysis: a) raw blob b) outer contour
c) enclosing ellipse d) accumulated error

7.3.5 Yamaarashi Symbols

While the previous reacTIVision version 1.5 was mainly dedicated
to resolve various platform and camera compatibility issues, the cur-
rent version 1.6 also provides significant feature updates to the core
tracking components. In addition the plain blob tracking and analysis
described above, this also includes a new type of fiducials, which I
named Yamaarashi (see below). Although our current amoeba fidu-
cials still provide the core marker tracking engine for reacTIVision
due to their robustness, this method also has shown several short-
comings. These are mostly based on the growing complexity of the
region adjacency graph and the resulting symbol size, when introduc-
ing larger ID sets based on region adjacencies. Our current standard
fiducial set included with reacTIVision provides 216 amoeba symbols,
which are usually printed with a diameter of 5-6 centimeters when
used with a standard camera resolution. reacTIVision also includes
an additional smaller set of fiducials which work fine at an average
diameter of 4 centimeters, but are limited to 24 different IDs only.
On the other hand, providing a set with a larger number of more
than 1000 symbol IDs would grow the necessary symbol size to 7-8
centimeters. Also the generation of an optimal set of larger symbols
would require a significant computing and selection effort based on
our genetic fiducial breeding algorithm and rendering method.[36]

For the design of the new Yamaarashi symbols I therefore chose
a hybrid approach, by combining the robustness of the core amoeba
fiducial design with an additional bitcode allowing the encoding of

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

7.3 remarks & analysis 71

a larger number of different symbol IDs. Therefore employing a very
simple and relatively small amoeba fiducial (w012211) is employed
at the center of each symbol, with a ring of individual code bits that
are arranged around this circular core symbol. In the current configu-
ration we can arrange a total number of 24 bits around each symbol,
from which we actually use 20 bits to encode 1.048.576 different IDs,
while employing the additional bits to encode a simple checksum in
order to eliminate possible false positives.

Figure 18: Yamaarashi symbol structure:
a) overall design b) bitcode sequence c) core symbol topology

The core fiducial is therefore first recognized together with all other
amoeba symbols from the standard fiducial set through libfidtrack.
This step already provides its position and rotation angle, along with
its specially reserved Yamaarashi ID. In order to then decode the ac-
tual symbol ID for each individual Yamaarashi, we then also analyze
the enclosing ellipse of the central symbol’s white root region, in or-
der to calculate and compensate a possible distortion of the detected
symbol. With the provided orientation of the core amoeba symbol
combined with the actual size of the root region, we can now sim-
ply decode and verify the circular bitcode by determining the actual
colour at each predicted bit position. Due to the simplicity of the core
fiducial topology, the libfidtrack engine may detect this rather sim-
ple structure in arbitrary noise, therefore we are further using the
heuristics about the geometric relationship of the root node to its leaf
nodes in order to eliminate possible false positives, which is further
supported by the 4 bit checksum based on a simple XOR operation
applied to five 4 bit segments of the total 20 bit code, which most
likely fails when decoding the arbitrary surroundings of such a false
positive.

Figure 19: Yamaarashi tracking modes:
a) bitcode identification b) core amoeba c) root region

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

7.3 remarks & analysis 72

In analogy with the multi-level fiducial tracking heuristics which
is already applied for the tracking of amoeba symbols, I also in-
troduced several levels for the more robust tracking of Yamaarashi
symbols, which are required in certain conditions of reduced image
quality, fast motion blur or partial symbol occlusion. The full symbol
decoding level is necessary to determine the actual symbol ID at the
beginning. Once decoded we can further track the Yamaarashi core
symbol without the additional need of decoding its actual ID within
every frame. Finally we are still able to maintain a stable and precise
symbol tracking based on the circular root region, even if the bitcode
and/or core symbol may not be decoded in an individual frame.

Although reacTIVision already includes a PDF file containing an
optimized set of amoeba fiducials, the large number of more than
one million Yamaarashi symbols would exceed a reasonable file size
with its more than 50.000 pages. Therefore I created a simple tool
based on Processing5, which allows the rendering of an arbitrary sub-
set of Yamaarashi symbols to a custom PDF file. This tool also allows
the adjustment of the actual symbol rendering size, defaulting to a
diameter of 4 centimeters in conjunction with an average camera res-
olution, which represents only two thirds of the standard amoeba
fiducial size.

Since the standard amoeba fiducials have a rather unique aesthetic
appearance, it was our objective to maintain this particular aspect
also within our design of the new set of Yamaarashi fiducials. Since
I found that the central symbol structure loosely resembled a comic
animal face, while the circular bitcode could be interpreted as hairy
spikes, I decided to name our symbols with the Japanese word for
porcupine. Hence the new Yamaarashi symbol design has achieved
its initial design goals by providing a larger number of IDs com-
bined with a smaller and more uniform footprint, while maintaining
the overall robustness and particular aesthetic aspects of the original
amoeba design.

7.3.6 Performance Improvements

As already mentioned in the paper, one of the long-planned feature
enhancements for reacTIVision was the introduction of a proper filter
method in order to reduce the possible noise for the position and ori-
entation tracking. Due to the multi-node averaging we implemented
for our amoeba symbols, our fiducial tracking algorithm generally
provide sub-pixel accuracy for position, and a one-degree accuracy
for rotation. Since in some circumstances, such as in bad lighting con-
ditions or when using very small symbols with low-resolution cam-
eras, noisy position and angle data would cause occasional jumps of
resting fiducials, a one-pixel position and three-degree angle thresh-
old was introduced as a simple work-around. While this appeared
to be stable enough and sufficient for most application scenarios, it
also caused some degree of surprise for other researchers, who even-

5 http://www.processing.org

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

http://www.processing.org

7.3 remarks & analysis 73

tually tested reacTIVision in comparison with their superior fiducial
tracking methods.[63] I therefore now integrated Casiez’ et.al. 1e Fil-
ter[64] instead of the previously considered Kalman[57] Filter, since
this simple method provides stable results with acceptable latencies,
while preserving the original sub-pixel position and one-degree angle
resolution.

Although many computer vision environments already employ GPU
based processing methods such as OpenCL in order to decrease CPU
usage and improve the overall processing speed through paralleliza-
tion, reacTIVision still relies on standard C++/C code to maintain
its current cross-platform portability. In order to further improve the
speed of the rather CPU intensive computer-vision portions though,
multi-threaded image processing was added wherever possible, such
as within the FrameThresholder component, which was quite easy
to adapt for parallel processing. This most importantly improved the
overall performance on slower single board computers, by leveraging
the full potential of their multiple ARM cores. In this context is is
noteworthy that an old iBook G3 laptop (single-core 32bit PPC, run-
ning at 700MHz) is able to process a 640x480 VGA camera image at
30fps, while in comparison a current Odroid C2 board6 (quad-core
64bit ARM, running at 1.7GHz) we can process a 1280x720 HD cam-
era image at 60fps in real-time. Therefore the installation of reacTIVi-
sion on these embedded systems allows the construction of compact,
low-cost and high-performance smart cameras, providing TUIO 1.1
through their Ethernet port.

Figure 20: An embedded TUIO camera system configuration.
Photo: aliexpress.com with annotations

For this purpose, reacTIVision now also supports headless opera-
tion for the configuration and use without graphical user interface.
Therefore the internal architecture of its core image-processing com-
ponents has been also cleaned up from any previous dependencies to
the SDL interface, also facilitating its future port to other platforms,
such as iOS and Android.

6 http://www.hardkernel.com

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

http://www.hardkernel.com

7.3 remarks & analysis 74

7.3.7 Library Integration

Due to its historical development process reacTIVision still provided
an internal custom TUIO implementation until its most recent 1.5 se-
ries. Along the internal architecture changes within reacTIVision 1.6 it
finally also became possible to integrate the standard TUIO 1.1 refer-
ence implementation in the form of a cross-platform C++ library. This
library not only defines the necessary feature complete TUIO server
API, which encapsulates all TUIO components such as objects, cur-
sors and blobs, but now also allows the alternative use TUIO/TCP,
TUIO/WEB and and TUIO/FLC transport channels in addition to
the standard TUIO/UDP method. While the TUIO/FLC transport
for Flash developers is still maintained, today the more standard-
compliant TUIO/WEB web-socket method is recommended for the
development of TUIO-enabled web-applications. Due to the library
integration the optional MIDI output had to be dropped, and needs
to be provided by more versatile external TUIO-to-MIDI conversion
tools, such as OSCulator.7 Another benefit of the increased modu-
larization is the parallel use of multiple transport channels, such as
sending TUIO/UDP to various machines or ports. In order to take
advantage of the new source multiplexing feature introduced with
TUIO 1.1, we also added the optional source message configuration
in order to allow the execution and distinction of multiple reacTIVi-
sion instances on a single machine, which can be used for the realiza-
tion of multi-camera configurations. The standard library integration
will eventually also facilitate the switch to the next TUIO2 generation
within a future reacTIVision 2.0 version.

Figure 21: TUIO 1.1 abstraction: a) raw sensor input b) image processing
c) object, cursor & blob recognition d) TUIO client representation

7 http://osculator.net/

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

http://osculator.net/

7.3 remarks & analysis 75

Figure 22: TUIO 1.1 components: objects, cursors & blobs

7.3.8 TUIO 1.1 Model

Since the historical development of the current TUIO specification has
been documented throughout the various publications which have
been presented in this thesis, I’d like to summarize to overall archi-
tecture of the abstraction model that is represented by the final TUIO
1.1 specification. The original TUIO 1.0 specification defined two prin-
cipal interface components: Objects represent simple tangible tokens,
which can be identified through symbols, and localized with their po-
sition and orientation within an interactive surface. Cursors represent
the basic gestural interaction from touch input or other pointing de-
vices, are referenced through their surface position. Since neither ob-
jects or cursors provide any information about their actual geometry,
I defined Blobs in order to specify the additional spatial extension for
objects and cursors, as well as for generically untagged physical ob-
jects. TUIO allows the representation of multiple objects, cursors and
blobs through a unique Session ID, which is the essential attribute
for the realization of multi-touch and multi-user object interaction.

Figure 23: TUIO 1.1 architecture

The distributed architecture of the TUIO framework is based on
the separation of the hardware abstraction layer provided by TUIO
tracker for a particular sensor platform, from the actual application
layer through the integration of a TUIO client. The TUIO protocol and
its encapsulation of abstract component descriptors connect the phys-
ical surface environment to the digital application layer, by providing
a continuous representation of all present component states.

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

7.3 remarks & analysis 76

This separation of the sensor component from the application layer
facilitated the development of a distributed TUIO ecosystem, which
led to the adoption of the TUIO protocol as de-facto standard for the
integration of multi-touch tangible interfaces. TUIO hardware track-
ers today include an impressive variety of camera based systems,
optical touch frames, capacitive touch foils as well mobile phone
and tablet platforms. Apart from TUIO client implementations for
numerous programming languages, several professional application
programming environments provide native TUIO support: This in-
cludes Kivy for Python, TuioFX for Java, Qt for cross-platform GUI
development, the Unity 3D game engine as well as several creative
coding platforms such as Processing, OpenFrameworks, Cinder and
TouchDesigner just to name a few of the most relevant TUIO-enabled
environments.

7.3.9 TUIO 1.1 Limitations

This publication also openly discusses the actual limitations, which
emerged through the lifespan of the current TUIO abstraction model
and its representation within the TUIO 1.0 protocol syntax. Some of
the most imminent problems, such as the missing description of a
component’s footprint and the lacking distinction between various
incoming TUIO streams, have been partially repaired through the in-
troduction of a third Blob profile and the additional Source message
within the TUIO 1.1 specification.

While these intermediate extensions proved to be useful for stan-
dard multi-touch application scenarios, there still remain several lim-
itations of the current TUIO 1.1 abstraction model, which unfortu-
nately can’t be resolved by simple additions to its current protocol
syntax:

• the definition of separate object, cursor and blob profiles limits
the cross referencing between components

• the lack of a dedicated bundle time limits proper gesture recog-
nition on the client side

• missing attributes cannot be simply added to component mes-
sages without breaking the syntax

• a simple object ID limits the introduction of additional symbol
types

The ongoing development of the reacTIVision tracker and the anal-
ysis of further multi-touch applications and tangible interaction plat-
forms, also identified the need for additional geometry detail and the
definition of new interface components and their physical relation-
ship. This eventually suggested the introduction of a completely new
protocol generation, which I will discuss in detail in the following
chapter along with an improved abstraction model.

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

Part III

M O D E L E X T E N S I O N

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

8
T U I O 2

With the evaluation of the previous work related to the TUIO pro-
tocol and its application framework, I have identified the need for a
fundamental redesign of its underlying component model in order
to allow its extension to a broader scope of tangible application sce-
narios. Since the initial TUIO specification was mainly driven by the
specific requirements of the Reactable platform, it had been designed
for the representation of tagged physical objects as well as multi-
touch gesture control. Although it has been shown that the simple
bottom-up model approach of the initial TUIO specification allowed
the construction of rather versatile application scenarios, I identified
several shortcomings of the existing model, as well as the additional
need of its radical extension to allow for a larger base of possible
input technologies as well as a broader range of application scenar-
ios. Therefore I developed an improved abstraction model, which on
the one hand extends the various attribute descriptors of the existing
object model, and on the other hand defines several additional tangi-
ble interface components, also introducing the concept of component
relationships. This new model is based on an extensive analysis of
the related research on tangible object models and application design
patterns. While the original TUIO object model was influenced by a
specific application domain, the proposed abstraction model is based
on more common naming conventions in order to reflect its relation
to previous research and to facilitate its integration with more gen-
eral application scenarios and technologies. The primary focus of this
work is the further technical implementation within our own and
third party tangible interaction frameworks. After a presentation of
the proposed abstraction model, I will also outline its actual imple-
mentation within a next generation TUIO protocol and framework,
along with several examples showcasing the new model capabilities.

8.1 an extended abstraction model

The main motivation for the conception of a generalized abstraction
model was the simplification of the design and implementation pro-
cess for the casual user but also the professional developer of a surface-
based tangible user interface. This simplification should allow easier
access to technologies, which until recently have only been available
to a knowledgeable research community, which is technologically lit-
erate and also has access to the tools, documentation and education,
which have been necessary to work with this kind of novel interaction
paradigms. Hence the design of this interaction framework targets a
simplicity, which should ideally not exceed the complexity of single
mouse input integration into a standard GUI application. Therefore
the first design iteration of the TUIO framework focused on multi-

78

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

8.1 an extended abstraction model 79

touch input and its integration into standard applications, and also
added the handling of physical tokens in a similar manner. These
two basic components already allow the development of basic inter-
active multi-touch surfaces with integrated tangible object handling,
which apart of the handling of multiple identified control instances
does in fact not introduce much additional complexity to the actual
application design. Since the proposed framework targets a similar
level of simplification, the discussed platform definitions may seem
often very straightforward, which is of course fully intentional. The
reduction of the complex interaction mechanisms, which are neces-
sary for the construction of tangible user interfaces, to natural inter-
action events as well as the description of tanglible components and
their attributes that can be also grasped by non-expert users, is one
of the most important design principles of this framework.

8.1.1 Global Context

8.1.1.1 Interactive Surface

Our abstraction model has been designed for the specific context of a
two-dimensional interactive surface. This includes the surface exten-
sion itself, which in the most common case is a horizontally mounted
rectangular table surface, while other geometries such as square and
round surfaces, or even more complex topographies are of course not
excluded per-se, but not covered explicitly. The idea of an interactive
surface can also be translated to a vertically organized environment,
such as an augmented whiteboard for example. This surface context
can also be scaled to larger dimensions covering a whole floor or wall,
or scaled down to an interactive surface of a mobile input device with
a small-scale touch sensitive screen.

Figure 24: fishtank scenario: space extending above an interactive surface.

This two-dimensional surface plane can be also extended to the
third dimension considering the space that elevates from the surface,

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

8.1 an extended abstraction model 80

which can be fully described by an absolute 3D coordinate system or
partially described by a 2.5D model, which adds the relative distance
to the surface.

The surface model is limited to the extension of all active surface
areas, which are covered by the input sensing and multi-modal feed-
back hardware and will therefore neglect the description of passive
surface areas, such a table border or object repository, which are nev-
ertheless considered to be an integral part of the complete surface
infrastructure, but are primarily only relevant to the individual appli-
cation scenario though.

8.1.1.2 Sensor Data Normalization

The abstraction model is fully independent of the actual sensor tech-
nology used for the tracker implementation. This can include com-
puter vision based solutions, but also optical or capacitive touch screen
technology, electro-magnetic sensing as well as any other possible sen-
sor hardware that may be employed to retrieve the necessary input
data for the real-time capturing of all relevant surface, object and ges-
ture attributes.

In order to provide a generalized abstraction for all possibly used
sensor systems, which can differ significantly in their spatial or tem-
poral resolution, this model introduces a normalized, orientation in-
variant coordinate system for the position data, as well as uniform
component attributes where possible, or clearly defined normalized
ranges of control values. These uniform data structures can then be
scaled back to the desired surface dimensions by the underlying ap-
plication layer, in order to provide visual feedback for example.

Additionally the model maintains a simple and straightforward
data format, which should be also understandable by non-expert
users, and also allow for direct data interpretation by environments
with limited computational infrastructure.

8.1.1.3 Time Model

The temporal resolution of the gestural input is fully based on the
tracker sensor capabilities and its according configuration. Therefore
all model states need to be identified with a fine-grained time stamp,
which allows the later reconstruction of the full gesture including its
dynamics. Since our abstraction layer provides a detailed description
of the gestural input data, the application layer can perform the ac-
tual gesture recognition task based on the position and time based in-
formation. Although our model does not provide any gesture recog-
nition or interpretation infrastructure, it provides the relevant time
based input data for an intermediate gesture recognition layer[65] or
directly to the application layer itself.

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

8.1 an extended abstraction model 81

Figure 25: TUIO 2.0 components: symbols, tokens, pointers & geometries

8.1.2 Explicit Interface Components

8.1.2.1 Tokens

Tokens represent abstract tangible objects without explicit descrip-
tors for their actual physical appearance or geometric properties. Within
the boundaries of the interactive surface these individual tangible ob-
jects can be selected and manipulated by moving and rotating them
in direct contact with the surface or freely within the space above this
surface. The model describes several state properties of these tokens
such as their absolute position and orientation on the surface, while
it also defines various classes of distinguishable tokens, which can be
individually identified and tracked through markers for example.

On the other hand the model also introduces untagged generic ob-
jects, which only can be approximately described by the system, spec-
ifying their overall geometric boundaries and physical appearance.

8.1.2.2 Symbols

Physical tokens can be tagged with dedicated marker symbols, which
primarily support the tracking system with the identification of each
individual token. Using a computer vision system for example, sym-
bols can be implemented with fiducial markers, which allow the ro-
bust identification of known visual symbols. On the other hand, sim-
ple color tracking methods can also generate various classes of dis-
tinguishable physical tokens, while alternative electromagnetic tags
such as RFID tags can be employed as a symbol for tagging of phys-
ical tokens. Some visual markers, such as barcodes or QR codes, as
well as advanced RFID chips can also embed additional data content
apart from a single identification number. Therefore in addition to
the simple identification tag the model also specifies the actual sym-
bol type, its encoding scheme and data content for each individual
symbol component. Furthermore a symbol can be also used without
the direct association to an actual physical object or location.

Figure 26: symbol examples: a) fiducial b) QR code c) RFID tag d) character

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

8.1 an extended abstraction model 82

Figure 27: pointer examples: a) touch b) mouse c) pencil d) laser

8.1.2.3 Pointers

Pointers are generally one-dimensional moving pointing gestures within
the two-dimensional plane, which are not directly referenced through
a physical object, and therefore are conceptually intangible interfaces
components. Cursor states are either generated by direct manipula-
tion of the surface, using finger touch gestures or alternatively through
dedicated pointer devices such as a mouse or pencil. Cursor point-
ers are therefore primarily defined by their absolute position on the
surface, but can also encode common additional attributes such as
applied pressure, rotation angle or a region of influence.

Figure 28: geometry detail: a) bounding box b) convex hull c) contour
d) skeleton e) area spans f) raw data

8.1.2.4 Geometries

While Tokens and Pointers are abstract interface components, asso-
ciated geometry descriptors can be employed to provide additional
information about the spatial extension and shape of physical objects
or pointer devices. These geometries define several levels of abstrac-
tion, which can be refined incrementally up to a higher level of detail
if necessary. This detailed description of the object geometry can be
also interpreted within the application layer, through additional ob-
ject recognition for example. The various geometry descriptors can

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

8.1 an extended abstraction model 83

be also used as additional control dimensions within the application
layer, such as mapping interactive object deformations to the control
dimensions of a synthesizer for example.

8.1.2.5 Model Extension

For platform specific adaptations, the underlying OSC data structures
also allow the definition of additional components through the com-
position of custom messages. Therefore the TUIO protocol also pro-
vides an additional custom component mechanism, which is more
tightly bound to the overall protocol semantics.

8.1.3 Component Relation

8.1.3.1 Associations

While spatial systems are generally defined by the absolute location
of a physical component on an interactive surface, relational systems
on the other hand are purely defined by physical and logical com-
ponent relations.[11] Therefore this model also establishes the addi-
tional layer of component associations, which allow the representa-
tion of physical chains and even complex tree topologies of adjacent
or physically connected tangible interface components. Additional
container associations allow the representation of physically nested
components.

Figure 29: component relations: a) physical link b) container c) signal

8.1.3.2 Controls and Signals

Tokens or other physical interface components can also be augmented
with additionally associated control dimensions for the description
of the state of associated buttons, knobs, faders, or other dedicated
control values retrieved from pressure or temperature sensors etc.,
which can be optionally attached to the physical body of each indi-
vidual component.

In addition to the establishment of physical and logical associa-
tions, physical interface components may also exchange simple sig-
nals. Therefore a directional signal infrastructure between individual
components allows to trigger events or exchange data blocks.

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

8.1 an extended abstraction model 84

8.1.4 Component Context

8.1.4.1 Surface Constraints

While the spatial extension of the interactive surface represents the
principal constraint for the overall tangible interaction environment,
TUIO provides no explicit definition of a dedicated class of constraint
interface elements. Constraints may be defined in the application do-
main, digitally within the visual surface layout or physically with the
dedicated definition of tokens or physical geometries that serve as
constraint interface components. If the sensor system is capable of
determining the physical relation of a dedicated token-constraint sys-
tem, the model allows the explicit definition of a container object and
its associated tokens.

8.1.4.2 User Representation

The user as such is not directly represented in the abstraction model,
but is obviously driving the continuous state changes of pointers and
tokens, which are generated by the user actions and gestures actuat-
ing upon the physical objects and the surface, and can be indirectly
associated to a user. Since some input devices allow user identifica-
tion, all components can be associated to a specific anonymous user
ID, which allows the user association of gestures generated by an in-
dividual. Furthermore, pointer components allow the specification of
various body parts such as finger, hand, body and head which also
can be associated to an individual user.

8.1.5 Component Gestures

Various types of gestures that are being performed with or on the
physical interface components can be deduced from consecutive at-
tribute updates, such as the position and movement of pointers and
tokens, the rotation of tokens and untagged objects as well as the
continuous geometry changes of malleable tangible objects.

8.1.5.1 Pointing Gestures

can be generated directly from single or multiple pointer positions,
primarily when an event for adding or removing a pointer compo-
nent has been decoded from the state model. Within the application
model, these pointing gestures can be associated with either digitally
generated surface components or with a nearby physical interface
component.

8.1.5.2 Motion Gestures

can be derived from continuous pointer, token and geometry displace-
ments, typically marked as a session that develops over the lifespan
of each component from its association with the surface context until
its removal.

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

8.2 model integration 85

8.1.5.3 Manipulation Gestures

are derived from the interpretation of object state or geometry changes,
which result from the rotation and eventually the deformation of
generic tangible objects, resulting in continuous changes of the ob-
ject’s bounds, contour or skeleton, which can be interpreted as squeez-
ing or bending gestures.

8.1.5.4 Control Gestures

can be equivalently derived from the same data used for manipula-
tion gestures by directly mapping these changes of object geometry to
control parameters within the application model. The handling of the
dedicated controller components directly provides additional control
dimensions to the application model.

8.1.5.5 Association Gestures

can be either derived from the direct interpretation of the two com-
ponent association types for connect and disconnect events as well
as container events. On the other hand the model also allows the
interpretation of changes in spatial adjacencies as indirect object as-
sociation gestures.

8.2 model integration

As shown above, this new abstraction model does not intend to de-
fine an universal real-world description of any observable interaction
environment, neither does it provide an infrastructure for the direct
encoding of raw sensor data. It is are rather defining a simplified
semantics for an abstract description of the physical environment,
which primarily has been designed for the representation of interface
components states within tangible multi-touch applications based on
interactive surfaces.

Thus our model is fully hardware independent and application
invariant since it basically provides a normalized representation of
physical interface components, without any reference to specific hard-
ware configurations or application scenarios. An underlying applica-
tion layer therefore can upon the provided object model representa-
tions, by defining its dedicated application model only locally. This
eventually allows the installation of these applications on different
hardware platforms while they provide their feature set through an
adequate implementation of our semantic model.

The recognition and representation of high-level user gestures per-
formed with the hands or the full body are not represented within
this model though. The gesture modelling and recognition should be
generally bound to application domain, which is not explicitly part of
our purely physical interaction model and the according abstractions.
The detailed component attributes and the integrated timing infras-
tructure provide the necessary high-level input data as well as the

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

8.2 model integration 86

necessary semantic context for gesture recognition and even object
recognition based on their geometries.

Figure 30: Layers of the Abstraction Model

A typical physical layer is usually comprised of an interactive sur-
face and the related tangible objects. These interface components usu-
ally contain an embedded sensor system or are observed externally,
which provides the raw input data that is retrieved from surface in-
teractions or object manipulations.

Each individual hardware configuration therefore needs to inte-
grate the low-level data acquisition with the high-level semantic model
representation. This usually involves the mapping from a device-specific
input system with a software implementation of our model. This in-
frastructure generally takes care of the proper encoding at the hard-
ware level, its transmission through an adequate channel, as well its
decoding at the application layer.

After the transmission and decoding, the semantic description of
the physical interaction environment is provided through an appli-
cation programming interface, which encapsulates object states and
surface events. This interface can either be integrated directly into
the final application or previously processed by an intermediate ges-
ture recognition layer. The actual application logic finally determines
the appearance of the according digital feedback through the inte-
grated visual, acoustic or haptic displays. Although our model does
not explicitly define any feedback channel, it can be also employed to
encode physical interface changes for actuated system configurations.

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

8.2 model integration 87

Figure 31: A Multitouch Software Architecture. Illustration: Echtler et.al.

Taking the example of Echter’s et.al. multitouch software architec-
ture[66], the TUIO abstraction can be simply represented within the
hardware abstraction layer in this case, allowing for the integration of
any TUIO pointer enabled hardware implementation into its architec-
ture. While this particular multitouch model only integrates the sub-
set of pointer components, it could be subsequently extended with
tangible interface components that are provided by the abstraction
model.

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

8.3 tuio 2 .0 protocol specification 88

8.3 tuio 2 .0 protocol specification

This chapter presents the implementation of an abstraction frame-
work, which shall meet the requirements for the comprehensive de-
scription of state-of-the-art tangible interfaces and multi-pointer sur-
faces. For that purpose an extensive protocol has been defined, which
allows the encoding and transmission of a tangible interface compo-
nent abstraction, such as tokens, pointers and geometries as well as
additional symbols and controls in the context of an interactive sur-
face. The protocol extends and replaces the original TUIO specifica-
tion, therefore the reader should be familiar with the general idea and
structure of the previous TUIO 1.1 protocol generation. As in its pre-
decessor, the TUIO 2.0 components and attributes are encoded using
the Open Sound Control (OSC) format.

This protocol version introduces many additional features com-
pared to TUIO 1.1. This includes timing information, several addi-
tional component attributes such as finger pressure, and code descrip-
tors for symbol types such as data matrix labels or RFID tags. TUIO
2.0 also encodes the precise object geometry with general bounds,
contour and skeleton descriptors which can be used to describe un-
tagged tangible objects or retrieve additional geometry information
for tokens or pointers. Many syntactic changes have become neces-
sary in order to define more OSC compliant messages and bundles,
which together with the additional features should justify the ver-
sion jump at the cost of backwards-compatibility at the protocol level.
TUIO 2.0 client implementations can provide additional backwards
compatibility by handling both TUIO 1.* and TUIO 2.0 protocol gen-
erations though.

8.3.1 Message Structure

TUIO 2.0 defines a unified profile for all previously covered tangible
object types, such as tokens (tagged objects), pointers and geometries
(for untagged generic objects). The idea of ALIVE messages and FSEQ
messages of the original TUIO specification was generally maintained
within /tuio2/frm and /tuio2/alv messages, while the SET messages
of the previous 2Dobj, 2Dcur and 2Dblb profiles, were mapped to
individual messages within the same /tuio2/* name space. Therefore
the OSC name space was reduced to an abbreviated, but hopefully
still human-readable structure and was also adapted to a more OSC
compliant message and bundle style.

The distribution of SET messages over different profiles such as
2Dobj, 2Dcur and 2Dblb, has been reduced to dedicated TOK, PTR
and BND messages that transmit the status updates for tokens (ob-
jects), pointers (cursors) and bounds (blobs). The component geome-
try can be described in greater detail with additional geometry mes-
sages such as OCG (contour) and SKG (skeleton). The new SYM
messages allow the transmission of symbol content, and CTL mes-
sages allow the association of additional control dimensions to exist-

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

8.3 tuio 2 .0 protocol specification 89

ing components. A set of associative messages allow the encoding
of container relationships (COA) as well as physical or logical links
(LIA) between tangible objects. Custom messages that meet the re-
quirements of yet undefined trackers now also can be realized within
the same name space. This allows the usage of the same session ID
across the same surface profile for alternative token, pointer or geom-
etry references to the same tangible object. The specification primarily
defines a profile for two-dimensional surfaces, which is partially ex-
tended to the 3rd dimension by complementary 3D component mes-
sages for tokens, pointers and bounds. Therefore TUIO was designed
as a semantic description of tangible interfaces components within
the confines of an interactive surface environment and the space ex-
panding above that surface.

As within TUIO 1.1, a Session ID is an unique identifier for each
interface component, which is maintained over its life-time, starting
with its appearance, and maintained with every update until its re-
moval. This not only allows the explicit distinction of otherwise un-
tagged pointers for example, but also the multiply use of tokens that
are tagged with the same symbol type. Furthermore the unified TUIO
2.0 profile structure, now also allows the cross referencing of various
components through their common Session ID. This allows the as-
sociation of a control to a pointer for example, as well as adding
additional geometries to a token, including an incremental increase
of detail if necessary.

Please note: The following textual representation illustrates the
syntax of the individual TUIO messages. An actual OSC implementa-
tion encodes these messages using binary data types, as specified in
the attribute type table further below. You can also refer to the OSC
specification for detailed information regarding the basic data types
and overall message encoding.

8.3.2 Global Messages

8.3.2.1 FRM (frame message)

/tuio2/frm f_id time dim source

/tuio2/frm int32 ttag int32 string

The FRM message is a unique identifier for an individual frame,
and therefore has to be included at the beginning of each TUIO bun-
dle. Each frame is identified by a 32bit unsigned integer value that
represents an incrementing frame ID. This allows dropping messages
that arrive late with an eventually lower frame ID, the frame ID 0 is
reserved for the out of order execution of redundant state updates.
The following time stamp is represented as an OSC 64bit time tag. Al-
though the key component messages may include redundant speed
and acceleration attributes that compensate for possibly lost pack-
ages, the availability of dedicated timing information is essential for
many gesture-based interfaces. The dimension attribute encodes the
sensor dimension with two 16bit unsigned integer values embedded

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

8.3 tuio 2 .0 protocol specification 90

into a 32bit integer value. The first two bytes represent the sensor
width, while the final two bytes represent the sensor height. This al-
lows to encode a sensor dimension up to 65535x65535 and implicitly
also describes the surface ratio as well as its relative resolution. (In
an optional 3D fishtank scenario - or the pointer hovering state - the
optional Z-axis values are relative to the sensor height)

The source string attribute provides additional information about
the origin of the TUIO message bundle. This string intends to provide
a unique identification string for each TUIO source, which follows the
following format convention:
src_name:src_instance@src_origin, where the src_name is pro-

vided as a unique and reasonably short identifier string for a TUIO
server application, the src_instance numbers the various possible in-
stances, while the src_origin encodes the machine address in HEX
format, depending on its origin. So a single reacTIVision instance run-
ning on localhost could be identified by a source string in the form of
"REAC", "REAC:0" or REAC:0@0x7F000001 depending on its context.
The TUIO2 client implementation needs to consider the correct de-
coding of the source string detail level.

8.3.2.2 ALV (alive message)

/tuio2/alv s_id0 ... s_idN

/tuio2/alv int32... int32

The end of each bundle is marked with the ALV message contain-
ing a list of all active session IDs, which allows the robust reconstruc-
tion of added or removed TUIO components. This is more robust
than the possible usage of dedicated ADD or DEL messages, which
can cause inconsistencies when lost on a transport channel such as
UDP. Added objects can also be derived from their first appearance
in a TOK, PTR or BND message. The session ID attribute is encoded
using a 32bit unsigned integer value allowing a possible value range
between 0 ... 4.294.967.295 until overflow, which should not cause any
negative effects in a typical session. Since OSC only defines a default
32bit signed integer field, a TUIO implementation needs to cast the
s_ID attribute to uint32 during the encoding/decoding step.

8.3.3 Component Messages

8.3.3.1 TOK (token message)

/tuio2/tok s_id tu_id c_id x_pos y_pos angle [x_vel y_vel a_vel m
_acc r_acc]

/tuio2/tok int32 int32 int32 float float float [float float float

float float]

The TOK message is the equivalent to the 2Dobj SET message of
the TUIO 1.* specification, which encodes the common attributes of
tagged physical objects. The Session ID (s_id) and Component ID
(c_id) as well as the general X & Y position and angle attributes re-
main unchanged, while a combined Type/User ID (tu_id) allows the

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

8.3 tuio 2 .0 protocol specification 91

multiplexing of various symbol types within the same session as well
as the association of an additional user ID. The first two bytes of the
type/user attribute are therefore encoding the User ID, while the sec-
ond half of the attribute encode the actual Type ID resulting in two
16bit unsigned integer values. This allows a possible range of 65535

Type and User IDs. The User ID can be used to determine if a to-
ken is currently being held by a user, therefore the ID 0 is reserved
for the "no user" state. A TUIO implementation has to consider this
special usage of the int32 tu_id attribute with an according encod-
ing/decoding step. Speed and acceleration parameters are optional
and the client implementation has to consider the two possible mes-
sage lengths.

8.3.3.2 PTR (pointer message)

/tuio2/ptr s_id tu_id c_id x_pos y_pos angle shear radius press [

x_vel y_vel p_vel m_acc p_acc]

/tuio2/ptr int32 int32 int32 float float float float float [float

float float float float]

The PTR (pointer) message the equivalent to the 2Dcur SET mes-
sage of the TUIO 1.* specification, which encodes the common at-
tributes of pointing gestures. The message syntax changed signifi-
cantly compared to the original profile, in addition to the Session ID
and its X & Y position, it defines a Component ID that allows the
distinction of individual pointer components during a whole session.
The provided angle attributes specify the Pointer’s rotation angle as
well as the shear angle relative to the horizontal surface plane. An
additional BND message can be used to specify the more detailed
extension of the pointer.

The radius attribute indicates a pointer’s "region of influence" by
specifying its action radius (encoded normalized to the sensor height).
An additional pressure value in the range from 0..1 was added for the
encoding of discrete or continuous surface pressure. Additionally a
negative pressure value can be used to indicate a pointer that is not
in touch with the surface, and therefore in a hovering state.

The Type ID attribute allows the distinction of different pointer
input devices and is also used to encode the associated User ID. The
first two bytes of the type attribute are therefore reserved for the User
ID, while the second half of the attribute encode the actual Type ID
resulting in two 16bit unsigned integer values. This allows a possible
range of 65535 user IDs and type IDs. A TUIO implementation has to
consider this special usage of the int32 tu_id attribute with an accord-
ing encoding/decoding step. TUIO2 defines a list of default Pointer
Type IDs, where the ID 0 stands for an undefined or unknown pointer.
The IDs 1-5 define fingers of the right hand starting with the index
finger (index, middle, ring, little, thumb) followed by same sequence
from ID 6-10 for the left hand. The default ID for an unknown finger
is the right index finger ID 1. The ID range from 11-20 defines a small
selection of common pointer devices (11 stylus, 12 laser pointer, 13

mouse, 14 trackball, 15 joystick, 16 remote). The ID range from 21-

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

8.3 tuio 2 .0 protocol specification 92

30 defines various body parts (21 right hand pointing, 22 right hand
open, 23 right hand closed, 24 left hand pointing, 25 left hand open,
26 left hand closed, 27 right foot, 28 left foot, 29 head, 30 person). Any
Type ID starting from 64 and above can be freely associated by the
tracker implementation. Speed and acceleration parameters are op-
tional and the client implementation has to consider the two possible
message lengths, please note that the pointer encodes the pressure
velocity and acceleration instead of the rotation values here.

8.3.3.3 BND (bounds message)

/tuio2/bnd s_id x_pos y_pos angle width height area [x_vel y_vel

a_vel m_acc r_acc]

/tuio2/bnd int32 float float float float float float [float float

float float float]

The BND message is the equivalent to the 2Dblb SET message of
the TUIO 1.1 specification, which encodes the basic geometry infor-
mation of untagged generic objects (blobs). The message format de-
scribes the inner ellipse of an oriented bounding box, with its center
point, the angle of the major axis, the dimensions of the major and
minor axis as well as the region area. Therefore this compact format
carries information about the approximate elliptical region enclosure,
but also allows the reconstruction of the oriented bounding box. The
region area is normalized in pixels/width*height, providing quick
access to the overall region size.

The BND message usually identifies the boundaries of any generic
untagged physical object, and can be also used to transmit the ba-
sic geometry information such as the angle and dimensions of finger
blobs or physical tokens that have been already identified by a pre-
vious PTR or TOK message. The session ID has to be equal in both
messages in order to match the component with the corresponding
bounds.

8.3.3.4 SYM (symbol message)

/tuio2/sym s_id tu_id c_id group data

/tuio2/sym int32 int32 int32 string string

The SYM message allows the transmission of the type and data con-
tents of a marker symbol. Since this information can be redundant,
and does not necessarily apply to all symbol types, it is represented
by a dedicated message, which can be omitted or sent at a lower rate
if desired. The Session ID, Type/User ID and Component ID are iden-
tical to the values used in the corresponding TOK message. Therefore
the actual symbol code and the meta-information about the marker
type and symbol description only needs to be received once by the
client. The group attribute is a string describing the symbol type, such
as fiducial markers, barcodes, or RFID tags. The code attribute is al-
ternatively an OSC string or an OSC blob data field that transmits the
symbol code or contents: such as the libfidtrack left heavy depth se-
quence, an EAN barcode number, or an RFID UID. Since the possibly

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

8.3 tuio 2 .0 protocol specification 93

symbol space may often exceed the range of component IDs, a TUIO
implementation needs to maintain its internal mapping of Symbols
to Component IDs. In case a TUIO tracker such as an RFID reader,
is not capable to determine the symbol position or orientation, the
SYM message can be sent individually without any association to a
previous TOK component.

/tuio2/sym s_id tu_id c_id grp dat description

0 2 fidtrk/18 0122212221221221111 libfidtrack 18-node

1 8 fidtrk/12 0122121211111 libfidtrack 12-node

2 0 mifare/ul 0x04c5aa51962280 mifare ultralight RFID

3 1 mifare/1k 0x0af55f2a mifare classic 1K RFID

4 0 qr/url http://www.tuio.org/ URL QR-code

5 4 ean/13 5901234123457 EAN bar-code

6 18 ms/byte 0x12 MS byte tag

7 255 color/rgb 0x0000FF RGB color tag (blue)

8.3.3.5 T3D (token 3D message)

/tuio2/t3d s_id tu_id c_id x_pos y_pos z_pos angle x_ax y_ax z_ax

[x_vel y_vel z_vel r_vel m_acc r_acc]

/tuio2/t3d int32 int32 int32 float float float float float float

float [float float float float float float]

The T3D message encodes an alternative 3D representation for to-
kens that are used within the space that extends above the surface.
The message includes an additional Z coordinate as well as the rota-
tion axis and angle. The optional velocity attributes also include these
additional dimensions.

8.3.3.6 P3D (pointer 3D message)

/tuio2/p3d s_id tu_id c_id x_pos y_pos z_pos x_ax y_ax z_ax

radius [x_vel y_vel z_vel r_vel m_acc r_acc]

/tuio2/p3d int32 int32 int32 float float float float float float

[float float float float float float]

The P3D message encodes an alternative 3D representation for point-
ers that are used within the space that extends above the surface.
The message includes an additional Z coordinate as well as vector of
the pointing direction. The radius attribute refers to the spherical re-
gion of influence of the 3D pointer (encoded normalized to the sensor
height).

8.3.3.7 B3D (bounds 3D message)

/tuio2/b3d s_id x_pos y_pos z_pos angle x_ax y_ax z_ax width

height depth volume [x_vel y_vel z_vel r_vel m_acc r_acc]

/tuio2/b3d int32 float float float float float float float float

float float float [float float float float float float]

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

8.3 tuio 2 .0 protocol specification 94

The B3D message encodes an alternative 3D representation for un-
tagged components that are used within the space that extends above
the surface. The message includes an additional Z coordinate and the
according depth attribute as well as the full 3D orientation axis and
angle. The optional velocity attributes also include these additional
dimensions.

8.3.4 Geometry Messages

The following list of CHG, OCG, ICG, SKG, SVG and ARG messages
are optional descriptors of the component geometry, which can be
incrementally describe the contour, skeleton and full area of the ref-
erenced component in various levels of detail. The RAW message
allows in conjunction with an ARG message the full reconstruction
of a bitmap that corresponds to the raw sensor data.

8.3.4.1 CHG (convex hull geometry)

/tuio2/chg s_id x_p0 y_p0 ... x_pN y_pN

The CHG message is a list of points that define the simplified con-
vex hull of the blob. This means that the number of points has to be
reduced to a reasonable amount, which represents the original hull
with a minimum error. The client implementations have to take the
variable length of this message into account.

8.3.4.2 OCG (outer contour geometry)

/tuio2/ocg s_id x_p0 y_p0 ... x_pN y_pN

The OCG message is a list of points that define the simplified outer
contour of the blob. This means that the number of points has to be
reduced to a reasonable amount, which represents the original con-
tour with a minimum error. The client implementations have to take
the variable length of this message into account.

8.3.4.3 ICG (inner contour geometry)

/tuio2/icg s_id x_p0 y_p0 ... x_pN y_pN true x_p0 x_p0 ... x_pN y
_pN

The ICG message additionally defines the points of interior con-
tour lines. According to the OCG message, a ring is only described
as a disk, while the ICG message encodes the additional inner con-
tour needed to reconstruct its full shape. The inner contour is a list
of points that uses the Boolean value TRUE to indicate the beginning
of a separate contour. A graphical representation of the number eight
therefore would contain two inner contour sequences for example.

8.3.4.4 SKG (skeleton geometry)

/tuio2/skg s_id x_p0 y_p0 x_p1 y_p1 node ... x_pN y_pN

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

8.3 tuio 2 .0 protocol specification 95

The SKG message represents the skeleton structure of a blob. In
contrary to the list of contour points this needs to be represented as
a tree structure. After the session ID the message begins with an ar-
bitrary leaf of that tree structure and continues the point list until it
reaches the next leaf point. The integer node number directs the tree
back to the last node point.

8.3.4.5 S3D (skeleton 3D geometry)

/tuio2/s3d s_id x_p0 y_p0 z_p0 x_p1 y_p1 z_p1 node ... x_pN y_pN

z_pN

The S3D message represents the three dimensional skeleton struc-
ture of a blob. Apart from an additional Z-coordinate for each node,
this message follows the same syntax as the standard skeleton geom-
etry message.

8.3.4.6 SVG (skeleton volume geometry)

/tuio2/svg s_id r0 ... rN

The SVG message adds the radius to each skeleton point as defined
by the SKG message. This allows an approximate reconstruction of
the blob volume (encoded normalized to the sensor height) based on
the skeleton, without the need of the more detailed contour descrip-
tion. This message is based on information from the SKG message
and can therefore only be used meaningfully after decoding a previ-
ous SKG or S3D message.

8.3.4.7 ARG (area geometry)

/tuio2/arg s_id x0 y0 w0 ... xN yN wN

The ARG message is the most detailed shape description message
and describes the full blob area as a list of spans. This is basically
a run-length encoding with an initial span point and the following
span length. The span list allows the complete reconstruction of the
region area and its exact contour information.

8.3.4.8 RAW (raw message)

/tuio2/raw s_id width data

This final RAW region descriptor provides additional 8bits of data
resolution for each point of the region as referenced by a previous
ARG (area) message. The data attribute is an OSC blob field with a
length according to the amount of region points, where the individual
samples are represented by an 8bit unsigned integer value. The actual
decoding of this message has to follow the order of the previous span
list, which therefore only covers the discrete region point samples.
The previous width attribute specifies the relative distance between
two points in order to correctly reconstruct the amount of samples
between the initial and final span points. Although this value can be

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

8.3 tuio 2 .0 protocol specification 96

also retrieved from the surface dimension attribute of the preceding
FRM message, it is included here for the convenience of rapid access.
The RAW message allows for example the transmission of gray-scale
image data from a computer vision sensor or pressure maps that have
been retrieved from an according pressure sensitive device.

8.3.5 Content Messages

8.3.5.1 CTL (control message)

/tuio2/ctl s_id c0 ... cN

/tuio2/ctl int32 bool/float ... bool/float

The CTL message can be used to transmit additional control di-
mensions that can be associated to an existing component instance,
such as a token with an incorporated pressure sensor or for example.
This (open length) list of variable float or boolean values, encodes
each individual control dimension as discrete 0/1 bool or continuous
floats in the normalized range from -1.0f ... 1.0f. A simple 3-button
wheel mouse for example could be encoded using a CTL message
with three boolean values for the discrete buttons and one additional
float value for the continuous wheel after the initial session ID.

An array of 12 float attributes can for example encode the keys of
a full octave in a small piano keyboard including key velocity. The
association of the according CTL message to a previous TKN con-
sequently allows the identification and localization of that physical
keyboard component.

8.3.5.2 DAT (data message)

/tuio2/dat s_id mime data

/tuio2/dat s_id string string/blob

The DAT message allows the association of arbitrary data content
to any present TUIO component. Apart from the common session
ID, this message only contains an initial OSC string that defines the
MIME type of the following data attribute, which can be either trans-
mitted using an OSC string or OSC blob data type. Therefore this
message is capable of encoding and transmitting textural or binary
data such as business cards, XML data, images or sounds etc. The
DAT message can be for example also used to transmit the actual
data content of an RFID tag that has been referenced within a previ-
ous SYM message. Due to the likely limited bandwidth resources of
the used OSC channel, this infrastructure is not suitable for the trans-
mission of larger data sets. In this case the use of alternative transport
methods is recommended.

/tuio2/dat s_id mime data content description

text/x-vcard OSC_string ASCII vcard business card

text/html OSC_string HTML code HTML text

image/x-icon OSC_blob icon data windows icon

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

8.3 tuio 2 .0 protocol specification 97

8.3.5.3 SIG (signal message)

/tuio2/sig s_id c_id s_id0 ... s_idN

The SIG message allows the transmission of a trigger signal from
a reference component to one or more TUIO components which are
specified in the following list of session IDs. The Component ID speci-
fies the type of signal allowing a possible range of 4.294.967.295 signal
variations.

8.3.6 Association Messages

The following association messages reflect the established links within
constructive assemblies as well as container associations within the
physical domain. They provide a description of the resulting compo-
nent relationships, which can be employed to describe mechanical or
logical connections as well as the placement of a token within the
confines of another physical object.

8.3.6.1 ALA (alive associations)

/tuio2/ala s_id0 ... s_idN

The initial ALA message lists all active components that are cur-
rently in an associated state. This is providing a mechanism in anal-
ogy to the ALV message structure, and allows the robust reconstruc-
tion of connection and disconnection events.

8.3.6.2 COA (container association)

/tuio2/coa s_id slot s_id0 ... s_idN

The COA message allows associating one or more components
such as several tokens to be contained within another physical com-
ponent such as an object described by its geometry. Container asso-
ciations are established by providing lists of one or more associated
objects, which also allow the reconstruction of individual association
events. The first session ID specifies the container object with a fol-
lowing variable length list of the associated object session IDs. It also
allows nested container relationships, which can be encoded using
various subsequent container messages. The provided slot attribute
determines the entry point of the associated components within the
container.

8.3.6.3 LIA (link association)

/tuio2/lia s_id bool s_id0 l_id0 ... s_idN l_idN

The LIA message is used for describing the topologies of construc-
tive assemblies comprised of physical objects that allow the establish-
ment of direct mechanical connections between them. The explicit

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

8.3 tuio 2 .0 protocol specification 98

declaration of physical object connections can for example be em-
ployed for environments, which are not capable of reporting spa-
tial object relations. Additionally these connector associations can be
used to encode collisions of physical objects, without the need for
the additional transmission of the detailed object geometries for later
collision detection.The initial session ID specifies the reference object
with a following variable length list of a ID tupel that lists all com-
ponent session IDs that are connected to the reference component
as well as a coupled Link ID which identifies the input and output
ports. This link attribute is comprised of two 16bit unsigned integer
values embedded into a single 32bit integer value, which specify the
output port within the initial two bytes and the input port of the con-
nected component within the last two bytes. Alternatively the link
association can also be used to establish logical connections between
individual components, the provided boolean value determines if the
association is physical (true) or logical (false).

8.3.6.4 LLA (linked list association)

/tuio2/lla s_id type s_id0 l_id0 ... s_idN l_idN

/tuio2/lla int32 bool int32 int32 ... int32 int32

8.3.6.5 LTA (linked tree association)

/tuio2/lta s_id type s_id0 l_id0 s_id1 l_id1 node ... s_idN l_idN

/tuio2/lta s_id bool int32 int32 int32 int32 float ... int32 int

32

These two additional messages allow the encoding of connections
between several interface components using linked lists, tree struc-
tures or individual connection lists for the encoding of more complex
topologies. The LLA (linked list association) message encodes consec-
utive chains of connected objects, while the LTA (linked tree associa-
tion) message encodes tree structures in a format similar to the SKG
(skeleton geometry) described above. The initial boolean type value
determines if the association is physical (true) or logical (false). The
Session ID and Link ID tupels are structured as defined in the LIA
(link association) message specified above. The LTA node jump uses
the float data type in order to allow its correct identification.

8.3.7 Custom Messages

/tuio2/_[attr] s_id [list of attributes]

/tuio2/_sxyPP s_id x_pos y_pos int float

The custom profile allows the transmission of custom shaped mes-
sages that can change the position, omit or add attributes as desired.
The message name is composed out of an initial underscore charac-
ter that indicates a custom message. The following characters can be
freely chosen from the list of know attributes as shown in the table be-
low. Additional undefined parameters can be added using wildcard
P character in the profile name. The actual parameter type is defined

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

8.3 tuio 2 .0 protocol specification 99

by the OSC message itself. The purpose of the custom message within
the TUIO specification is to allow the TUIO clients at least a partial
decoding of custom messages. Since TUIO is based on OSC a TUIO
source implementation also can choose to add undocumented freely
named and formatted messages, which then of course cannot be de-
coded by any standard TUIO client. Therefore the custom message
should be chosen if any known attributes are transmitted, be it only
the common session ID. This at least allows the client to associate the
unknown message to a known symbol.

/tuiox/[ext] s_id [list of attributes]

It is important that all implementations within the dedicated /tuio2/

name space follow the exact message syntax and attribute format as
defined in this specification. Any modification of the existing mes-
sage syntax could lead to a fragmentation of the protocol specification
and will also cause unstable results with standard client implementa-
tions. Although TUIO 2.0 intends to provide a versatile mechanism
for the encoding of a large variety of tangible interaction platforms,
it is also probable that some individual application scenarios or hard-
ware platforms might requite an extension to the protocol. In case
the custom message structure described above might not meet the se-
mantic needs of such an extension, the usage of a separate /tuiox/

name space is suggested for the definition of message extensions that
are following the general TUIO paradigm. This most importantly in-
cludes the shared reference to a common Session ID. Custom client
implementations can therefore be configured to listen to one or more
custom message extensions, while standard client implementations
remain unharmed.

Message extensions could for example encode the attributes of ded-
icated controller devices such as the Wiimote (e.g. /tuiox/wii) or
the complementary description of the user’s hand (e.g. /tuiox/hnd).
TUIO 2.0 does not define the three-dimensional geometry of interface
components, which also could be implemented within several /tuiox/
messages if required. This extension space can also serve as a staging
platform for the future inclusion into subsequent versions of the stan-
dard protocol specification. For all other custom messages that are
not following the general structure of the TUIO protocol, the usage
of a completely separate OSC name space is recommended though.

8.3.8 Timing Model

The TUIO 1.* specification originally did not contain any explicit tim-
ing information. On the contrary TUIO 2.0 transmits a time code for
each bundle at a resolution smaller than microseconds by including
a dedicated OSC time tag attribute with each FRM (frame) message.
This level of time resolution provides enough information for time
based gesture analysis on the client side.

Because of the possible packet loss, the key component messages
TOK, PTR and BND still define the optional speed and acceleration
attributes. In analogy to the normalized coordinate system, TUIO2

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

8.3 tuio 2 .0 protocol specification 100

defines a velocity vector and a simple method how to calculate the
resulting velocity and acceleration values correctly. The movement
velocity unit is defined by the displacement over the full length of
the axis (also normalized to 0-1) per second. As an example, moving
a finger horizontally across the surface within one second, results in
a movement velocity of (1.0 0.0) The rotation velocity is defined as
one full rotation per second. Therefore as an example, performing
one object rotation within one second, results in a rotation velocity of
1.0. The acceleration values then simple are calculated as a function
of speed changes over time (in seconds).

8.3.9 Bundle Structure

While the bundle structure in the original TUIO definition was mostly
used to take most advantage of the usually used UDP packet size,
TUIO2 proposes a more structured use of OSC bundles in order to
allow more TUIO2 client implementations on generic OSC platforms.

The current TUIO message structure used a single name space for
all messages within a bundle, which eventually caused problems with
some OSC implementations. TUIO2 already takes this into account
with its newly defined message structure, and it also defines some
simple rules for the internal order of each OSC bundle.

Each bundle needs to contain at least a FRM and a ALV mes-
sage, where the FRM message is the first message in a bundle, while
the ALV message concludes the bundle. As proposed in the original
TUIO 1.0 specification, an implementation should take advantage of
the full UDP packet size by creating message bundles that fit into the
available packet space. Eventually free packet space can be filled with
redundant object messages that can be periodically resent. It is up to
the client implementation to identify and filter redundant messages.

The following sequence of TUIO 2.0 messages illustrates an exam-
ple bundle encoding two active interface components including a tan-
gible token with an associated symbol and a finger pointer with an
associated basic geometry. The full bundle is embedded within an
initial frame message and the concluding alive message. Please note
that the alive message also contains an additional reference to another
active component that has not been updated within this frame.

initial frame message

/tuio2/frm 1236 {OSC time tag} {640x480} REAC:0@0x7F000001

component messages

/tuio2/tok 10 0 4 0.460938 0.3375 1.57

/tuio2/sym 10 0 4 fidtrk/18 0122222212221211111

/tuio2/ptr 12 1 0 0.525 0.3 0.05 0.0 0.1 1.0

/tuio2/bnd 12 0.525 0.3 0.05 0.1 0.15 0.015

concluding alive message

/tuio2/alv 10 11 12

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

8.3 tuio 2 .0 protocol specification 101

Parameter Short OSC Type Range

Session ID s_id S 32bit int,

(uint32)

0 . . . 4.294.967.295

Component ID c_id I 32bit int,

(uint32)

0 . . . 4.294.967.295

Type/User ID tu_id T 32bit int,

(2x uint16)

0 ... 65535

Frame ID f_id F 32bit int,

(uint32)

0 ... 4.294.967.295

Frame Time time t 64bit time sec/nsec

Point Coordinate x_pos,

y_pos,

z_pos

x,

y,

z

32bit float 0.0f ... 1.0f

Angle angle a 32bit float 0.0f ... 2 · π
Pressure/Hover press p 32bit float -1.0f ...1.0f

Motion Velocity x_vel,

y_vel,

z_vel

X,

Y,

Z

32bit float -n ... n

Acceleration m_acc m 32bit float -n ... n

Rotation Velocity r_vel A 32bit float -n ... n

Rotation Accel r_acc r 32bit float -n ... n

Width width w 32bit float 0.0f ... 1.0f

Height height h 32bit float 0.0f ... 1.0

Depth depth d 32bit float 0.0f ... 1.0f

Area/Volume area/vol f/v 32bit float 0.0f ... 1.0f

Link ID l_id L 32bit int,

(2x uint16)

0 ... 65535

Source Name source N OSC string 4×n bytes

Symbol Data data D OSC string,

OSC Blob

4×n bytes

Data MIME Type mime M OSC string 4×n bytes

Symbol Group group G OSC string 4×n bytes

Node Jump node n 32bit int,

(uint32)

0 ... 4.294.967.295

Custom Parameter string,

float,

int ...

P OSC type variable

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

8.3 tuio 2 .0 protocol specification 102

8.3.10 Compact Message List

Global Messages

/tuio2/frm f_id time dim source

/tuio2/alv s_id0 ... s_idN

Component Messages

/tuio2/tok s_id tu_id c_id x_pos y_pos angle [x_vel y_vel m_acc r
_vel r_acc]

/tuio2/ptr s_id tu_id c_id x_pos y_pos angle shear radius press [

x_vel y_vel p_vel m_acc p_acc]

/tuio2/bnd s_id x_pos y_pos angle width height area [x_vel y_vel

a_vel m_acc r_acc]

/tuio2/sym s_id tu_id c_id t_des data

/tuio2/t3d s_id tu_id c_id x_pos y_pos z_pos angle x_ax y_ax z_ax

[x_vel y_vel z_vel r_vel m_acc r_acc]

/tuio2/p3d s_id tu_id c_id x_pos y_pos z_pos x_ax y_ax z_ax

radius [x_vel y_vel z_vel m_acc]

/tuio2/b3d s_id x_pos y_pos z_pos angle x-ax y-ax z-ax width

height depth vol [x_vel y_vel z_vel r_vel m_acc r_acc]

Geometry Messages

/tuio2/chg s_id x_p0 y_p0 ... x_pN y_pN

/tuio2/ocg s_id x_p0 y_p0 ... x_pN y_pN

/tuio2/icg s_id x_p0 y_p0 ... x_pN y_pN true x_p0 x_p0 ... x_pN y
_pN

/tuio2/skg s_id x_p0 y_p0 x_p1 y_p1 node ... x_pN y_pN

/tuio2/s3d s_id x_p0 y_p0 z_p0 x_p1 y_p1 z_p1 node ... x_pN y_pN

z_pN

/tuio2/svg s_id r0 ... rN

/tuio2/arg s_id x0 y0 w0 ... xN yN wN

/tuio2/raw s_id width data

Content Messages

/tuio2/ctl s_id c0 ... cN

/tuio2/dat s_id mime data

/tuio2/sig s_id c_id s_id0 ... s_idN

Association Messages

/tuio2/ala s_id0 ... s_idN

/tuio2/coa s_id slot s_id0 ... s_idN

/tuio2/lia s_id bool s_id0 l_id0 ... s_idN l_idN

/tuio2/lla s_id bool s_id0 l_id0 ... s_idN l_idN

/tuio2/lta s_id bool s_id0 l_id0 s_id1l_id1 node ... s_idN l_idN

Custom Messages

/tuio2/_[attr] s_id [list of attributes]

/tuiox/[ext] s_id [list of attributes]

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

8.3 tuio 2 .0 protocol specification 103

8.3.11 Server & Client implementations

A TUIO server (sometimes also referred as TUIO tracker or TUIO
source) is a device or application that encodes and sends TUIO mes-
sages based on the OSC format, while a TUIO client is an application
or library that receives and decodes these messages, providing the
basic infrastructure for an actual interactive application. This is ac-
tually the exact opposite of the OSC naming convention, where an
OSC client is sending its messages to an OSC server, which usually
means that a controller device (client) is attached to a synthesizer
(server). Although this difference might cause some confusion, the
present definition of TUIO servers and clients is more adequate for
describing the direction of the data flow from the tangible interaction
hardware to the application layer.

For speed and simplicity reasons, the TUIO protocol is generally
unidirectional, which means that there is currently no dedicated com-
munication channel from the client to the server necessary. Using
the UDP transport for example, a TUIO server usually sends its mes-
sages to a single TUIO client, which can be running on the same
platform as the server (localhost) as well as on a local IP network
(LAN) or even at a distant location via the Internet (WAN). Never-
theless the present TUIO protocol could be equally implemented in
a bi-directional configuration, where the application layer is sending
standard TUIO messages to a tracker platform that is equipped with
actuated components. In such a configuration TOK messages could
be used for example to move physical objects or to drive actuated
elements such as motors or lights with a sequence of according CTL
messages.

A TUIO Server will usually encode and send messages for TUIO
components that correspond to its general capabilities, therefore a
server implementation can also choose to support only a subset of
the possible TUIO components. Apart from the compulsory FRM and
ALV messages, which comprise the basic body of a TUIO bundle, it
depends on the server capabilities or configuration, which types of
component messages are actually chosen to be sent. On the other
hand a typical TUIO client implementation, especially if designed as
a library component, should be ideally capable of decoding the full
set of interface component messages as defined in this specification.
TUIO server and client reference implementations will be provided
for the most common programming languages, such as C++, Java
and C#. These examples can be directly used as a library for the re-
alization of TUIO enabled applications as well as a reference for the
implementation for further programming environments. And since
TUIO is based upon the OSC specification any platform that already
provides an OSC infrastructure, is consequentially also able to send
and receive TUIO messages.

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

8.3 tuio 2 .0 protocol specification 104

8.3.12 Transport method

The default transport method for the TUIO protocol is the encapsula-
tion of the binary OSC bundle data within UDP packets sent to the
default port 3333. This default transport method is usually referred as
TUIO/UDP, and most implementations are based on this method due
to its simplicity and speed when sent over a network. Since OSC is not
directly bound to a dedicated transport method, alternative transport
channels such as TCP can be employed to transmit the OSC encoded
TUIO data. As introduced with the TUIO 1.1 implementations, there
are already several alternative transport methods available, such as
TUIO/TCP and TUIO/FLC (flash local connection via shared mem-
ory) to interface with Adobe Flash applications. Since Flash is ap-
proaching the end of its life cycle, an alternative TUIO/WEB trans-
port option has been introduced, which establishes a standard Web-
socket for the realization of native HTML5 applications. Due to the
OSC encoding, TUIO messages can be basically transmitted through
any channel that is supported by an actual OSC implementation.

A UDP packet can carry a maximum of 64kb and a minimum of
576 bytes, which usually provides enough capacity to transmit a typi-
cal TUIO bundle within a single UDP packet. When sent over a local
or wide area network it is also advisable to limit the UDP packet size
to the MTU size (usually about 1500 bytes) in order to avoid packet
fragmentation. Therefore a TUIO server implementation has to con-
sider that bundles containing larger component sets can eventually
exceed the UDP packet capacity, and consequently need to distribute
the component messages over several OSC bundles containing the
same initial FRM message, while only the last bundle is concluded
with a final ALV message.

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

8.4 example platform encodings 105

8.4 example platform encodings

This section intends to showcase the potential of the proposed ab-
straction model and its protocol implementation by defining several
example encodings for various existing tangible interactive surface
platforms. Due to the previously discussed application context, this
list includes several well known interactive surface environments, as
well as some tangible musical applications. The individual compo-
nent features and attributes that are relevant for the representation of
each example platform will be highlighted. Since there does not yet
exist an application or platform that implements the full feature set
of the TUIO 2.0 model capabilities, most applications will generally
implement a specific sub-set of the available components and their
attributes.

8.4.1 Pointer Identification: Diamondtouch

The MERL Diamondtouch platform[67] represents a multi-touch sur-
face with the special capability of user identification. Therefore each
individual touch input can be assigned to a specific user. In our model
these capabilities can be encoded by making use of the Pointer com-
ponent only, since this component alone is capable of encoding the
provided location information and User ID. Additionally the Pointer
Type ID can be preset to the generic Finger type, although the system
is not capable of distinguishing an individual finger or hand. The
platform is neither capable of detecting pressure values nor the hov-
ering state, therefore the according attribute will be neglected in the
encoding. Since the system is only reporting the interpolated centroid
for each touch contact, there is now additional information available
that can determine the finger size. Therefore the according width at-
tribute can be either set to the diameter of an average finger relative to
the actual sensor resolution, or also set to zero. Although other non-
intrusive user identification methods[68] do not require any physical
user tagging, they are equally represented by the simple User ID on
the protocol level.

/tuio2/ptr s_id tu_id c_id x_pos y_pos angle shear radius press

Figure 32: multi-user identification on the Diamond Touch. Photo: MERL

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

8.4 example platform encodings 106

8.4.2 Pointer Types: iPad Pro

Apple’s current iPad Pro tablet devices1 provide a comprehensive
feature set of a state-of-the-art tablet platform. In addition to the com-
mon multi-touch interaction this tabled also allows additional pencil
input, providing extended attributes such as pressure, rotation an-
gle and shear angle. Finger touches can be distinguished from the
pencil, and provide additional information about the finger footprint
size. While the current iPhone modules also provide pressure sen-
sitive (force) touch input, this feature is not (yet) available on the
tablets. A TUIO2 implementation for iOS devices such as the iPad and
iPhone can be therefore realized using most of the available Pointer
attributes: type, position, pressure, angle, shear angle and size.

/tuio2/ptr s_id tu_id c_id x_pos y_pos angle shear radius press

Figure 33: iPad Pro pencil and touch interaction. Photo: Apple Incorporated

8.4.3 Pointers and Controls: Wheel Mouse

The primary functionality of a common computer mouse can be eas-
ily reflected by the encoding of its position attributes with an accord-
ing Pointer message, where the Type ID is set to the Mouse pointer
type ID 13. In addition to that, a simple mouse-click for a generic
mouse can be encoded, by setting the pressure attribute to one. Since
such a device has often three buttons, where the middle button has
been designed as a wheel, these additional control dimensions have
to be encoded using a complementary Control message. The accord-
ing CTL message needs to encode three button states plus the up and
down movements of the wheel. This can be simply represented by
four control values, where the first three button controls can be set to
1 for the pressed state and the last wheel control attribute can be set
to 1 for upward movements and -1 for downward movements. All four
values are set to 0 while they are not activated.

/tuio2/ptr s_id tu_id c_id x_pos y_pos angle shear radius press

/tuio2/ctl s_id left_btn wheel_btn right_btn wheel

1 http://www.apple.com/ipad-pro/

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

http://www.apple.com/ipad-pro/

8.4 example platform encodings 107

8.4.4 Pointers and Pressure Maps: Sensel Morph

Professional drawing tablets, such as the popular Wacom devices gen-
erally provide a feature set, which is comparable to the pencil input
from the iPad Pro as described above. This generally includes many
advanced pointer attributes such as type, position, rotation and shear
angle as well as pressure. While in such a device the pressure at-
tribute is directly sensed from within the pen controller, today there
also exist pressure sensitive tablets such as the Sensel Morph.2 Al-
though TUIO 2.0 can encode generic multi-touch input, also includ-
ing finger pressure with the according Pointer attribute, this device
is generally capable of providing an overall "pressure image" of any
object in contact with its surface. Thus for the encoding of the total ca-
pabilities of this device not only a Pointer message can be employed
for touch interaction, but also additional Bounds or Geometry mes-
sages, such as the Outer Contour of a touching object. Furthermore
TUIO 2.0 can provide the full pressure map for each object through
an additional Area and Raw Geometry message.
/tuio2/ptr s_id tu_id c_id x_pos y_pos angle shear radius press

/tuio2/bnd s_id x_pos y_pos angle width height area

/tuio2/ocg s_id x_p0 y_p0 ... x_pN y_pN

/tuio2/arg s_id x0 y0 w0 ... xN yN wN

/tuio2/raw s_id width data

Figure 34: The Morph tablet and its pressure map display
Photo: Sensel Incorporated

8.4.5 Tokens, Pointers, Symbols & Bounds: Surface

The original Microsoft Surface platform supported multi-touch input
as well as tagged and untagged object recognition. For object tagging
there are two different fiducial types available, where the identity tag
is capable of encoding a 128bit symbol. The generic Contact com-
ponent can distinguish between finger touches, tags and untagged
objects. Applying the TUIO abstraction model to these platform fea-
tures therefore suggests the definition of Pointers, Tokens, Symbols

2 http://www.sensel.com/

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

http://www.sensel.com/

8.4 example platform encodings 108

and Bounds components. The primary Token component refers to
any tagged physical object, which can have either an attached Byte-
Tag, which is defined by the Type ID 0 and a range of 256 component
IDs, or by an alternative Type ID 1 referring to an IdentityTag, which
can be specified in further detail using an additional Symbol message.

Finger touch contacts are defined by the according Pointer message,
which can be extended with an additional Bounds message that spec-
ifies the contact geometry with the according dimension and rotation
attributes. The Bounds message can be also sent individually for all
contacts, which have been neither identified as finger touch or tagged
object.

/tuio2/tok s_id tu_id c_id x_pos y_pos angle

/tuio2/sym s_id tu_id c_id ms/id 0x00...00

/tuio2/ptr s_id tu_id c_id x_pos y_pos angle shear radius press

/tuio2/bnd s_id x_pos y_pos angle width height area

8.4.6 Tokens as Pointer: Surface Studio

Since Microsoft abandoned its tangible Surface tables, it concentrated
on the further integration of multi-touch and pen input into its cur-
rent Windows 10 operating systems and the related tablet and note-
book hardware. Nevertheless with the release of its latest Surface Stu-
dio platform the company reintroduced the concept of the tangible
object with the Surface Dial interface. Although the device has the af-
fordance of a physical token, by providing an additional rotary knob,
it can be generically represented through a dedicated Pointer type by
using the according pressure attribute for the push button, the rota-
tion attribute for the wheel controller and the radius attribute for the
controller’s size.

/tuio2/ptr s_id tu_id c_id x_pos y_pos angle shear radius press

Figure 35: The Surface Studio with pen and dial.
Photo: Microsoft Corporation

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

8.4 example platform encodings 109

8.4.7 Tokens, Pointers and Geometries: reacTIVision

The current development version of reacTIVision 1.6 and its accord-
ing feature set are still based on the current TUIO 1.1 protocol speci-
fication. The reacTIVision software is capable of providing input data
from tagged tangible objects as well as fingers and untagged phys-
ical objects touching the surface. Following the new TUIO 2.0 plat-
form model these features can be represented employing the Token,
Pointer and Bounds components. In addition to the equivalent at-
tributes that are already used within the TUIO 2Dobj, 2Dcur and
2Dblb profiles the platform is also capable of providing the more
detailed Contour geometry of the detected component geometries.

For the Pointer component the platform can additionally imple-
ment the Finger Type ID as well as the pointer width attribute. The
pressure attributes and hovering state are not yet available, although
they may be approximated from the finger geometry. Since reacTIVi-
sion presently provides the additional Yamaarashi symbols in addi-
tion to the three variations of the amoeba symbols with different sizes
and ranges, the Type ID can be employed to distinguish these symbol
types, which can be consequently used for different tasks.

The Bounds component can be either used to provide additional
geometry information about the existing Token and Pointer instances
as well as for the encoding of dedicated untagged object components.
Since the application internally already maintains the full contour in-
formation of each detected contact region, these attributes can be di-
rectly encoded within an optional OCG outer contour message. Addi-
tionally the full component area can be provided using the according
ARG message, since reacTIVision internally uses exactly this span list
representation for its region data structure.

/tuio2/tok s_id tu_id c_id x_pos y_pos angle

/tuio2/ptr s_id tu_id c_id x_pos y_pos angle shear radius press

/tuio2/bnd s_id x_pos y_pos angle width height area

/tuio2/ocg s_id x_p0 y_p0 ... x_pN y_pN

8.4.8 Symbols and Bounds: Papier Maché

Klemmer’s Papier Maché[22] toolkit combines various tangible input
technologies within a single application model. Under the overall con-
cept of Phobs it integrates several computer vision and physical com-
puting elements. VisionPhobs are describing the boundaries of un-
tagged physical objects, while TagPhobs can represent barcode and
RFID tags. Within our abstraction model the properties of a Vision-
Phob can be encoded by a Bounds component, which provides all the
necessary attributes. TagPhobs on the other hand can be encoded by
an according Symbol component, which can additionally distinguish
between the two tag types that are available within this toolkit.

/tuio2/bnd s_id x_pos y_pos angle width height area

/tuio2/sym s_id tu_id c_id ean/13 5901234123457

/tuio2/sym s_id tu_id c_id rfid 0x04c5aa51962280

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

8.4 example platform encodings 110

8.4.9 Tokens and Controls: Slap Widgets

Weiss’ et.al. SLAP widgets[69] are a well known example of enhanced
tabletop tokens, which provide additional interactivity through sim-
ple mechanical components. This interactivity requires the associa-
tion of additional control dimensions to these physical widgets, which
can be encoded by the combination of a Token component, with an
accordingly formatted Control message. While the most simple phys-
ical push button and slider examples can be represented with a CTL
message providing a single boolean attribute, more complex control
configurations can be realized through any combination of boolean
and continuous controls.

/tuio2/tok s_id tu_id c_id x_pos y_pos angle

/tuio2/ctl s_id bool

Figure 36: Two SLAP widgets with integrated controls.
Photos: Malte Weiss et.al.

A full octave of a piano keyboard including key velocity, can be
represented by control message including an array of twelve floating
point attributes, which is associated to a token and/or an according
bounds message for its overall position and geometry.

8.4.10 Spatial Interaction: Tisch

Echtler’s Tisch[70] provides a versatile environment for finger and
hand tracking through different methods. It combines various sen-
sor technologies in order to track a user’s hand above and on the
surface, by employing a Microsoft Kinect for spatial tracking, an opti-
cal shadow tracking technique with standard surface touch tracking.
This illustrates the tracking of the same pointer component such as a
whole hand and/or its individual fingers from various perspectives.
For this purpose 3D Pointer components can be employed for the
representation of each hand and finger pointer and combine those
through an optional Link Association. The complementary hand shadow
from the surface can be also associated to the 3D hand pointer by us-
ing the same Session ID.

/tuio2/p3d s_id tu_id c_id x_pos y_pos z_pos x_ax y_ax z_ax rad

/tuio2/ocg s_id x_p0 y_p0 ... x_pN y_pN

/tuio2/ala s_id0 ... s_idN

/tuio2/lia s_id false s_id0 port ... s_idN port

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

8.4 example platform encodings 111

8.4.11 Physical Associations: Triangles

Gorbet’s Triangles[10] are a generic hardware platform for the cre-
ation of constructive assemblies using triangular components, which
can be connected to each other on either side. The resulting topolo-
gies are the basis for various application scenarios, which accord-
ingly need to have access to the current configuration and connection
events of the full construction. In order to represent the components
and properties within our model, a combination of Tokens and Link
Associations can be employed. The TOK message represents each in-
dividual instance of a triangle and only serves as a reference for all
currently present triangles, since neither the position or orientation
of these objects are available, not these attributes are necessary for
the representation of these components. A series of LIA messages
encodes the topology of the full construction by specifying the links
between individual objects. The Session ID and the connecting side
of each triangle are specified in the according component list of the
Link Association message.

/tuio2/tok s_id tu_id c_id x_pos y_pos angle

/tuio2/ala s_id0 ... s_idN

/tuio2/lia s_id true s_id0 port ... s_idN port

Figure 37: a) Sifteo Cubes and b) Triangles
Photos: David Merrill and Matthew Gorbet

8.4.12 Logical Associations: Siftables

Merrill’s Siftables[21] (later commercialized as Sifteo Cubes) repre-
sent an autonomous tangible interaction platform based on gestural
control and the establishment of logical links between objects. Al-
though the absolute spatial position is not relevant in this scenario
the individual objects can provide their three-dimensional orientation.
Therefore a 3D Token component can be used for the representation
of the individual blocks, while only encoding the Component ID and
3D angle attributes. The logical object relationships are represented
by the according combination of ALA and LIA Link Association mes-
sages, where the physical connection attribute is set to false.

/tuio2/t3d s_id tu_id c_id x_pos y_pos z_pos angle x_ax y_ax z_ax

/tuio2/ala s_id0 ... s_idN

/tuio2/lia s_id false s_id0 port ... s_idN port

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

8.4 example platform encodings 112

8.4.13 Signals: Tangible Sequencer

Jeffrey Traer’s tangible sequencer3 is comprised of a set of coloured
cubes with an illuminated push button, which can send optical trig-
ger signals to the next object that is within their vicinity. This con-
figuration and its according behaviour can be implemented by using
a Token component in conjunction with an associated Signal mes-
sage. The tokens are actually only needed to provide a reference for
each tangible object, although their spatial position and orientation
attributes are not relevant in this context. Therefore an alternative
symbol message, which for example encodes the actual colour of an
individual cube could be used. Since the signals sent between objects
represent a simple trigger event, the according Signal ID attribute can
be simple set to zero.

/tuio2/tok 0 tu_id c_id x_pos y_pos angle

/tuio2/tok 1 tu_id c_id x_pos y_pos angle

/tuio2/sig s_id0 0 s_id1

Figure 38: a) Scrapple installation and b) Tangible Sequencer
Photos: Golan Levin and Jeffrey Traer

8.4.14 Tokens and Geometries: Scrapple

Golan Levin’s Scrapple sequencer4 is based on detection and analysis
of the arbitrary shape of physical objects, which is sonified with vary-
ing pitch, timbre and duration depending on the position, size and
extension of the physical object. Therefore a simple combination of
a Bounds component together with an OCG message, which is pro-
viding the sufficient outer contour information for each object placed
onto the table. The system could be eventually fully realized by pro-
viding the Contour information only, but since the Bounds compo-
nent already represents a convenient simplification of the object, it
can be included as well to avoid further processing at the application
layer.

/tuio2/bnd s_id x_pos y_pos angle width height area

/tuio2/ocg s_id x_p0 y_p0 ... x_pN ypN

3 http://murderandcreate.com/tangiblesequencer/

4 http://www.flong.com/projects/scrapple/

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

http://murderandcreate.com/tangiblesequencer/
http://www.flong.com/projects/scrapple/

8.4 example platform encodings 113

8.4.15 Actuated Tokens: Pico

Patten’s Pico platform[71] provides object tracking via embedded
electromagnetic tags including the possibility of moving the objects
using an array of electromagnets. While the combination of two tags
within a single object allows the determination of its position and ori-
entation, the actuator component only allows changing the position
of an according object. Although there is no direct implementation
available for pointing components such as touch recognition or ded-
icated pointing devices, the platform can make use of single-tag ob-
jects for the realization of pointing or selection tasks. The platform ad-
ditionally makes extensive use of various untagged physical objects,
although these additional components are not actively tracked by the
sensor hardware. Nevertheless their position and physical properties
have a direct impact on the active tokens, since they impose strong
physical constraints for their location and freedom of movement.

Therefore the principal interface component for the encoding of the
capabilities of this platform are Tokens with their according Compo-
nent ID, position and orientation. The actuator on the other hand can
be actually driven by according Token messages sent from the appli-
cation layer back to the hardware platform, in order to update their
software defined positions.

outbound: /tuio2/tok s_id tu_id c_id x_pos y_pos angle

inbound: /tuio2/tok s_id tu_id c_id x_pos y_pos angle

Figure 39: Physical constraints on the Pico platform. Photos: James Patten

Additional Geometry components could be employed to describe
the outline of the objects used as physical constraints, but the Pico
platform makes use of the physical properties without sending an
actual digital representation to the application layer. Also the dedi-
cated pointing components are rather determined at the application
layer than within the actual sensor hardware, therefore they can be
either encoded with an according TOK message or alternatively with
a dedicated PTR message.

/tuio2/tok s_id tu_id c_id x_pos y_pos angle

/tuio2/ptr s_id tu_id c_id x_pos y_pos angle shear radius press

/tuio2/ocg s_id x_p0 y_p0 ... x_pN y_pN

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

8.4 example platform encodings 114

8.4.16 Bonus Example: Marble Answering Machine

Although not based on an interactive surface, Bishop’s Marble An-
swering Machine[72] is a classical example for several key properties
of a tangible user inter interface. Therefore this interface is also suit-
able for an example encoding within the proposed abstraction model,
in order to show its versatile application area, which can eventually
cover a wider range of tangible user interfaces not only restricted to
surface environments.

Figure 40: The Marble Answering Machine. Illustration: Durrell Bishop

The device is comprised of two key components, the answering
machine body itself as well as a collection of marbles, which are rep-
resenting the recorded messages. Although being physical tokens, the
representation of these marbles can be simply realized with an accord-
ing Symbol component, since the spatial position and orientation of
the marbles are not relevant in this scenario. On the other hand this
Symbol is also capable of storing the associated caller’s phone num-
ber. The body of the answering machine has to be divided into two
parts, which are serving as physical constraints for the marble tokens.
This primarily includes the tray for the incoming messages as well as
the device body containing various slots for the message manipula-
tion. These device components can also be referenced through perma-
nently present Token components with a dedicated Type ID, which
identifies their distinct function from the marbles. Additional Data
components can be employed to encode and transmit a recording of
the incoming messages, and will be associated to an according mar-
ble Symbol after a message has been recorded. Finally a Container
association can be employed in order to encode the token-constraint
relationship between the marble and the primary machine compo-
nents according to their current state.

In its initial state the marble answering contains a number of mar-
bles, which in this default case do not need to be marked neither
active nor explicitly associated to the answering machine itself. The
two defined answering machine components, the machine body and
the tray only need to be referenced once at the beginning of a session
and then kept permanently active by a constant reference within the
global ALV message.

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

8.4 example platform encodings 115

Once a call is received a new Symbol component is generated con-
taining the caller’s phone number and encoded within an according
SYM message. The recorded audio of the call is stored and transmit-
ted by an associated DAT message. Since a TUIO bundle contains
a detailed time stamp, the time of the call as well as its duration
can be reconstructed from the according FRM and DAT message at-
tributes. Finally as soon as the marble is dropped onto the tray, a
Container association is established by sending a combination of ALA
and COA messages. The ALA messages have to be sent with every
bundle while the referenced marble Symbols are present on the tray.
The position of the marbles on the tray can be also derived from the
order of Session IDs within the COA message.

When a user selects a marble its association state remains unchanged
until the marble is dropped into one of the slots for the playback, call-
back or deletion of the message. In this moment the container associa-
tion with the tray token is released by omitting the according Session
ID from the ALA list and COA Container association referencing the
tray’s Session ID. A new container relationship is then established
by generating a new COA message referencing the machine body’s
Session ID as well as the according slot number. Once the according
action has been performed the marble Symbol is either again associ-
ated to the tray or deleted completely from any reference, depending
on the chosen slot number. Dropping a marble into the callback or
playback slot will perform the according action and then drop the
marble back onto the tray, while the delete slot will consequently de-
activate the marble and keep it in the default waiting state within the
body of the machine for later use.

/tuio2/tok s_id u_id:t_id c_id x_pos y_pos angle

/tuio2/sym s_id u_id:t_id c_id phone +43-1-123-456-789

/tuio2/dat s_id x-audio/wav 0x000000000000000000000000

/tuio2/ala s_id0 ... s_idN

/tuio2/coa s_id slot s_id0 ... s_idN

8.4.17 Conclusion

The provided example encodings have shown, that a large number
of tangible interaction platforms and applications can be easily repre-
sented with the components and attributes provided by our extended
abstraction model and can subsequently be encoded within a TUIO
2.0 protocol syntax. This on the one hand allows the abstraction of cur-
rently available available hardware platforms and interactive devices,
and on the other hand the realization of versatile tangible application
scenarios based on its extended feature set.

While it is unlikely to provide a platform or toolkit that imple-
ments the full feature set of all available components and attributes
of the TUIO 2.0 protocol capabilities, its definition, implementation
and availability to the public domain may motivate the further devel-
opment and improvement of existing hard- and software toolkits in
order to extend their capabilities according to this model.

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

9
C O N C L U S I O N & F U T U R E W O R K

We have seen that the TUIO 1.1 specification has been implemented
within a comprehensive ecosystem of trackers, clients, frameworks
and tools, which support the versatile development of tangible in-
teractive surface applications on many hard- and software platforms.
Since the TUIO 2.0 specification1 has been officially finalized during a
community workshop[73] at the International Conference for Interactive
Tabletops and Surfaces in autumn 2014, I have started the work on a first
C++ reference implementation2, which is already providing the basic
TUIO 2.0 server and client infrastructure. Although TUIO 2.0 has al-
ready seen integrations within other application frameworks[65] and
libraries3, its current ecosystem still has not reached the critical mass
that would be necessary for a full transition to the new protocol gen-
eration. While TUIO 2.0 provides a more comprehensive feature set
for the representation of state-of-the-art tangible interactive surfaces,
we are currently confronted with a chicken-egg problem, which is hin-
dering a wider acceptance of the new protocol architecture: without
the necessary variety of available TUIO 2.0 libraries and application
frameworks, existing TUIO trackers cannot benefit from an upgrade
and vice-versa. Therefore in analogy to the initial TUIO 1.0 devel-
opment history, the plan is to provide comparable core implementa-
tions of trackers, clients and also conversion tools, which leverage the
feature advantages of TUIO 2.0 and also allow for a more seamless
transition from TUIO 1.1.

9.1 tuio 2 .0 reference implementation

The current C++ reference implementation encapsulates the Symbol,
Token, Pointer and Bound components, thus it presently only imple-
ments the core subset of the TUIO 2.0 specification, the remaining
object Geometries and Associations will be added subsequently. The
current codebase also provides Server and Client implementations
for TUIO 2.0 encoding/decoding and we are also planning to add
TUIO 1.1 backward compatibility. In addition to the standard TU-
IO/UDP transport layer we already support the existing TUIO/TCP,
TUIO/WEB and TUIO/FLC transports and also plan to provide and
additional TUIO/DAT layer for the recording and replay of binary
TUIO/OSC streams. The current library also supports the multiplex-
ing of multiple TUIO sources. Apart from the actual cross-platform
TUIO 2.0 implementation, the code repository also provides several
example projects that serve for the illustration and testing of the over-
all API functionality.

1 http://www.tuio.org/?tuio20

2 http://github.com/mkalten/TUIO20_CPP

3 http://github.com/nomve/Tuio.js

116

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

http://www.tuio.org/?tuio20
http://github.com/mkalten/TUIO20_CPP
http://github.com/nomve/Tuio.js

9.2 reactivision reference platform 117

This library also defines a general API for the encapsulation of
TUIO components. This API is already quite usable, but still contains
several partially implemented sections, which are still subject to com-
pletion, change and improvements. Compared to the TUIO 1.1 API,
it provides a unified callback and event interface, which provides
all TUIO component updates within a generic TuioComponent object
accompanied by an according TuioEvent structure, to any class imple-
menting a simple TuioListener interface. Based on the final C++ API
we will subsequently provide the according TUIO 2.0 modules for
Pure Data, Max/MSP, Open Frameworks and other cross-platform
C++ based application environments.

Once the C++ library and the related API reaches the necessary
stability, we will then also port its overall structure and interface to
other programming languages such as Java, JavaScript and C#, which
will also allow its further integration into environments such as Pro-
cessing, Unity or VVVV.

9.2 reactivision reference platform

During the current development cycle of reacTIVision 1.6, there have
already emerged several internally available features, which cannot
be properly represented with the TUIO 1.1 model. This not only
includes the introduction of the new Yamaarashi fiducials, which
should be identified separately from the standard Amoeba symbols,
but most importantly concerns the more detailed description of the
blob geometries, such as its contour or convex hull, which are largely
constrained by the currently rather simplistic TUIO 1.1 blob profile.
Therefore after the actual release of reacTIVision 1.6, which will also
mark the final TUIO 1.1 generation, an intermediate reacTIVision 1.9
version will be provided through the swift integration of the new
TUIO 2.0 library generation. With this intermediate release, the plan
is not yet to add any additional features, although the transition will
already allow to represent the above-mentioned extended TUIO 2.0
such as multiply symbols and detailed blob geometries. In other to
facilitate the migration of existing applications, this version will also
provide alternative TUIO 1.1 backward compatibility. Therefore reac-
TIVision 1.9 will already be able to take advantage of the core TUIO
2.0 components, providing its core feature set of Symbols, Tokens,
Pointers, Bounds and Geometries. The availability of these compo-
nent features within a functional tracker application, will also allow
the further refinement and evaluation of the equivalent TUIO 2.0
client functionality.

After this intermediate release, which should follow soon after re-
acTIVision 1.6, the plan is to extend its internal functionality towards
a future reacTIVision 2.0 version, which will allow us to take advan-
tage of additional TUIO 2.0 features. Since the overall finger blob size
and shape is already available, its additional footprint and orienta-
tion can be easily provided, as well as an approximate pressure value
derived from size changes, hence taking advantage of most Pointer

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

9.3 device support 118

attributes. Furthermore the existing RFID reader tool nfosc4 should
be integrated directly into reacTIVision, which will allow the repre-
sentation of a complementary electronic Symbol type in addition to
the computer-vision markers. This will also allow the subsequent in-
tegration of various additional symbol types such as QR codes, as it
was already mentioned in one of the earlier publications. Since reac-
TIVision should be also understood as TUIO 2.0 reference platform,
as many features as possible of this new protocol generation should
be implemented during the further course of its development.

Continuing the further multi-platform integration, there are also
plans to extend the PortVideo camera framework to mobile operating
systems such as iOS and Android, and will continue to implement ad-
ditional camera drivers, such as the emerging USB3 Video standard.

9.3 device support

In addition to the hard- and software environments that are dedicated
to the realization of tangible interactive surfaces, there is a large num-
ber of devices, which can also benefit through an implementation of
the new TUIO 2.0 feature set. This includes currently available opti-
cal touch frames and capacitive touch overlays for the integration of
custom multi-touch displays, as well as several multi-touch enabled
devices such as mobile tablets, touch pads, force sensitive touch con-
trollers or depth cameras. There are already several multi-touch tools
implementing TUIO 1.1 for these devices such as TuioPad5 for iOS
and TuioDroid6 for Android, or TongSeng7 for MacOS. These tools
not only allow TUIO remote control configurations, but are also use-
ful for the development and testing of TUIO client applications.

As shown earlier, the current version of Apple’s iPad Pro tablets
already exceed the features of TUIO 1.1 by providing separate touch
input, as well as a force sensitive pencil including its rotation and
shear angle. Therefore a new version of the TuioPad application will
be provided, which will encode these additional features taking ad-
vantage of the full range of Pointer attributes, such as pointer type,
size, pressure and angle. More recent pressure-sensitive controller de-
vices such as the Sensel Morph equally can not only benefit from the
additional pressure attribute of a Pointer component, but can also en-
code object contours through their Geometry or by even providing
a full regional pressure map through detailed Blob data. Other con-
trollers such as the Leap Motion can also fully encode and identify
individual fingers and both hands in their spatial position through
Pointer3D components. While other optical and capacitive touch plat-
forms, which often provide native TUIO 1.0 touch support would not
directly require any of the new TUIO 2.0 attributes, they will eventu-
ally also benefit from a transition to the overall ecosystem of the new
protocol generation.

4 http://github.com/mkalten/nfosc

5 http://github.com/mkalten/tuiopad

6 http://github.com/TobiasSchwirten/tuiodroid

7 http://github.com/fajran/tongseng

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

http://github.com/mkalten/nfosc
http://github.com/mkalten/tuiopad
http://github.com/TobiasSchwirten/tuiodroid
http://github.com/fajran/tongseng

9.4 universal tuio tool 119

9.4 universal tuio tool

In order to further support the transition to TUIO 2.0 I am currently
designing an Universal TUIO Tool, which will not provide a simple
but versatile conversion utility between the two protocol generations,
but will also serve as a general container for the TUIO integration into
standard operating systems and their native multi-touch layer. Within
today’s TUIO 1.1 ecosystem there already exists a large variety of
so called TUIO bridges or gateways, which inject TUIO cursor input
into standard system multi-touch APIs, or generate on the other hand
TUIO cursor output from the generic single- or multi-touch input on
these platforms. This universal tool intends to integrate all these ef-
forts into a single extensible multi-platform application, which shall
bring comprehensive TUIO support to the most relevant desktop and
mobile systems, and will also allow the easier integration of TUIO en-
abled multi-touch devices or other interactive hardware. Third party
manufacturers who wish to provide TUIO output for their own de-
vices, should be able to extend this tool through an additional plugin
interface. In addition to providing alternative TUIO/UDP transport
conversions, such as TUIO/WEB for websocket applications, the in-
cluded TUIO/DAT recording and replay functionality will also bene-
fit TUIO developers for testing purposes.

The following table summarizes the planned layers of a) TUIO 1.1
and 2.0 input and output through UDP, TCP, WebSockets and files; b)
TUIO conversion from and to OS specific touch APIs; and c) hardware
specific device input to TUIO.

IN OUT

Cross- TUIO 1.1 & 2.0: TUIO 1.1 & 2.0:

Platform UDP, TCP, DAT UDP, TCP, WEB, FLC, DAT

Windows Windows Touch Windows Touch

MacOS touchpad mouse, touch injection

Linux Xinput Xinput

Android touch (TuioDroid) touch injection (evdev)

iOS touch, pencil (TuioPad) -

Devices HID, SUR40, Wacom, -

Leap Motion, WiiMote

Sensel Morph etc.

Plugins by manufacturers of -

touch frames, foils etc.

Table 2: Universal TUIO Modules

This UniTUIO tool eventually intends to replace various, now par-
tially outdated OS integration and conversion tools, and should also
facilitate the further usage of TUIO 1.1 trackers, libraries, application
frameworks and hardware within the TUIO 2.0 ecosystem.

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

9.5 conclusion 120

9.5 conclusion

With this cumulative dissertation I presented four publications, which
document the design, implementation, application and evaluation
of a simple, yet versatile abstraction model for tangible interactive
surfaces. Based on the comprehensive experiences collected through-
out the development of this model and its implementation within a
community-driven soft- and hardware ecosystem, I designed an ex-
tended new generation of this abstraction model, which intends to
reflect the state-of-the-art research and technology for tangible inter-
active surfaces. I hope that this updated model will foster the further
community-driven research efforts not only for gesture-based multi-
touch interaction, but more importantly for the ongoing development
of the tangible interaction paradigm within the physical domain.

The initial abstraction model has defined the three basic interface
components of Tokens (as objects), Pointers (as cursors) and Bounds
(as blobs), which represent the fundamental elements of tangible in-
teractive surfaces. Based on this model we defined and published a
now de-facto standard protocol that encapsulates these component
states and attributes. The protocol abstraction provided the necessary
semantic description of tangible interface components independently
of the actual hardware capabilities and sensor technology, allowing
for the development of platform-independent applications. In collab-
oration with the community we also provided a comprehensive collec-
tion of software tools, which not only implement the above protocol
but also showcase its core capabilities within a dedicated computer-
vision toolkit for the design and realization of tangible surface appli-
cations. This open-source approach also led to the development of
additional tools and applications based on the protocol. While most
of these external implementations also have proven the overall valid-
ity of the generic abstraction model, several instances also allowed
for an analysis of certain limitations imposed by this model simplifi-
cation.

This analysis of the various community contributions and third-
party tangible interaction platforms, eventually led to the definition
of an extended abstraction model. While Tokens, Pointers & Bounds
still represent the core components of this new abstraction model
with an extended set of attributes, an additional intangible Symbol
component has been introduced in addition to a set of Geometries de-
scribing the physical appearance. Furthermore this extended model
also allows the encapsulation of additional component Controls as
well as the description of physical or logical component Associations

It is to hope that the new TUIO 2.0 protocol and the related applica-
tions, libraries and tools will provide an attractive feature extension
in order to initiate the further community support of the new protocol
generation, similar to the manifold contributions within the existing
TUIO 1.1 ecosystem.

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

Part IV

A P P E N D I X

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

B I B L I O G R A P H Y

[1] Eva Hornecker and Orit Shaer. “Tangible User Interfaces: Past,
Present, and Future Directions.” In: Foundations and Trends in
Human-Computer Interaction 3 (2010).

[2] Brygg Ullmer and Hiroshi Ishii. “Human-Computer Interaction
in the New Millennium.” In: ed. by J. M. Carroll. Addison-
Wesley, 2001. Chap. Emerging Frameworks for Tangible User
Interfaces, pp. 579–601.

[3] George W. Fitzmaurice, Hiroshi Ishii, and William A. S. Buxton.
“Bricks: Laying the Foundations for Graspable User Interfaces.”
In: Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems. CHI ’95. Denver, Colorado, USA: ACM, 1995.

[4] Ben Shneiderman. “Direct Manipulation: A Step Beyond Pro-
gramming Languages.” In: Proceedings of the Joint Conference on
Easier and More Productive Use of Computer Systems: Human Inter-
face and the User Interface. CHI ’81. Ann Arbor, MI: ACM, 1981.

[5] Brygg Ullmer and Hiroshi Ishii. “The metaDESK: Models and
Prototypes for Tangible User Interfaces.” In: Proceedings of the
10th Annual ACM Symposium on User Interface Software and Tech-
nology. UIST ’97. Banff, Alberta, Canada: ACM, 1997.

[6] Hiroshi Ishii and Brygg Ullmer. “Tangible Bits: Towards Seam-
less Interfaces Between People, Bits and Atoms.” In: Proceedings
of the ACM SIGCHI Conference on Human Factors in Computing
Systems. CHI ’97. Atlanta, Georgia, USA: ACM, 1997.

[7] Eva Hornecker. “Tangible User Interfaces als kooperationsun-
terstützendes Medium.” PhD thesis. Universität Bremen, 2004.

[8] John Underkoffler and Hiroshi Ishii. “Urp: A Luminous-tangible
Workbench for Urban Planning and Design.” In: Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems.
CHI ’99. Pittsburgh, Pennsylvania: ACM, 1999.

[9] Brygg Ullmer and Hiroshi Ishii. “mediaBlocks: Tangible Inter-
faces for Online Media.” In: CHI ’99 Extended Abstracts on Hu-
man Factors in Computing Systems. Pittsburgh, Pennsylvania: ACM,
1999.

[10] Matthew G. Gorbet, Maggie Orth, and Hiroshi Ishii. “Triangles:
Tangible Interface for Manipulation and Exploration of Digital
Information Topography.” In: Proceedings of the SIGCHI Confer-
ence on Human Factors in Computing Systems. Los Angeles, Cali-
fornia: ACM, 1998.

[11] Brygg Ullmer and Hiroshi Ishii. “Emerging frameworks for tan-
gible user interfaces.” In: IBM systems journal (2000).

122

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

Bibliography 123

[12] Hiroshi Ishii, Ali Mazalek, and Jay Lee. “Bottles As a Minimal
Interface to Access Digital Information.” In: CHI ’01 Extended
Abstracts on Human Factors in Computing Systems. Seattle, Wash-
ington: ACM, 2001.

[13] Kenneth P. Fishkin. “A Taxonomy for and Analysis of Tangible
Interfaces.” In: Personal Ubiquitous Comput. 8.5 (2004), pp. 347–
358.

[14] Brygg Ullmer, Hiroshi Ishii, and Robert J. K. Jacob. “Token+Constraint
Systems for Tangible Interaction with Digital Information.” In:
Transactions on Computer-Human Interaction 12.1 (2005), pp. 81–
118.

[15] Orit Shaer, Nancy Leland, Eduardo H. Calvillo-Gamez, and
Robert J. Jacob. “The TAC Paradigm: Specifying Tangible User
Interfaces.” In: Personal Ubiquitous Computing 8.5 (2004), pp. 359–
369.

[16] Orit Shaer. “A Visual Language for Specifying and Program-
ming Tangible User Interfaces.” PhD thesis. Tufts University,
2008.

[17] Hirokazu Kato, Mark Billinghurst, Ivan Poupyrev, and Keihachiro
Tachibana. “Virtual Object Manipulation on a Table-Top AR
Environment.” In: Proceedings of the International Symposium on
Augmented Reality (ISAR2000). Munich, Germany, 2000.

[18] Jungong Han, Ling Shao, Dong Xu, and J. Shotton. “Enhanced
Computer Vision With Microsoft Kinect Sensor: A Review.” In:
IEEE Transactions on Cybernetics 43.5 (Oct. 2013), pp. 1318–1334.

[19] Saul Greenberg and Chester Fitchett. “Phidgets: Easy Devel-
opment of Physical Interfaces Through Physical Widgets.” In:
Proceedings of the 14th Annual ACM Symposium on User Interface
Software and Technology. Orlando, Florida: ACM, 2001.

[20] Ayah Bdeir. “Electronics As Material: LittleBits.” In: Proceedings
of the 3rd International Conference on Tangible and Embedded Inter-
action. Cambridge, United Kingdom: ACM, 2009.

[21] David Merrill, Jeevan Kalanithi, and Pattie Maes. “Siftables: To-
wards Sensor Network User Interfaces.” In: Proceedings of the
1st International Conference on Tangible and Embedded Interaction.
Baton Rouge, Louisiana: ACM, 2007.

[22] Scott R. Klemmer, Jack Li, James Lin, and James A. Landay.
“Papier-Mache: Toolkit Support for Tangible Input.” In: Proceed-
ings of the SIGCHI Conference on Human Factors in Computing
Systems. Vienna, Austria: ACM, 2004.

[23] Nicolas; Kamp Jean-François Gibet Sylvie; Courty, ed. Gesture
in Human-Computer Interaction and Simulation. Vol. 3881. Lecture
Notes in Computer Science. Springer, Berlin, Germany, 2005.

[24] Martin Kaltenbrunner, Günter Geiger, and Sergi Jordà. “Dy-
namic Patches for Live Musical Performance.” In: Proceedings of
the 4th Conference on New Interfaces for Musical Expression (NIME04).
Hamamatsu, Japan, 2004.

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

Bibliography 124

[25] Thomas Hermann, Thomas Henning, and Helge Ritter. “Ges-
ture Desk - An Integrated Multi-Modal Workplace for Inter-
active Sonification.” In: Proceedings of the International Gesture
Workshop. Genova, Italy, 2003.

[26] Enrico Costanza, Simon B. Shelley, and John Robinson. “D-touch:
A Consumer-Grade Tangible Interface Module and Musical Ap-
plications.” In: Proceedings of the Conference on HumanComputer
Interaction (HCI03). Bath, UK, 2003.

[27] Matthew Wright, Adrian Freed, and Momeni Ali. “OpenSound
Control: State of the Art 2003.” In: Proceedings of the 3rd Confer-
ence on New Instruments for Musical Expression (NIME03). Mon-
treal, Canada, 2003.

[28] Ross Bencina. oscpack. 2004. url: http : / / www . rossbencina .

com/code/oscpack.

[29] Jefferson Y. Han. “Multi-touch Sensing Through Frustrated To-
tal Internal Reflection.” In: ACM SIGGRAPH 2005 Sketches. SIG-
GRAPH ’05. Los Angeles, California: ACM, 2005.

[30] SK Lee, William Buxton, and K. C. Smith. “A Multi-touch Three
Dimensional Touch-sensitive Tablet.” In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. CHI ’85. San
Francisco, California: ACM, 1985.

[31] Johannes Schöning et al. Multi-Touch Surfaces: A Technical Guide.
Tech. rep. Technische Universität München, 2008.

[32] Shahram Izadi, Steve Hodges, Stuart Taylor, Dan Rosenfeld,
Nicolas Villar, Alex Butler, and Jonathan Westhues. “Going Be-
yond the Display: A Surface Technology with an Electronically
Switchable Diffuser.” In: Proceedings of the 21st Annual ACM
Symposium on User Interface Software and Technology. UIST ’08.
Monterey, CA: ACM, 2008.

[33] Daniel Gallardo and Sergi Jordà. “SLFiducials: 6DoF Markers
for Tabletop Interaction.” In: Proceedings of the 2013 ACM Inter-
national Conference on Interactive Tabletops and Surfaces. ITS ’13.
St. Andrews, UK: ACM, 2013.

[34] Sergi Jordà, Günter Geiger, Marcos Alonso, and Martin Kaltenbrun-
ner. “The reacTable: Exploring the Synergy between Live Music
Performance and Tabletop Tangible Interfaces.” In: Proceedings
of the first international conference on Tangible and Embedded Inter-
action (TEI07). Baton Rouge, Louisiana, 2007.

[35] Ross Bencina, Martin Kaltenbrunner, and Sergi Jordà. “Improved
Topological Fiducial Tracking in the reacTIVision System.” In:
Proceedings of the IEEE International Workshop on Projector-Camera
Systems (Procams 2005). San Diego, USA, 2005.

[36] Ross Bencina and Martin Kaltenbrunner. “The Design and Evo-
lution of Fiducials for the reacTIVision System.” In: Proceedings
of the 3rd International Conference on Generative Systems in the Elec-
tronic Arts (3rd Iteration 2005). Melbourne, Australia, 2005.

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

http://www.rossbencina.com/code/oscpack
http://www.rossbencina.com/code/oscpack

Bibliography 125

[37] Sergi Jordà, Martin Kaltenbrunner, Günter Geiger, and Ross
Bencina. “The reacTable*.” In: Proceedings of the International Com-
puter Music Conference (ICMC 2005). Barcelona, Spain, 2005.

[38] Martin Kaltenbrunner, Till Bovermann, Ross Bencina, and En-
rico Costanza. “TUIO - A Protocol for Table Based Tangible
User Interfaces.” In: Proceedings of the 6th International Workshop
on Gesture in Human-Computer Interaction and Simulation (GW
2005). Vannes, France, 2005.

[39] MIDI Manufacturers Association. Musical Instrument Digital In-
terface. 1982. url: http://www.midi.org/.

[40] Jefferson Y. Han. “Low-cost multi-touch sensing through frus-
trated total internal reflection.” In: Proceedings of the 18th an-
nual ACM symposium on User interface software and technology
(UIST05). Seattle, USA, 2005.

[41] Mónica Rikić. “Buildasound.” In: Proceedings of the 7th Interna-
tional Conference on Tangible, Embedded and Embodied Interaction.
TEI ’13. Barcelona, Spain: ACM, 2013.

[42] Martin Kaltenbrunner, Sile O’Modhrain, and Enrico Costanza.
“Object Design Considerations for Tangible Musical Interfaces.”
In: Proceedings of the COST287-ConGAS Symposium on Gesture
Interfaces for Multimedia Systems. Leeds, UK, 2004.

[43] Sergi Jordà. “Multi-user Instruments: Models, Examples and
Promises.” In: In Proceedings of 2005 International Conference on
New Interfaces for Musical Expression (NIME05). Vancouver, Canada,
2005.

[44] William A. Buxton. “User Centered System Design: New Per-
spectives on Human-Computer Interaction.” In: ed. by Donald
A. Norman and Draper Stephen W. Hillsdale, NJ: CRC Press,
1986. Chap. There is more to interaction than meets the eye:
some issues in manual input, pp. 319–337.

[45] William A. Buxton. “Readings in Human-Computer Interaction:
A Multidisciplinary Approach.” In: ed. by Ronald M. Baecker
and William A. Buxton. San Mateo, CA: Morgan Kaufmann
Publishers, 1988. Chap. The haptic channel, pp. 357–365.

[46] Sergi Jordà. “Instruments and Players: Some thoughts on digi-
tal lutherie.” In: Journal of New Music Research 33 (2005).

[47] Tina Blaine and Tim Perkis. “Jam-O-Drum, A Study in Inter-
action Design.” In: Proceedings of the ACM DIS 2000 Conference.
New York, NY, 2000.

[48] Sidney Fels, Linda Kaastra, Sachiyo Takahashi, and Graeme Mc-
Caig. “Evolving Tooka: from Experiment to Instrument.” In:
Proceedings of the 4th Conference on New Interfaces for Musical Ex-
pression (NIME04). Vancouver, Canada, 2004.

[49] Álvaro Barbosa. “Public Sound Objects: A Shared Environment
for Networked Music Practice on the Web.” In: Organized Sound
10.3 (2005), pp. 233–242.

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

http://www.midi.org/

Bibliography 126

[50] Álvaro Barbosa. “Displaced Soundscapes: A Survey of Network
Systems for Music and Sonic Art Creation.” In: Leonardo Music
Journal 13 (2003), pp. 53–59.

[51] Miller Puckette. “Pure Data.” In: Proceedings of the International
Computer Music Conference. San Francisco, CA, 1996.

[52] Marcos Alonso, Günter Geiger, and Sergi Jordà. “An Internet
Browser Plug-in for Real-time Audio Synthesis.” In: Proceed-
ings of International Computer Music Conference (ICMC04). Miami,
Florida, 2004.

[53] Bill Buxton. “Artists and the Art of the Luthier.” In: SIGGRAPH
Computer Graphics 31.1 (Feb. 1997), pp. 10–11.

[54] Robert Andrews. ReacTable Tactile Synth Catches Björk’s Eye and
Ear. Aug. 2007. url: http://archive.wired.com/entertainment/
music/news/2007/08/bjork_reacTable.

[55] Gerhard Reitmayr and Dietmar Schmalstieg. “An open soft-
ware architecture for virtual reality interaction.” In: Proceedings
of the ACM symposium on Virtual reality software and technology
(VRST01). Baniff, Canada, 2001.

[56] Martin Kaltenbrunner and Ross Bencina. “reacTIVision: A Computer-
Vision Framework for Table-Based Tangible Interaction.” In: Pro-
ceedings of the first international conference on Tangible and Embed-
ded Interaction (TEI07). Baton Rouge, Louisiana, 2007.

[57] R. E. Kalman. “A New Approach to Linear Filtering and Pre-
diction Problems.” In: Transactions of the ASME– Journal of Basic
Engineering (1960), pp. 35–45.

[58] J. Bernsen. “Dynamic thresholding of grey-level images.” In:
Proceedings of the 8th International Conference on Pattern Recogni-
tion. 1986.

[59] Adrian Freed and A. Schneider. “Features and Future of Open
Sound Control version 1.1 for NIME.” In: Proceedings of the
9th Conference on New Interfaces for Musical Expression (NIME09).
Pittsburgh, Pennsylvania, 2009.

[60] W. A. König, Roman Rädle, and Harald Reiterer. “Squidy: a
zoomable design environment for natural user interfaces.” In:
Proceedings of the 27th international conference on Human factors in
computing systems (CHI09). 2009.

[61] Peter Hutterer and Bruce Thomas. “Groupware support in the
windowing system.” In: Proceedings of the 8th Australasian confer-
ence on User interface (AUIC07). 2007.

[62] Florian Echtler and Martin Kaltenbrunner. “SUR40 Linux: Re-
animating an Obsolete Tangible Interaction Platform.” In: Pro-
ceedings of the ACM International Conference on Interactive Surfaces
and Spaces (ISS2016). Niagara Falls, Canada, 2016.

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

http://archive.wired.com/entertainment/music/news/2007/08/bjork_reacTable
http://archive.wired.com/entertainment/music/news/2007/08/bjork_reacTable

Bibliography 127

[63] Clemens Nylandsted Klokmose, Janus Bager Kristensen, Rolf
Bagge, and Kim Halskov. “BullsEye: High-Precision Fiducial
Tracking for Table-based Tangible Interaction.” In: Proceedings
of the Ninth ACM International Conference on Interactive Tabletops
and Surfaces. Dresden, Germany: ACM, 2014.

[64] Géry Casiez, Nicolas Roussel, and Daniel Vogel. “1 €
Filter: A Simple Speed-based Low-pass Filter for Noisy Input
in Interactive Systems.” In: Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems. CHI ’12. Austin, Texas:
ACM, 2012.

[65] Florian Echtler and Andreas Butz. “GISpL: Gestures Made Easy.”
In: Proceedings of the Sixth International Conference on Tangible,
Embedded and Embodied Interaction. Kingston, Ontario, Canada:
ACM, 2012.

[66] Florian Echtler and Gudrun Klinker. “A Multitouch Software
Architecture.” In: Proceedings of the 5th Nordic Conference on Human-
computer Interaction: Building Bridges. Lund, Sweden: ACM, 2008.

[67] Paul Dietz and Darren Leigh. “DiamondTouch: A Multi-user
Touch Technology.” In: Proceedings of the 14th Annual ACM Sym-
posium on User Interface Software and Technology. Orlando, Florida:
ACM, 2001.

[68] Raf Ramakers, Davy Vanacken, Kris Luyten, Karin Coninx, and
Johannes Schöning. “Carpus: A Non-intrusive User Identifica-
tion Technique for Interactive Surfaces.” In: Proceedings of the
25th Annual ACM Symposium on User Interface Software and Tech-
nology. Cambridge, MA: ACM, 2012.

[69] Malte Weiss, Julie Wagner, Yvonne Jansen, Roger Jennings, Ram-
sin Khoshabeh, James D. Hollan, and Jan Borchers. “SLAP Wid-
gets: Bridging the Gap Between Virtual and Physical Controls
on Tabletops.” In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. Boston, MA: ACM, 2009.

[70] Florian Echtler, Manuel Huber, and Gudrun Klinker. “Shadow
Tracking on Multi-touch Tables.” In: Proceedings of the Work-
ing Conference on Advanced Visual Interfaces. Napoli, Italy: ACM,
2008.

[71] James Patten and Hiroshi Ishii. “Mechanical Constraints As
Computational Constraints in Tabletop Tangible Interfaces.” In:
Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems. San Jose, California: ACM, 2007.

[72] R. Poynor. “The hand that rocks the cradle.” In: ID Magazine
May/June (1995), pp. 60–65.

[73] Martin Kaltenbrunner and Florian Echtler. “TUIO Hackathon.”
In: Proceedings of the ACM International Conference on Interactive
Tabletops and Surfaces (ITS2014). Dresden, Germany, 2014.

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

L I S T O F F I G U R E S

Figure 1 The Reactable by Jordà, Geiger, Alonso and
Kaltenbrunner. Photo: Reactable Systems vi

Figure 2 Examples of Interactive Surfaces: horizontal,
vertical and mobile 7

Figure 3 reacTIVision diagram 25

Figure 4 symbols a) amoeba b) classic c) d-touch d) fin-
ger 28

Figure 5 examples a) reacTable b) recipe-table c) blinks
34

Figure 6 reacTable* collaboration scenarios 41

Figure 7 Local and remote synth objects 46

Figure 8 a) fiducial tree and two possible representa-
tions b) encoded center point and angle infor-
mation 55

Figure 9 The three tracking modes a) full b) fuzzy and
c) root region, depending on the retrieved sym-
bol quality 57

Figure 10 Original camera image and binary threshold
image with finger and fiducial tracking feed-
back 58

Figure 11 Distribution of the orientation vector length 59

Figure 12 Distribution of the symbol footprint size 59

Figure 13 comparing the original symbol rendering (top
row) to the improved rendering method (bot-
tom row) 60

Figure 14 Tracking modes at varying speeds 61

Figure 15 Simple description of a blob enclosure 63

Figure 16 Blob analysis: a) source b) threshold c) spans
d) contour e) convex hull f) bounding box g)
enclosure h) abstraction 69

Figure 17 Touch blob analysis: a) raw blob b) outer con-
tour c) enclosing ellipse d) accumulated error
70

Figure 18 Yamaarashi symbol structure: a) overall design
b) bitcode sequence c) core symbol topology
71

Figure 19 Yamaarashi tracking modes: a) bitcode identi-
fication b) core amoeba c) root region 71

Figure 20 An embedded TUIO camera system configura-
tion. Photo: aliexpress.com with annotations 73

Figure 21 TUIO 1.1 abstraction: a) raw sensor input b)
image processing c) object, cursor & blob recog-
nition d) TUIO client representation 74

Figure 22 TUIO 1.1 components: objects, cursors & blobs 75

Figure 23 TUIO 1.1 architecture 75

128

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

Figure 24 fishtank scenario: space extending above an
interactive surface. 79

Figure 25 TUIO 2.0 components: symbols, tokens, point-
ers & geometries 81

Figure 26 symbol examples: a) fiducial b) QR code c)
RFID tag d) character 81

Figure 27 pointer examples: a) touch b) mouse c) pencil
d) laser 82

Figure 28 geometry detail: a) bounding box b) convex
hull c) contour d) skeleton e) area spans f) raw
data 82

Figure 29 component relations: a) physical link b) con-
tainer c) signal 83

Figure 30 Layers of the Abstraction Model 86

Figure 31 A Multitouch Software Architecture. Illustra-
tion: Echtler et.al. 87

Figure 32 multi-user identification on the Diamond Touch.
Photo: MERL 105

Figure 33 iPad Pro pencil and touch interaction. Photo:
Apple Incorporated 106

Figure 34 The Morph tablet and its pressure map display
Photo: Sensel Incorporated 107

Figure 35 The Surface Studio with pen and dial. Photo:
Microsoft Corporation 108

Figure 36 Two SLAP widgets with integrated controls.
Photos: Malte Weiss et.al. 110

Figure 37 a) Sifteo Cubes and b) Triangles Photos: David
Merrill and Matthew Gorbet 111

Figure 38 a) Scrapple installation and b) Tangible Sequencer
Photos: Golan Levin and Jeffrey Traer 112

Figure 39 Physical constraints on the Pico platform. Pho-
tos: James Patten 113

Figure 40 The Marble Answering Machine. Illustration:
Durrell Bishop 114

L I S T O F TA B L E S

Table 1 semantic types of set messages 18

Table 2 Universal TUIO Modules 119

129

[January 22, 2018 at 13:46 – classicthesis version 1.0.1]

	Dedication
	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	Introduction
	1 Thesis Statement
	1.1 Research Thesis
	1.2 Research Context
	1.3 Research Contributions
	1.4 Research Methods

	2 Motivation
	3 Platform Definition
	3.1 Post-WIMP Interfaces
	3.2 Tangible User Interfaces
	3.3 Tangible Object Models
	3.4 Tangible Interface Toolkits
	3.5 Tangible Interactive Surfaces

	Selected Publications
	Publications
	4 TUIO: A Protocol for Table-Top Tangible User Interfaces
	4.1 Introduction
	4.1.1 Co-Authors
	4.1.2 Context

	4.2 Original Publication
	4.2.1 Abstract
	4.2.2 General Observations
	4.2.3 Implementation Details
	4.2.4 Conclusion
	4.2.5 Acknowledgments

	4.3 Remarks & Analysis
	4.3.1 Distributed Architecture
	4.3.2 Model Robustness
	4.3.3 Tangible User Interface Objects
	4.3.4 Multi-Touch Interaction
	4.3.5 Surface Interaction
	4.3.6 Crowd-Sourced Development

	5 reacTIVision: A Computer-Vision Framework for Table-Based Tangible Interaction
	5.1 Introduction
	5.1.1 Co-Author
	5.1.2 Context

	5.2 Original Publication
	5.2.1 Abstract
	5.2.2 Introduction
	5.2.3 Architecture
	5.2.4 Fiducial Engines
	5.2.5 How to Build a Table Interface
	5.2.6 Framework Usage
	5.2.7 Example Projects Based on reacTIVision
	5.2.8 Future Work

	5.3 Remarks & Analysis
	5.3.1 Modular Architecture
	5.3.2 Diffuse Illumination Surface
	5.3.3 Integrated Finger Tracking
	5.3.4 Reactivision Projects

	6 The reacTable*: A Collaborative Musical Instrument
	6.1 Introduction
	6.1.1 Co-Authors
	6.1.2 Context

	6.2 Original Publication
	6.2.1 Abstract
	6.2.2 The reacTable*
	6.2.3 Collaborative Music Models
	6.2.4 TeleSon Invention #8
	6.2.5 Networking Infrastructure
	6.2.6 Acknowledgments

	6.3 Remarks & Analysis
	6.3.1 Contemporary Music Practice
	6.3.2 Designers, Composers & Performers
	6.3.3 Physical Embodiment
	6.3.4 Multi-User Interaction
	6.3.5 Networked Performance
	6.3.6 Restaging Teleson Invention #8
	6.3.7 Musical Application
	6.3.8 Tangible Platform

	7 reacTIVision and TUIO: A Tangible Tabletop Toolkit
	7.1 Introduction
	7.1.1 Context

	7.2 Original Publication
	7.2.1 Abstract
	7.2.2 Introduction
	7.2.3 Tangible Surface Abstraction
	7.2.4 The Reactivision Engine
	7.2.5 The TUIO Protocol
	7.2.6 Conclusions And Future Work
	7.2.7 Acknowledgments

	7.3 Remarks & Analysis
	7.3.1 Platform Updates
	7.3.2 PortVideo Library
	7.3.3 Blob Analysis
	7.3.4 Finger Tracking
	7.3.5 Yamaarashi Symbols
	7.3.6 Performance Improvements
	7.3.7 Library Integration
	7.3.8 TUIO 1.1 Model
	7.3.9 TUIO 1.1 Limitations

	Model Extension
	8 TUIO2
	8.1 An Extended Abstraction Model
	8.1.1 Global Context
	8.1.2 Explicit Interface Components
	8.1.3 Component Relation
	8.1.4 Component Context
	8.1.5 Component Gestures

	8.2 Model Integration
	8.3 TUIO 2.0 protocol specification
	8.3.1 Message Structure
	8.3.2 Global Messages
	8.3.3 Component Messages
	8.3.4 Geometry Messages
	8.3.5 Content Messages
	8.3.6 Association Messages
	8.3.7 Custom Messages
	8.3.8 Timing Model
	8.3.9 Bundle Structure
	8.3.10 Compact Message List
	8.3.11 Server & Client implementations
	8.3.12 Transport method

	8.4 Example Platform Encodings
	8.4.1 Pointer Identification: Diamondtouch
	8.4.2 Pointer Types: iPad Pro
	8.4.3 Pointers and Controls: Wheel Mouse
	8.4.4 Pointers and Pressure Maps: Sensel Morph
	8.4.5 Tokens, Pointers, Symbols & Bounds: Surface
	8.4.6 Tokens as Pointer: Surface Studio
	8.4.7 Tokens, Pointers and Geometries: reacTIVision
	8.4.8 Symbols and Bounds: Papier Maché
	8.4.9 Tokens and Controls: Slap Widgets
	8.4.10 Spatial Interaction: Tisch
	8.4.11 Physical Associations: Triangles
	8.4.12 Logical Associations: Siftables
	8.4.13 Signals: Tangible Sequencer
	8.4.14 Tokens and Geometries: Scrapple
	8.4.15 Actuated Tokens: Pico
	8.4.16 Bonus Example: Marble Answering Machine
	8.4.17 Conclusion

	9 Conclusion & Future Work
	9.1 TUIO 2.0 Reference Implementation
	9.2 reacTIVision Reference Platform
	9.3 Device Support
	9.4 Universal TUIO Tool
	9.5 Conclusion

	Appendix
	Bibliography
	List of Figures
	List of Tables

