22 research outputs found

    Robotic System Development for Precision MRI-Guided Needle-Based Interventions

    Get PDF
    This dissertation describes the development of a methodology for implementing robotic systems for interventional procedures under intraoperative Magnetic Resonance Imaging (MRI) guidance. MRI is an ideal imaging modality for surgical guidance of diagnostic and therapeutic procedures, thanks to its ability to perform high resolution, real-time, and high soft tissue contrast imaging without ionizing radiation. However, the strong magnetic field and sensitivity to radio frequency signals, as well as tightly confined scanner bore render great challenges to developing robotic systems within MRI environment. Discussed are potential solutions to address engineering topics related to development of MRI-compatible electro-mechanical systems and modeling of steerable needle interventions. A robotic framework is developed based on a modular design approach, supporting varying MRI-guided interventional procedures, with stereotactic neurosurgery and prostate cancer therapy as two driving exemplary applications. A piezoelectrically actuated electro-mechanical system is designed to provide precise needle placement in the bore of the scanner under interactive MRI-guidance, while overcoming the challenges inherent to MRI-guided procedures. This work presents the development of the robotic system in the aspects of requirements definition, clinical work flow development, mechanism optimization, control system design and experimental evaluation. A steerable needle is beneficial for interventional procedures with its capability to produce curved path, avoiding anatomical obstacles or compensating for needle placement errors. Two kinds of steerable needles are discussed, i.e. asymmetric-tip needle and concentric-tube cannula. A novel Gaussian-based ContinUous Rotation and Variable-curvature (CURV) model is proposed to steer asymmetric-tip needle, which enables variable curvature of the needle trajectory with independent control of needle rotation and insertion. While concentric-tube cannula is suitable for clinical applications where a curved trajectory is needed without relying on tissue interaction force. This dissertation addresses fundamental challenges in developing and deploying MRI-compatible robotic systems, and enables the technologies for MRI-guided needle-based interventions. This study applied and evaluated these techniques to a system for prostate biopsy that is currently in clinical trials, developed a neurosurgery robot prototype for interstitial thermal therapy of brain cancer under MRI guidance, and demonstrated needle steering using both asymmetric tip and pre-bent concentric-tube cannula approaches on a testbed

    Towards Closed-loop, Robot Assisted Percutaneous Interventions under MRI Guidance

    Get PDF
    Image guided therapy procedures under MRI guidance has been a focused research area over past decade. Also, over the last decade, various MRI guided robotic devices have been developed and used clinically for percutaneous interventions, such as prostate biopsy, brachytherapy, and tissue ablation. Though MRI provides better soft tissue contrast compared to Computed Tomography and Ultrasound, it poses various challenges like constrained space, less ergonomic patient access and limited material choices due to its high magnetic field. Even after, advancements in MRI compatible actuation methods and robotic devices using them, most MRI guided interventions are still open-loop in nature and relies on preoperative or intraoperative images. In this thesis, an intraoperative MRI guided robotic system for prostate biopsy comprising of an MRI compatible 4-DOF robotic manipulator, robot controller and control application with Clinical User Interface (CUI) and surgical planning applications (3DSlicer and RadVision) is presented. This system utilizes intraoperative images acquired after each full or partial needle insertion for needle tip localization. Presented system was approved by Institutional Review Board at Brigham and Women\u27s Hospital(BWH) and has been used in 30 patient trials. Successful translation of such a system utilizing intraoperative MR images motivated towards the development of a system architecture for close-loop, real-time MRI guided percutaneous interventions. Robot assisted, close-loop intervention could help in accurate positioning and localization of the therapy delivery instrument, improve physician and patient comfort and allow real-time therapy monitoring. Also, utilizing real-time MR images could allow correction of surgical instrument trajectory and controlled therapy delivery. Two of the applications validating the presented architecture; closed-loop needle steering and MRI guided brain tumor ablation are demonstrated under real-time MRI guidance

    Advanced tracking and image registration techniques for intraoperative radiation therapy

    Get PDF
    Mención Internacional en el título de doctorIntraoperative electron radiation therapy (IOERT) is a technique used to deliver radiation to the surgically opened tumor bed without irradiating healthy tissue. Treatment planning systems and mobile linear accelerators enable clinicians to optimize the procedure, minimize stress in the operating room (OR) and avoid transferring the patient to a dedicated radiation room. However, placement of the radiation collimator over the tumor bed requires a validation methodology to ensure correct delivery of the dose prescribed in the treatment planning system. In this dissertation, we address three well-known limitations of IOERT: applicator positioning over the tumor bed, docking of the mobile linear accelerator gantry with the applicator and validation of the dose delivery prescribed. This thesis demonstrates that these limitations can be overcome by positioning the applicator appropriately with respect to the patient’s anatomy. The main objective of the study was to assess technological and procedural alternatives for improvement of IOERT performance and resolution of problems of uncertainty. Image-to-world registration, multicamera optical trackers, multimodal imaging techniques and mobile linear accelerator docking are addressed in the context of IOERT. IOERT is carried out by a multidisciplinary team in a highly complex environment that has special tracking needs owing to the characteristics of its working volume (i.e., large and prone to occlusions), in addition to the requisites of accuracy. The first part of this dissertation presents the validation of a commercial multicamera optical tracker in terms of accuracy, sensitivity to miscalibration, camera occlusions and detection of tools using a feasible surgical setup. It also proposes an automatic miscalibration detection protocol that satisfies the IOERT requirements of automaticity and speed. We show that the multicamera tracker is suitable for IOERT navigation and demonstrate the feasibility of the miscalibration detection protocol in clinical setups. Image-to-world registration is one of the main issues during image-guided applications where the field of interest and/or the number of possible anatomical localizations is large, such as IOERT. In the second part of this dissertation, a registration algorithm for image-guided surgery based on lineshaped fiducials (line-based registration) is proposed and validated. Line-based registration decreases acquisition time during surgery and enables better registration accuracy than other published algorithms. In the third part of this dissertation, we integrate a commercial low-cost ultrasound transducer and a cone beam CT C-arm with an optical tracker for image-guided interventions to enable surgical navigation and explore image based registration techniques for both modalities. In the fourth part of the dissertation, a navigation system based on optical tracking for the docking of the mobile linear accelerator to the radiation applicator is assessed. This system improves safety and reduces procedure time. The system tracks the prescribed collimator location to solve the movements that the linear accelerator should perform to reach the docking position and warns the user about potentially unachievable arrangements before the actual procedure. A software application was implemented to use this system in the OR, where it was also evaluated to assess the improvement in docking speed. Finally, in the last part of the dissertation, we present and assess the installation setup for a navigation system in a dedicated IOERT OR, determine the steps necessary for the IOERT process, identify workflow limitations and evaluate the feasibility of the integration of the system in a real OR. The navigation system safeguards the sterile conditions of the OR, clears the space available for surgeons and is suitable for any similar dedicated IOERT OR.La Radioterapia Intraoperatoria por electrones (RIO) consiste en la aplicación de radiación de alta energía directamente sobre el lecho tumoral, accesible durante la cirugía, evitando radiar los tejidos sanos. Hoy en día, avances como los sistemas de planificación (TPS) y la aparición de aceleradores lineales móviles permiten optimizar el procedimiento, minimizar el estrés clínico en el entorno quirúrgico y evitar el desplazamiento del paciente durante la cirugía a otra sala para ser radiado. La aplicación de la radiación se realiza mediante un colimador del haz de radiación (aplicador) que se coloca sobre el lecho tumoral de forma manual por el oncólogo radioterápico. Sin embargo, para asegurar una correcta deposición de la dosis prescrita y planificada en el TPS, es necesaria una adecuada validación de la colocación del colimador. En esta Tesis se abordan tres limitaciones conocidas del procedimiento RIO: el correcto posicionamiento del aplicador sobre el lecho tumoral, acoplamiento del acelerador lineal con el aplicador y validación de la dosis de radiación prescrita. Esta Tesis demuestra que estas limitaciones pueden ser abordadas mediante el posicionamiento del aplicador de radiación en relación con la anatomía del paciente. El objetivo principal de este trabajo es la evaluación de alternativas tecnológicas y procedimentales para la mejora de la práctica de la RIO y resolver los problemas de incertidumbre descritos anteriormente. Concretamente se revisan en el contexto de la radioterapia intraoperatoria los siguientes temas: el registro de la imagen y el paciente, sistemas de posicionamiento multicámara, técnicas de imagen multimodal y el acoplamiento del acelerador lineal móvil. El entorno complejo y multidisciplinar de la RIO precisa de necesidades especiales para el empleo de sistemas de posicionamiento como una alta precisión y un volumen de trabajo grande y propenso a las oclusiones de los sensores de posición. La primera parte de esta Tesis presenta una exhaustiva evaluación de un sistema de posicionamiento óptico multicámara comercial. Estudiamos la precisión del sistema, su sensibilidad a errores cometidos en la calibración, robustez frente a posibles oclusiones de las cámaras y precisión en el seguimiento de herramientas en un entorno quirúrgico real. Además, proponemos un protocolo para la detección automática de errores por calibración que satisface los requisitos de automaticidad y velocidad para la RIO demostrando la viabilidad del empleo de este sistema para la navegación en RIO. Uno de los problemas principales de la cirugía guiada por imagen es el correcto registro de la imagen médica y la anatomía del paciente en el quirófano. En el caso de la RIO, donde el número de posibles localizaciones anatómicas es bastante amplio, así como el campo de trabajo es grande se hace necesario abordar este problema para una correcta navegación. Por ello, en la segunda parte de esta Tesis, proponemos y validamos un nuevo algoritmo de registro (LBR) para la cirugía guiada por imagen basado en marcadores lineales. El método propuesto reduce el tiempo de la adquisición de la posición de los marcadores durante la cirugía y supera en precisión a otros algoritmos de registro establecidos y estudiados en la literatura. En la tercera parte de esta tesis, integramos un transductor de ultrasonido comercial de bajo coste, un arco en C de rayos X con haz cónico y un sistema de posicionamiento óptico para intervenciones guiadas por imagen que permite la navegación quirúrgica y exploramos técnicas de registro de imagen para ambas modalidades. En la cuarta parte de esta tesis se evalúa un navegador basado en el sistema de posicionamiento óptico para el acoplamiento del acelerador lineal móvil con aplicador de radiación, mejorando la seguridad y reduciendo el tiempo del propio acoplamiento. El sistema es capaz de localizar el colimador en el espacio y proporcionar los movimientos que el acelerador lineal debe realizar para alcanzar la posición de acoplamiento. El sistema propuesto es capaz de advertir al usuario de aquellos casos donde la posición de acoplamiento sea inalcanzable. El sistema propuesto de ayuda para el acoplamiento se integró en una aplicación software que fue evaluada para su uso final en quirófano demostrando su viabilidad y la reducción de tiempo de acoplamiento mediante su uso. Por último, presentamos y evaluamos la instalación de un sistema de navegación en un quirófano RIO dedicado, determinamos las necesidades desde el punto de vista procedimental, identificamos las limitaciones en el flujo de trabajo y evaluamos la viabilidad de la integración del sistema en un entorno quirúrgico real. El sistema propuesto demuestra ser apto para el entorno RIO manteniendo las condiciones de esterilidad y dejando despejado el campo quirúrgico además de ser adaptable a cualquier quirófano similar.Programa Oficial de Doctorado en Multimedia y ComunicacionesPresidente: Raúl San José Estépar.- Secretario: María Arrate Muñoz Barrutia.- Vocal: Carlos Ferrer Albiac

    Intraoperative Navigation Systems for Image-Guided Surgery

    Get PDF
    Recent technological advancements in medical imaging equipment have resulted in a dramatic improvement of image accuracy, now capable of providing useful information previously not available to clinicians. In the surgical context, intraoperative imaging provides a crucial value for the success of the operation. Many nontrivial scientific and technical problems need to be addressed in order to efficiently exploit the different information sources nowadays available in advanced operating rooms. In particular, it is necessary to provide: (i) accurate tracking of surgical instruments, (ii) real-time matching of images from different modalities, and (iii) reliable guidance toward the surgical target. Satisfying all of these requisites is needed to realize effective intraoperative navigation systems for image-guided surgery. Various solutions have been proposed and successfully tested in the field of image navigation systems in the last ten years; nevertheless several problems still arise in most of the applications regarding precision, usability and capabilities of the existing systems. Identifying and solving these issues represents an urgent scientific challenge. This thesis investigates the current state of the art in the field of intraoperative navigation systems, focusing in particular on the challenges related to efficient and effective usage of ultrasound imaging during surgery. The main contribution of this thesis to the state of the art are related to: Techniques for automatic motion compensation and therapy monitoring applied to a novel ultrasound-guided surgical robotic platform in the context of abdominal tumor thermoablation. Novel image-fusion based navigation systems for ultrasound-guided neurosurgery in the context of brain tumor resection, highlighting their applicability as off-line surgical training instruments. The proposed systems, which were designed and developed in the framework of two international research projects, have been tested in real or simulated surgical scenarios, showing promising results toward their application in clinical practice

    Modular MRI Guided Device Development System: Development, Validation and Applications

    Get PDF
    Since the first robotic surgical intervention was performed in 1985 using a PUMA industrial manipulator, development in the field of surgical robotics has been relatively fast paced, despite the tremendous costs involved in developing new robotic interventional devices. This is due to the clear advantages to augmented a clinicians skill and dexterity with the precision and reliability of computer controlled motion. A natural extension of robotic surgical intervention is the integration of image guided interventions, which give the promise of reduced trauma, procedure time and inaccuracies. Despite magnetic resonance imaging (MRI) being one of the most effective imaging modalities for visualizing soft tissue structures within the body, MRI guided surgical robotics has been frustrated by the high magnetic field in the MRI image space and the extreme sensitivity to electromagnetic interference. The primary contributions of this dissertation relate to enabling the use of direct, live MR imaging to guide and assist interventional procedures. These are the two focus areas: creation both of an integrated MRI-guided development platform and of a stereotactic neural intervention system. The integrated series of modules of the development platform represent a significant advancement in the practice of creating MRI guided mechatronic devices, as well as an understanding of design requirements for creating actuated devices to operate within a diagnostic MRI. This knowledge was gained through a systematic approach to understanding, isolating, characterizing, and circumventing difficulties associated with developing MRI-guided interventional systems. These contributions have been validated on the levels of the individual modules, the total development system, and several deployed interventional devices. An overview of this work is presented with a summary of contributions and lessons learned along the way

    Multi-parametric MRI to guide salvage treatment of recurrent prostate cancer

    Get PDF
    Prostate cancer (PCa) is frequently treated with radiotherapy. However, depending on the aggressiveness of the disease, the risk of recurrence can be up to 35% within five years of the initial treatment. Patients with localised recurrent PCa are candidates for curative (i.e. salvage) treatment. To overcome the toxicity associated with whole-gland approaches, focal salvage treatments target the index lesion while sparing the surrounding tissue. The studies described in this thesis elaborate on the use of quantitative multi-parametric MRI (mp-MRI) for the detection and localisation of locally recurrent PCa after radiotherapy. Pre-treatment radiomic imaging features were found to have potential to improve recurrence-risk prediction models for high-risk PCa patients treated with radiotherapy. In this thesis, the mp-MRI properties of irradiated benign tissue and recurrent tumour were characterised, with access to pathological samples. These findings can be used as a foundation to establish guidelines (which are currently absent) on how to assess and score MRI scans after radiotherapy. Improving radiological knowledge in the recurrent setting can lead to improved staging and result in better patient selection for salvage treatments. Lastly, this thesis provides evidence on how best to define the region to target, leading to a refinement of focal salvage strategies.KWF KankerbestrijdingLUMC / Geneeskund

    Developing Ultrasound-Guided Intervention Technologies Enabled by Sensing Active Acoustic and Photoacoustic Point Sources

    Get PDF
    Image-guided therapy is a central part of modern medicine. By incorporating medical imaging into the planning, surgical, and evaluation process, image-guided therapy has helped surgeons perform less invasive and more precise procedures. Of the most commonly used medical imaging modalities, ultrasound imaging offers a unique combination of cost-effectiveness, safety, and mobility. Advanced ultrasound guided interventional systems will often require calibration and tracking technologies to enable all of their capabilities. Many of these technologies rely on localizing point based fiducials to accomplish their task. In this thesis, I investigate how sensing and localizing active acoustic and photoacoustic point sources can have a substantial impact in intraoperative ultrasound. The goals of these methods are (1) to improve localization and visualization for point targets that are not easily distinguished under conventional ultrasound and (2) to track and register ultrasound sensors with the use of active point sources as non-physical fiducials or markers. We applied these methods to three main research topics. The first is an ultrasound calibration framework that utilizes an active acoustic source as the phantom to aid in in-plane segmentation as well as out-of-plane estimation. The second is an interventional photoacoustic surgical system that utilizes the photoacoustic effect to create markers for tracking ultrasound transducers. We demonstrate variations of this idea to track a wide range of ultrasound transducers (three-dimensional, two-dimensional, bi-planar). The third is a set of interventional tool tracking methods combining the use of acoustic elements embedded onto the tool with the use of photoacoustic markers

    Medical Ultrasound Imaging and Interventional Component (MUSiiC) Framework for Advanced Ultrasound Image-guided Therapy

    Get PDF
    Medical ultrasound (US) imaging is a popular and convenient medical imaging modality thanks to its mobility, non-ionizing radiation, ease-of-use, and real-time data acquisition. Conventional US brightness mode (B-Mode) is one type of diagnostic medical imaging modality that represents tissue morphology by collecting and displaying the intensity information of a reflected acoustic wave. Moreover, US B-Mode imaging is frequently integrated with tracking systems and robotic systems in image-guided therapy (IGT) systems. Recently, these systems have also begun to incorporate advanced US imaging such as US elasticity imaging, photoacoustic imaging, and thermal imaging. Several software frameworks and toolkits have been developed for US imaging research and the integration of US data acquisition, processing and display with existing IGT systems. However, there is no software framework or toolkit that supports advanced US imaging research and advanced US IGT systems by providing low-level US data (channel data or radio-frequency (RF) data) essential for advanced US imaging. In this dissertation, we propose a new medical US imaging and interventional component framework for advanced US image-guided therapy based on networkdistributed modularity, real-time computation and communication, and open-interface design specifications. Consequently, the framework can provide a modular research environment by supporting communication interfaces between heterogeneous systems to allow for flexible interventional US imaging research, and easy reconfiguration of an entire interventional US imaging system by adding or removing devices or equipment specific to each therapy. In addition, our proposed framework offers real-time synchronization between data from multiple data acquisition devices for advanced iii interventional US imaging research and integration of the US imaging system with other IGT systems. Moreover, we can easily implement and test new advanced ultrasound imaging techniques inside the proposed framework in real-time because our software framework is designed and optimized for advanced ultrasound research. The system’s flexibility, real-time performance, and open-interface are demonstrated and evaluated through performing experimental tests for several applications

    Hardware acceleration using FPGAs for adaptive radiotherapy

    Get PDF
    Adaptive radiotherapy (ART) seeks to improve the accuracy of radiotherapy by adapting the treatment based on up-to-date images of the patient's anatomy captured at the time of treatment delivery. The amount of image data, combined with the clinical time requirements for ART, necessitates automatic image analysis to adapt the treatment plan. Currently, the computational effort of the image processing and plan adaptation means they cannot be completed in a clinically acceptable timeframe. This thesis aims to investigate the use of hardware acceleration on Field Programmable Gate Arrays (FPGAs) to accelerate algorithms for segmenting bony anatomy in Computed Tomography (CT) scans, to reduce the plan adaptation time for ART. An assessment was made of the overhead incurred by transferring image data to an FPGA-based hardware accelerator using the industry-standard DICOM protocol over an Ethernet connection. The rate was found to be likely to limit the performanceof hardware accelerators for ART, highlighting the need for an alternative method of integrating hardware accelerators with existing radiotherapy equipment. A clinically-validated segmentation algorithm was adapted for implementation in hardware. This was shown to process three-dimensional CT images up to 13.81 times faster than the original software implementation. The segmentations produced by the two implementations showed strong agreement. Modifications to the hardware implementation were proposed for segmenting fourdimensional CT scans. This was shown to process image volumes 14.96 times faster than the original software implementation, and the segmentations produced by the two implementations showed strong agreement in most cases.A second, novel, method for segmenting four-dimensional CT data was also proposed. The hardware implementation executed 1.95 times faster than the software implementation. However, the algorithm was found to be unsuitable for the global segmentation task examined here, although it may be suitable as a refining segmentation in the context of a larger ART algorithm.Adaptive radiotherapy (ART) seeks to improve the accuracy of radiotherapy by adapting the treatment based on up-to-date images of the patient's anatomy captured at the time of treatment delivery. The amount of image data, combined with the clinical time requirements for ART, necessitates automatic image analysis to adapt the treatment plan. Currently, the computational effort of the image processing and plan adaptation means they cannot be completed in a clinically acceptable timeframe. This thesis aims to investigate the use of hardware acceleration on Field Programmable Gate Arrays (FPGAs) to accelerate algorithms for segmenting bony anatomy in Computed Tomography (CT) scans, to reduce the plan adaptation time for ART. An assessment was made of the overhead incurred by transferring image data to an FPGA-based hardware accelerator using the industry-standard DICOM protocol over an Ethernet connection. The rate was found to be likely to limit the performanceof hardware accelerators for ART, highlighting the need for an alternative method of integrating hardware accelerators with existing radiotherapy equipment. A clinically-validated segmentation algorithm was adapted for implementation in hardware. This was shown to process three-dimensional CT images up to 13.81 times faster than the original software implementation. The segmentations produced by the two implementations showed strong agreement. Modifications to the hardware implementation were proposed for segmenting fourdimensional CT scans. This was shown to process image volumes 14.96 times faster than the original software implementation, and the segmentations produced by the two implementations showed strong agreement in most cases.A second, novel, method for segmenting four-dimensional CT data was also proposed. The hardware implementation executed 1.95 times faster than the software implementation. However, the algorithm was found to be unsuitable for the global segmentation task examined here, although it may be suitable as a refining segmentation in the context of a larger ART algorithm
    corecore