
Hardware Acceleration using FPGAs for Adaptive

Radiotherapy

EngD Thesis

Fraser D. Robinson

Department of Biomedical Engineering

University of Strathclyde, Glasgow

March 10, 2021



This thesis is the result of the author’s original research. It has been

composed by the author and has not been previously submitted for

examination which has led to the award of a degree.

The copyright of this thesis belongs to the author under the terms of the

United Kingdom Copyright Acts as qualified by University of Strathclyde

Regulation 3.50. Due acknowledgement must always be made of the use of

any material contained in, or derived from, this thesis.

i



Abstract

Adaptive radiotherapy (ART) seeks to improve the accuracy of radiotherapy by adapt-

ing the treatment based on up-to-date images of the patient’s anatomy captured at

the time of treatment delivery. The amount of image data, combined with the clin-

ical time requirements for ART, necessitates automatic image analysis to adapt the

treatment plan. Currently, the computational effort of the image processing and plan

adaptation means they cannot be completed in a clinically acceptable timeframe. This

thesis aims to investigate the use of hardware acceleration on Field Programmable Gate

Arrays (FPGAs) to accelerate algorithms for segmenting bony anatomy in Computed

Tomography (CT) scans, to reduce the plan adaptation time for ART.

An assessment was made of the overhead incurred by transferring image data to

an FPGA-based hardware accelerator using the industry-standard DICOM protocol

over an Ethernet connection. The rate was found to be likely to limit the performance

of hardware accelerators for ART, highlighting the need for an alternative method of

integrating hardware accelerators with existing radiotherapy equipment.

A clinically-validated segmentation algorithm was adapted for implementation in

hardware. This was shown to process three-dimensional CT images up to 13.81 times

faster than the original software implementation. The segmentations produced by the

two implementations showed strong agreement.

Modifications to the hardware implementation were proposed for segmenting four-

dimensional CT scans. This was shown to process image volumes 14.96 times faster

than the original software implementation, and the segmentations produced by the two

implementations showed strong agreement in most cases.

ii



A second, novel, method for segmenting four-dimensional CT data was also pro-

posed. The hardware implementation executed 1.95 times faster than the software

implementation. However, the algorithm was found to be unsuitable for the global seg-

mentation task examined here, although it may be suitable as a refining segmentation

in the context of a larger ART algorithm.

iii



Contents

List of Figures viii

List of Tables xiii

List of Acronyms xvi

Acknowledgements xix

1 Introduction 2

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Clinical Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Adaptive Radiotherapy . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Field Programmable Gate Arrays . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Aim and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.6 Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.7 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Adaptive Radiotherapy in Pelvic Cancers 11

2.1 Cancer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Radiotherapy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 External Beam Radiotherapy . . . . . . . . . . . . . . . . . . . . 14

2.2.2 Fractionation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.3 Conventional Radiotherapy . . . . . . . . . . . . . . . . . . . . . 17

2.3 Adaptive Radiotherapy . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.1 ART Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

iv



Contents

2.3.2 State of Online ART . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.3 Inline ART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4 ART in Pelvic Cancers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4.1 Bladder Cancer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4.2 Prostate Cancer . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5 Clinical Image Storage and Communication Infrastructure . . . . . . . . 34

2.5.1 DICOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5.2 DICOM Information Model . . . . . . . . . . . . . . . . . . . . . 35

2.5.3 DICOM Communications Protocol . . . . . . . . . . . . . . . . . 36

2.5.4 Data Transfer Process . . . . . . . . . . . . . . . . . . . . . . . . 37

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Hardware Acceleration using FPGA and Systems on Chip 40

3.1 Principles of Hardware Acceleration . . . . . . . . . . . . . . . . . . . . 41

3.1.1 CPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1.2 Alternative Processing Architectures . . . . . . . . . . . . . . . . 42

3.2 Hardware Acceleration in ART . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 FPGAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.1 FPGAs for Hardware Acceleration . . . . . . . . . . . . . . . . . 48

3.4 FPGA-Based SoC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4.1 Processing System and Programmable Logic Interconnections . . 53

3.5 FPGA Design Methodologies . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5.1 High-Level Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.6 FPGA Acceleration of Image Analysis . . . . . . . . . . . . . . . . . . . 57

3.6.1 Medical Image Analysis . . . . . . . . . . . . . . . . . . . . . . . 58

3.7 Selecting a Processing Architecture for Hardware Acceleration in ART . 61

3.7.1 Digital Signal Processors . . . . . . . . . . . . . . . . . . . . . . . 61

3.7.2 GPUs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.7.3 FPGAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

v



Contents

4 DICOM Transfer Rates on FPGA-based SoC Platforms 66

4.1 Relevant Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2.1 Hardware Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2.2 Measuring Transfer Rates . . . . . . . . . . . . . . . . . . . . . . 72

4.2.3 Monitoring System Activity . . . . . . . . . . . . . . . . . . . . . 77

4.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3.1 Data Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3.2 Measured Transfer Rates . . . . . . . . . . . . . . . . . . . . . . 85

4.3.3 Correlation between Transfer Rate and Size . . . . . . . . . . . . 90

4.3.4 System Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.3.5 Experimental Set-up . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.3.6 Comparison with Literature . . . . . . . . . . . . . . . . . . . . . 97

4.3.7 Results in the Context of ART . . . . . . . . . . . . . . . . . . . 99

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5 Segmentation of Bony Anatomy from CT Scans of Bladder Cancer

Patients 102

5.1 Segmentation Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2 Haas Algorithm Implementations . . . . . . . . . . . . . . . . . . . . . . 110

5.2.1 Software Implementation . . . . . . . . . . . . . . . . . . . . . . 111

5.2.2 Hardware Implementation . . . . . . . . . . . . . . . . . . . . . . 112

5.2.3 Implementation Platforms . . . . . . . . . . . . . . . . . . . . . . 116

5.2.4 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.2.5 Image Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.3.1 Segmentation Quality . . . . . . . . . . . . . . . . . . . . . . . . 119

5.3.2 Execution Time per Volume . . . . . . . . . . . . . . . . . . . . . 123

5.3.3 Execution Time per Slice . . . . . . . . . . . . . . . . . . . . . . 126

5.3.4 Hardware Implementation . . . . . . . . . . . . . . . . . . . . . . 129

5.3.5 Strategies to Improve Performance . . . . . . . . . . . . . . . . . 133

vi



Contents

5.3.6 Results in the Context of ART . . . . . . . . . . . . . . . . . . . 134

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6 Hardware Accelerated Segmentation of 4DCT Images 139

6.1 4DCT Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.2 Segmentation based on Otsu’s Method . . . . . . . . . . . . . . . . . . . 143

6.2.1 Otsu’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.2.2 Applying Otsu’s Method to 4DCT Phantom Image Data . . . . . 146

6.2.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 153

6.2.4 Extension to Clinical Image Data . . . . . . . . . . . . . . . . . . 156

6.3 Segmentation based on Haas’ Algorithm . . . . . . . . . . . . . . . . . . 159

6.3.1 Application of the Haas and Simplified Haas Algorithms . . . . . 159

6.3.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 160

6.3.3 Improving Segmentation Quality . . . . . . . . . . . . . . . . . . 165

6.3.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 167

6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

7 Conclusion 178

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

7.1.1 Data Transfer Overhead . . . . . . . . . . . . . . . . . . . . . . . 178

7.1.2 Three-dimensional Images . . . . . . . . . . . . . . . . . . . . . . 179

7.1.3 Four-dimensional Images . . . . . . . . . . . . . . . . . . . . . . 181

7.1.4 FPGA-based SoCs for ART . . . . . . . . . . . . . . . . . . . . . 182

7.2 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

7.3 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

A Image Data for DICOM Transfer Rate Testing 186

A.1 Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

A.2 Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

B Code Listings 192

B.1 DICOM Transfer Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

vii



Contents

B.1.1 Inserting DICOM Data in the PACS . . . . . . . . . . . . . . . . 192

B.1.2 Retrieving DICOM Data from the PACS . . . . . . . . . . . . . 197

B.2 Bone Segmentation Algorithms . . . . . . . . . . . . . . . . . . . . . . . 200

B.2.1 Haas Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

B.2.2 Simplified Haas Algorithm . . . . . . . . . . . . . . . . . . . . . . 203

B.2.3 Noise-reduced Algorithm . . . . . . . . . . . . . . . . . . . . . . 207

B.2.4 Otsu’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

Bibliography 212

viii



List of Figures

2.1 Example TCP and NTCP curves for (a) high therapeutic ratio and (b)

low therapeutic ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Simple linear accelerator . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Dose, normalised to the maximum, against depth in water for x-ray

beams with 8MeV and 15MeV energies [16,17] . . . . . . . . . . . . . . 15

2.4 Treatment pathway for conventional radiotherapy . . . . . . . . . . . . . 17

2.5 Illustration of the relationship between the GTV, CTV and PTV [24–26] 19

2.6 Linear accelerator with kV CBCT system . . . . . . . . . . . . . . . . . 21

2.7 Treatment pathway for ART . . . . . . . . . . . . . . . . . . . . . . . . 22

2.8 Illustration of the envisaged re-contouring processing pipeline . . . . . . 25

2.9 Sagittal section of female pelvis . . . . . . . . . . . . . . . . . . . . . . . 30

2.10 Sagittal section of male pelvis . . . . . . . . . . . . . . . . . . . . . . . . 31

2.11 Illustration of a typical clinical local area network . . . . . . . . . . . . . 34

2.12 Illustration of the DICOM information model . . . . . . . . . . . . . . . 35

2.13 Illustration of image data transfer in the context of an ART fraction . . 36

3.1 Schematic representation of FPGA fabric structure [88] . . . . . . . . . 47

3.2 CLB structure for (a) Artix-7 [88] and (b) Kintex Ultrascale+ [91] FPGA

fabric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 Dataflow within a pipeline-processing architecture . . . . . . . . . . . . 51

3.4 Schematic illustration of FPGA-based SoC structure depicting heavily

interconnected processing system and programmable logic . . . . . . . . 52

ix



List of Figures

4.1 FPGA-based SoC development boards. The (a) ZedBoard platform, and

(b) ZCU102 platform [122]. . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2 Experimental setup showing the interconnection between the PACS and

the platform being tested. . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3 DICOM protocol for sending data to the PACS model . . . . . . . . . . 73

4.4 DICOM protocol for receiving data from the PACS model . . . . . . . . 75

4.5 Study size histograms for (a) the PROSTATE-DIAGNOSIS collection,

(b) the randomly selected sample, and (c) the PROSTATE-DIAGNOSIS

collection and randomly selected sample as boxplots . . . . . . . . . . . 82

4.6 Series size histograms for (a) the PROSTATE-DIAGNOSIS collection,

(b) the randomly selected sample, and (c) the PROSTATE-DIAGNOSIS

collection and randomly selected sample as boxplots . . . . . . . . . . . 84

4.7 CPU utilisation for (a) inserting studies in the PACS model, (b) inserting

series in the PACS model, (c) retrieving studies from the PACS model,

and (d) retrieving series from the PACS model . . . . . . . . . . . . . . 91

4.8 Network interface usage while (a) inserting studies in the PACS model,

(b) inserting series in the PACS model, (c) retrieving studies from the

PACS model, and (d) retrieving series from the PACS model . . . . . . 93

5.1 Pre-segmentation algorithm proposed by Haas et al. [5] . . . . . . . . . 105

5.2 Illustration of the stages of the Haas algorithm to generate the body

mask. (a) shows the CT slice used as input; (b) shows the output from

the thresholding stage; (c) shows the output from the morphological

filtering stage; and (d) shows the final body mask. . . . . . . . . . . . . 106

5.3 Pixels belonging to the 8-connected neighbourhood of the pixel (x, y)

with their coordinates shown. The yellow pixels show the 4-connected

neighbourhood of the pixel (x, y) and the structuring element used in

the morphological filtering operations of the Haas algorithm. . . . . . . 107

x



List of Figures

5.4 Illustration of the stages of the Haas algorithm to generate the bone

mask from the body segmentation. (a) shows the body segmentation

from the original CT slice used as input; (b) shows the output from the

thresholding stage; and (c) shows the output from removing segments

that were unlikely to represent bone due to their size or aspect ratio. . . 109

5.5 An example segmentation produced by the full algorithm proposed in [5].

The boundaries of the body and bone masks produced by the pre-

segmentation portion of the algorithm can be seen in green and yellow,

respectively. Segmentations of the bladder, prostate, rectum and femoral

heads are also shown by the blue, pink, red and inner-most green con-

tours, respectively. [5] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.6 Segmentation algorithm implemented in hardware . . . . . . . . . . . . 113

5.7 Hardware system implementing the Simplified Haas algorithm . . . . . . 115

5.8 Dice Similarity Coefficients comparing segmentations produced by the

Haas and Simplified Haas algorithms for CBCT and CT image volumes 120

5.9 Example segmentations obtained from CT volumes with segmented areas

shown in blue. (a) and (b) are segmentations obtained using the Haas

and Simplified Haas algorithms respectively from the CT volume with

the lowest DSC. (c) and (d) are segmentations obtained using the Haas

and Simplified Haas algorithms respectively from the CT volume with

the highest DSC. The green box indicates the ROI processed by the

Simplified Haas algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.10 Example segmentations obtained from CBCT volumes with segmented

areas shown in blue. (a) and (b) are segmentations obtained using the

Haas and Simplified Haas algorithms respectively from the CBCT vol-

ume with the lowest DSC. (c) and (d) are segmentations obtained using

the Haas and Simplified Haas algorithms respectively from the CBCT

volume with the highest DSC. The green box indicates the ROI processed

by the Simplified Haas algorithm. . . . . . . . . . . . . . . . . . . . . . . 122

xi



List of Figures

5.11 Example segmentations obtained from the CBCT volumes where the

segmentations were found to be grossly inaccurate. An example segmen-

tation from the first case is shown, obtained using (a) the Haas algorithm

and (b) the Simplified Haas algorithm. An example segmentation from

the second case is also shown, obtained using (c) the Haas algorithm

and (d) the Simplified Haas algorithm. Segmented areas are shown in

blue. The green box indicates the ROI processed by the Simplified Haas

algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.12 Measured times to process image volumes using the three algorithm im-

plementations for (a) CBCT volumes and (b) CT volumes . . . . . . . . 125

5.13 Measured times to process image slices using the three algorithm imple-

mentations for (a) CBCT volumes and (b) CT volumes . . . . . . . . . 127

6.1 QUASAR phantom shown (a) photographically and (b) schematically . 141

6.2 Section through the QUASAR Imaging Insert . . . . . . . . . . . . . . . 141

6.3 Illustration of marker block position against time showing the division

of the motion period into phases . . . . . . . . . . . . . . . . . . . . . . 142

6.4 Application of Otsu’s method-based segmentation to a full 4DCT image

volume showing (a) the segmentation produced, with the pixels classified

as phantom body shown in red and those classified as target object shown

in blue, (b) the pixels classified as phantom body shown in isolation for

clarity, and (c) the histogram of pixel intensities. . . . . . . . . . . . . . 147

6.5 Mean filter neighbourhood: the target pixel is shown in blue with neigh-

bouring pixels used in the calculation shown in yellow . . . . . . . . . . 149

6.6 The 4DCT Optimised Threshold algorithm . . . . . . . . . . . . . . . . 150

6.7 Application of 4DCT Optimal Threshold algorithm showing (a) the seg-

mentation produced — with the pixels classified as phantom body shown

in red, those classified as target object shown in blue and the extent of

the subvolume shown in green — and (b) the histogram of pixel intensities.154

6.8 DSC resulting from a comparison of the segmentations produced by the

Simplified Haas and Haas Algorithms . . . . . . . . . . . . . . . . . . . 162

xii



List of Figures

6.9 Typical segmentations produced by the (a) Haas algorithm and (b) Sim-

plified Haas algorithm. The region of interest processed by the Simplified

Haas algorithm is shown in green. . . . . . . . . . . . . . . . . . . . . . . 163

6.10 Noise-reduced algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

6.11 DSC resulting from comparing segmentations produced by the Noise-

reduced and Simplified Haas algorithms with those produced by the Haas

algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

6.12 Typical segmentations produced by the (a) Haas algorithm, (b) Sim-

plified Haas algorithm and (c) Noise-reduced algorithm. The region of

interest processed by the Simplified Haas and Noise-reduced algorithms

is shown in green. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

xiii



List of Tables

2.1 DIMSE-C services [52] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1 Resources per slice [88,91] . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2 Processing system processors for SoC devices used in this work . . . . . 53

3.3 Programmable logic resources on Zynq-7000 XCZ7020 device . . . . . . 53

4.1 MR and CT image data used in the Oracle Corporation white paper [119] 69

4.2 System specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3 Study size statistics for PROSTATE-DIAGNOSIS collection and ran-

domly selected sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.4 Series size statistics for PROSTATE-DIAGNOSIS collection and ran-

domly selected sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.5 Transfer rates when inserting studies in the PACS model . . . . . . . . . 85

4.6 Image transfer rates and time taken to transfer studies when inserting

studies in the PACS model . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.7 Transfer rates when inserting series in the PACS model . . . . . . . . . 86

4.8 Image transfer rates and time taken to transfer series when inserting

series in the PACS model . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.9 Transfer rates when retrieving studies from the PACS model . . . . . . 88

4.10 Image transfer rates and time taken to transfer studies when retrieving

studies from the PACS model . . . . . . . . . . . . . . . . . . . . . . . . 88

4.11 Transfer rates when retrieving series from the PACS model . . . . . . . 89

xiv



List of Tables

4.12 Image transfer rates and time taken to transfer series when retrieving

series from the PACS model . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.13 Mean values for non-volatile storage activity . . . . . . . . . . . . . . . . 94

4.14 Mean study and series transfer times when retrieving data from the

PACS model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.1 Mean measured times to process image volumes using the three algorithm

implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.2 Mean measured times to process image slices using the three algorithm

implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.3 Resource utilisation of hardware implementation . . . . . . . . . . . . . 129

5.4 Processing system and programmable logic interconnection utilisation of

hardware implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.5 Worst case negative timing slacks of hardware implementation . . . . . 133

6.1 Ranges of motion for the imaging insert in the 4DCT image data . . . . 153

6.2 Average measured times to process 4DCT subvolume using the two al-

gorithm implementations . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.3 Resource utilisation for hardware implementation . . . . . . . . . . . . . 155

6.4 Segmented target object range of motion . . . . . . . . . . . . . . . . . 161

6.5 Average time to segment 4DCT image data . . . . . . . . . . . . . . . . 163

6.6 Average time to segment 4DCT image data using the Noise-reduced

algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

6.7 Resource utilisation for the hardware implementation of the Noise-reduced

algorithm in absolute terms and as a percentage of the available resources172

6.8 Increase in resource utilisation for the hardware implementation of the

Noise-reduced algorithm compared to the Simplified Haas algorithm . . 172

xv



List of Acronyms

ACP Accelerator Coherency Port

AE Application Entity

AFI AXI FIFO Interface

ART Adaptive Radiotherapy

ASIC Application Specific Integrated Circuit

AXI Advanced Extensible Interface

BRAM Block Random Access Memory

CBCT Cone Beam Computed Tomography

CLB Configurable Logic Block

CT Computed Tomography

CTV Clinical Tumour Volume

DICOM Digital Communication in Medicine

DIMSE DICOM Message Service Element

DIMSE-C Composite DIMSE

DMA Direct Memory Access

DMAC Direct Memory Access Controller

xvi



List of Acronyms

DSC Dice Similarity Coefficient

DSP Digital Signal Processing Block

EBRT External Beam Radiotherapy

ECC Edinburgh Cancer Centre

FF Flip-flop

FIFO First-in, First-out

FPGA Field Programmable Gate Array

GPU Graphics Processing Unit

GTV Gross Tumour Volume

HBM High Bandwidth Memory

HLS High Level Synthesis

HU Hounsfield Unit

ICRU International Commission on Radiation Units

IGRT Image Guided Radiotherapy

IOB Input/Output Block

IP Intellectual Property

LAN Local Area Network

LUT Look-up Table

MB Megabyte

MRI Magnetic Resonance Imaging

MV Megavolts

xvii



List of Acronyms

NRE Non-recurring Engineering

NTCP Normal Tissue Complication Probability

OAR Organs at Risk

PACS Picture Archive and Communication System

PCIe Peripheral Component Interface express

PET Positron Emission Tomography

PTV Planning Tumour Volume

QA Quality Assurance

RAM Random Access Memory

ROI Region of Interest

ROM Read Only Memory

SBRT Stereotactic Body Radiotherapy

SCP Service Class Provider

SCU Service Class User

SIMD Single Instruction Multiple Data

SoC System on Chip

TCP Tumour Control Probability

TCP/IP Transmission Control Protocol/Internet Protocol

UID Unique Identifier

VLIW Very Long Instruction Word

xviii



Acknowledgements

There are many people I would like to acknowledge for their help in the preparation

of this thesis. First and foremost, I would like to thank my family, and particularly

Kirsty. Without their support, encouragement and gentle cajoling this thesis would

never have been completed.

I would also like to express my gratitude for the substantial amount of advice and

guidance provided over the years by my supervisors, in particular Louise Crockett and

Bill Nailon, and their considerable patience while reviewing the various drafts.

I have had the great fortune to have worked with a great number of colleagues

during this period. Primarily those in the DSP Enabled Communications group, but

also those I shared the “cupboard” with at the Edinburgh Cancer Centre and those in

the Biomedical Engineering department. Their assistance was not only invaluable to

the production of this thesis, but their camaraderie and fellowship made it positively

enjoyable at times.

Lastly, I would like to acknowledge the staff of the Edinburgh Cancer Centre for

sharing their time, expertise and resources.

xix



Acknowledgements

1



Chapter 1

Introduction

1.1 Introduction

Technological advances in external beam radiotherapy in recent decades have seen an

increased availability of three- and four-dimensional imaging modalities to aid diagnosis

and treatment planning, and of high-quality imaging modalities at the point of treat-

ment delivery. These advances have been coupled with improvements in the precision

with which radiotherapy can be delivered, leading to more accurate treatments. Given

that the goal of radiotherapy is to maximise the radiation dose to the clinical target,

whilst minimising the dose to other tissues, improvements in the accuracy of treat-

ment has resulted in better outcomes for patients, and has enabled the consideration

of alternative dose regimes.

Adaptive radiotherapy (ART) is an emerging technique with the aim of further im-

proving the accuracy of radiotherapy by adapting the treatment plan based on images

of the patient’s anatomy captured at the time of treatment. ART allows for greater

compensation for changes in the size, position and shape of the tumour and surround-

ing anatomy during the course of treatment than conventional radiotherapy [1]. This

is of particular value to tumours in the abdomen, where there can be considerable

deformation and movement of soft tissues caused by normal physiological processes.

2



Chapter 1. Introduction

Plan adaptation depends on establishing a correspondence between anatomical fea-

tures in the images used to create the treatment plan and the images captured at the

time of treatment. Identification of bony anatomy in the two sets of images is a com-

mon initial step in establishing this correspondence, since bony anatomy tends to have

fewer degrees of freedom for changing size, shape and position than soft tissues.

The amount of image data produced by the modern radiotherapy workflow, com-

bined with the clinical time requirements for ART, necessitates automatic image anal-

ysis to establish the correspondence between the treatment planning and treatment

delivery image sets and, hence, to adapt the treatment plan. Currently, the computa-

tional effort of the image processing and plan adaptation operations means they cannot

be completed in a clinically acceptable timeframe, thereby preventing the use of ART

in routine clinical practice.

Hardware acceleration has been shown to be effective at reducing the execution

time of some algorithms compared to software executing in a general purpose processor.

This is achieved by the use of customised processors, specifically designed to suit the

computational requirements of the algorithm.

The aim of this thesis is to investigate the use of hardware acceleration to accelerate

algorithms for the segmentation of bony anatomy in Computed Tomography (CT)

scans, in order to reduce the plan adaptation time for ART.

1.2 Clinical Context

Cancer is a disease that arises from the uncontrolled growth and proliferation of cells.

These malignant cells compete with healthy cells for resources, and their spread can

disrupt the structure and function of healthy tissues. If allowed to continue, this can

eventually result in the death of the organism.

A common treatment for many cancer types is radiotherapy, where the cancerous

cells are exposed to ionising radiation. The ionising radiation causes damage to the

internal structures of the cell, with the aim of destroying the cell’s ability to reproduce.

3



Chapter 1. Introduction

Healthy cells can also be damaged by exposure to ionising radiation, and it is, there-

fore, imperative to the efficacy of radiotherapy that the ionising radiation is delivered

accurately.

Conventional external beam radiotherapy can be delivered in a number of fractions

over a period of time up to several weeks. The fractions are incorporated into a treat-

ment plan, which defines the characteristics and geometry of the radiation beam used

to deliver the treatment. The treatment plan is created some time prior to treatment

delivery using images of the patient’s anatomy that represent a snapshot in time.

In conventional radiotherapy, uncertainties in the position of the tumour at treat-

ment time, relative to its position in the treatment planning image data, are accounted

for by increasing the size of the target volume to encompass any anticipated movement

of the tumour and thereby ensure it receives the prescribed dose of radiation. Such an

approach is undesirable, as increasing the target volume increases the radiation dose

received by healthy tissues, and escalates the risk of complications arising from the

treatment. Increasing the accuracy of radiotherapy delivery reduces the size of the

margins added to the target volume to account for positional uncertainty, and there-

fore, reduces the radiation dose to healthy tissues. This can enable either a decrease

in the risk of complications arising from the treatment, or an escalation of the dose

delivered to the tumour.

1.3 Adaptive Radiotherapy

ART seeks to improve the accuracy of radiotherapy delivery by adapting the original

treatment plan based on images of the patient’s anatomy captured immediately prior

to, or during, treatment delivery. The aim of this approach is to ensure the intended

dose of radiation is delivered to the clinical target at each fraction, whilst also avoiding

irradiating healthy tissue. Unlike conventional radiotherapy, by adapting the treatment,

ART can take account of interfractional changes in the size, shape and position of the

tumour and surrounding anatomy, and intrafractional motion, where the tumour or

surrounding anatomy move during the treatment fraction.

4



Chapter 1. Introduction

Cancers located in the abdomen are of particular interest for ART due to the move-

ments and changes in shape that can be induced in the tumour and surrounding tissue

by the respiratory cycle and variable filling of the organs of digestion and excretion.

Four-dimensional CT (4DCT) is a relatively recently developed imaging modality

that improves the visualisation and characterisation of tumour motion, particularly that

resulting from the respiratory cycle. By providing a patient-specific characterisation

of tumour motion, the use of 4DCT imaging for treatment planning can reduce the

margins added to the treatment target volume compared to population-based margins,

which are used conventionally [2].

However, 4DCT produces much more image data than conventional CT, further

adding to the computational workload of ART, making it more difficult to meet the

clinical timing requirements. Furthermore, imaging artifacts can arise in 4DCT image

data as a result of the interplay between the sampling frequency of the imaging system

and the period of the tumour or organ motion [1, 2]. These artifacts can add to the

challenge of segmenting the anatomical features in the 4DCT images.

The time taken to adapt the treatment plan is critical to the aim of ART. Confidence

in the image data captured at the time of treatment delivery accurately representing

the state of the patient’s anatomy diminishes over time. Therfore, the plan adaptation

time must be minimised. Maximum plan adaptation times of between 5 and 10 minutes

have been suggested to make the technique feasible clinically [3, 4]. Although ART is

an area of active research, there are few established ART techniques that are able to

meet the timing requirements to make ART routine clinical practice.

ART depends on computationally intensive image processing operations to establish

a correspondence between the image data used to generate the treatment plan, and the

image data captured at the time of treatment delivery, from which the plan can be

adapted. To reduce the time taken to adapt the treatment, and allow ART to meet the

clinical timing requirements, these image processing operations need to be completed

as fast as possible.

5



Chapter 1. Introduction

1.4 Field Programmable Gate Arrays

Field Programmable Gate Arrays (FPGAs) are electronic devices containing an array

of configurable logic elements and interconnects that can be programmed to imple-

ment custom circuits. These enable hardware architectures to be created specifically

to implement particular algorithms. Such custom architectures have been shown to

compute some algorithms, which are parallel in nature, faster than the general pur-

pose processors, such as Central Processing Units (CPUs), commonly found in desktop

computers.

The last few years has also seen the emergence of FPGA-based Systems-on-Chip

(SoC), which combine FPGA fabric interconnected with hard-wired general purpose

processors. These devices allow algorithms to be partitioned into different stages that

can be executed on the processing architecture to which they are best-suited. So

stages that are inherently sequential in nature, or require decision making, can be

targeted for implementation on a processing architecture better suited to that, such

as a CPU. Additionally, the combination of more conventional processing architectures

tightly coupled with FPGA fabric can greatly simplify the integration of FPGA-based

hardware accelerators into existing systems.

1.5 Aim and Contributions

The aim of this thesis is to accelerate image segmentation algorithms suitable for iden-

tifying bony anatomy in CT and 4DCT images of patients receiving radiotherapy for

abdominal cancers. Two sets of image data are considered in this thesis, both obtained

from the Edinburgh Cancer Centre (ECC), where much of this work was carried out.

Three-dimensional CT image data of bladder cancer patients receiving radiotherapy is

examined in Chapter 5. Modifications to the bony anatomy segmentation algorithm

proposed by Haas et al. [5] are suggested to improve its performance and simplify its

implementation in hardware. 4DCT image data of a quality assurance testing phantom

6



Chapter 1. Introduction

is investigated in Chapter 6. The algorithm discussed in Chapter 5 is again applied,

and further modifications are suggested to improve its performance on 4DCT data. A

novel algorithm based on Otsu’s method [6] is also presented in Chapter 6.

The work presented in this thesis seeks to contribute to addressing the relative lack

of investigation of FPGAs for hardware acceleration in ART. Specifically, it seeks to

consider the application of FPGAs to image analysis problems typical in ART to assess

the acceleration that may be achieved compared to execution on a CPU. This thesis

uses FPGA-based SoCs to implement bony anatomy segmentation algorithms with the

aim of reducing their execution time and thereby reducing the time taken to adapt a

treatment plan for ART.

The data transfer overhead of moving image data between existing radiotherapy

equipment and an ART hardware accelerator must be factored in to any estimation of

the potential performance improvement offered by hardware acceleration. To this end,

the integration of FPGA-based SoCs with existing radiotherapy equipment using the

industry-standard DICOM protocol is analysed in Chapter 4.

In addressing these aims the following contributions resulted:

• a comprehensive characterisation and comparison of the DICOM protocol trans-

fer rate on FPGA-based SoC platforms and personal computers for transferring

medical image data;

• proposed novel modifications to the bony anatomy segmentation algorithm of

Haas et al. [5], that substantially reduce the execution time of the algorithm,

whilst maintaining a comparable quality of segmentation;

• developed a hardware implementation of the above novel segmentation algorithm,

termed the Simplified Haas algorithm, which exhibits a significant improvement

in execution time performance compared to the algorithm executing in software

under certain conditions;

• proposed further modifications to the Simplfied Haas algorithm that significantly

improve the quality of the segmentations produced when applied to 4DCT image

data, and termed this algorithm the Noise-reduced algorithm;

7



Chapter 1. Introduction

• developed a hardware implementation of the Noise-reduced algorithm and demon-

strated its execution time performance to be superior to that of the same algo-

rithm executing in software;

• developed a hardware implementation of a novel image segmentation algorithm,

termed the 4DCT Optimal Threshold algorithm, to segment 4DCT images into

three classes, based on Otsu’s method [6] and a three-dimensional mean filter;

demonstrated the execution time performance to be superior to the same algo-

rithm executing in software and fully discussed the limitations of the algorithm

for its intended application.

1.6 Outputs

The following outputs have been produced as a result of this work:

• Exploring Zynq MPSoC: With PYNQ and Machine Learning Applications. Crock-

ett L, Ramsay C, Northcote D, Robinson F, Stewart R,

Strathclyde Academic Media (2019);

• Hardware acceleration of automated 4DCT analysis. Robinson FD, Crockett LH,

Nailon WH, Stewart RW, McLaren DB,

Presented at the 6th Annual Scientific Meeting of the Scottish Radiotherapy

Research Forum (ScoRRF 2017);

• High-level synthesis for medical image processing on Systems on Chip: A case

study. Robinson FD, Crockett LH, Nailon WH, Stewart RW,

2016 26th International Conference on Field Programmable Logic and Applica-

tions (FPL), 1-2 (2016) doi: 10.1109/FPL.2016.7577390;

• Hardware accelerated segmentation of CT images for adaptive radiotherapy. Robin-

son FD, Crockett LH, Nailon WH, Stewart RW, McLaren DB,

Presented at the SINAPSE Annual Scientific Meeting (2016);

8



Chapter 1. Introduction

• Hardware accelerated image processing to enable real-time adaptive radiotherapy.

Robinson FD, Crockett LH, Nailon WH, Stewart RW, McLaren DB,

Presented at The Royal Society of Medicine & IET conference on the future of

medicine — the role of doctors in 2025 (2016).

1.7 Thesis Outline

The remainder of this thesis is arranged as follows.

Chapter 2 extends the brief introduction to radiotherapy and ART provided here,

and sets the work presented in this thesis in the context of the clinical problem.

A more detailed description of hardware acceleration, FPGAs and FPGA-based

SoCs is given in Chapter 3, along with an overview of some of the tools used in this

thesis to develop custom hardware.

The DICOM standard and protocol are introduced in Chapter 4. The data transfer

performance of two off-the-shelf, FPGA-based SoC platforms using the DICOM pro-

tocol is also characterised and compared with the performance of a desktop computer.

Furthermore, a comprehensive analysis of the factors affecting the recorded performance

is provided.

Chapter 5 examines the bony anatomy segmentation algorithm proposed by Haas

et al. [5] in the context of three-dimensional CT images of bladder cancer patients. A

number of modifications are suggested to this algorithm to improve its execution time

performance and to implement the algorithm in hardware. An original hardware imple-

mentation of this algorithm is developed on an FPGA-based SoC, and a comparison is

made, in terms of execution time and segmentation quality, with the original algorithm.

Chapter 6 considers segmenting high density target objects in 4DCT images of a

quality assurance phantom. A novel algorithm to segment the image data into three

classes, based on Otsu’s method [6] and a three-dimensional mean filter, is proposed and

developed in hardware. Its performance, in terms of execution time and segmentation

quality, are discussed, as are its limitations. Modifications to the algorithm proposed

9



Chapter 1. Introduction

in Chapter 5 to improve the quality of the segmentation produced using 4DCT data

are put forward. A hardware implementation of this algorithm is developed and its

performance, in terms of execution time and segmentation quality, is reviewed.

Concluding remarks and a review of the aims of this thesis are provided in Chapter 7,

along with suggestions for future work.

10



Chapter 2

Adaptive Radiotherapy in Pelvic

Cancers

This chapter outlines the need for accelerated image processing in ART in pelvic can-

cers. The use of conventional radiotherapy as a treatment for cancer is discussed,

including the importance of accuracy in treatment delivery. ART is introduced and the

current limitations hindering its clinical implementation are presented. The potential

for ART in pelvic cancers, such as bladder and prostate cancers, is also discussed.

2.1 Cancer

Cancer is a disease caused by poorly controlled cell growth and proliferation, leading

to an accumulation of cells that form a malignant neoplasm or tumour. Usually, the

cells composing a tumour are the daughter cells of a single malignant cell, which arose

from an actively proliferating cell type [7, 8].

Cancer cells are metabolically very active and compete with healthy cells for space,

oxygen and nutrients. At the same time, cancer cells tend not to perform the normal

functions of the progenitor cell type efficiently.

The competition with healthy cells for resources can also precipitate changes in

the extracellular environment within the tumour, such as areas of depleted oxygen

concentration or hypoxia. This in turn can cause cancer cells to express factors that

11



Chapter 2. Adaptive Radiotherapy in Pelvic Cancers

encourage angiogenesis, or the formation of new blood vessels, to serve the tumour

with oxygen and nutrients, further promoting growth of the tumour [8]. As the size of

the tumour increases, it can invade the surrounding healthy tissue, competing with the

normal cells and disrupting the function of the tissue.

If the disease is able to progress, the death of the organism can follow as the function

of vital organs is impaired by the non-functional cancer cells supplanting healthy cells,

or through the loss of healthy cells, due to competition for oxygen and nutrients from

cancer cells [7, 8].

The formation of metastases, or secondary tumours in remote organs of the organ-

ism, represents a significant stage in the progression of the disease. It is often used as a

factor to assess disease progression clinically. Once the tumour has spread to distant or-

gans within the body it is significantly more challenging to control therapeutically [7,8].

Indeed, the majority of human deaths from cancer are caused by metastatic disease [8].

The most recent global survey estimated that there were 18.1 million new cases of

cancer diagnosed in 2018 and 9.6 million deaths from cancer [9, 10]. In the UK, there

are around 367 000 new cases of cancer diagnosed each year and around 165 000 cancer

deaths [11].

2.2 Radiotherapy

Radiotherapy is used to control a cancerous tumour or tumours through the application

of ionising radiation. In this context, the term control means to remove the ability of

any of the cancerous cells to reproduce and proliferate.

Tumour Control Probability

Radiotherapy uses ionising radiation to inflict irreparable damage on the DNA of cancer

cells. The dose of radiation given to the patient is measured in units of Gray (Gy) where

1Gy is equivalent to 1J of energy deposited per kilogram of tissue. The likelihood of

achieving tumour control is termed the Tumour Control Probability (TCP).

12



Chapter 2. Adaptive Radiotherapy in Pelvic Cancers

Normal Tissue Complication Probability

Clearly the application of ionising radiation to the patient has the potential to damage

healthy cells as well as cancerous ones. The likelihood of inducing toxicity in healthy

tissues is termed the Normal Tissue Complication Probability (NTCP) and limits the

radiation dose that can be delivered to the cancerous cells.

A low NTCP can be tolerated in some normal tissues, depending on the severity of

the complication, in order to increase TCP [12]. NTCP values are empirically derived

and can be influenced by factors such as the sensitivity of the cells to irradiation, the

volume of an organ that is irradiated and the functional structure of the organ [12].

Therapeutic Ratio

The therapeutic ratio is the ratio between TCP and NTCP. The ratio depends on the

radiation dose delivered, the type of cells in the tumour, the location of the tumour rel-

ative to the surrounding healthy tissue and the type of healthy tissue [13]. Figure 2.1(a)

shows an example of a high therapeutic ratio where a high TCP can be achieved while

keeping NTCP low. Figure 2.1(b) shows an example of a low therapeutic ratio where

a reasonably high TCP is only possible at the expense of a high NTCP.

Dose0.0

0.5

1.0

Pr
ob

ab
ilit

y

TCP
NTCP

(a)

Dose0.0

0.5

1.0

Pr
ob

ab
ilit

y

TCP
NTCP

(b)

Figure 2.1: Example TCP and NTCP curves for (a) high therapeutic ratio and (b) low therapeutic
ratio

13



Chapter 2. Adaptive Radiotherapy in Pelvic Cancers

Need for Accuracy in Radiotherapy

The idealised radiotherapy would deliver an infinitely high dose of ionising radiation to

the tumour whilst simultaneously avoiding any irradiation of normal tissue. This can

be seen from the graphs in Figure 2.1, where the TCP approaches unity with increasing

dose to the tumour, while the NTCP tends to zero with decreasing radiation dose to

normal tissue.

The exposure of normal tissue to ionising radiation is unavoidable with current

radiotherapy techniques. However, improving the accuracy of radiotherapy helps to

minimise the exposure of normal tissues to ionising radiation whilst maintaining the

dose to the tumour, thereby increasing the therapeutic ratio of the treatment.

2.2.1 External Beam Radiotherapy

There are two broad approaches to radiotherapy depending on the position of the

radiation source relative to the patient: External Beam Radiotherapy (EBRT) and

brachytherapy [14]. In brachytherapy, the radiation source is implanted into the patient

as close to the tumour as possible to expose the lesion to the highest intensity of

radiation. Healthy tissue surrounding the tumour is exposed to the radiation that is

not absorbed by the tumour.

In EBRT, the radiation source remains external to the patient and the radiation

is directed toward the tumour. Healthy tissue is exposed to the radiation passing

through the patient en route to the lesion and to the radiation that is not absorbed by

the tumour. The work presented here has focussed on EBRT.

Linear Accelerators

Different forms of ionising radiation can be used in EBRT with differing radiation

properties and ease of use. Most EBRT currently delivered in the UK uses linear

accelerators to produce x-ray photons. Figure 2.2 shows a simple linear accelerator.

Linear accelerators allow some of the properties of the x-ray beam produced to be

configured. They also enable the output beam to be collimated and shaped and to

modulate its intensity to better suit the clinical target [15].

14



Chapter 2. Adaptive Radiotherapy in Pelvic Cancers

X-ray 
aperture

Patient 
couch

Imager

Figure 2.2: Simple linear accelerator

The pattern of energy absorption by the patient’s tissue depends on the energy of

the photons in the x-ray beam [14]. Figure 2.3 shows energy deposition in water, which

is approximately analogous to soft tissue, with beam energy. Treatments are typically

delivered at a single beam energy.

0 5 10 15 20 25 30
Depth (cm)

0

20

40

60

80

100

Pe
rc

en
ta

ge
 D

os
e

8MeV
15MeV

Figure 2.3: Dose, normalised to the maximum, against depth in water for x-ray beams with 8MeV
and 15MeV energies [16, 17]

It can be seen from Figure 2.3 that a substantial proportion of the dose is deposited

over a large range of depth in the patient’s tissues. It is clear from this that precisely

delivering the radiation dose to the tumour without also depositing significant doses

15



Chapter 2. Adaptive Radiotherapy in Pelvic Cancers

in healthy tissue in the path of the beam is not possible. However, the effect can be

mitigated by delivering the prescribed dose of radiation to the tumour using multiple

beams with different trajectories to vary the normal tissue that is in the path of the

beam.

Protons and Heavy Ions

There is growing interest in the use of protons and heavy ion forms of ionising radiation

in radiotherapy. These have the advantage of depositing their energy in a much more

precise manner compared to photons, reducing the amount of dose received by healthy

tissue on the entry and exit paths of the beam [18].

The precision with which these forms of radiation deposit dose also means that

geometric inaccuracies in targeting the cancerous lesion can result in much larger dif-

ferences in the dose distribution to the lesion and healthy tissues than would be the

case for photons. These forms of radiation therefore require a high level of geometric

accuracy in their use for radiotherapy.

2.2.2 Fractionation

In order to improve the therapeutic ratio, radiotherapy is often delivered in fractions of

1.8-3Gy around 24 hours apart over the course of several weeks [19–21]. Each fraction

causes both reparable and irreparable damage to the cells in the cancerous lesion and

the healthy tissue exposed to the radiation.

By delivering the treatment in fractions, the healthy tissue cells have the opportu-

nity to repair damage between fractions. The tumour cells also have the opportunity to

repair damage, however, they are typically less effective at doing so than normal cells

and so the normal tissue benefits more than the cancerous tissue [13].

The radiosensitivity of tumour cells varies depending on which phase of the cell cycle

they are in and how well oxygenated they are. Tumour cells with a low radiosensitivity

at one fraction may have a higher radiosensitivity at subsequent fractions because they

are in a different phase of the cell cycle or their oxygen supply has improved [13].

16



Chapter 2. Adaptive Radiotherapy in Pelvic Cancers

The size of each fraction and hence the total length of the course of radiotherapy

must be balanced by the risk of repopulation of tumour cells exceeding the rate at

which they are killed and the treatment failing to achieve tumour control [13].

Hypofractionation

Cancers of some tissues have been found to benefit from hypofractionated radiother-

apy [21]. A hypofractionated treatment delivers radiotherapy in fewer fractions than

conventional radiotherapy but delivers a higher dose per fraction.

Stereotactic Body Radiotherapy (SBRT) is a form of hypofractionated treatment

that has been found to produce better tumour control than conventional radiotherapy

in some cancers [21]. Fractionation regimes of between 33.5Gy and 38Gy in four or five

fractions have been proposed [21].

The high doses delivered per fraction in SBRT increase the potential for geomet-

ric inaccuracies to cause toxicity in normal tissues. Highly conformal and accurate

treatments are therefore required.

2.2.3 Conventional Radiotherapy

Figure 2.4 shows the simplified treatment pathway used in conventional radiotherapy.

Diagnostic and
Planning Imaging

x n fractions

Treatment
Plan

Verification
Imaging

Radiotherapy
Delivery

Figure 2.4: Treatment pathway for conventional radiotherapy

Before treatment can begin a treatment plan must be created. This plan defines

the parameters with which to configure the treatment machine in order to deliver the

prescribed dose to the target. The plan is formulated using a model of the patient’s

anatomy constructed from image data of the patient.

17



Chapter 2. Adaptive Radiotherapy in Pelvic Cancers

Diagnostic and Planning Imaging

Computed Tomography (CT) imaging tends to be the main imaging modality currently

used in radiotherapy planning [21, 22]. CT imaging constructs a three dimensional

image volume of the patient anatomy from a series of measurements of x-ray beam

attenuation as the beam passes through the patient.

CT data sets tend to provide good contrast between bony and soft tissue and

can also be used to estimate the electron densities of the tissues in the patient. The

estimates of electron densities are essential to the accuracy of the dose calculation made

using the patient model [22,23].

Other imaging modalities can also be used to help improve the patient model for

creating the treatment plan. Magnetic Resonance Imaging (MRI) is a modality that

can provide much better contrast between different soft tissues than CT. This can be

particularly useful for identifying and delineating different soft tissue structures [22,23].

Functional imaging modalities, such as Positron Emission Tomography (PET),

where the information obtained is not anatomic but pertains to the activity within

the imaged tissue, are sometimes used for diagnosing and staging the disease prior to

commencing treatment. The information from these modalities can be used to aid in

the determination of the extent of the disease [22,23].

Treatment Plan

Using the pre-treatment imaging, the radiation oncologist defines the volumes to target

with radiation. They also define any normal tissues in the vicinity of the planned

treatment whose radiosensitivity or function warrants particular consideration to avoid

irradiating. These normal tissues are termed Organs At Risk (OAR) and the radiation

dose to these structures constrains the planned treatment [24,25].

The targets to receive radiotherapy are defined in the International Commission on

Radiation Units and Measurements (ICRU) Reports 50, 62 and 83 [24–26]. There are

three main volumes of interest in radiotherapy planning:

• Gross Tumour Volume (GTV);

18



Chapter 2. Adaptive Radiotherapy in Pelvic Cancers

• Clinical Target Volume (CTV);

• Planning Target Volume (PTV).

The GTV identifies the extent of the tumour that is visible in images or is palpable

[24–26].

The CTV includes tissues surrounding the GTV to which there is suspected to be

microscopic spread of the disease [24–26].

The PTV adds a margin to the GTV and CTV to ensure that the GTV and CTV

receive the prescribed dose even when there is variation in their position due to organ

motion, changes in the shape, size and position of organs or deviations in set-up [24–26].

The relationship between the three volumes is illustrated in Figure 2.5.

GTV

CTV

PTV

Figure 2.5: Illustration of the relationship between the GTV, CTV and PTV [24–26]

The radiation oncologist prescribes a dose of radiation and a fractionation regime

from which the treatment plan is created. The treatment plan is created by selecting the

linear accelerator parameters to deliver the prescribed dose to the PTV while avoiding

irradiating the OARs. Reference images can be generated from the treatment plan

to aid verification that the patient anatomy at the time of treatment delivery closely

matches the patient model used to plan the treatment [24].

19



Chapter 2. Adaptive Radiotherapy in Pelvic Cancers

Radiotherapy Delivery

For treatment delivery, the patient is set-up to replicate their position when the treat-

ment planning scan was made in order to accurately match the model of the patient

used to create the treatment plan. As the ability of radiotherapy treatment machines to

precisely deliver highly conformal dose distributions has improved, the need to deliver

treatments accurately has increased.

Highly conformal dose distributions with steep dose gradients at the perimeter of

the PTV allow higher doses to be planned to the PTV while maintaining the same

dose to the surrounding normal tissue. However, increasing dose to the PTV increases

the dose to the normal tissue within the PTV, thereby increasing the NTCP for this

tissue. Therefore, it is desirable to reduce the CTV-PTV margin, which requires more

accuracy in treatment delivery.

Furthermore, sudden changes in dose between the PTV and surrounding tissue in-

crease the impact of geometric inaccuracies during treatment delivery. In an inaccurate

treatment, some volumes intended to be within the PTV will receive a much lower dose

than expected, reducing TCP, and some volumes not intended to be within the PTV

will receive a much higher dose than expected, increasing NTCP.

Image Guided Radiotherapy

The need to increase the accuracy of radiotherapy delivery and improvements in the

imaging technology available within the treatment room have led to the development

of Image Guided Radiotherapy (IGRT).

IGRT covers a broad range of techniques. The general principle, however, is to use

image data acquired at the time of treatment delivery to identify discrepancies in the

geometry of the patient anatomy relative to the planning model and, thus, to mitigate

the effects of these on the treatment.

Using IGRT allows the patient set-up to be adjusted to compensate for patient

set-up errors and changes in the position of the PTV and surrounding organs. By

reducing the geometric uncertainties at treatment delivery, the CTV-PTV margin can

be reduced in many cases.

20



Chapter 2. Adaptive Radiotherapy in Pelvic Cancers

Cone Beam Computed Tomography

A number of imaging modalities have been proposed and are in use for IGRT, including

Cone Beam CT (CBCT). CBCT is similar to conventional CT but typically images have

a larger volume per acquisition plane than conventional CT.

The image quality produced by CBCT tends to be lower than that of conventional

CT [22]. Some systems use the treatment x-ray beam to perform CBCT in a process

called Mega-Voltage (MV) CBCT. However, better image contrast is obtained using

a dedicated imaging x-ray beam in a process called Kilo-Voltage (kV) CBCT [22].

Figure 2.6 shows a linear accelerator with a kV CBCT system. kV CBCT is the

system predominantly used for IGRT at ECC and will simply be referred to as CBCT

in the remainder of this thesis.

kV CBCT
detector

kV CBCT
source

Figure 2.6: Linear accelerator with kV CBCT system

21



Chapter 2. Adaptive Radiotherapy in Pelvic Cancers

2.3 Adaptive Radiotherapy

Although IGRT can compensate for some changes in patient anatomy at treatment

delivery, IGRT cannot compensate for changes in the size and shape of organs or

structures, nor for changes in the position of structures relative to one another. In

these scenarios, it may not be possible to accurately replicate the dose distributions to

the PTV and normal tissues that were calculated in the original treatment plan.

An approach to improve the situation, termed Adaptive Radiotherapy (ART), is to

use the image data of the patient’s anatomy at the time of delivery to adapt the original

treatment plan, either at the current fraction or subsequent fractions, to produce a dose

distribution that better matches the objectives of the course of treatment.

ART is an emerging technique and optimal strategies have yet to be established,

however the general concept is illustrated in Figure 2.7.

Diagnostic and
Planning Imaging

x n fractions

Treatment
Plan

Verification
Imaging

Radiotherapy
Delivery

Image
Processing

Figure 2.7: Treatment pathway for ART

The diagnostic and planning imaging are acquired in much the same way as with

conventional radiotherapy, typically several days prior to the delivery of the first treat-

ment fraction. Likewise, the initial treatment plan also tends to be created in a similar

manner to standard radiotherapy.

It is at the delivery of a radiation fraction that the ART process diverges most

significantly from conventional radiotherapy. In ART, images of the patient’s anatomy

acquired around the time of treatment delivery are compared to those used to create

the original treatment plan. Any changes in the patient’s anatomy identified by this

comparison can then be used to adapt the original treatment plan in order to deliver the

22



Chapter 2. Adaptive Radiotherapy in Pelvic Cancers

prescribed radiation dose more accurately. However, the comparison of the planning

and treatment image data, and the adaptation of the original treatment plan are both

non-trivial tasks that substantially increase the effort involved in delivering an ART

fraction compared to a standard radiotherapy fraction.

Two broad approaches that have been proposed are online and inline ART [27]. In

online ART, the treatment plan is adapted based on the image data acquired immedi-

ately before treatment delivery. This approach can compensate for interfraction organ

motion and deformation.

Inline ART is more ambitious, with the aim of periodically or continuously imaging

the patient during treatment delivery and adapting the treatment in real-time. This ap-

proach is predicated on the availability of suitable real-time imaging techniques during

treatment delivery.

ART techniques using real-time planar x-ray imaging have been demonstrated [28],

however interest in inline ART has particularly grown given recent advances in treat-

ment machines integrated with MRI capable of producing volumetric image data during

treatment delivery [29,30].

2.3.1 ART Workflow

A range of techniques have been suggested for online ART. This section provides an

overview of a typical online ART fraction and briefly reviews the more prominent

published approaches.

The workflow for each online ART fraction generally follows the same five steps:

1. Patient set up and image acquisition;

2. Re-contouring;

3. Plan adaptation or re-optimisation;

4. Quality Assurance (QA) testing of adapted plan;

5. Treatment delivery.

23



Chapter 2. Adaptive Radiotherapy in Pelvic Cancers

Patient Set Up and Image Acquisition

At the outset of a fraction, the patient is positioned in the treatment machine so as

to replicate, as closely as possible, their position when the treatment planning images

were acquired. New images of the patient’s anatomy are captured to be used to adapt

the treatment plan.

Confidence in the accuracy of the image data acquired at the start of the fraction,

in terms of representing the geometry of a patient’s anatomy, degrades over time due

to the likelihood of intrafractional organ motion [31, 32]. The time taken to perform

steps 2-5 is therefore critical in achieving the aim of ART, and these steps should be

performed as fast as possible [3, 4].

In order to adapt the original treatment plan to accommodate the information

obtained from the treatment delivery images, the anatomical structures of interest

(target volumes and OARS) must be identified on treatment delivery images and an

appropriate correspondence established with those in the planning images. The original

treatment plan can then be adapted based on this correspondence.

Typically, the structures of interest are delineated on the planning model manually

on a slice-by-slice basis and this process takes 30-60 minutes, depending on the location

of the tumour [24]. Substantial changes in the geometry of the patient’s anatomy can

take place during this timeframe, for example, due to normal physiological processes,

such as digestion, or the patient changing position. Therefore, automated image pro-

cessing is essential for ART.

Re-contouring

Many of the online ART techniques proposed use deformable image registration to

transfer the contours from the planning model to the image data acquired at the start

of each fraction, and require manual verification and adjustment [29, 30, 33, 34]. The

approach suggested in [4] copied the contours from the planning model to the image

data acquired at the start of each fraction.

24



Chapter 2. Adaptive Radiotherapy in Pelvic Cancers

Image segmentation, which is the focus of this work, can be used to identify salient

anatomical features to base the registration on [35–38]. Such an approach to re-

contouring is illustrated in Figure 2.8. It is envisaged that the output of the seg-

mentation work presented in this thesis would form the input to the next stage of a

deeper image processing pipeline, which would complete the task of re-contouring.

Diagnostic and
Planning Imaging

Treatment
Imaging

Segmentation
of Anatomical

Features
Image

Registration

Re-contoured
Treatment
Imaging

Figure 2.8: Illustration of the envisaged re-contouring processing pipeline

With the exception of [4] and [34], the time taken specifically to carry out the re-

contouring step was not reported. In [4] re-contouring was reported to take around

three minutes, while in [34] the mean re-contouring time was ten minutes and ranged

between five and twenty-two minutes.

Plan Re-optimisation

Plan re-optimisation using the same number and direction of radiation beams and the

same dose objectives as the original plan, but re-optimised based on the contours from

the latest image data, is widely suggested [3, 4, 29,30,33,34].

A typical plan re-optimisation time of several minutes is reported in the majority of

cases, with times of 2.5 minutes reported in [3], 3 minutes in [4] and around 5 minutes

in [30].

In [34], the time for plan re-optimisation was not specifically reported, however the

time for plan re-optimisation and QA testing was, with a median time of 14 minutes

and a range between 8 minutes and 40 minutes.

25



Chapter 2. Adaptive Radiotherapy in Pelvic Cancers

There is a substantial range in the times reported by [34], however they also reported

some of the causes for increased time, which included the operator not being familiar

with the planning tools, contouring errors not being noticed until the plan was evaluated

and the need to make a significant modification to the treatment plan.

QA Testing

In many of the online ART approaches proposed, the QA testing of the re-optimised

treatment plan included an independent, automated dose calculation [29, 30, 33, 34].

The time taken specifically for this calculation to be performed was not reported,

although [34] did report the time for plan re-optimisation and QA testing.

An independent dose calculator has been developed specifically aimed at QA testing

for ART [39]. This aimed to produce a tool that would be able to calculate dose using

a Monte Carlo method in the timeframe of several minutes or less, based on the ART

time reported in [33]. In order to meet the timing requirements, the software was

optimised for execution on a Graphics Processing Unit (GPU), rather than the more

ubiquitous CPU, since the hardware architecture of a GPU was better suited to the

algorithm [39]. The time reported for a full dose calculation with their system was 2.3

minutes [39].

Treatment Delivery

The treatment machine is configured with the parameters from the re-optimised treat-

ment plan and the delivery of radiation to the patient can begin.

2.3.2 State of Online ART

Two main approaches have so far been adopted for online ART. The first, and thus

far more prevalent, is the plan library approach [40]. In this approach, multiple plans

are created at the treatment planning stage, with each plan based on an anticipated

variation in the patient’s anatomy. At each treatment fraction, the plan re-optimisation

stage requires the selection of the plan best suited to the patient’s anatomy at the time

of the fraction. Such an approach is limited to tumour sites where there are frequent

26



Chapter 2. Adaptive Radiotherapy in Pelvic Cancers

and predictable interfractional changes in the anatomy [40]. The image quality of

CBCT tends to be sufficient for the images acquired at the time of treatment for this

approach, making it widely accessible to most modern radiotherapy institutions [40].

The second approach is daily online planning, where the original treatment plan

is re-optimised at each treatment fraction using the image data acquired at that frac-

tion. This approach is not limited to tumour sites where the interfraction motion is

predictable, however, it is more resource intensive than the plan library approach [40].

It also tends to require higher quality treatment images than the plan library ap-

proach, currently necessitating more specialised radiotherapy equipment, such as MRI-

linacs [40,41].

Online ART is still a relatively uncommon technique, although there is demand to

broaden its usage [40]. There are a number of barriers to achieving this. At present,

the main barrier is the increased staffing levels required. Increasing the automation of

the re-contouring and plan re-optimisation stages are likely to be required to address

this [40].

Another challenge to the widespread adoption of online ART is the availability of

high quality imaging at the time of the treatment fraction [40]. ART is typically at-

tempting to address changes in soft tissue. The imaging modalities currently commonly

available at the time of treatment, such as CBCT, are not best suited to visualising

these changes, thus hindering the clinical implementation of online ART. Although

improving the quality of CBCT imaging is an area of active research, at present MRI

provides much superior soft tissue contrast [40, 41]. The availability of MRI at the

time of treatment, with the advent of devices such as MRI-linacs, may prove to be a

watershed moment in the adoption of online ART.

Online ART also requires new tools that are fast and efficient to simplify the re-

contouring, plan re-optimisation and QA testing workflow. These are required to min-

imise the increases in treatment time required for online ART [40,41].

27



Chapter 2. Adaptive Radiotherapy in Pelvic Cancers

2.3.3 Inline ART

Techniques that extend the online ART paradigm through the use of imaging acquired

during treatment delivery have been proposed [28, 29, 42]. The use of real-time imag-

ing places higher demands on the execution time of the automated image processing

proposed for ART in order to process the image data as it is produced. However, the

tighter planning margins resulting from techniques such as online ART also increase

the need to address intrafractional changes in radiotherapy [41].

The work presented in [42] proposed to extend online ART to adapt the treatment

plan between each radiation beam in a fraction. They utilised orthogonal two dimen-

sional MRI data obtained during treatment delivery to characterise the motion of the

tumour and to reconstruct the dose that was delivered [42]. The remaining beams in

the fraction would then be adapted to reflect the most recent characterisation of the

tumour motion and to compensate for any inaccuracies in the dose delivery in the pre-

ceeding beams [42]. An orthogonal set of two dimensional MRI data was able to be

produced in 360ms [42]. The treatments simulated in [42] were planned with six beams

and the average time for plan adaptation between each beam was 25.6s, much faster

than plan adaptation times reported elsewhere. Overall, the simulated mean fraction

delivery time was less than two minutes longer than if a non-adaptive approach was

taken, 18.5 minutes versus 16.7 minutes [42].

Similarly to the work presented in [42], the technique proposed in [28] used two

dimensional imaging acquired during treatment delivery to adapt the treatment. How-

ever, they used x-ray imaging and tracked the tumour by dynamically changing the

position of the treatment beam aperture [28]. In addition, if the tumour moved beyond

a certain range the treatment beam would be held off, or gated, until the tumour re-

turned closer to the original position [28]. Tracking the tumour using the image data

was simplified by implanting the area containing the tumour with fiducial markers that

have high contrast compared to the surrounding tissue in x-ray images. The x-ray

images were generated at a rate of 10Hz [28].

28



Chapter 2. Adaptive Radiotherapy in Pelvic Cancers

The technique proposed in [29] also used treatment beam gating to deliver the

treatment. In this case, the gating control was based on three dimensional MRI data

obtained during treatment delivery [29]. The rate at which the image data were pro-

duced was not reported, however, [30] reported monitoring treatment delivery using

three dimensional MRI data that was generated in 7s.

2.4 ART in Pelvic Cancers

Cancers located in the pelvic cavity are particularly well-suited for the application of

ART. This is due to the variability in position, size and shape of the tumour and

surrounding organs caused by processes such as respiration and variable bladder and

bowel filling [19, 43, 44]. Bladder and prostate cancer are two such cancer types that

have been specifically considered in this thesis.

2.4.1 Bladder Cancer

Bladder cancer comprises around 3% of cancer cases globally and in the UK [9,45]. In

2017 it was the eleventh most common type of cancer diagnosed in the UK [45]. It

accounted for 2% of cancer deaths globally in 2018 [9] and 3% of cancer deaths in the

UK in 2017 [45].

Bladder Cancer Anatomy

The urinary bladder is a muscular bag located in the anterior portion of the pelvis, as

shown in Figures 2.9 and 2.10.

The bladder is bounded anteriorly and laterally by the pubic symphysis and the

bones of the pelvis and is attached to these by ligaments [7, 19]. The superior surface

is covered by a layer of peritoneum, the folds of which help to stabilise the position of

the bladder. Ligaments also attach the bladder to the abdomen [7,19]. In females, the

posterior of the bladder is adjacent to the rectovaginal septum, as shown in Figure 2.9,

while in males, it is adjacent to the rectum, as shown Figure 2.10.

29



Chapter 2. Adaptive Radiotherapy in Pelvic Cancers

Rectum

Uterus

Right ureter

Peritoneum

Urinary bladder

Pubic symphysis

Urethra

Rectovaginal septum

Figure 2.9: Sagittal section of female pelvis

The size, shape and position of the bladder is highly variable due to changes in the

filling of the bladder itself and the filling and motion of surrounding organs. Following

micturition, the bladder typically contains around 10ml of urine, while when full it

typically contains around 500ml, but can contain up to 1l [7, 19].

The urethra enters the bladder at the most inferior point of the bladder called the

neck of the bladder [7, 19]. The region of the bladder between the openings of the

ureters and the neck of the bladder is called the trigone [7, 19].

Most bladder cancers in developed countries are located in the trigone area of the

bladder, followed by the lateral and posterior walls and the bladder neck [19]. Distant

metastases stemming from a bladder cancer tumour are most commonly found in the

lungs, bone and liver [19].

Radiotherapy for Bladder Cancer

In the UK, radiotherapy forms part of the primary treatment for 21% of bladder cancer

patients [45].

30



Chapter 2. Adaptive Radiotherapy in Pelvic Cancers

Peritoneum Urinary bladder

Left ureter

Seminal vesicles

Rectum

Prostate gland

Pubic symphysis

Urethra

Figure 2.10: Sagittal section of male pelvis

Most bladder cancer treatments identify the whole bladder as the CTV, although

some specifically identify the tumour region, at least for an escalated dose [19]. Without

the high soft tissue contrast offered by MRI, accurate localisation of the tumour on

images can be challenging [19].

An assortment of dose and fractionation schedules have been proposed, ranging

from 50Gy to 67.5Gy in fractions of between 1.8Gy and 3Gy [19].

The OARs typically identified for radiotherapy of bladder cancer include the bowel,

rectum and the bladder itself [19].

The CTV-PTV margin for conventional radiotherapy of bladder cancer tends to be

quite large due to the variability of the bladder position. Margins of between 10mm

and 35mm have been reported [19, 43, 46]. ART therefore has the potential to greatly

improve radiotherapy for bladder cancer by increasing the accuracy of the treatment,

and thereby allowing a reduction in the CTV-PTV margin.

Based on their observations of bladder intrafractional motion, [3] suggested a time

of no more than ten minutes between image acquisition and the completion of fraction

delivery for online ART in bladder cancer.

31



Chapter 2. Adaptive Radiotherapy in Pelvic Cancers

These time requirements appear to be shorter than the median time for re-contouring,

plan adaptation and QA testing of 26 minutes reported by [33] for treating patients

with pelvic malignancies. These operations therefore need to be accelerated in order

for ART to become a routine clinical procedure.

Given the foreseeable nature of interfractional anatomical changes caused by vari-

able bladder filling, bladder cancer has been a popular target for online ART using the

plan library approach [40, 47]. The RAIDER clinical trial [48] is a large scale interna-

tional clinical trial of online adaptive radiotherapy for muscle-invasive bladder cancer

currently being conducted that uses this approach. For those patients receiving ART

as part of this trial, a library of three treatment plans is created using image data of

the patient with variable bladder filling. The most appropriate plan is selected based

on the size of the bladder at each treatment fraction.

2.4.2 Prostate Cancer

Prostate cancer is the most common form of cancer found in males in the UK. Around

48 500 new cases were diagnosed in 2017, comprising 26% of cancer diagnoses in men

[49]. It also accounted for around 12 000 deaths in the UK in 2017, which was around

14% of male deaths due to cancer, making it the second most common cause of cancer

deaths in males [49].

Prostate Cancer Anatomy

The prostate gland is about 4cm in diameter and is composed of glandular tissue,

smooth muscle fibres and connective tissue. It is located between the apex of the

bladder and the urogenital diaphragm, as shown in Figure 2.10. The prostate gland

encircles the urethra and the posterior is adjacent to the rectum [7,20].

The seminal vesicles are also glands, which enter the prostate gland at the postero-

superior surface [7, 20], as shown in Figure 2.10. The seminal vesicles are found either

side of the midline, posterior to the bladder and anterior to the rectum and are sur-

rounded by connective tissue [7, 20].

32



Chapter 2. Adaptive Radiotherapy in Pelvic Cancers

In cases of prostate cancer there are commonly found to be multiple lesions within

the prostate [20]. Disease progression can result in the tumour extending beyond the

prostate gland into the seminal vesicles and surrounding tissue. Bladder neck and rec-

tum involvement are risks if the disease continues to progress [20]. Distant metastases

resulting from prostate cancer most often form in the skeleton, liver and lungs but can

sometimes form in the brain and other sites [20].

Radiotherapy for Prostate Cancer

Radiotherapy is part of the primary treatment of 30% of prostate cancer patients in

the UK [20].

The CTV used in prostate cancer radiotherapy can vary depending on the risk

categorisation of the disease. For low risk disease, the entire prostate gland tends to

be identified as the CTV since prostate cancer is often found to be multi-focal [20].

For patients with higher risk disease the CTV can extend to the seminal vesicles and

regional lymph nodes [20].

Radiotherapy with curative intent for prostate cancer is typically delivered in 1.8Gy

to 2Gy fractions to total doses between 66Gy and 74Gy [20]. Although, SBRT has been

found to produce better tumour control than conventional radiotherapy in prostate

cancer, with fractionation regimes of between 33.5Gy and 38Gy in four or five fractions

being proposed [21].

The OARs typically identified for prostate cancer radiotherapy include the bladder,

rectum, femoral heads and occasionally the bowel [20].

The position of the prostate gland varies with changes in bladder and rectal filling

[50]. PTV margins of between 5mm and 12.5mm have been reported [20,44,51]. These

properties make prostate cancer a good candidate for ART.

For online ART in prostate cancer, [4] proposed a time of between five and ten

minutes between image acquisition and the start of radiation delivery based on similar

intervals for clinically implemented IGRT.

33



Chapter 2. Adaptive Radiotherapy in Pelvic Cancers

Again, these time requirements appear to be shorter than the median time necessary

for plan adaptation reported by [33], further demonstrating the need for acceleration

of the plan adaptation operations to enable ART.

2.5 Clinical Image Storage and Communication Infras-

tructure

Clinically, medical image data tends to be stored in a centralised archive called a

Picture Archiving and Communication System (PACS) [52]. The PACS is typically

connected to image acquisition machines such as CT and MRI scanners, treatment

planning and review workstations and treatment machines by a TCP/IP based Local

Area Network (LAN). An illustration of this is shown in Figure 2.11. This enables the

image acquisition equipment to store image data in the PACS and for the workstations

and treatment machines to retrieve image data from the PACS.

Picture Archiving 
and Communication 

System (PACS)

CT
Scanner

MRI
Scanner

Workstation
Treatment 
Machine

TCP/IP Network

Figure 2.11: Illustration of a typical clinical local area network

2.5.1 DICOM

To facilitate compatibility between equipment from different manufacturers, a standard

for storing and communicating medical image data called the Digital Imaging and

Communications in Medicine (DICOM) standard is used [52].

34



Chapter 2. Adaptive Radiotherapy in Pelvic Cancers

2.5.2 DICOM Information Model

The DICOM standard can be considered in two parts: an information model and a

communications protocol. Dealing with the information model first, image data in the

DICOM format is typically arranged into studies and series. A study tends to consist

of all of the image data associated with a single course of treatment for a patient and

is composed of one or more series. A series is typically the image data obtained from

a single image acquisition procedure, for example a CT scan [52]. The main imaging

modalities currently used in radiotherapy, CT and MR, acquire data in three spatial

dimensions, which is commonly represented by a set of DICOM files, each containing

the image data for a single transverse slice [52]. Figure 2.12 provides a simplified

illustration of this model.

File

Series

Study

Figure 2.12: Illustration of the DICOM information model

All of the image data acquired for a single course of radiotherapy would typically

be contained in a single study. That study would consist of one or more series, one for

each imaging procedure the patient has undergone.

In the course of an ART fraction, two sets of image data must be transferred to the

system adapting the original treatment plan:

(i) image data captured prior to the fraction, including the image data used to create

the original treatment plan;

(ii) image data captured at the start of the fraction to be used to adapt the original

treatment plan.

35



Chapter 2. Adaptive Radiotherapy in Pelvic Cancers

Figure 2.13 illustrates the transfer of these image data in the context of an ART fraction.

Patient set up
(Several minutes)

Plan adaptation
(< 10 minutes. Ideally, as short as possible)

Image
acquisition

(1-2 minutes)

Treatment
delivery

(1-2 minutes)

Transfer of, at least, the original 
treatment plan and associated image 

series to the hardware accelerator
Transfer of the acquired image series 

to the hardware accelerator

Figure 2.13: Illustration of image data transfer in the context of an ART fraction

The image data captured prior to the fraction will, at the very least, consist of the

image series used to create the original treatment plan. Depending on the approach

adopted for plan adaptation, however, it could include all of the image data acquired

prior to the fraction, as a study. As can be seen from Figure 2.13, there is a considerable

window of time in the workflow of an ART fraction during which this data could be

transferred. Therefore, the transfer rate of this data is less likely to be critical to the

feasibility of hardware acceleration for ART.

The transfer rate of the image series acquired during the fraction, on the other

hand, is likely to be critical to the feasibility of hardware acceleration for ART. As is

also shown in Figure 2.13, the time taken to transfer this image data delays the plan

adaptation process, and increases the critical time interval between image acquisition

and treatment delivery.

2.5.3 DICOM Communications Protocol

The communication of data using the DICOM standard occurs between what are

termed Application Entities (AE) [52]. In radiotherapy, the PACS and treatment ma-

chine are two such AEs commonly involved in exchanging data using the DICOM

standard.

The first step in communicating data between two AEs using the DICOM standard

is to negotiate an association between the AEs. The negotiation establishes an agreed

method of serialising the DICOM data to be communicated that is common to both

AEs.

36



Chapter 2. Adaptive Radiotherapy in Pelvic Cancers

The communications protocol portion of the DICOM standard is based on services

provided by the DICOM Message Service Elements (DIMSE), implemented by the AEs

[52]. The class of DIMSE most relevant to ART are the composite DIMSE (DIMSE-C),

since image files are composite information objects.

The DIMSE-C class of services are shown in Table 2.1. Typically, DIMSE-C services

involve two AEs. For each service, one AE plays the role of the Service Class Provider

(SCP), while the other is the Service Class User (SCU). The SCP implements the

service requested by the SCU.

Table 2.1: DIMSE-C services [52]

DIMSE-C
service

Description

C-ECHO Verifies communication between two AEs

C-STORE Sends an information object from one AE to be stored by another

C-FIND Requests information about information objects stored by another
AE

C-GET Retrieves information objects stored by another AE using the
C-STORE service

C-MOVE Instructs another AE to send stored information objects to this AE,
or a third party AE, using the C-STORE service

2.5.4 Data Transfer Process

The process of transferring data from non-volatile storage in one system to non-volatile

storage in another typically involves moving the data in a number of intermediary

steps. The data from non-volatile storage is first read into memory, from whence it

is arranged for transmission over the network connecting the two systems using the

appropriate protocols. Data received from the network is initially buffered in memory

before being written to non-volatile storage.

The performance of the intermediary steps affects the overall performance of the

data transfer.

37



Chapter 2. Adaptive Radiotherapy in Pelvic Cancers

Direct Memory Access Controller

Compared to memory, access speeds for non-volatile storage tend to be very slow [53].

Rather than tie-up the CPU waiting for data to be transferred between memory and

non-volatile storage it is common to use a Direct Memory Access Controller (DMAC) to

handle the data movement. The CPU programs and initialises the DMAC to perform

the data transfer, allowing the CPU to perform other tasks in the meantime. Once the

data transfer is complete, the DMAC can indicate this either by generating an interrupt

or by setting a signal that is polled by the operating system [53].

Reading and Writing Non-volatile Storage

The data held on non-volatile storage is usually accessed in units of adjacent bytes

called blocks. The size of a block is determined by a combination of the filesystem used

to organise data on the disk and the physical properties of the non-volatile storage

device. However, performing non-volatile storage access entirely on individual blocks

can lead to very poor data transfer performance [53]. Instead, the operating system

attempts to combine requests for adjacent blocks of data and service them in one access

to the storage device.

This strategy greatly improves the performance of accessing data that is stored

sequentially on the non-volatile storage device, as files tend to be. To enable this,

requests made to read or write data on the non-volatile storage device on many common

operating systems, such as Linux-based ones, are not serviced immediately, but are

scheduled in a queue. When the operating system comes to service the requests in the

queue, it is able to look for and combine requests for adjacent blocks on the device to

be serviced in a single access [53].

Read operations on non-volatile storage are generally more critical for system per-

formance than write operations. This is because there is likely to be some operation

carried out on the data being read from storage that cannot proceed until the data is in

memory. Therefore, many common operating systems, such as Linux-based ones, tend

38



Chapter 2. Adaptive Radiotherapy in Pelvic Cancers

to defer writing to non-volatile storage by buffering data in memory longer than for

read operations. This leads to a greater number of read requests, for smaller amounts

of data, being serviced on average than write requests [53].

2.6 Conclusion

Radiotherapy is frequently used in cases of pelvic cancer. The therapeutic ratio of

radiotherapy is inherently bound to the accuracy with which the ionising radiation can

be delivered to the tumour.

Recent developments in radiotherapy techniques that seek to increase the therapeu-

tic ratio, such as the use of protons or hypofractionation, require even greater accuracy

than conventional techniques. This is particularly the case for pelvic cancers, such as

bladder and prostate cancer, that are highly susceptible to changes in the position of

the tumour and surrounding anatomy.

ART aims to improve the accuracy of radiotherapy by adapting the treatment plan

at the time of delivery based on images of the patient’s anatomy acquired immediately

before or during treatment delivery. This requires fast image processing as part of the

adaptation process.

To make ART clinically viable for pelvic cancers, such as bladder and prostate

cancer, the plan adaptation process must take less than ten minutes.

Currently, the plan adaptation process cannot be completed within the time con-

straints required for ART. The plan adaptation process, including image processing,

therefore needs to accelerated. One possibility for achieving this is to implement the

adaptation process in custom hardware.

DICOM is an industry standard for the storage and communication of medical

image data. It is likely that a system intended to accelerate image analysis for ART

would need to implement a portion of the DICOM standard in order to integrate and

communicate with existing radiotherapy equipment.

39



Chapter 3

Hardware Acceleration using

FPGA and Systems on Chip

The timing requirements of ART present a challenge for processing the image data

acquired during each fraction to adapt the treatment plan using conventional CPUs.

A potential solution to this problem is to use alternative processing architectures

to the traditional CPU that are better suited to the specific processing task, thereby

performing the processing faster. This approach is called hardware acceleration.

This chapter briefly outlines the general principles of hardware acceleration. FPGAs

are introduced as programmable logic devices that can be configured to create hardware

accelerators. SoCs that combine FPGA with other processing architectures on a single

device are also presented, along with their potential to be used for ART. The use of

FPGAs for accelerating image processing and analysis algorithms is discussed, with

specific consideration given to medical applications.

40



Chapter 3. Hardware Acceleration using FPGA and Systems on Chip

3.1 Principles of Hardware Acceleration

Hardware acceleration seeks to improve the performance of an algorithm by implement-

ing it on a more appropriate architecture than a traditional CPU. This section provides

an overview of CPU hardware architecture and introduces alternative processing ar-

chitectures that are commonly used for hardware acceleration. The advantages and

disadvantages of each of the architectures is briefly discussed.

3.1.1 CPU

The distinction between different processing architectures is not always clear-cut [54].

However, conventional CPU hardware architecture is typically designed to optimise

serial code execution with low latency. This enables CPUs to perform a wide variety

of tasks well by optimising the single thread performance [55–57]. Powerful arithmetic

and logic units tend to be used to keep the latency of computations low [57]. To

reduce memory access latency, CPUs often use larger caches than other architectures

[56,57]. CPUs also tend to have more complex control hardware to enable sophisticated

execution control features, such as out-of-order execution and branch prediction [56,57].

In hardware acceleration, gains in performance are generally made by performing

more operations in parallel than on a traditional CPU, although some improvement

may also be gained by the reduction or complete eradication of fetching instructions

from memory and decoding them [58].

Parallelism can be obtained at different granularities: from fine-grained data paral-

lelism, where the same operation is performed on multiple data elements in parallel, to

task-level parallelism, such as pipeline parallelism, where multiple stages of the algo-

rithm execute concurrently with each operating on the output of the previous stage [59].

The scope for hardware acceleration and the most appropriate processing archi-

tecture is determined by the characteristics of the algorithm. Some algorithms are

inherently sequential in nature and offer few opportunities for exploiting parallelism

to improve performance compared to execution on a CPU. Others offer ample oppor-

41



Chapter 3. Hardware Acceleration using FPGA and Systems on Chip

tunities to process multiple data elements in parallel, while some are best suited to

task-level parallelism. More complex algorithms are likely to contain sub-routines that

are best suited to a mixture of hardware architectures [55,60,61].

Many modern CPU architectures provide support for exploiting parallelism to im-

prove processing performance. These include having multiple processing cores and

including specific Single Instruction Multiple Data (SIMD) hardware to apply a single

instruction to multiple data elements in parallel. However, the complexity of CPU

architecture typically limits the number of processing cores that can be implemented

in a single CPU device while still satisfying thermal and power requirements [55,56].

CPU clusters have also been used to exploit task-level parallelism, although the

communication overhead involved with this arrangement can limit the acceleration

that can be achieved.

3.1.2 Alternative Processing Architectures

GPU

GPU architectures are massively parallel. Generally, they are composed of an array

of multi-processors, which can each execute a task in parallel [55–57, 62]. Each multi-

processor is itself composed of an array of processing elements with a SIMD architecture

[55–57, 62]. The processing elements within a multi-processor tend to share a memory

cache, however, there is typically no cache memory shared between multi-processors

[57]. The processing elements are usually much simpler than those used in CPUs, with

less powerful arithmetic and logic units and less complex control hardware. This makes

the processing elements in GPUs more energy efficient, but also gives them greater

latency than those in a CPU [56,57]. The GPU architecture trades-off the low latency

design of the CPU for greater parallelism in order to achieve greater throughput in

circumstances where this parallelism can be exploited [55–57].

GPU architectures are well suited to performing operations on multiple data ele-

ments in parallel and suit algorithms where the computationally intensive tasks can be

performed in this way.

42



Chapter 3. Hardware Acceleration using FPGA and Systems on Chip

GPUs are programmed using software. Development for GPUs is similar to that

for CPUs, with extensive support for high-level languages. This makes migrating CPU

implementations to GPU simpler than with some other architectures [55,62].

Digital Signal Processors

As their name suggests, digital signal processors are processors whose architecture has

been optimised for performing operations commonly used in digital signal process-

ing algorithms. Specifically, their architecture tends to be centred around performing

multiply-accumulate operations efficiently. This makes them well-suited to implement-

ing operations such as digital filters and fast Fourier transforms [54,63]. They typically

have separate buses for instructions and each of the data operands, allowing instructions

and the data the instructions will operate on to be fetched from memory simultane-

ously. This, coupled with optimised processing elements, such as fast multipliers, can

enable digital signal processors to perform a complete multiply-accumulate operation

each clock cycle [54,63,64].

Many modern digital signal processors exploit greater parallelism by having multiple

sets of processing elements. Each set of processing elements can be used to perform

the same operation on multiple sets of data concurrently in a SIMD configuration.

Alternatively, multiple instructions can be packed into a Very Long Instruction Word

(VLIW). Each instruction in the VLIW is then executed in parallel on a separate set

of processing elements with its own data operands [54,63–65].

Digital signal processors are frequently used in applications with hard real-time

requirements. Deterministic operation, rather than minimum execution time perfor-

mance, has therefore tended to be favoured [54, 63, 64]. Their relatively low cost and

power consumption has also made them a popular choice of processor for applications

sensitive to these parameters [54,64,65].

43



Chapter 3. Hardware Acceleration using FPGA and Systems on Chip

Development for digital signal processors is comparatively simple, as they are pro-

grammable by software [54,63,64]. Although there are compilers that allow applications

for digital signal processors to be developed in high-level languages, such as C, they

are often programmed in assembly to fully optimise their performance. This can make

development for a digital signal processor more labour intensive than for a CPU [54,64].

Customised Hardware

An alternative approach to hardware acceleration from the use of general purpose

processors, such as CPU, GPU and Digital Signal Processors, is to design a hardware

architecture specifically optimised for the algorithm to be accelerated.

Customised hardware enables the most appropriate levels of parallelism to be used

for each sub-routine in the algorithm [59] to extract the best performance. However,

developing an Application-Specific Integrated Circuit (ASIC) is time-consuming and

expensive, with high up-front Non-Recurring Engineering (NRE) costs [59,66]. Unless

the developed ASIC is produced in very high volume, or is being developed for an

application with extreme operating requirements, these costs can prove prohibitive

[66,67].

In these situations, FPGAs can offer a solution in the form of highly configurable

hardware with much lower NRE costs than an ASIC [59,66,67].

3.2 Hardware Acceleration in ART

Hardware acceleration for ART has been the subject of considerable research. Much of

the existing research in this area has focussed on the use of GPUs [68], although other

platforms have also been considered.

GPU

A number of researchers have used GPUs to accelerate image registration algorithms for

transferring contours from planning image data to the image data obtained at the time

of treatment delivery. Registration of two-dimensional with three-dimensional images

44



Chapter 3. Hardware Acceleration using FPGA and Systems on Chip

was accelerated in [69, 70]. Deformable image registration algorithms were accelerated

in [71–73]. The work in [71] showed a speed-up of between 34 and 39 times using a

GPU compared to a multi-threaded CPU implementation.

Treatment plan re-optimisation strategies that leverage GPU acceleration have been

proposed in [3, 42, 74–76]. The approaches presented in [3, 42] were based on GPU-

accelerated radiation dose calculation algorithms. Dose calculation algorithms, which

can form the basis of plan re-optimisation and QA testing in ART, have been another

popular target for GPU acceleration [68,77]. A speed-up of around 200 times for a dose

calculation algorithm running on a GPU compared to a CPU was reported in [78]. A

similar dose calculation algorithm aimed at proton-based ART was reported to have

been accelerated using a GPU in [27]. Another approach to dose calculation, based on

Monte Carlo simulations, was proposed for acceleration using GPUs in [39,42,79].

Cluster Computing

Cluster computing has also been investigated for accelerating ART algorithms, most

recently in the form of performing dose calculations using cloud computing [77,80–82].

Cloud computing services provide large amounts of computational resources on an on-

demand basis [77,80,82]. These services were used to accelerate Monte Carlo simulation

based dose calculation algorithms in [77, 80–82]. The performance of the algorithms

was found to scale linearly with the number of computing nodes employed [77, 81, 82],

with a 1258 times speed-up compared to single-threaded CPU implementation when

using 240 nodes [81].

FPGA

Compared to GPUs, there has been relatively little research published on using FPGAs

for hardware acceleration in ART.

A number of researchers have investigated accelerating radiation dose calculation

algorithms using FPGAs [83–86]. A dose calculation algorithm for radiotherapy was

simulated for implementation on an FPGA in [83] and was estimated to achieve a speed-

up of around 20 times compared to a CPU. Similarly, a speed-up of around 20 times

45



Chapter 3. Hardware Acceleration using FPGA and Systems on Chip

compared to a CPU implementation was reported for an FPGA-based dose calculation

in [86]. The work presented in [84] exploited an heavily pipelined architecture for a

Monte Carlo simulation based algorithm suitable for dose calculation for small sites on

an FPGA. They reported speed-ups compared to a CPU of between approximately 350

and 500 times [84].

Another Monte Carlo simulation based dose calculation algorithm was implemented

on FPGA in [85]. Although in this case the specific application being considered was

photodynamic therapy, there are clear similarities with dose calculations for radiother-

apy. Compared to a CPU implementation, their FPGA implementation was found to

complete the computation 28 times faster [85].

The work presented in this thesis seeks to contribute to addressing the relative lack

of investigation of FPGAs for hardware acceleration in ART. Specifically, it seeks to

consider the application of FPGAs to image analysis problems typical in ART to assess

the acceleration that may be achieved compared to execution on a CPU.

3.3 FPGAs

FPGAs are devices composed of an array of configurable logic. The logic can be pro-

grammed to implement a wide variety of circuits. Moreover, the logic can be repeatedly

reconfigured to entirely change the function of the circuits implemented on the FPGA.

Broadly, FPGA consist of three elements:

• configurable logic;

• configurable interconnects;

• configurable Input/Output Blocks (IOB).

Blocks of configurable logic can be used to implement arbitrary functions, with the

connections between blocks of configurable logic being customised by programming the

interconnects. IOBs can be configured for the appropriate input and output signal

types with interconnects being set to route these to and from the relevant logic.

46



Chapter 3. Hardware Acceleration using FPGA and Systems on Chip

Configurable Logic

The configurable logic tends to be organised hierarchically. At the lowest level there

is simple combinational logic, most often implemented using Look-Up Tables (LUT) in

modern FPGAs, 1-bit registers or Flip-Flops (FF), multiplexers and fast carry logic

[59,66,67,87]. The fast carry logic provides dedicated connections between neighbouring

LUTs to enable the implementation of more complex functions, requiring multiple

LUTs, such as arithmetic functions [59, 87]. In addition to arbitrary logic functions,

LUTs can be used to implement Random Access Memory (RAM), Read Only Memory

(ROM) or shift registers [59,88].

A set number of these basic resources are provided in each elementary logic unit in

the FPGA, and each block of configurable logic contains a given number of elementary

logic units [59,87].

The terminology used to describe these elements vary between FPGA manufac-

turers. For the Xilinx (Xilinx Inc., San Jose, CA.) FPGA devices used in this work,

elementary logic units are termed Slices and blocks of configurable logic are termed

Configurable Logic Blocks (CLB).

A programmable switch matrix next to each CLB controls the connections made

between the elements within the CLB and between the elements in the CLB and other

resources in the FPGA fabric [88].

Figure 3.1 shows a schematic representation of the structure of FPGA fabric.

Configurable Logic Block (CLB)

Switch Matrix

Digital Signal Processing Block 
(DSP)

Block Random Access Memory
(BRAM)

Input/Output Block (IOB)

Interconnect

Figure 3.1: Schematic representation of FPGA fabric structure [88]

47



Chapter 3. Hardware Acceleration using FPGA and Systems on Chip

Specialised Resources

In addition to the general purpose resources, there are often more specialised resources

made available in FPGA fabric, such as Block RAM (BRAM) and Digital Signal Pro-

cessing Blocks (DSP) [59,67,87,88].

BRAM resources provide fast access, dense RAM [59], but can also be used as ROM

and First-In-First-Out (FIFO) buffers [88]. The dimensions of the BRAM tend to be

configurable, to some extent, to help make the most efficient use of the storage space

available for the word length of the data being stored [59,87,88]. For example, a BRAM

able to store 2048 18-bit values may also be configured to store 1024 36-bit values.

DSPs are dedicated multipliers and adders for implementing fast arithmetic func-

tions that consume less power than their counterparts implemented using the general

purpose resources in the FPGA fabric [59,67,87,88].

The work presented here makes use of FPGA-based devices manufactured by Xilinx

that are based on two different families of FPGA fabric: the Artix-7 [89] and Kintex

Ultrascale+ families [90]. The composition of resources in an individual slice varies

between the two families, as shown in Table 3.1. Furthermore, the number of slices

in a CLB varies, with the Artix-7 fabric having two slices per CLB and the Kintex

Ultrascale+ fabric having only one, as shown in Figure 3.2.

Table 3.1: Resources per slice [88, 91]

Resource Artix-7 Kintex Ultrascale+

6-input LUTs 4 8

FFs 8 16

3.3.1 FPGAs for Hardware Acceleration

Compared to the same circuit implemented using an ASIC, the FPGA implementation

tends to require more transistors, operates at a slower clock frequency and consumes

more power [59,67]. However, the reconfigurability of FPGAs means they are applicable

48



Chapter 3. Hardware Acceleration using FPGA and Systems on Chip

S
lic

e

Switch
Matrix

S
lic

e
carry in

carry out

C
on

fig
ur

ab
le

Lo
gi

c 
B

lo
ck

(a)

Switch
Matrix

carry in

carry out

C
on

fig
ur

ab
le

Lo
gi

c 
B

lo
ck

S
lic

e

(b)

Figure 3.2: CLB structure for (a) Artix-7 [88] and (b) Kintex Ultrascale+ [91] FPGA fabric

for a wide range of applications and are mass-produced by FPGA vendors. The NRE

costs of the FPGA device are therefore spread across the large production volume,

making FPGAs more cost-effective for product developers than ASICs at lower volumes.

Advances in integrated circuit technology have tended to increase the number of

devices that need to be produced to make the production of an ASIC more cost-effective

than using FPGAs [59, 67]. In this context, hardware accelerators for ART are a

relatively low volume market, making FPGAs a more cost-effective option than ASICs.

In addition, design errors are simpler to resolve later in the design cycle using

FPGAs than with ASICs, reducing the design effort and making the time-to-market

shorter for FPGA devices [59,66,67].

FPGAs can also be easily upgraded in the field to extend the lifetime of the sys-

tem [59,66,67], enabling new and improved algorithms to be used on already deployed

systems. In ART, different algorithms better suited to specific clinical sites or treat-

ments could be loaded into an FPGA-based accelerator as required.

49



Chapter 3. Hardware Acceleration using FPGA and Systems on Chip

FPGAs Versus General Purpose Processors

FPGA implementations do not require to fetch and decode instructions; the instruc-

tions are implemented in the hardware. This provides an opportunity for improved

processing performance compared to CPU and GPU architectures, which expend clock

cycles performing the instruction fetch and decode operations [58, 92], although these

architectures do tend to have much faster clock rates than FPGAs [92–94].

The reconfigurable hardware of FPGAs makes them well suited to implementing a

variety of levels of parallelism.

Hardware can be replicated in order to perform fine-grained data parallelism by

applying the same operation to multiple data values in parallel [59, 67]. This mimics

the parallelism obtained using SIMD engines or GPU, although FPGA are unlikely to

be able to match the scale of data parallelism offered by GPU [59] and, again, tend to

operate with a much slower clock rate [93].

FPGA also have the flexibility to implement multiple different instructions in par-

allel. At a coarser-grained level, this enables FPGA to implement task-level parallelism

in the form of pipeline-processing [58,59,67,87,93].

In a pipeline-processing architecture, an algorithm is decomposed into a series of

stages, where the output of one stage forms the input to the next. By implementing each

stage of the process in separate hardware the input data can be streamed between each

stage. The next input data element can be streamed into the first processing stage after

the previous element has passed to the second stage, which executes concurrently with

the first stage processing the next data element [59, 67, 87]. The concept is illustrated

in Figure 3.3.

Deep processing pipelines can be efficiently implemented in hardware [59, 67], en-

abling algorithms to be implemented with high data throughput [93].

FPGA Clock Frequency

The performance of an FPGA design is heavily influenced by the physical mapping

of the circuit onto the resources available in the FPGA fabric [66]. The delay for a

signal to propagate between two synchronous logic elements in the design determines

50



Chapter 3. Hardware Acceleration using FPGA and Systems on Chip

Algorithm

data[n - 1]data[n]

Stage 0 Stage 1 Stage k

data[n  - k] 
Data in Data out

Figure 3.3: Dataflow within a pipeline-processing architecture

the maximum frequency of the clock signal used by the synchronous logic elements.

This in turn influences the performance of all parts of the circuit sharing the same

clock signal.

The longest propagation delay between two synchronous logic elements in a clock

domain is termed the critical path. The propagation delay of a signal path depends on

the routing of the path and the combinational logic elements in the path. The routing

of a signal path is constrained by the physical location of the appropriate resources in

the FPGA fabric and the available interconnects between them.

The critical path can be shortened by inserting an additional register between the

two original synchronous logic elements, splitting the propagation delay between the

new register and the original elements. This adds an additional clock cycle of latency

to the signal due to the additional register, but enables a higher throughput for the

entire clock domain by enabling a higher clock frequency to be used [59].

3.4 FPGA-Based SoC

Although many algorithms benefit from exploiting the parallelism offered by FPGA

designs, some operations are inherently sequential in nature and are best suited to

a serial processor [67, 95, 96]. Serial processors can be implemented in FPGA fabric,

however the performance of these processors is limited by the clock frequency on the

FPGA [67], which is typically much lower than the clock rate for conventional CPUs

[93].

51



Chapter 3. Hardware Acceleration using FPGA and Systems on Chip

FPGA-based SoCs have been introduced relatively recently to address these limi-

tations. These devices combine FPGA fabric with dedicated processors, such as CPU,

GPU and real-time processors, on a single device. The FPGA fabric is often termed

programmable logic, with the portion of the device containing the general purpose pro-

cessors being termed the processing system, as shown in Figure 3.4.

Processing 
System

Programmable 
Logic

Figure 3.4: Schematic illustration of FPGA-based SoC structure depicting heavily interconnected
processing system and programmable logic

Typically, the programmable logic portion of the SoC device is effectively a conven-

tional FPGA with its own external interfaces. Likewise, the processing system generally

includes external interfaces for peripherals and memory, memory caches, clock genera-

tors and interconnects [88].

Critically, the programmable logic and processing system in an SoC have a range

of interfaces and interconnects between them. These enable systems to be created that

exploit resources on both the processing system and in programmable logic by allowing

signals and data to pass efficiently between the two parts of the device [88].

The composition of FPGA-based SoC devices varies between device manufacturers

and models. The work presented here used devices manufactured by Xilinx (Xilinx, Inc.,

San Jose, CA). Two devices were used in this work: the Zynq-7000 XCZ7020 [88, 89]

and the Zynq UltraScale+ XCZU9EG [91, 97], although only the processing system

of the Zynq UltraScale+ device was utilised in this work. Table 3.2 summarises the

52



Chapter 3. Hardware Acceleration using FPGA and Systems on Chip

processors available in the processing systems of these two devices. The programmable

logic of the Zynq-7000 XCZ7020 device is composed of Artix-7 FPGA fabric and the

number of resources available is presented in Table 3.3.

Table 3.2: Processing system processors for SoC devices used in this work

Zynq-7000 XCZ7020 Zynq UltraScale+ XCZU9EG

667MHz dual core Arm Cortex-A9 CPU 1.5GHz quad core Arm Cortex-A53 CPU

600MHz dual core Arm Cortex-R5 CPU

667MHz Arm Mali-400 MP2 GPU

Table 3.3: Programmable logic resources on Zynq-7000 XCZ7020 device

Resource Number

FFs 106,400

LUTs 53,200

36Kb BRAMs 140

DSPs 220

3.4.1 Processing System and Programmable Logic Interconnections

There are a number of interconnections between the processing system and programmable

logic on the Xilinx devices. The main interconnections for passing data and control

information between accelerators in programmable logic and the processing system

are based on the Advanced eXtensible Interface (AXI) standard [88,91]. There are also

other signals passing between the processing system and programmable logic, providing

low-level control signals, such as interrupts and reset signals [88].

On the Zynq-7000 device there are a total of nine AXI interconnections. These

include four general purpose interconnections, each with a 32-bit wide data bus and an

estimated throughput of 400MB/s at a clock frequency of 100MHz, which are suitable

for low and medium rate communications [88,89,98].

53



Chapter 3. Hardware Acceleration using FPGA and Systems on Chip

There are also four high performance interconnections, each with a data bus up to

64-bits wide, an estimated throughput of 800MB/s at a clock frequency of 100MHz and

incorporating a FIFO buffer to support high rate communications. These are referred

to as AXI FIFO Interfaces (AFI). The four AFIs share two dedicated ports on the

processing system’s memory controller for accessing off-chip memory [88,89,98].

The final AXI interconnection is an Accelerator Coherency Port (ACP), which has

access to the CPU caches in the processing system and dedicated hardware to enforce

cache coherency for data transferred across this interconnection [88, 89]. The ACP

interconnection has a 64-bit wide data bus and similar throughput to each of the AFIs

[89], but competes with the processing system CPUs for access to off-chip memory [89].

The ACP interconnection is therefore better suited to transferring data between the

caches of the processing system and programmable logic. This limits the amount of

data that can be transferred to avoid cache thrashing [89], where so much data is being

written to cache that an excessive number of cache misses occur due to the high turnover

of data in the cache. A cache miss occurs when the required data is not present in the

cache.

In addition to the high speed serial processing capacity, the general purpose pro-

cessors in the processing system of an SoC provide access to an ecosystem of software,

such as operating systems, utilities and applications, that can significantly reduce the

design effort required to implement a system on the SoC [88].

3.5 FPGA Design Methodologies

The effort required to design a system for implementation on an FPGA tends to be

greater than that required when targeting a general purpose processor, such as a CPU or

GPU [59,62,66]. The increasing capacity of FPGA devices has enhanced the capabilities

of a single device, but has also increased the design effort required to exploit this

capacity with improved functionality [95,99].

FPGA-based SoCs add further design challenges with their more complex and het-

erogeneous architectures [100, 101] and the need to efficiently partition the system be-

tween the different processing architectures [88].

54



Chapter 3. Hardware Acceleration using FPGA and Systems on Chip

IP Cores

A common approach to mitigate the burden of designing a system for implementation on

an FPGA is to develop and use Intellectual Property (IP) cores. IP cores are designed as

discrete units that implement a specific functionality with a generic interface to promote

interoperability with other IP cores. This approach encourages design reuse and can

simplify system design for FPGAs by reducing the system to a set of interconnected IP

cores.

Hardware Description Languages

Traditionally, circuit designs for FPGA implementation have been created using rel-

atively low-level Hardware Description Languages (HDLs). Although HDL design

techniques give the designer fine-grained, cycle accurate control of the system design,

they are also time-consuming and prone to errors, and using them requires specialised

skills [59,100,102]. This is in contrast to general purpose processors, such as CPU and

GPU, where algorithms can be implemented using widely-known and high-level pro-

gramming languages, and presents a significant barrier to the adoption of FPGA-based

devices.

3.5.1 High-Level Synthesis

High-Level Synthesis (HLS) is an alternative approach to FPGA development aimed at

increasing design productivity and the accessibility of FPGA-based devices [59, 88, 95,

99–101]. HLS uses an automated tool to convert a system specification from a high-level

language into a low-level description suitable for implementation on an FPGA [59,100].

By raising the abstraction level, specification of the system becomes simpler, with the

details of the system being generated automatically by the tools, under the direction

of the designer. This enables system designs to be produced more quickly than with

traditional design methods [88]. The simplified system specification also reduces the

amount of code required to be written manually, thereby reducing the risk of coding

errors [99].

55



Chapter 3. Hardware Acceleration using FPGA and Systems on Chip

Verification of system designs can also be simplified through the use of HLS [100,

101]. Some HLS tools are able to automatically generate testbenches for synthesised

hardware from software testbenches, removing the need to manually create an hardware

testbench and enabling the sharing of test data [99].

The ability to rapidly implement systems increases the scope for design exploration,

including different configurations of partitioning the system between hardware and

software [99,100].

The trade-off for the raised abstraction level obtained with HLS is a loss of fine-

grained control over the hardware design. Instead, the designer is, to an extent, reliant

upon the automated synthesis tools to efficiently implement the finer details of the

circuit [88]. However, the relative abundance of programmable logic resources avail-

able with modern FPGA devices means that some implementation inefficiency can be

tolerated in order to achieve signicant reductions in the design effort required.

HLS Languages

HLS tools exist that are capable of synthesising hardware designs from a number of

high-level languages. Most tools support C-like languages, such as C and C++ [95,

100,101]. C and C++ tend to be well known to software and hardware engineers alike,

increasing the accessiblity of the HLS tools [95, 100]. In addition, a great many algo-

rithms exist in these languages, simplifying their use [88,101]. C and C++ are commonly

used for implementing embedded software [101], simplifying the exploration of system

partitioning for systems targeted at SoC devices, as functionality can be easily moved

between software and hardware [100,101].

System-level Tools

The functionality of the HLS tools can be extended by automating the integration

of the synthesised hardware into the system. For systems implemented on FPGA-

based SoCs, the integration of custom hardware implemented in programmable logic

with other non-configurable hardware modules and system software is often the most

challenging task [96,101], so there is strong motivation for simplifying it.

56



Chapter 3. Hardware Acceleration using FPGA and Systems on Chip

Such a tool, specifically the SDx development environment (Xilinx, Inc., San Jose,

CA), was used in some of the work presented in this thesis. As well as performing HLS,

this tool automatically produces software drivers and additional hardware needed to

integrate the synthesised hardware with the rest of the system [91].

3.6 FPGA Acceleration of Image Analysis

The use of FPGAs to accelerate computationally intensive image analysis and process-

ing algorithms has been widely reported [55, 60, 61, 92, 94, 102–114]. In some appli-

cations, the performance of algorithms on FPGAs has been shown to be superior to

CPUs [92,102,103,105–107,110,112] and GPUs [60,61,94,104,111,114].

Suitability of FPGA Architecture

The architecture of FPGAs is inherently well-suited to some image processing applica-

tions, particularly low- and medium-level processing tasks characterised by high levels

of parallelism, such as segmentation and classification [55, 67, 87, 92, 103]. FPGAs en-

able the exploitation of the data parallelism in images by allowing multiple copies of

hardware to process multiple sub-regions of an image concurrently [61, 67, 92, 102, 103,

105,107,108,110,114].

They also allow the exploitation of functional parallelism through the implemen-

tation of deep processing pipelines, with separate hardware for each processing stage

that is able to run concurrently [61,67,87,92,104,106–109,113,114].

Data Access Patterns

FPGA-based hardware accelerators that use processing pipelines are often most effi-

ciently realised by streaming data to the accelerator. This enables the latency of ac-

cessing data from external memory to be mitigated, to some extent, by processing data

already retrieved from memory concurrently with accessing new data [67,92,107,113].

57



Chapter 3. Hardware Acceleration using FPGA and Systems on Chip

In general, accelerators perform best when the number of times data is accessed

from external memory is minimised [87,94,103]. This makes local image processing op-

erations, that is ones where the operation can be completed using data from a relatively

small neighbourhood, better suited for implementation on FPGAs. The relatively small

amount of local data can be cached in memory resouces within the FPGA and accessed

more quickly than from external memory [87,106,111].

Global image processing operations, on the other hand, require data from the entire

image, which can exceed the amount of data that can be efficiently stored locally on

the FPGA [106]. This can make the implementation of global operations on FPGAs

compared to CPUs more variable, depending on the data and access patterns required

by the algorithm [87].

Limiting Factors

Two common limiting factors for the performance of FPGA-based hardware acceler-

ators for image analysis are the amount of resources available in the FPGA and the

bandwidth between the FPGA and external memory. The bandwidth between the

FPGA and external memory can limit the rate at which the accelerator consumes and

produces data [61, 92, 94, 103, 105]. The amount of resources available in the FPGA,

on the other hand, restricts the amount of hardware that can be implemented, and

thus the level of parallelism that can be achieved, by limiting the number of processing

stages or instances of processors that can be implemented in parallel [61,92,94,103,107].

3.6.1 Medical Image Analysis

FPGAs have been proposed for accelerating image processing and analysis tasks in a

range of medical applications. Much of this work has tended to focus on broad classes

of image processing and analysis tasks, such as the work presented in [112]. They

demonstrated that the computation of a local image filter could be accelerated by

14.3 times compared to a CPU using FPGAs in the context of processing biomedical

images. A pipeline of image filters was also accelerated using FPGAs in [61], achieving

an increase in performance of more than 5 times relative to a CPU.

58



Chapter 3. Hardware Acceleration using FPGA and Systems on Chip

In addition to local filtering, [112] also demonstrated a 27.3 times speed-up of a

K-means clustering algorithm, commonly used in image classification. Other authors

have also reported accelerating medical image classification algorithms using FPGAs.

A brain tissue classification algorithm for MRI was reported to achieve a more modest

acceleration of 5 times compared to a CPU in [107].

Image Registration

Medical image registration is another area where FPGAs have been considered for

acceleration. Free-form deformation, an important component of a deformable regis-

tration algorithm, was shown to run more than twice as fast using an FPGA as on

a CPU [105]. Furthermore, it was reported that the performance of the FPGA-based

algorithm was limited by the bandwidth to memory. If the memory bandwidth were

sufficiently increased, the performance of the FPGA-based algorithm was expected to

be more than 3 times as fast as the CPU implementation [105].

A deformable registration algorithm for registering CT images was reported in [106].

They reported a more impressive acceleration using an FPGA of around 30 times

compared to a CPU.

Acceleration of MRI registration was investigated by [61]. In practice, the authors

found that their FPGA implementation was unable to match the performance of the

algorithm on either a CPU or GPU. However, simulations they performed indicated

that using a much larger FPGA with greater memory bandwidth would improve the

performance of the algorithm relative to both the CPU and GPU implementations [61].

Image Reconstruction

Image reconstruction is a necessary task in many medical imaging modalities, includ-

ing CT and MRI. An algorithm for simultaneously reconstructing and segmenting CT

images was implemented on an FPGA in [110] and demonstrated to execute 9.24 times

faster than on a CPU. The same work, however, also showed that a GPU implementa-

tion of the algorithm was around 3 times faster than the FPGA implementation, albeit

with greater power consumption [110].

59



Chapter 3. Hardware Acceleration using FPGA and Systems on Chip

The work presented in [111] used an image reconstruction algorithm to demonstrate

their FPGA-based programming model for medical imaging applications. They showed

that their FPGA implementation was able to process image frames at twice the rate of

their CPU implementation and meet their real-time requirements [111]. The authors

also demonstrated that their FPGA implementation was able to process image frames

at around 1.4 times the rate of their implementation on an embedded GPU [111].

The time required for image reconstruction in three-dimensional ultrasound com-

puted tomography has been reported as limiting its use clinically [114]. The authors

in [114] described the performance of their algorithm, which has signal processing and

image reconstruction stages, implemented on FPGA and GPU platforms. The FPGA

platform was shown to perform the signal processing portion of the algorithm 10 times

faster than a CPU and the image reconstruction 15 times faster [114]. The GPU plat-

form, however, was found to outperform the FPGA platform by 2.5 times for the image

reconstruction stage, whereas the FPGA platform outperformed the GPU platform by

1.6 times for the signal processing stage [114].

Specific Applications

In addition to the work considering FPGA acceleration of broad classes of image pro-

cessing and analysis, there has also been work on accelerating image processing for

specific medical applications using FPGAs. Real-time image processing for endoscopic

diagnosis using FPGAs was reported in [109]. FPGA acceleration of image processing

for localisation microscopy was shown by [104] to improve performance by 225 times

compared to a CPU. The authors also demonstrated a more modest acceleration of 5

times for electron tomography using an FPGA compared to a GPU [104].

These examples illustrate the potential for FPGA acceleration of image process-

ing and analysis in medical appplications to improve performance and meet real-time

requirements. The examples also illustrate that determining the optimal computing

architecture for an algorithm is non-trivial and highly application-specific.

60



Chapter 3. Hardware Acceleration using FPGA and Systems on Chip

Although some of these examples could be related to algorithms pertinent to ART,

particularly those for image registration, there does not appear to be any literature

where FPGA acceleration of image processing and analysis is considered specifically

in the context of ART. The work presented in this thesis seeks to address this by

considering the application of FPGA acceleration for image processing and analysis

specifically for ART.

3.7 Selecting a Processing Architecture for Hardware Ac-

celeration in ART

The selection of the most appropriate architecture for hardware acceleration in any ap-

plication, including ART, is heavily dependent on the characteristics of the algorithms

being accelerated. This section discusses the advantages and disadvantages of digital

signal processors, GPUs and FPGAs as hardware accelerators in the context of ART.

3.7.1 Digital Signal Processors

Digital signal processors are well-suited to accelerating applications where the compu-

tationally intensive load can be implemented as operations commonly used in digital

signal processing algorithms. Furthermore, applications suited to digital signal proces-

sors that exhibit data-level parallelism would map well onto digital signal processors

that support SIMD operation [63,64]. Similarly, those that exhibit task-level parallelism

may gain an advantage from using digital signal processors that support VLIW [63].

The advantages gained from exploiting such parallelism need to be traded-off against

any overhead incurred by the requirement to have data specifically arranged in memory

to make effective use of the architecture [63,64].

Digital signal processors are frequently used in applications where low power con-

sumption and cost are critical requirements [54, 64]. However, given the high capital

cost and energy requirements of radiotherapy equipment, it is doubtful that the cost

and power consumption of hardware accelerators for ART are going to be significant

factors.

61



Chapter 3. Hardware Acceleration using FPGA and Systems on Chip

3.7.2 GPUs

GPUs are designed to accelerate algorithms with a high degree of data-level parallelism.

They work most effectively when performing SIMD operations on data with no inter-

dependencies [62]. Modern GPUs that contain an array of multi-processors can also

achieve task-level parallelism by executing different tasks on each of the multi-processors

concurrently. In algorithms with a high degree of data-level parallelism, GPUs are able

to generate greater throughput than a CPU, despite typically using processing elements

with higher latency. This is achieved by the GPU processing more data operands

simultaneously. In algorithms where there is a low degree, or no, data-level parallelism,

much of the parallel architecture of a GPU will be idle, and the low latency processing

of a CPU is likely to produce greater throughput.

Even when processing algorithms with a high degree of data-level parallelism, there

are some aspects of the GPU architecture that can limit the acceleration that can

be achieved. GPUs do not generally support the same extent of fine-grained control

flow that CPUs do. Branching within algorithms can cause SIMD threads to diverge,

requiring that each branch be executed in series [55]. Synchronisation following a set

of parallel computations is also not generally as efficient on a GPU as a CPU [55, 56].

This means that algorithms that consist of a lot of short parallel computations do not

map well to the GPU architecture, as the synchronisation overhead begins to dominate

the execution time [56].

The memory shared by processing elements within a multi-processor on a GPU

tends to be relatively fast. However, it is also typically much smaller than the memory

caches used in CPUs [57]. Any data that needs to be shared between multi-processors

on a GPU, or does not fit into the memory dedicated to a single multi-processor, is

limited to using the slower global memory shared between multi-processors. This can

limit the performance of algorithms that need to make a lot of memory accesses or have

irregular memory access patterns [56, 62]. Some GPUs do provide efficient hardware

support for gathering operands for SIMD operations from multiple memory locations

and scattering the results likewise. This can help to reduce the overhead incurred from

the need to arrange data in memory to fit the SIMD operation [56].

62



Chapter 3. Hardware Acceleration using FPGA and Systems on Chip

Compared to digital signal processors, the architecture of GPU processing elements

bears more similarity with that of CPUs. Unlike digital signal processors, the pro-

cessing elements in a GPU are not specifically optimised for digital signal processing

operations and there are not typically separate data and instruction buses. This, cou-

pled with extensive support for high-level programming languages, makes the migration

of traditional software implementations to GPUs relatively straightforward [55,62].

3.7.3 FPGAs

Unlike either digital signal processors or GPUs, which are programmed using software,

FPGAs are conventionally programmed using HDLs. While this provides fine-grained

control over the implementation on the FPGA, development in HDLs also tends to be

much slower and more labour-intensive than software [59,62,66]. HLS tools have been

introduced to allow FPGA development in software programming languages, however,

these are not yet as widely adopted or mature as those for digital signal processors or

GPUs.

The reconfigurability of FPGAs enables the architecture to be tailored to the degree

of parallelism required by the algorithm by exploiting both data-level and task-level

parallelism [55, 62]. For algorithms that are predominantly data-parallel in nature

however, an FPGA is unlikely to be able to match the execution time performance

provided by the massively parallel architecture and fast clock rate of a GPU.

FPGAs are particularly suited to exploiting task-level parallelism in algorithms

where data streaming can be used [55, 62]. These algorithms can be implemented as

a series of connected processing engines where the data flows from one engine to the

next, as shown in Figure 3.3 on page 51. Each processing engine itself can also be

designed to take advantage of any parallelism within the stage of the algorithm that

it implements. This approach tends to work well where the control and data flow are

relatively simple. However, in algorithms that require complex control and data flow,

the implementation of the controller in the FPGA resources can limit the performance

of the algorithm [55,62].

63



Chapter 3. Hardware Acceleration using FPGA and Systems on Chip

The performance of FPGA-based hardware accelerators in applications with large

input datasets can also be limited by the availabilty of memory resources on the

FPGA [55, 62]. Much of the performance advantage achieved from implementing a

data streaming algorithm on an FPGA is obtained by minimising the number of costly

off-chip memory accesses by buffering the data within the processing pipeline [55]. If

there are insufficient memory resources on the FPGA to do this, then the data must

be accessed from off-chip memory, which may detrimentally affect the execution time

performance of the algorithm.

3.8 Conclusion

Hardware acceleration uses alternative processing architectures to conventional CPUs

to reduce the time taken to execute algorithms. Applying this to algorithms for ART

has the potential to enable the treatment plan to be adapted within the clinical time

constraints.

FPGAs are programmable logic devices that can be configured to create hard-

ware accelerators. Algorithms implemented on FPGAs can obtain performance advan-

tages over CPU implementations for some algorithms, or portions of algorithms, chiefly

through exploiting greater levels of parallelism.

Selecting the processing architecture that will give the optimal execution time per-

formance for a given algorithm is a non-trivial task. For algorithms that are inherently

serial in nature, the low-latency optimised architecture of the CPU is likely to provide

the best performance. For algorithms with a high degree of data-level parallelism, the

massively parallel architecture of a GPU may provide better performance than a CPU.

Digital signal processors should also be considered in algorithms with a high degree of

data-level parallelism. However, they are only likely to provide better execution time

performance than a GPU when the algorithm can be implemented from operations for

which the digital signal processor architecture is optimised, such as multiply-accumulate

operations. FPGAs are well suited to exploiting task-level parallelism by implementing

deep pipelines of processing engines connected in series. This suits algorithms where

data streaming can be used and the control and data flow are relatively simple. FPGAs

64



Chapter 3. Hardware Acceleration using FPGA and Systems on Chip

can also take advantage of data-level parallelism, albeit not typically to the same ex-

tent as GPUs or digital signal processors. In addition, the reconfigurability of FPGAs

allows the degree of parallelism to be tailored to the algorithm being implemented.

The emergence of devices with heterogeneous architectures also opens up the possi-

bility of sub-dividing algorithms into stages and executing each stage on the processing

architecture best suited to it.

Hardware acceleration for ART has been proposed previously, although much of this

research has sought to use GPUs rather than FPGAs. Acceleration of algorithms that

may be suitable for ART using FPGAs has been demonstrated, but this has tended to

focus on radiation dose calculations.

The work presented in this thesis seeks to contribute to the relative lack of con-

sideration of FPGAs for hardware acceleration and, specifically, their application to

the image analysis problems typical in ART. Much research has been published that

establishes the suitability of FPGAs for accelerating some image analysis algorithms,

including for medical imaging applications. However, their application to accelerating

image analysis algorithms specifically in the context of ART does not appear to have

been considered previously.

65



Chapter 4

DICOM Transfer Rates on

FPGA-based SoC Platforms

In the context of accelerating image analysis for ART, data needs to be transferred be-

tween the existing digital imaging infrastructure and the accelerating processor. Much

of this information will be in the form of images, captured during the patient’s treat-

ment pathway, although it is also likely to include information about the planned

radiotherapy.

A critical parameter for hardware acceleration is the overhead incurred from the

need to transfer data to and from the specialised hardware. Any performance improve-

ments gained from accelerating the algorithm must be traded-off against the additional

time needed to transfer data to and from the accelerator in order to justify its use. It is

therefore important when considering the viability of any system intended to accelerate

adaptive radiotherapy to establish how the system would integrate with the existing

radiotherapy equipment and to estimate the anticipated communication overhead.

This chapter presents the results of work carried out to characterise the commu-

nication overhead between existing radiotherapy infrastructure and an FPGA-based

SoC for accelerating adaptive radiotherapy. The digital imaging infrastructure was

modelled and the time taken to send and retrieve data from it was measured for two

different FPGA-based SoC development boards. In all simulations, a desktop computer

with a similar specification to those used for clinical radiotherapy work was used for

66



Chapter 4. DICOM Transfer Rates on FPGA-based SoC Platforms

comparison. Clinical image data from prostate cancer patients was used to characterise

transfer rates. Activity levels within the development boards and desktop computer

were recorded during the tests to help identify factors limiting performance and to

propose solutions.

This chapter is organised as follows. Initially, relevant previous work is discussed.

A detailed description of the new work together with results is given.

4.1 Relevant Work

Any system intended to accelerate image analysis for ART would be required to in-

tegrate and communicate with existing radiotherapy equipment. As was discussed in

Section 2.5 on page 34, using the DICOM standard for the communication of medical

image data is highly likely to fulfil this requirement.

Generally, there is a lack of widely accepted, objective standards for satisfactory

transfer rates of DICOM images in the clinical setting. Indeed, there is not a great

deal of literature dealing with the topic of DICOM transfer rates at all. Much of the

literature tends to base the criteria for assessing acceptability of DICOM transfer rates

on the tolerance of clinicians to wait for images to be transferred.

The guidelines for purchasing and acceptance testing of PACS equipment produced

by the American Association of Physicists in Medicine and the Radiological Society of

North America do not give clear objective standards for the DICOM transfer rates that

should be achievable with PACS equipment [115]. Instead, the subjective assessment of

the time clinicians are content to wait for image data to be tranferred is used. This value

is likely to vary between clinicians and between institutions with varying workloads.

Authors in [116] also based their assessment of DICOM image transfer rates pri-

marily on the tolerance of clinicians to wait for data to be presented. Although, they

additionally suggested the more objective standard of being able to display two or more

full resolution images in less than 2s.

An exception to the foregoing is the work presented in [117], which was carried out

to assess the requirements and feasibility of installing a PACS in a moderately sized

radiology department. They considered the required throughput of a PACS in terms of

67



Chapter 4. DICOM Transfer Rates on FPGA-based SoC Platforms

the rate at which image data were produced and reviewed prior to the installation of the

PACS. They found that a peak throughput of 0.5MB/s would be sufficient to serve the

departmental workload at that time. This work was carried out in 1996, however, and

there has generally been an increase in the usage of medical imaging data since then,

calling into question the validity of this data rate for current clinical requirements.

Rates for transferring image data over a network using the DICOM protocol were

reported in [118]. The paper authors reported mean transfer rates of between 3.6

and 3.9MB/s for MR and CT images. Their work was conducted in the context of

adapting existing grid computing communications mechanisms to better handle the

DICOM protocol and data. They offered no comment on the rates achieved using the

plain DICOM protocol compared to the rates that would be expected on a clinical

LAN. However, the rates achieved with the plain DICOM protocol were superior to

those achieved with their proposed communication mechanisms and to those achieved

with the best performing alternative grid computing communications mechanism for

handling the DICOM protocol and data [118].

Perhaps the most relevant published work is by the Oracle Corporation where they

demonstrated the performance of retrieving and inserting DICOM image data into their

database application [119, 120]. One of the scenarios tested in their white paper used

a single server, running the database application, connected by five 1Gb/s Ethernet

connections to a single client. Both the client and server were server-grade computers.

The server had two 3.2GHz quad core processors, 48GB of memory and 8TB of non-

volatile storage made up of 112 HDDs. The client had two 2.8GHz quad core CPUs,

64GB of memory and around 2TB of non-volatile storage. The bandwidth to non-

volatile storage on the server was 8Gb/s, while in the client it was 2Gb/s.

The DICOM data used in the test was around 2TB in size, composed of 20,080

studies, around 2.4 million images from six modalities. Of these studies, 3,000, making

up 64GB, were MR or CT image data, which are the most relevant modalities for the

work presented here and current radiotherapy clinical practice. The MR and CT image

data included in the dataset are described further in Table 4.1.

68



Chapter 4. DICOM Transfer Rates on FPGA-based SoC Platforms

Table 4.1: MR and CT image data used in the Oracle Corporation white paper [119]

Average Study Size (MB)
Images per Study Image Size (MB)

Min. Max. Mean Min. Max. Mean

22 16 1024 64 0.06 4.2 0.36

Image data were retrieved from and inserted into the database at the study level.

Image retrieval and insertion could occur in parallel for each study. Six instances of

the retrieval and insertion applications also ran concurrently on the client during the

respective retrieval and insertion tests [119].

Retrieval rates of 1100 images per second, equating to a data rate of 380MB/s, were

reported [119,120]. This rate was limited by the available network bandwidth [120]. For

image insertion, a rate of 1564 images per second, or 353MB/s, was achieved [119,120].

The limiting factor for this rate was not reported [119,120].

These transfer rates are much higher than any comparable rates reported elsewhere

in the literature. These rates are due, at least in part, to the high performance hard-

ware that was used, and reflect that the purpose of the work was to demonstrate the

capability of Oracle’s database application, rather than representing typical transfer

rates that would be seen in a contemporary clinical setting.

4.2 Materials and Methods

4.2.1 Hardware Used

The PACS used in radiotherapy clinics was modelled using the Orthanc DICOM server

software [121]. Orthanc is an open-source DICOM store software application. It imple-

ments a database for storing DICOM files and the DICOM image storage and retrieval

protocols of interest here. It has previously been used by its creators to implement

DICOM stores within the clinical environment. The Orthanc software was run on a

laptop computer, the specifications of which are summarised in Table 4.2. The Ubuntu

14.04 operating system was used.

69



Chapter 4. DICOM Transfer Rates on FPGA-based SoC Platforms

Three platforms were used to test the rate at which DICOM data could be trans-

ferred to and from the Orthanc DICOM store. Two of these platforms, the Avnet

ZedBoard (Avnet, Inc., Phoenix, AZ) and the Xilinx ZCU102 (Xilinx, Inc., San Jose,

CA), were FPGA-based SoC development boards. The third platform used was a desk-

top computer with a specification comparable with modern workstations used clinically

in radiotherapy departments.

The ZedBoard platform, shown in Figure 4.1(a), used a Xilinx Zynq-7000 XC7Z020

SoC device (Xilinx, Inc., San Jose, CA), which incorporated a dual core Arm Cortex-A9

CPU (Arm Ltd., Cambridge, UK) with FPGA fabric containing around 85,000 logic

cells. Further details are provided in Table 4.2.

(a) (b)

Figure 4.1: FPGA-based SoC development boards. The (a) ZedBoard platform, and (b) ZCU102
platform [122].

The ZCU102 platform, shown in Figure 4.1(b), used a Xilinx Zynq Ultrascale+

XCZU9EG SoC device (Xilinx, Inc., San Jose, CA), which incorporated a quad core

Arm Cortex-A53 processor (Arm Ltd., Cambridge, UK), a dual core Arm Cortex-R5

real-time processor (Arm Ltd., Cambridge, UK), an Arm Mali-400 MP2 graphics pro-

cessing unit (Arm Ltd., Cambridge, UK) and FPGA fabric containing around 600,000

logic cells. The application used to characterise the data transfer rate to and from the

70



Chapter 4. DICOM Transfer Rates on FPGA-based SoC Platforms

PACS model was executed on the Arm Cortex-A53 processor as it was believed this

would provide the best performance from the device. Further details of the ZCU102

platform are provided in Table 4.2.

The specifications of the desktop computer used are also summarised in Table 4.2.

Table 4.2: System specifications

System Processor Memory Non-volatile storage

PACS
model

2.6GHz dual core
Intel i5

4GB
1600MHz

DDR3

80GB SATA 2.6, 3Gb/s HDD
ext4 filesystem, 4kB block size

ZedBoard 667MHz dual core
Arm Cortex-A9

512MB
533MHz
DDR3

8GB class 10 SD card ext4
filesystem, 4kB block size

ZCU102 1.5GHz quad core
Arm Cortex-A53

4GB
2133MHz

DDR4

8GB class 10 SD card ext4
filesystem, 4kB block size

Desktop
with HDD

4GHz quad core
Intel i7

32GB
2400MHz

DDR4

1TB SATA 3.1, 6Gb/s HDD ext4
filesystem, 4kB block size

Desktop
with SD

4GHz quad core
Intel i7

32GB
2400MHz

DDR4

8GB class 10 SD card ext4
filesystem, 4kB block size

Each of the platforms tested ran a Linux-based operating system. This gave access

to a wealth of existing software that was used to simplify the task of characterising

the rate at which data could be exchanged with the PACS model using the DICOM

protocol. Ubuntu 16.04 was used as the operating system on the desktop computer.

For the ZedBoard and ZCU102 platforms, their respective Linux images were those

supplied with the Xilinx SDSoC 2016.3 development environment software (Xilinx,

Inc., San Jose, CA).

The FPGA-based SoC development boards used here were chosen primarily for their

availability. As they are general-purpose boards, they have not been designed, and do

not feature optimisations for the tasks required in ART. The performance measured

71



Chapter 4. DICOM Transfer Rates on FPGA-based SoC Platforms

using these boards is, therefore, likely to be lower than that which could be attained

using an FPGA-based SoC board specifically developed for ART. However, the effort

required to design and produce such a board precluded this approach.

4.2.2 Measuring Transfer Rates

The software applications created to perform the tests presented here made use of the

DICOM Toolkit (DCMTK) libraries (OFFIS e.V., Oldenburg, Germany). DCMTK is

a set of open-source C++ libraries that implement large parts of the DICOM standard.

Version 3.6.1 of DCMTK was used here.

The DCMTK libraries were used to establish a connection with the PACS model

using the DICOM protocol over a 1Gb/s full duplex TCP/IP Ethernet connection.

They were also used to implement the C-STORE DIMSE-C service in the case of

sending data to the PACS model, and the C-MOVE DIMSE-C service in the case of

receiving data from the PACS model. In the case of receiving data from the PACS

model, the SCU of the C-STORE service was implemented by an application supplied

with the DCMTK libraries.

The experimental setup is shown in Figure 4.2.

Platform under Test

1Gb/s full duplex
Ethernet connection

CPU

Non-volatile
Storage

Memory

PACS Model

CPU

Non-volatile
Storage

Memory

Figure 4.2: Experimental setup showing the interconnection between the PACS and the platform
being tested.

72



Chapter 4. DICOM Transfer Rates on FPGA-based SoC Platforms

Sending Data to the PACS

A C++ application was written to test the rate at which the data could be sent from

the platform under test to the PACS model. This was tested for sending data on both

a series- and study-wise basis. Fifty series and fifty studies were transferred for the

series- and study-wise tests, respectively.

First the application sought to establish an association with the Orthanc software

running on the PACS model using the DICOM protocol. Once an association was

established, the application acted as the SCU, requesting the C-STORE service from

the Orthanc software to store the data being sent to the PACS model. For each series

or study to be transmitted, a C-STORE request was issued for each file belonging to it

in turn. Once all of the data for the test had been sent, the application sent a request

to release the association established with the PACS model. The flow of the application

in terms of the DICOM protocol is shown in Figure 4.3.

PACS Model
(C-STORE SCP)

Platform under Test
(C-STORE SCU)

Request association
for C-STORE service

Accept association

Request C-STORE
service

Receive file and write
to local disk

Request to close
association

Close association

Have
all files been

sent?

Yes

No

Figure 4.3: DICOM protocol for sending data to the PACS model

73



Chapter 4. DICOM Transfer Rates on FPGA-based SoC Platforms

For each series or study, the time taken to send all of the files and receive responses

from the PACS model was measured by recording a timestamp from a system clock

before issuing the first C-STORE request, and recording another timestamp upon re-

ceiving the response for the final file sent. The difference between these two timestamps

was used as an approximation of the time taken to transfer the series or study to the

PACS model. The amount of data contained in each series or study was known and

an estimate of the data transfer rate could therefore be made by dividing the amount

of data transferred by the time measured to send it. The programmatic flow of the

application is shown in Algorithm 1. The source code for the study-wise test is also

shown in Appendix B.

Algorithm 1 Sending DICOM data to the PACS model

1: association← request association
2: if association = rejected then
3: return error
4: end if
5: for all studies/series to be sent do
6: start← timestamp
7: for all files in study/series do
8: response← send C-STORE request(file)
9: end for

10: stop← timestamp
11: if response = succeeded then
12: duration← stop− start
13: end if
14: end for

Retrieving Data from the PACS

A similar C++ application was written to test the rate at which data could be received

by the platform under test from the PACS model.

This application added an extra layer of complexity compared to the one used to

test sending data to the PACS model. The PACS model and platform under test both

had to play the role of SCU and SCP for the two different DIMSE-C services involved.

The platform under test acted as the SCU for the C-MOVE service with the PACS

74



Chapter 4. DICOM Transfer Rates on FPGA-based SoC Platforms

model acting as the SCP. However, this then precipitated the PACS model to make a

C-STORE service request to the platform under test to store the data. This process is

shown in Figure 4.4.

The C-STORE SCP on the platform under test was provided by the storescp ap-

plication included as part of the DCMTK libraries.

PACS Model
(C-MOVE SCP)

Platform under Test
(C-MOVE SCU)

Request association
for C-MOVE service

Accept association

Request C-MOVE
service

Invoke C-STORE
SCU

Request to close
association

Close association

PACS Model
(C-STORE SCU)

Request association
for C-STORE service

Request C-STORE
service

Request to close
association

Platform under Test
(C-STORE SCP)

Accept association

Receive images and
write to local disk

Close association

Figure 4.4: DICOM protocol for receiving data from the PACS model

Again, the application was tested for receiving data on a series- and study-wise ba-

sis, transferring fifty series and fifty studies, respectively. The time taken to transfer the

data to the platform under test was estimated by the application recording a timestamp

immediately before issuing the C-MOVE request, and recording another immediately

after receiving the response to the request from the PACS model, as shown in Algo-

75



Chapter 4. DICOM Transfer Rates on FPGA-based SoC Platforms

rithm 2. The difference between the two timestamps was taken as an approximation

of the time taken to send the data to the platform under test. This, together with the

amount of data contained in each series or study being known, allowed an estimate of

the transfer rate to be made. The source code for the C-MOVE SCU for the series-wise

test can be found in Appendix B.

Algorithm 2 Receiving DICOM data from the PACS model

1: association← request association
2: if association = rejected then
3: return error
4: end if
5: for all studies/series to be sent do
6: start← timestamp
7: response← send C-MOVE request(study/series)
8: stop← timestamp
9: if response = succeeded then

10: duration← stop− start
11: end if
12: end for

Image Data

The DICOM image data used for this work was drawn from the PROSTATE-DIAGNOSIS

collection [123] of The Cancer Imaging Archive (TCIA) [124]. This is a publicly avail-

able collection of MR images obtained from 92 patients diagnosed with prostate cancer.

The collection comprises 92 studies containing a total of 368 series and 32,537 image

files.

At the commencement of this work, this was the largest collection of images com-

posed purely of either CT or MR images for prostate or bladder patients hosted on

TCIA. A publicly available dataset was chosen to help facilitate repetition or extension

of the work presented here by others.

76



Chapter 4. DICOM Transfer Rates on FPGA-based SoC Platforms

Tests were carried out to characterise the transfer rates when sending or receiving

data on both a study-wise and series-wise basis. In the study-wise case, fifty studies

were pre-selected at random from the 92 available in the collection. Likewise, fifty series

were pre-selected at random from the 368 available in the collection for the series-wise

case.

Random selection of a subset of the studies and series available minimises efficiencies

that may arise from accessing data sequentially and better reflects the transfer patterns

likely to be seen in the clinical environment. The studies and series to be transferred

were randomly pre-selected so that the data transferred between the test platforms and

the PACS model was repeatable. This was done in order to simplify the comparison in

performance between the platforms.

When testing sending data from the platform under test to the PACS model, the

database maintained by the Orthanc software was initially empty. When testing sending

data from the PACS model to the platform under test, the database maintained by the

Orthanc software on the PACS model contained the entire PROSTATE-DIAGNOSIS

collection.

Any differences found in the mean transfer rates between platforms were tested

for statistical significance. A significance level of 5% was chosen for this, and all other

significance tests performed. The results from this are provided in Section 4.3.2, starting

on page 85.

The linear correlation between transfer rate and transferred series or study size was

tested [125,126]. This was done in order to establish whether any correlation may have

arisen due to efficiencies obtained through transferring larger or smaller amounts of

data. The statistical significance of the correlation coefficients was also tested [126].

These results are discussed in Section 4.3.3 on page 90.

4.2.3 Monitoring System Activity

In addition to the timestamps used to estimate the time taken to transfer data, the

system activity of the platforms under test was monitored in greater detail using the

sysstat software package [127]. The sysstat software package is open source software for

77



Chapter 4. DICOM Transfer Rates on FPGA-based SoC Platforms

recording and monitoring the activity of computer systems that use a Linux-based oper-

ating system. The software monitors and records a range of metrics concerning system

utilisation and performance including CPU utilisation, memory usage, input/output

(I/O) activity and network interface statistics. It is capable of recording these metrics

at frequencies up to 1Hz.

The sysstat software was run concurrently with the applications to transfer data to

and from the PACS model. The time intervals at which the sysstat software recorded

system activity data were chosen empirically with a view to obtaining multiple samples

of system activity during the transfer of each DICOM series or study, while avoiding

collecting an excessive amount of data.

System activity data was recorded at five second intervals when sending and receiv-

ing DICOM studies and series to and from the PACS model using the ZedBoard and

ZCU102 platforms. In all other cases, system activity data was recorded at one second

intervals, the shortest interval afforded by the sysstat software.

The statistics obtained by the sysstat software that were of particular interest were

those pertaining to CPU, non-volatile storage and network activity.

CPU

The CPU utilisation statistics were examined with a focus on the amount of available

CPU time that was occupied by the applications performing the DICOM transfer tests

and the amount spent waiting for non-volatile storage I/O requests to be serviced.

The applications performing the DICOM transfer tests were the only user appli-

cations executing during the tests and therefore, the percentage of CPU time spent

operating at the user level recorded by sysstat was assumed to be a measure of the

percentage of CPU time spent executing the applications.

The sysstat software recorded:

(i) the percentage of time the CPU spent idle;

(ii) the percentage of time the CPU spent idle but during which there was an out-

standing I/O request to be serviced.

78



Chapter 4. DICOM Transfer Rates on FPGA-based SoC Platforms

The percentage of time the CPU spent idle was used as an indication of how much

spare processing capacity was available during the tests. The time spent with the CPU

idle and an outstanding I/O request to be serviced was used as an indication of the

time the system spent stalled, awaiting I/O.

Network

Network utilisation was recorded as the percentage of the available network bandwidth

that was used. In the case of the full-duplex network connection used here, this figure

represented the utilisation of the transmit or receive channel, whichever had the greatest

utilisation.

Non-volatile Storage

For the tests where data was sent from the platform under test to the PACS model,

the average rate of reading data from non-volatile storage was examined, while, for the

tests where the data was sent from the PACS model to the platform under test, the

average rate for writing data to non-volatile storage was evaluated.

The mean values calculated for the read and write speeds excluded zero values to

avoid spuriously low averages for these statistics.

Sampling Rates

As touched on earlier, the sysstat statistics were sampled at different rates on various

platforms in some of the tests. Moreover, the diverse transfer rates on certain plat-

forms meant that the duration of each test varied between platforms, complicating the

comparison of statistics between them.

In order to simplify the comparison, a mean value for each statistic was calculated

from all of the recorded samples pertaining to each study or series transferred. Instead

of plotting these mean values against real time, they were plotted against the sequence

in which the study or series that they related to were transferred. This approach was

applied to the data collected for network and non-volatile storage I/O. In the case of

the CPU utilisation data, the statistics were computed for the duration of each test.

79



Chapter 4. DICOM Transfer Rates on FPGA-based SoC Platforms

No samples were recorded during the transfer of some series because they took less

than the time interval between sysstat samples to complete. Statistic values for these

series were interpolated, using linear interpolation, from the statistics for the series

transferred immediately before and after.

4.3 Results and Discussion

The results obtained are presented and discussed in this section. First, the selection

of the image data used is discussed, followed by a presentation and examination of the

measured transfer rates. The recorded system activity data are given and analysed.

Consideration is also given to the experimental set-up, before, finally, the results are

discussed in the context of the literature and ART.

4.3.1 Data Selection

The data used for testing the transfer rates on each of the platforms were randomly

selected subsets of image data from the TCIA PROSTATE-DIAGNOSIS collection.

Two subsets were selected: a set of fifty studies and a set of fifty series. The specific

studies and series selected are given in Appendix A.

The data used were image data acquired as part of the diagnostic pathway only

of prostate cancer patients. They are, therefore, not specifically representative of

the imaging data that would typically be acquired for patients receiving radiother-

apy. There are some features, however, that recommend them as a model of the image

data for patients receiving radiotherapy for genitourinary cancer.

There would be a clear similarity with the image data acquired to diagnose patients

being treated with radiotherapy for genitourinary cancer given that it is the same

anatomy that is being examined.

There are multiple series per study, mimicking the temporally diverse image acqui-

sition that is characteristic of modern IGRT. This is in contrast to the dataset created

to model a clinical workload in [119], where it appears that most of the studies in that

80



Chapter 4. DICOM Transfer Rates on FPGA-based SoC Platforms

dataset consist of a single series. This is likely to be indicative of the fact that the work

in [119] was not targeted specifically at radiotherapy, but at the medical imaging field

in general.

The image data utilised in this work contains only MR data, whereas current clin-

ical radiotherapy typically uses a substantial amount of CT image data. However, in

terms of series and image sizes, modern MR and CT data are analogous. Moreover,

there is growing interest in making greater use of MR imaging within the radiotherapy

treatment pathway.

The size of the dataset employed in this study was relatively small for modelling the

workload of a typical radiotherapy institution. The entire dataset contained imaging

data for 92 patients, which would be approximately equivalent to one day’s workload

for two treatment machines.

The atypically small amount of data contained in the PACS model is likely to have

enabled the database to respond faster than if it had contained more data. This could

indicate that the transfer rates measured here may be optimistic compared to what

would be expected in the clinical setting. On the other hand, however, the hardware

used to model the PACS here was much lower in performance than the dedicated server-

grade equipment typically used in a modern radiotherapy institution. Indeed, the HDD

of the PACS model used here would have been too small to have contained even 5%

of the 2TB reference workload proposed in [119]. This being the case, it is possible

that the transfer rates observed in the work presented here are pessimistic compared

to what would be expected in the clinical setting.

Ideally, the tests described here would have been performed using a clinical PACS

complete with clinical workload, however, gaining access to such a set-up for research

purposes is challenging.

To ensure the results obtained using the sampled data could be reasonably gen-

eralised to the whole collection, the distributions of the study and series sizes in the

collection and in each of the samples were compared.

81



Chapter 4. DICOM Transfer Rates on FPGA-based SoC Platforms

Study Sizes

Figure 4.5 shows the histograms of study sizes for the PROSTATE-DIAGNOSIS col-

lection and the randomly selected subset of studies used in the study-wise tests here.

The mean study size for the PROSTATE-DIAGNOSIS collection and the randomly

chosen sample are shown in Table 4.3, along with the range and average number and

size of images in each study.

30 40 50 60 70 80 90
Study Size (MB)

0

5

10

15

20

25

30

35

Fr
eq

ue
nc

y

(a)

30 40 50 60 70 80 90
Study Size (MB)

0

5

10

15

20

Fr
eq

ue
nc

y

(b)

Collection Sample
30

40

50

60

70

80

90

St
ud

y 
Si

ze
 (M

B)

(c)

Figure 4.5: Study size histograms for (a) the PROSTATE-DIAGNOSIS collection, (b) the randomly
selected sample, and (c) the PROSTATE-DIAGNOSIS collection and randomly selected sample as
boxplots

The similarity in shape of the study size histograms for the PROSTATE-DIAGNOSIS

data and the randomly selected sample shown in Figure 4.5(a) and (b) indicates that

the sizes of the studies in the randomly selected sample closely mimic those in the

collection as a whole. This is further reinforced by the similarity of the boxplots shown

82



Chapter 4. DICOM Transfer Rates on FPGA-based SoC Platforms

Table 4.3: Study size statistics for PROSTATE-DIAGNOSIS collection and randomly selected sample

Average Study Images per Study Image Size (MB)

Size (MB) Min. Max. Mean Min. Max. Mean

Collection 64.91 146 468 353.27 0.12 0.56 0.18

Sample 64.66 164 468 352.08 0.12 0.56 0.18

in Figure 4.5(c) where the collection and sample have similar medians and ranges of

study sizes. This would suggest that it is reasonable to generalise the results obtained

using the sample to what would likely be obtained if testing the whole collection.

The difference between the dataset in [119] and the dataset used here can be seen in

the average study sizes, shown in Table 4.3 and Table 4.1, on page 69. These show that

the study sizes in the dataset in [119] tend to be smaller in size and contain fewer images

than the studies in the dataset employed in this work. In fact, the studies used in [119]

are closer in size to a series in the dataset used here. Therefore, when comparing the

transfer rates between the two pieces of work, it would be fairer to compare the rates

reported in [119] with those obtained using series-level data in this thesis.

Series Sizes

The histograms of series sizes in the PROSTATE-DIAGNOSIS collection and the ran-

domly selected sample of series used to perform the series-wise tests are shown in

Figure 4.6.

Table 4.4 shows the range and mean number of images per series in the PROSTATE-

DIAGNOSIS collection and the randomly selected sample, as well as average size of the

images and the series.

Table 4.4: Series size statistics for PROSTATE-DIAGNOSIS collection and randomly selected sample

Average Series Images per Series Image Size (MB)

Size (MB) Min. Max. Mean Min. Max. Mean

Collection 16.25 10 360 88.42 0.12 0.56 0.18

Sample 16.40 20 336 94.00 0.12 0.32 0.17

83



Chapter 4. DICOM Transfer Rates on FPGA-based SoC Platforms

0 10 20 30 40 50 60
Series Size (MB)

0

20

40

60

80

100

Fr
eq

ue
nc

y

(a)

0 10 20 30 40 50 60
Series Size (MB)

0

5

10

15

Fr
eq

ue
nc

y

(b)

Collection Sample
0

10

20

30

40

50

60

Se
rie

s S
ize

 (M
B)

(c)

Figure 4.6: Series size histograms for (a) the PROSTATE-DIAGNOSIS collection, (b) the randomly
selected sample, and (c) the PROSTATE-DIAGNOSIS collection and randomly selected sample as
boxplots

The similarity in shape of the series size histograms for the PROSTATE-DIAGNOSIS

data and the randomly selected sample shown in Figure 4.6(a) and (b) is not as clear

as for the study sizes. The dissimilarities between the two distributions are even more

obvious in the boxplots shown in Figure 4.6(c). From these it can be seen that the two

distributions have similar first quartile and median values, however the third quartile

value for the sample is around 10MB larger than that of the collection. This indicates

that the randomly selected sample contains a greater proportion of larger series than

the collection as a whole. This may affect how generalisable the results obtained using

the sampled data were, if the results depended significantly on the size of the series

being transferred.

84



Chapter 4. DICOM Transfer Rates on FPGA-based SoC Platforms

4.3.2 Measured Transfer Rates

Inserting Studies in the PACS

The mean values for the transfer rate of each platform tested for inserting study-level

data in the PACS model are shown in Table 4.5. These are the mean values of the

transfer rates computed for each study that was transferred, based on the timestamps

recorded by the C++ applications. The standard deviation of the measured transfer

rates are also shown.

Table 4.5: Transfer rates when inserting studies in the PACS model

Platform Mean Transfer Rate
(MB/s)

Standard Deviation
(MB/s)

ZedBoard 3.7128 0.6321

ZCU102 4.4207 0.8651

Desktop with HDD 4.5094 0.9352

Desktop with SD
Card

4.3548 0.8085

A statistically significant (p < .05) difference in transfer rate was found between

the ZedBoard and each of the other platforms, with the ZedBoard tending to have a

lower rate, as can be seen in Table 4.5. No other statistically significant differences in

transfer rate were found.

The real-terms effects of the measured transfer rates are illustrated in Table 4.6,

where the time taken to transfer an image is tabulated. Mean and worst case times for

transferring a study are also shown.

Mean image transfer rates were calculated using the mean transfer rates shown in

Table 4.5 and the mean image size from the PROSTATE-DIAGNOSIS collection of

0.18MB.

The worst case image transfer rates were computed using the mean transfer rates

and the largest image size from the PROSTATE-DIAGNOSIS collection of 0.56MB. A

similar approach was used in calculating the mean and worst case times to transfer a

study.

85



Chapter 4. DICOM Transfer Rates on FPGA-based SoC Platforms

Table 4.6: Image transfer rates and time taken to transfer studies when inserting studies in the
PACS model

Images per Second Study Transfer Time (s)

Mean Worst Case Mean Worst Case

ZedBoard 20.63 6.63 17.48 23.16

ZCU102 25.56 7.89 14.68 19.45

Desktop with HDD 25.05 8.05 14.39 19.07

Desktop with SD Card 24.19 7.78 14.91 19.75

Table 4.6 shows that the difference found between the transfer rate for the ZedBoard

and the other platforms would translate to the ZedBoard taking around 3–4 seconds

longer to insert a study in the PACS model, compared to the other platforms. This was

a 20–23% increase in the amount of time taken compared to the desktop with HDD,

which represented the rate expected for current radiotherapy equipment.

Although this increase in data transfer time puts any hardware accelerator based

on the ZedBoard platform at a disadvantage, it may still be deemed acceptable, if

the ZedBoard were shown to sufficiently reduce the time taken to perform the image

processing tasks compared to the desktop.

Inserting Series in the PACS

The mean values for the transfer rate of each platform tested for inserting series-level

data in the PACS model are shown in Table 4.7.

Table 4.7: Transfer rates when inserting series in the PACS model

Platform Mean Transfer Rate
(MB/s)

Standard Deviation
(MB/s)

ZedBoard 4.6887 1.3279

ZCU102 5.2863 1.5452

Desktop with HDD 5.9710 2.1953

Desktop with SD
Card

5.5823 1.4864

86



Chapter 4. DICOM Transfer Rates on FPGA-based SoC Platforms

Statistically significant differences (p < .05) were found between the transfer rates

for the ZedBoard and the two desktop-based platforms. The difference in transfer

rate measured between the ZedBoard and ZCU102 was also close to being statistically

significant.

The measured transfer rate on each platform was slightly higher than those mea-

sured for inserting studies into the PACS model, shown in Table 4.5.

The real-terms effects of the transfer rates in Table 4.7 are illustrated in Table 4.8.

Table 4.8: Image transfer rates and time taken to transfer series when inserting series in the PACS
model

Images per Second Series Transfer Time (s)

Mean Worst Case Mean Worst Case

ZedBoard 26.05 8.37 3.47 13.01

ZCU102 29.37 9.44 3.07 11.54

Desktop with HDD 33.17 10.66 2.72 10.22

Desktop with SD Card 31.01 9.97 2.91 10.93

Table 4.8 shows that the time taken for the ZedBoard to insert a series in the

PACS model was less than 3 seconds longer than the desktop with HDD platform.

This difference is shorter in real-time than that found between the two platforms for

inserting a study, but is longer in relative terms, representing a 24–30% increase in the

time taken to insert a series.

Retrieving Studies from the PACS

Table 4.9 shows the mean transfer rates for each of the platforms when retrieving

study-level data from the PACS.

The differences in transfer rate between each of the platforms were found to be

statistically significant (p < .05).

It can be seen from Table 4.9 that the desktop platform using the HDD had the

highest transfer rate followed by the desktop using the SD card, the ZCU102 and then

the ZedBoard.

87



Chapter 4. DICOM Transfer Rates on FPGA-based SoC Platforms

Table 4.9: Transfer rates when retrieving studies from the PACS model

Platform Mean Transfer Rate
(MB/s)

Standard Deviation
(MB/s)

ZedBoard 3.2345 0.3237

ZCU102 5.0946 0.6645

Desktop with HDD 8.5447 0.8308

Desktop with SD
Card

6.0782 1.2691

Table 4.10 illustrates the effects of the measured transfer rates in real-terms. It

shows an increase of around 36–45% in the amount of time taken to retrieve a study

from the PACS model between the two desktop platforms. The ZCU102 platform would

be expected to take around 5–7 seconds longer to transfer a study from the PACS model

than the desktop with HDD, a difference of almost 70%. The difference in transfer rates

found between the desktop with HDD and ZedBoard platforms would be expected to

result in the ZedBoard taking between 12 and 17 seconds longer than the desktop, or

around 1.6 times as long, to retrieve a study from the PACS model.

Table 4.10: Image transfer rates and time taken to transfer studies when retrieving studies from the
PACS model

Images per Second Study Transfer Time (s)

Mean Worst Case Mean Worst Case

ZedBoard 17.97 5.78 20.07 26.59

ZCU102 28.30 9.10 12.74 16.88

Desktop with HDD 47.47 15.26 7.60 10.06

Desktop with SD Card 33.77 10.85 10.68 14.15

Retrieving Series from the PACS

Table 4.11 shows the mean transfer rates for each of the platforms when retrieving

series-level data from the PACS.

88



Chapter 4. DICOM Transfer Rates on FPGA-based SoC Platforms

Table 4.11: Transfer rates when retrieving series from the PACS model

Platform Mean Transfer Rate
(MB/s)

Standard Deviation
(MB/s)

ZedBoard 3.7844 1.1671

ZCU102 4.8788 1.2186

Desktop with HDD 8.1307 2.1942

Desktop with SD
Card

7.1428 2.6985

Significant (p < .05) differences in transfer rate between each pair of platforms were

found, with the exception of between the two desktop-based platforms. The difference

in transfer rate between the two desktop-based platforms was nearly statistically sig-

nificant. The transfer rates measured for each platform were similar to those measured

for retrieving studies, as shown in Table 4.9, although the rate for the desktop with SD

card was slightly higher.

Table 4.12 illustrates the effects of the measured transfer rates in real-terms.

Table 4.12: Image transfer rates and time taken to transfer series when retrieving series from the
PACS model

Images per Second Series Transfer Time (s)

Mean Worst Case Mean Worst Case

ZedBoard 21.02 6.76 4.29 16.12

ZCU102 27.10 8.71 3.33 12.50

Desktop with HDD 45.17 14.52 2.00 7.50

Desktop with SD Card 39.68 12.76 2.28 8.54

The relative difference in the time taken to retrieve a series from the PACS model

between the ZCU102 and the desktop with HDD was similar to that observed for

retrieving a study, at around 65%. This equated to a difference of between 1 and 5

seconds, approximately. The time taken to retrieve a series from the PACS model on

89



Chapter 4. DICOM Transfer Rates on FPGA-based SoC Platforms

the ZedBoard was around 1.1 times as long as on the desktop with HDD, lower than

the 1.6 times observed when retrieving studies. This equated to a difference of between

2 and 9.5 seconds between the two platforms.

4.3.3 Correlation between Transfer Rate and Size

The transfer rates measured here were tested for linear correlation with the size of the

studies or series being transferred. The results of this showed that, with the exception

of receiving series-level data from the PACS model, no statistically significant (p < .05)

linear correlation was found.

In the cases where no statistically significant correlation was found, it is reasonable

to assume that a similar transfer rate would be obtained in that case regardless of

the size of the study or series being transferred. In the case of receiving series-level

data from the PACS model, where a fairly weak, negative correlation was found, some

consideration would need to be given to the size of the series being transferred when

proposing a typical value for the transfer rate.

As was mentioned above, the randomly selected sample of series used to obtain

the tranfer rate measurements contains a greater proportion of larger series than the

collection as a whole. This, along with the negative correlation between series size and

transfer rate, would suggest that the mean transfer rate measured for the sample may

be lower than the mean transfer rate that would be expected for the whole collection.

However, the strength of the correlation was also fairly weak, suggesting that the effect

would not be great.

4.3.4 System Activity

CPU

The CPU utilisation data recorded by the sysstat software is presented for each of the

platforms tested in each of the test cases in Figure 4.7. The figure shows the amount

of CPU processing time spent with:

• the CPU idle and no outstanding I/O requests to be serviced by the DMAC;

90



Chapter 4. DICOM Transfer Rates on FPGA-based SoC Platforms

• the CPU executing user level instructions, which was assumed to be the test

applications;

• the CPU idle with outstanding I/O requests to be serviced by the DMAC.

ZedBoard ZCU102 Desktop
with
HDD

Desktop
with

SD Card

0

20

40

60

80

100

Ut
ilis

at
io

n 
(%

)

Idle
User Level
Awaiting I/O

(a)

ZedBoard ZCU102 Desktop
with
HDD

Desktop
with

SD Card

0

20

40

60

80

100

Ut
ilis

at
io

n 
(%

)

Idle
User Level
Awaiting I/O

(b)

ZedBoard ZCU102 Desktop
with
HDD

Desktop
with

SD Card

0

20

40

60

80

100

Ut
ilis

at
io

n 
(%

)

Idle
User Level
Awaiting I/O

(c)

ZedBoard ZCU102 Desktop
with
HDD

Desktop
with

SD Card

0

20

40

60

80

100
Ut

ilis
at

io
n 

(%
)

Idle
User Level
Awaiting I/O

(d)

Figure 4.7: CPU utilisation for (a) inserting studies in the PACS model, (b) inserting series in the
PACS model, (c) retrieving studies from the PACS model, and (d) retrieving series from the PACS
model

It can be seen from Figure 4.7 that the vast majority of CPU time on each of the

platforms, in each test was spent idle and only a small proportion was spent executing

the test application. This suggests that there would be plenty of processing capac-

ity available on each of these platforms to perform other tasks in conjunction with

transmitting and receiving DICOM data.

91



Chapter 4. DICOM Transfer Rates on FPGA-based SoC Platforms

In all of the tests, the ZedBoard spent a far greater proportion of time executing

the application code than any other platform. The ZCU102 also spent a substantially

greater proportion of time executing the application code than either of the desktop-

based platforms.

The differences in application execution time between the SoC-based and desktop-

based platforms are likely to be due to the relatively low performance of the CPUs on

the SoCs compared to that used in the desktop. In addition to running at lower clock

frequencies than the CPU used in the desktop, the CPUs in the SoCs are specifically

designed for low power consumption rather than high processing performance. These

factors are likely to have contributed to the lower transfer rates achieved with the SoC-

based platforms, particularly the ZedBoard, which had the least powerful CPU of the

platforms tested here.

Network

Graphs showing the proportion of the available network bandwidth that was used

during the course of each test are given in Figure 4.8. A full-duplex connection was

used in each case, and the graphs depict the utilistion on the channel with the greatest

usage.

It can be seen from Figure 4.8 that network bandwidth utilisation is very low for

each of the platforms tested across all of the tests. It is apparent from this that a lack

of network bandwidth is not a limiting factor in determining the transfer rates reported

here. It also shows that there is potential to achieve much higher transfer rates before

there would be a need to increase network bandwidth.

On a real clinical LAN there is likely to be much more traffic due to the increased

number of network nodes compared to the network model used here, which only had

two. However, the network utilisation measured here suggests that the transfer rates

reported would be robust against quite large amounts of additional network traffic.

92



Chapter 4. DICOM Transfer Rates on FPGA-based SoC Platforms

0 10 20 30 40 50
Transfer Number

0

10

20

30

40

50

Ne
tw

or
k 

In
te

rfa
ce

 U
til

isa
tio

n 
(%

)
ZedBoard
ZCU102
Desktop with HDD
Desktop with SD Card

(a)

0 10 20 30 40 50
Transfer Number

0

10

20

30

40

50

Ne
tw

or
k 

In
te

rfa
ce

 U
til

isa
tio

n 
(%

)

ZedBoard
ZCU102
Desktop with HDD
Desktop with SD Card

(b)

0 10 20 30 40 50
Transfer Number

0

10

20

30

40

50

Ne
tw

or
k 

In
te

rfa
ce

 U
til

isa
tio

n 
(%

)

ZedBoard
ZCU102
Desktop with HDD
Desktop with SD Card

(c)

0 10 20 30 40 50
Transfer Number

0

10

20

30

40

50

Ne
tw

or
k 

In
te

rfa
ce

 U
til

isa
tio

n 
(%

)

ZedBoard
ZCU102
Desktop with HDD
Desktop with SD Card

(d)

Figure 4.8: Network interface usage while (a) inserting studies in the PACS model, (b) inserting
series in the PACS model, (c) retrieving studies from the PACS model, and (d) retrieving series from
the PACS model

Non-volatile Storage

Mean values for non-volatile storage activity recorded by the sysstat software for each

of the test cases are presented in Table 4.13.

Table 4.13 shows that the ZedBoard had the lowest average read speed from non-

volatile storage in the case of inserting studies in the PACS. This is likely to have

contributed to the ZedBoard spending a much greater proportion of time waiting for

I/O requests to be serviced than any of the other platforms, as shown in Figure 4.7(a)

on page 91. In turn, it is probable that this was a factor in the ZedBoard having a

significantly slower DICOM transfer rate than the other platforms.

It can be seen from Table 4.13 that in the case of inserting series in the PACS, the

mean read speed from non-volatile storage increased for each of the platforms compared

to that when inserting studies in the PACS. It can also be seen from Tables 4.5 and 4.7,

93



Chapter 4. DICOM Transfer Rates on FPGA-based SoC Platforms

Table 4.13: Mean values for non-volatile storage activity

Zed-
Board

ZCU-
102

Desktop
with HDD

Desktop with
SD Card

Read speed inserting studies in
the PACS (MB/s)

3.5685 4.2410 4.4798 4.3724

Read speed inserting series in
the PACS (MB/s)

4.3379 4.8570 5.0116 5.0475

Write speed retrieving studies
from the PACS (MB/s)

3.2280 4.7867 23.3767 6.5874

Write speed retrieving series
from the PACS (MB/s)

4.3773 6.2695 23.9717 6.3669

on pages 85 and 86 respectively, that the increases in non-volatile storage read speed

closely correlate with increases in the DICOM transfer rate. This suggests that the

non-volatile storage read speeds were a significant factor in determining the DICOM

transfer rates measured here. Furthermore, it suggests that the device drivers used by

the operating system to read from the non-volatile storage were better suited to the data

access pattern when inserting series, rather than studies, in the PACS. It may, therefore,

be possible to gain improvements in transfer speed between non-volatile storage and

memory by developing bespoke device drivers optimised for the data transfer patterns

specific to a given application.

With the exception of the desktop with HDD platform, the mean write speeds to

non-volatile storage, shown in Table 4.13, are similar to the mean transfer rates for

retrieving data from the PACS, presented in Table 4.9 on page 88 and Table 4.11 on

page 89. This clearly suggests that the factor limiting the transfer rate performance

of each platform, except the desktop with HDD, was the write speed to non-volatile

storage.

Table 4.13 shows that the desktop using the HDD clearly had the largest bandwidth

for writing to non-volatile storage of the platforms tested. The mean write speed was

an order of magnitude higher even than the same platform using the SD card. In the

case of retrieving studies from the PACS, this resulted in a significantly lower DICOM

94



Chapter 4. DICOM Transfer Rates on FPGA-based SoC Platforms

transfer rate for the desktop using the SD card. Thus, further demonstrating that the

limiting factor on the transfer rate of the desktop using the SD card was the write

speed to non-volatile storage.

4.3.5 Experimental Set-up

PACS Model

The PACS was modelled using a moderate performance laptop computer. In the clinical

setting, server-grade equipment is more likely to be used for the PACS, such as that

used in [119]. Compared to the server used in [119], the computer used as the PACS

model here would not be expected to perform as well. The PACS model used here had

two processing cores compared to the eight processing cores on the server, which also

operated at a higher clock frequency. Moreover, the CPU on the PACS model used

here was optimised for low-power performance, meaning it was designed to sacrifice

some processing performance to gain energy efficiency compared to standard CPUs.

The server used in [119] also had twelve times the amount of memory available to the

PACS model used here and the nominal throughput to non-volatile storage was more

than double.

Although the PACS model used here was likely to exhibit lower performance than

the server-grade equipment likely to be found in the clinical setting, this must be offset

against the fact that it was also used with an atypically small workload. Three orders of

magnitude less data than was contained in the full dataset, and an order of magnitude

less than the MR and CT component, used in [119].

Network Model

The experimental setup used in the test scenario from [119] that has been discussed here,

connected the client and server machines by five parallel Gigabit Ethernet connections,

giving five times the available network bandwidth compared to the experimental setup

used here. It is possible that this was due to the purpose of the work reported in [119]

being to promote the author’s database application by demonstrating its capabilities

rather than to accurately model the realities of the networking infrastructure found

95



Chapter 4. DICOM Transfer Rates on FPGA-based SoC Platforms

in most medical institutions. It would not have served this purpose as well had the

reported performance of the database application been unduly restrained by limitations

in the hardware used for the demonstration. The single Gigabit Ethernet connection

used in the experimental setup presented here was more representative of what would

currently be used in a typical radiotherapy institution [116].

In other respects, the network model used here was idealised; there were only two

network nodes resulting in less network traffic than might be expected on a clinical

network and the two nodes were essentially in the same geographical location, connected

by a short cable. In these respects, this setup appears to have been similar to that used

in [119], although the geographical separation of their network nodes was not reported.

The transfer rates published in [118], however, were based on transferring data

between network nodes separated by tens or hundreds of kilometres. These distances

were based on the typical geographical separations that might be found in the grid

computing use-case they were investigating. Most medical institutions tend to use

their PACS on a LAN, making the test setup employed here more appropriate than the

approach used in [118].

In the tests presented here, image data was transmitted uncompressed and un-

encrypted. Encryption substantially increases the amount of data that needs to be

transmitted per image [118] and would seem an unnecessary overhead when data is

being transmitted over a secure LAN, as is typically the case. The times reported here

for transferring image, series and study data would need to be increased if encryption

was used. The compression rates that can be achieved using lossless compression tend

to be modest [117] and the additional processing overhead for compressing and un-

compressing the data can outweigh the time saved from transferring less data. Lossy

compression on the other hand, can achieve much higher compression rates, but the

use of lossy compression is controversial in the medical imaging field [117].

96



Chapter 4. DICOM Transfer Rates on FPGA-based SoC Platforms

4.3.6 Comparison with Literature

All of the platforms in each of the cases tested here comfortably exceeded the minimum

image transfer rate suggested in [116] of two full resolution images in less than two

seconds. The discussion in [116] concerned medical imaging in general and there are

some medical imaging modalities that produce much higher resolution images than the

MR images used here. The minimum standard proposed in [116] should therefore not

be regarded as a high standard to meet for MR images.

The peak bandwidth calculated in [117] of 0.5MB/s was also comfortably exceeded

by all of the platforms in each of the test cases here. However, the work reported in [117]

was conducted quite some time ago. There have been improvements in technology in the

interim, as well as an increase in the use of medical imaging data. The relevance of the

rate reported in [117] in the context of modern radiotherapy is therefore questionable.

Most of the platforms in the majority of test cases recorded transfer rates that met

or exceeded those reported in [118] for transferring MR and CT image data using the

plain DICOM protocol. Unlike in [118], there was no geographical separation between

the AEs in the tests carried out here. This is likely to have contributed to the increased

transfer rates achieved in some cases. It is also possible that some of the improvement

in transfer performance was due to using higher performance hardware. However, this

is difficult to be certain of as few details of the hardware used in [118] were reported.

The only platform that exhibited transfer rates lower than those reported in [118]

was the ZedBoard, and this only in the case of retrieving studies from the PACS model.

In this case, the mean transfer rate measured for the ZedBoard was 0.4MB/s lower.

The difference in performance may be attributable to the use of a lower performance

CPU optimised for energy efficiency on the ZedBoard, although, again, it is difficult to

be confident of this as few details of the hardware used in [118] were reported.

The transfer rates reported in [119] and [120] greatly exceed the rates recorded for

any of the platforms tested here, by two orders of magnitude. The specification of the

hardware used in [119] and [120] was much higher than that used here, although a much

greater image data workload was also used.

97



Chapter 4. DICOM Transfer Rates on FPGA-based SoC Platforms

Some of the differences in performance may be attributable to the difference in

hardware specification. In some respects, such as the network bandwidth, the hardware

used in [119] and [120] may not be representative of the equipment found in a typical

radiotherapy institution. The work in [119] and [120] can also be criticised, as can

the work presented here, that only two network nodes and no other network traffic or

competition for access to the PACS were modelled.

Parallelism was exploited in [119] and [120]. Multiple images were transferred in

parallel and multiple client applications ran concurrently. By contrast, images were

transferred serially and only one application instance ran at a time in the work presented

here. This is likely to have contributed to some of the differences in transfer rates

observed.

Two levels of parallelism were used in [119]: having multiple instances of the data

accessing application running to retrieve or insert multiple studies in parallel; and

retrieving or inserting multiple images from the same study in parallel.

The benefit of the former approach in the context of adaptive radiotherapy depends

on how the image processing platform is used. If the image processing platform were

serving only one treatment machine, this approach is unlikely to be of much practical

benefit since it is probable that only two datasets would need accessed per patient: the

patient’s previous image data from the PACS and the most recent image data from

the treatment machine. There would be ample opportunity to download the patient’s

previous image data during patient setup and the acquisition of the image data for

the current treatment session. There is therefore little advantage to be gained from

being able to access multiple datasets in parallel. If, however, the image processing

platform were serving multiple treatment machines, it is feasible that the ability to

download multiple studies in parallel would be beneficial to the average data transfer

rate. This could be achieved by running multiple instances of the application software

concurrently on the image processing platform.

The latter approach would likely be advantageous in achieving higher data transfer

rates, if applied here. It would require the algorithm in the application created to send

image data to the PACS, Algorithm 1, to be altered to create separate threads for the

98



Chapter 4. DICOM Transfer Rates on FPGA-based SoC Platforms

number of images to be sent in parallel when sending C-STORE requests to the PACS

and a mechanism to re-synchronise the threads as responses were received from the

PACS. In the case of receiving data from the PACS, the Orthanc source code would

need similar alterations to its C-STORE SCU functionality to enable it to send multiple

images in parallel.

The CPU utilisation data collected here indicates that there is sufficient processing

capacity on all of the platforms tested to support transferring multiple images in paral-

lel. Likewise, there was found to be plenty of spare capacity in the network bandwidth

to allow more data to be transferred in parallel. However, in a real clinical setting,

where there will almost certainly be multiple nodes competing for access to the PACS

and network, the capacity for transferring data faster may be more limited.

4.3.7 Results in the Context of ART

The key measurements, in terms of meeting the clinical timing requirements of ART,

are the times taken to retrieve study- and series-level data from the PACS. These are

recapitulated in Table 4.14.

Table 4.14: Mean study and series transfer times when retrieving data from the PACS model

Study Transfer Time (s) Series Transfer Time (s)

ZedBoard 20.07 4.29

ZCU102 12.74 3.33

Desktop with HDD 7.60 2.00

Desktop with SD Card 10.68 2.28

The time taken to retrieve study-level data is representative of the time needed to

transfer the original treatment plan and pre-treatment imaging data to the hardware

accelerator at the beginning of the fraction. The time taken to retrieve series-level data

is representative of the time needed to transfer the images acquired during the fraction

to the hardware accelerator. In both of these metrics, the SoC platforms were found

to be significantly slower than the desktop computer.

99



Chapter 4. DICOM Transfer Rates on FPGA-based SoC Platforms

For retrieving study-level data, Table 4.14 shows that the ZedBoard platform would

take more than double the amount of time to transfer the data as the desktop computer.

However, the transfer would still take less than 30s, and could easily be accommodated

during the several minutes required for patient set up, as illustrated in Figure 2.13 on

page 36. Thus, even with the reduced performance of the SoC platforms, this transfer is

unlikely to impinge on the critical time period between the acquisition of the treatment

time images and the start of treatment delivery.

The time taken to transfer the image series acquired during the treatment fraction

will, however, affect this critical time period, as highlighted in Figure 2.13. Table 4.14

shows that the ZedBoard platform would, again, take more than twice as long as the

desktop computer to transfer the data. Yet, in absolute terms, Table 4.12 on page 89

also exhibits that the transfer to the ZedBoard would likely take no more than around

16s to complete. In the context of the clinical requirement for the time between image

acquisition and treatment delivery being no more than ten minutes [3, 4], this still

represents a very small proportion of the available timeframe, and would not preclude

the use of an SoC platform for accelerating ART algorithms.

4.4 Conclusion

This chapter has presented work demonstrating the ability to interface FPGA-based

SoC platforms with existing radiotherapy PACS using the DICOM standard. The rates

at which image data could be transferred between the FPGA-based SoC platforms and

the PACS were measured. These rates were compared against those reported in the

literature and those measured using a desktop computer with a similar specification to

a typical workstation found in a modern radiotherapy institution. System activity on

each of the platforms tested was recorded to identify the critical factors affecting the

data transfer performance of the FPGA-based SoC platforms.

The transfer rates of the SoC platforms were found to meet or exceed those reported

in the literature, except in the case of the ZedBoard retrieving study-level data from

the PACS.

100



Chapter 4. DICOM Transfer Rates on FPGA-based SoC Platforms

Compared to the desktop computer, the ZedBoard was found to transfer at a sta-

tistically significantly lower rate in each of the cases tested. The ZCU102 platform,

on the other hand, was only found to transfer at a statistically significantly lower rate

than the desktop computer when retrieving data from the PACS.

The ZedBoard was found to take up to 17s longer than the desktop to transfer a

study and up to 8.5s longer for a series. The ZCU102 was found to take up to 7s longer

than the desktop to transfer a study and up to 5s longer to transfer a series.

These differences in transfer times in the order of, at most, tens of seconds are

unlikely to have a significant impact on the time-critical portion of an ART fraction

lasting up to ten minutes. However, they do place SoC-based designs at a substantial

disadvantage in terms of accelerating ART algorithms. The improvement in perfor-

mance achieved with an SoC-based design must be sufficient to overcome the transfer

deficit in order to justify its usage.

The key factor identified as limiting the transfer rates on the SoC platforms was

the bandwidth to non-volatile storage. The performance of the SoC platforms would

be significantly improved by removing the need to read and write image data from

non-volatile storage. Any SoC platform intended for use in ART should, therefore, be

designed or chosen with enough memory to cache all of the image data required for an

ART fraction.

In the event that non-volatile storage were still necessary, the non-volatile memory

technology and interface should be chosen to maximise the bandwidth to system mem-

ory. Device drivers for accessing non-volatile storage should also be optimised for the

data access patterns prevalent in ART.

Another factor identified as contributing to the slower transfer rates observed on

the SoC platforms was the processing capabilities of the CPUs on the SoC devices.

They were substantially less than those of the dedicated CPU used in the desktop,

particularly in the case of the ZedBoard. Ideally, the CPU on the SoC devices being

applied to ART would be optimised for computational performance, including a much

faster clock frequency than either of the SoC devices used here.

101



Chapter 5

Segmentation of Bony Anatomy

from CT Scans of Bladder

Cancer Patients

ART depends on establishing a correspondence between a patient’s anatomy at treat-

ment time and at the time the planning scan was acquired. For patients receiving

external beam radiotherapy to the pelvis, such as bladder cancer patients, this can be

especially challenging due to the variability in the size, position and shape of organs

within the pelvic cavity, such as the bladder and bowel. These variations are in addition

to the variations in patient set-up where the entire anatomy of the patient is rotated

and translated relative to the planning scan.

The rigidity of most bony anatomy makes it well suited for establishing the rigid

correspondence between the planning and treatment images. The first stage in estab-

lishing the correspondence between the bony anatomy in each image is to segment the

bony anatomy. This chapter presents the results of applying hardware acceleration to

such an algorithm. It is envisaged that this would form the first stage in an ART image

processing pipeline. Subsequent stages would include a rigid registration based on the

bony anatomy segmented in this first stage and non-rigid registration to establish a

corresponence between the soft tissues in the planning and treatment images.

102



Chapter 5. Segmentation of Bony Anatomy from CT Scans of Bladder Cancer Patients

In this chapter, adaptations to the segmentation algorithm are proposed to make it

more suitable for implementation in hardware. The segmentation quality and execution

time of the hardware implementation is compared to the original algorithm in software.

Strategies for improving the performance of the hardware implementation in terms of

execution time are proposed and the results are discussed in the context of ART.

5.1 Segmentation Algorithm

The algorithm selected for further investigation is one described by Haas et al [5].

Specifically, it was aimed at speeding up the segmentation of pelvic CT scans in radio-

therapy planning with a view to enabling dynamic ART, making it extremely relevant

to the work presented here. In addition, the algorithm is fully automated and requires

no a priori information, making it well suited for ART. The algorithm is, however,

reliant on high quality images and was developed for use on CT volumes, rather than

the typically lower quality, CBCT volumes. Furthermore, the authors subjected the

algorithm to significant clinical validation against CT scans of 69 pelvic studies, and

it was rated to be time-saving in around 69% of these cases compared to manual seg-

mentation [5]. Although, in the majority of these cases the automatically generated

segmentation required major corrections to make it clinically acceptable.

The entire algorithm presented by [5] was designed to identify the patient’s gender

and orientation and multiple anatomic structures within each CT scan, however it

starts by identifying the patient body and then decomposing that into soft tissue, bone

and air or lung equivalent tissues. It is these initial parts of the algorithm, referred

to by the authors of [5] as the pre-segmentation, that are investigated for hardware

acceleration here.

In addition to being used commercially and clinically validated, the pre-segmentation

algorithm proposed in [5] was chosen due to its use of predominantly local pixel opera-

tions. These are operations where the value of a pixel in the output image is dependent

only on a small number of pixel values in close proximity in the input image. A series of

local pixel operations can be implemented in a processing architecture where the pixel

103



Chapter 5. Segmentation of Bony Anatomy from CT Scans of Bladder Cancer Patients

data is streamed through the processing stages with small amounts of the data being

buffered in memory local to each processing stage. Such architectures are well-suited

for implementation on FPGAs.

In the first instance, the pre-segmentation algorithm proposed in [5], hereafter re-

ferred to as the Haas algorithm, creates a mask of the patient’s body, eliminating any

patient supports or extraneous material. This mask is applied to the original image

and the bony structures are sought within the masked image. A rough segmentation

into the three tissue classes:

(i) soft tissue;

(ii) bone tissue;

(iii) air or lung equivalent tissue;

can be achieved using simple range thresholds, as the pixel intensity values of a CT

scan are related to the Hounsfield Units (HU) value of the material imaged, and these

ranges are well characterised for human tissues. The algorithm operates on each 2D

slice of a 3D CT volume in turn. A schematic representation of the algorithm is shown

in Figure 5.1.

A mask is a binary image, where pixels belong to either the foreground or back-

ground sets. When a mask is applied to an image, the intensities of the image pixels

that correspond with foreground pixels in the mask are retained in the output image.

Those that correspond with background pixels are given an arbitrary value, usually 0,

in the output image.

To create the body mask, a threshold range is applied to the CT slice. That is, if

I(x, y) is the intensity value of the pixel at position (x, y) of the input image, then the

binary image output, B(x, y) is given by Equation 5.1, where F is the set of foreground

pixels, B is the set of background pixels and t1 and t2 are the lower and upper limits

of the threshold range, respectively. For creating the body mask, a threshold range of

between -175 and 1250HU is used. Figure 5.2(b) illustrates the result of applying these

thresholds to an example CT slice.

104



Chapter 5. Segmentation of Bony Anatomy from CT Scans of Bladder Cancer Patients

CT
Slice

Apply
Thresholds

Morphological
Filtering

Connected
Component Labelling

Component
Removal

Body
Mask

Apply
Thresholds

Connected
Component Labelling

Component
Removal

Bone
Mask

B
od

y 
M

a
sk

 G
en

er
at

io
n

B
one M

ask G
eneratio

n

Figure 5.1: Pre-segmentation algorithm proposed by Haas et al. [5]

B(x, y) ∈

 F for t1 < I(x, y) < t2

B otherwise
(5.1)

Binary morphological operations are used to eliminate any patient supports from

the body mask. Morphological operators assign the value of an output pixel based

on the value of the corresponding pixel and a selected number of its neighbours in the

input image. The local neighbourhood around a pixel used to determine the value of the

105



Chapter 5. Segmentation of Bony Anatomy from CT Scans of Bladder Cancer Patients

(a) (b)

(c) (d)

Figure 5.2: Illustration of the stages of the Haas algorithm to generate the body mask. (a) shows
the CT slice used as input; (b) shows the output from the thresholding stage; (c) shows the output
from the morphological filtering stage; and (d) shows the final body mask.

106



Chapter 5. Segmentation of Bony Anatomy from CT Scans of Bladder Cancer Patients

pixel in the output image is termed the structuring element. In the Haas algorithm, a

cross-shaped structuring element, as shown in Figure 5.3, is used in each morphological

operation.

(x, y)

(x, y - 1)

(x, y + 1)

(x - 1, y) (x + 1, y)

(x - 1, y - 1) (x + 1, y - 1)

(x + 1, y + 1)(x - 1, y + 1)

Figure 5.3: Pixels belonging to the 8-connected neighbourhood of the pixel (x, y) with their coor-
dinates shown. The yellow pixels show the 4-connected neighbourhood of the pixel (x, y) and the
structuring element used in the morphological filtering operations of the Haas algorithm.

Two iterations of a morphological opening are performed using this structuring

element. The two iterations together consist of two morphological erosion operations

followed by two morphological dilation operations. The output of an erosion operation,

E(x, y), on a pixel of an input image, I(x, y), using the structuring element shown in

Figure 5.3 is given by Equation 5.2. The output of a dilation operation, D(x, y), on

a pixel of an input image, I(x, y), using the structuring element shown in Figure 5.3

is given by Equation 5.3. An example of the output produced from this stage is also

shown in Figure 5.2(c).

E(x, y) ∈


F for {I(x, y), I(x− 1, y), I(x+ 1, y),

I(x, y − 1), I(x, y + 1)} ⊆ F

B otherwise

(5.2)

D(x, y) ∈


F for {I(x, y), I(x− 1, y), I(x+ 1, y),

I(x, y − 1), I(x, y + 1)} ∩ F 6= ∅

B otherwise

(5.3)

107



Chapter 5. Segmentation of Bony Anatomy from CT Scans of Bladder Cancer Patients

Connected foreground pixels are collected into segments. The authors of [5] do not

specify whether 4- or 8-connectivity is used.

In 4-connectivity, the foreground pixel (x, y) is connected to any other foreground

pixels in the set {(x − 1, y), (x + 1, y), (x, y − 1), (x, y + 1)}, as shown in Figure 5.3.

In 8-connectivity, the foreground pixel (x, y) is additionally connected to foreground

pixels in the set {(x− 1, y − 1), (x− 1, y + 1), (x+ 1, y − 1), (x+ 1, y + 1)}, also shown

in Figure 5.3. Two foreground pixels, a0 and an, belong to the same segment if there

exists a set of pixels {a1, . . . , an−1} such that ai and ai−1 are connected for all i ∈ [1, n].

Any segments where the area of the pixels contained in them is less than 800mm2

are discarded from the body mask. That is to say, if a segment, S, has fewer than

the requisite number of pixels to constitute an area of at least 800mm2, any pixel

in S is removed from the set of foreground pixels and becomes a member of the set

of background pixels. This is also the case for segments that do not overlap with a

340× 170mm rectangle centred in the image. An example of the body mask produced

by this stage is shown in Figure 5.2(d).

The body mask, M , is applied to the original CT image slice, I, to form the masked

image, N , as described in Equation 5.4. Figure 5.4(a) illustrates the result of applying

the body mask shown in Figure 5.2(d) to the CT slice shown in Figure 5.2(a).

N(x, y) =

 I(x, y) for M(x, y) ∈ F

0 otherwise
(5.4)

Bone pixels are segmented from the masked image by applying a range threshold,

as described in Equation 5.1, of between 145 and 1500HU. An example of the output

produced from this thresholding operation is shown in Figure 5.4(b).

In addition to bone pixels, this also segments pixels belonging to calcifications, metal

and image artifacts. To segment only those pixels that are most likely to genuinely

represent bony antomy, segments with an area less than 25mm2, or an aspect ratio

less than 1
6 or greater than 6, are removed from the segmentation. An example of the

output produced from this operation is shown in Figure 5.4(c).

108



Chapter 5. Segmentation of Bony Anatomy from CT Scans of Bladder Cancer Patients

(a) (b)

(c)

Figure 5.4: Illustration of the stages of the Haas algorithm to generate the bone mask from the
body segmentation. (a) shows the body segmentation from the original CT slice used as input; (b)
shows the output from the thresholding stage; and (c) shows the output from removing segments
that were unlikely to represent bone due to their size or aspect ratio.

109



Chapter 5. Segmentation of Bony Anatomy from CT Scans of Bladder Cancer Patients

Similarly, segments that are too close to the outline of the body are also removed,

although the authors do not provide definitive criteria for what constitutes ‘too close’

[5]. An example of the complete segmentation produced by the Haas algorithm is

shown in Figure 5.5. The boundary of the body mask produced by the Haas algorithm

is indicated in the image by the outer-most green contour. The boundaries of the bone

mask produced by the Haas algorithm are given by the yellow contours. Figure 5.5

also shows segmentations that are produced by stages of the algorithm proposed in

[5] subsequent to the pre-segmentation stage that is of interest in this thesis. The

additional segmentations denoted are the bladder, prostate gland, rectum and femoral

heads.

Figure 5.5: An example segmentation produced by the full algorithm proposed in [5]. The boundaries
of the body and bone masks produced by the pre-segmentation portion of the algorithm can be seen
in green and yellow, respectively. Segmentations of the bladder, prostate, rectum and femoral heads
are also shown by the blue, pink, red and inner-most green contours, respectively. [5]

5.2 Haas Algorithm Implementations

This section provides details of the software and hardware implementations of the Haas

algorithm employed in this thesis. The metrics used to assess the performance of the

hardware implementation are described, as is the image data used to generate them.

110



Chapter 5. Segmentation of Bony Anatomy from CT Scans of Bladder Cancer Patients

5.2.1 Software Implementation

The Haas algorithm was implemented in software using the C++ language, based on

the description given in [5], to act as a benchmark for both segmentation quality and

execution time. The source code for this implementation can be found in Appendix B.

The OpenCV software library [128] was used to implement the application.

The algorithm was implemented as described in Section 5.1 with the following

caveats. 4-connectivity was assumed when establishing segments for both body and

bone segmentation. The upper threshold for segmenting bone was changed to 1500HU,

as using the thresholds proposed by Haas et al. excluded some areas of high density

bone from the segmentation in the image data used here. The step of removing bony

anatomy segments located too close to the body outline was omitted as the criteria for

determing which segments were too close was unclear from [5].

Modifications for Hardware Implementation

The Haas algorithm relies upon the establishment of segments of connected foreground

pixels when excluding segments both from the body segmentation and the bone segmen-

tation. The establishment of these segments requires connected component labelling,

where each foreground pixel is assigned exactly one label identifying the segment to

which it belongs, and all foreground pixels with the same label are connected.

The connected component labelling algorithm is not well suited for acceleration on

an FPGA since it is an inherently global algorithm. That is, the value of any pixel in

the labelled image cannot be definitively determined only from the values of the pixels

in its immediate neighbourhood, but depends on the values of pixels in the entire image.

Therefore, the entire image must be buffered in memory in order to assign the correct

label to each pixel.

The image could be buffered in the memory elements present in the FPGA fabric,

although there may not be enough memory capacity on more modest FPGA devices,

depending on the size of the image. Alternatively, image data could be buffered in

external memory, but this would incur a performance penalty for transferring the image

data to and from external memory.

111



Chapter 5. Segmentation of Bony Anatomy from CT Scans of Bladder Cancer Patients

FPGA implementations of connected component analysis that do not require the

entire image to be buffered have been proposed. Instead, they record features of each

segment found and dynamically update these features, including combining them when

two segments are found to be connected, as each pixel of the image is processed in

raster-scan order. Since they do not apply the segment labels to the image there is

no need to buffer or rescan the image data. This technique is not suitable for this

application since, in this case, it is intended to remove the segments that do not meet

the segmentation criteria. In such an event, it is necessary to be able to identify all of

the pixels belonging to each segment. Therefore, a fully labelled image is required.

To better suit implementation on hardware, the Haas algorithm was adapted to

avoid the need for connected component labelling. Instead, a region of interest (ROI)

was selected of a rectangular area measuring approximately 340× 170mm in the centre

of each CT slice to coincide with the region that each segment in the body segmentation

must overlap with in the Haas algorithm.

As a further consequence of not performing connected component labelling, the

elimination of segments based on area, aspect ratio and proximity to the edge of the

body contour, as described in [5], were omitted from the algorithm implemented in

hardware.

5.2.2 Hardware Implementation

The algorithm implemented in hardware, hereafter referred to as the Simplified Haas

algorithm, is shown in Figure 5.6 and consisted of two main stages. First, the ROI from

the CT slice was segmented to create a mask representing the body of the patient.

Secondly, the body mask was applied to the original ROI and a segmentation was

performed on the masked image to identify pixels classified as bone.

The body mask was created by thresholding the ROI from the CT slice, as described

in Equation 5.1, between -175 and 1250HU. The thresholded image was eroded twice

using the cross-shaped structuring element shown in Figure 5.3 and as described in

Equation 5.2. The result was then dilated twice using the same structuring element,

as described in Equation 5.3, to remove parts of the couch from the body mask.

112



Chapter 5. Segmentation of Bony Anatomy from CT Scans of Bladder Cancer Patients

CT Slice
ROI

Apply
Thresholds

Morphological
Filtering

Body
Mask

Apply
Thresholds

Bone
Mask

B
od

y 
M

a
sk

 G
en

er
at

io
n

B
one M

ask
G

eneratio
n

Figure 5.6: Segmentation algorithm implemented in hardware

The generated body mask was applied to the ROI from the CT slice and the resulting

masked image was thresholded, as described in Equation 5.1, between 145 and 1500HU

to create the bone segmentation.

Custom IP

IP cores were developed using the Vivado HLS tool to implement the Simplified Haas

algorithm in the programmable logic of a Zynq Z7020 device. The IP cores were gener-

ated from C++ implementations of the IP core functionality with the aid of directives

to help optimise the synthesised design. Directives supply additional information or

instructions to the synthesis tool to assist it in generating the hardware implementation.

IP cores with four different functionalities were developed: thresholding, erosion,

dilation and masking. The thresholding and morphological operator IP cores were based

on version 2017.2 of the xfopencv library—a library of computer vision functions from

which hardware can be readily generated using the SDx software [129]. The synthesis

directives were changed to suit implementation using Vivado HLS rather than SDx,

and the code was simplified to produce more application-specific and efficient designs.

113



Chapter 5. Segmentation of Bony Anatomy from CT Scans of Bladder Cancer Patients

Each of the IP cores were synthesised to be capable of processing images of up to

512× 512 pixels in size; the typical size of a full CT slice. The actual size of the image

to be processed was configured using an AXI4-Lite [130] interface prior to the core

processing any data. Likewise, the thresholds to be used by the threshold IP core were

configured via an AXI4-Lite interface.

All of the IP cores used AXI4-Stream [130] interfaces for transferring image data

into and out of the IP core. The CT image pixel intensity values were represented as

HU values offset by 1024, so the range of intensity values started from 24, representing

air. AXI4-Stream interfaces require the width of the data bus to be byte-aligned, so,

although many of the CT scans used here only used 12-bits to represent pixel intensities,

16-bit wide data buses were used on interfaces for transferring CT pixel intensity data.

On interfaces transferring binary image data, 8-bit wide data buses were used: the

minimum permissible with the AXI4-Stream protocol. Pixels belonging to the set of

background pixels were represented with the value 0, while pixels belonging to the set

of foreground pixels were represented with the value 255.

Processing Pipeline

The IP cores were connected to form the processing pipeline shown in Figure 5.7 using

Xilinx’s Vivado tool.

Two AXI Direct Memory Access (DMA) engines were used to transfer image data

between memory and the Zynq device’s programmable logic. One of these engines was

configured to use two channels: one to transfer the CT image ROI data to the start

of the processing pipeline and the other to transfer the segmented bone mask from the

output of the pipeline. The other AXI DMA engine was used to transfer the CT image

ROI data to the masking stage of the processing pipeline to apply the body mask.

Each DMA engine used a dedicated AFI port to transfer the image data between the

programmable logic and processing system. This arrangement was chosen to reduce

competition between the DMA channels for access to memory and to maximise the

bandwidth between memory and programmable logic.

114



Chapter 5. Segmentation of Bony Anatomy from CT Scans of Bladder Cancer Patients

B
on

e 
M

as
k 

G
en

er
at

io
n

16

T
hr

es
h

ol
d

IP
 C

or
e

im
ag

e 
in

im
ag

e 
ou

t

co
nt

ro
l

M
as

k
IP

 C
or

e

im
ag

e 
in

im
ag

e 
ou

t

co
nt

ro
l

m
as

k 
in

da
ta

 in
da

ta
 o

ut

To
 m

em
or

y

A
X

I D
M

A
 E

ng
in

e

co
nt

ro
l

da
ta

 in
da

ta
 o

ut

F
ro

m
 m

e
m

or
y

A
X

I D
M

A
 E

ng
in

e

co
nt

ro
l

da
ta

 in
da

ta
 o

ut

F
ro

m
 m

e
m

or
y

P
ro

ce
ss

in
g 

S
ys

te
m

A
F

I
G

P
A

F
I

A
F

I

8
8

8
8

E
ro

si
on

IP
 C

or
e

im
ag

e 
in

im
ag

e 
ou

t

co
nt

ro
l

E
ro

si
on

IP
 C

or
e

im
ag

e 
in

im
ag

e 
ou

t

co
nt

ro
l

D
ila

tio
n

IP
 C

or
e

im
ag

e 
in

im
ag

e 
ou

t

co
nt

ro
l

D
ila

tio
n

IP
 C

or
e

im
ag

e 
in

im
ag

e 
ou

t

co
nt

ro
l

T
hr

es
h

ol
d

IP
 C

or
e

im
ag

e 
in

im
ag

e 
ou

t

co
nt

ro
l

8

16

16

8

B
od

y 
M

a
sk

 G
en

er
at

io
n

M
em

or
y

G
P

   
G

en
er

al
 P

ur
po

se
 In

te
rf

ac
e

A
F

I  
 A

X
I F

IF
O

 In
te

rf
ac

e

A
X

I-
Li

te
 In

te
rf

ac
e

A
X

I4
-S

tr
ea

m
 In

te
rf

ac
e 

w
ith

 n
-b

it 
da

ta
 b

us

A
X

I4
 In

te
rf

ac
e

n

Figure 5.7: Hardware system implementing the Simplified Haas algorithm

115



Chapter 5. Segmentation of Bony Anatomy from CT Scans of Bladder Cancer Patients

A general purpose AXI port was shared between the custom IP cores and the DMA

engines for configuration and control of the processing pipeline. This arrangement was

selected as the configuration and control data had lower bandwidth requirements than

the image data transfer, and sharing a port enabled fewer programmable logic resources

to be used.

The transfer of each CT slice ROI to the processing pipeline was started as soon as

the transfer of the previous slice’s ROI had completed. In this fashion, parallelism could

be achieved through processing multiple ROIs concurrently, each being at a different

stage of the processing pipeline.

The processing pipeline was targeted for execution at a clock frequency of 100MHz.

This frequency was chosen as it was believed to be a realistically attainable operating

frequency for the circuit complexity and SoC device being targeted.

5.2.3 Implementation Platforms

Two platforms were chosen to compare the execution performance of the segmentation

algorithms between software and hardware. The software was implemented on an

Intel Core-i5 3230M CPU with 4GB of memory. An Avnet ZedBoard development

board [131] with a Xilinx Zynq Z7020 device and 512MB of memory was used for the

hardware implementation.

These platforms represent approximately contemporary technologies in terms of

CPU and SoC design. Both are relatively modest within their respective product

ranges with a focus on low-cost rather than performance. They therefore present a

reasonable comparison between CPU and SoC execution performance.

The Simplified Haas algorithm was implemented on the ZedBoard. Both the Haas

and Simplified Haas algorithms were implemented in software. In the software imple-

mentation, each CT slice was processed sequentially. The source code for the software

implementation is given in Appendix B.

A performance comparison could also have been made against implementations on

other processing architectures, such as GPUs or digital signal processors. However,

the expertise required to produce non-naive implementations of the algorithm on these

116



Chapter 5. Segmentation of Bony Anatomy from CT Scans of Bladder Cancer Patients

architectures were not accessible during the course of the work presented here. The

ubiquity of the CPU architecture does, however, provide an easily accessible common

benchmark against which the performance of other processing architectures can be

assessed.

5.2.4 Performance Metrics

In comparing the algorithms executed in software and hardware, two aspects were con-

sidered: the quality of the segmentation produced by the Simplified Haas algorithm

relative to that produced by the Haas algorithm and the execution times of the algo-

rithms.

Segmentation Quality

The results produced by the Simplified Haas algorithm were compared to those pro-

duced by the Haas algorithm to assess the quality of the segmentation.

A quantitative comparison was made between corresponding segmentations pro-

duced by the two algorithms using the Dice Similarity Coefficient (DSC) [132]. The

DSC is a metric widely used in the assessment of medical image segmentation. The

DSC between two segmentations, S, is calculated as shown in Equation 5.5, where A

and B are the sets of foreground pixels from their respective segmented images. A

DSC of greater than 0.7 is regarded as indicating good agreement between the two

segmentations.

S = 2 · |A ∩B|
|A|+ |B|

S ∈ [0, 1] (5.5)

Time of Execution

To compare the execution performance of the algorithms, the times taken to process

each CT volume and each CT slice were measured.

In the case of the software implementation, timestamps were recorded immediately

before the function call to process each slice and immediately upon its return. The

difference between these two timestamps was taken as an estimate of the time taken

117



Chapter 5. Segmentation of Bony Anatomy from CT Scans of Bladder Cancer Patients

to process the slice. The timestamps were recorded once per slice. Since each slice was

processed sequentially, the time to process the volume was calculated as the sum of the

times to process each slice in the volume.

In the case of the hardware implementation, a free-running timer on the Zynq

device’s processing sytem was read whenever the transfer of image data to the start of

the processing pipeline was set up, and then again whenever the transfer of image data

from the output of the processing pipeline completed. The difference between the two

corresponding readings was taken as an estimate of the time taken to process the slice.

This estimate was made once per slice.

The time to process the volume was calculated as the difference between the time

when setting up the transfer of the first slice of the volume to the pipeline, and the time

when the transfer of the final output slice of the volume from the pipeline completed.

The times calculated for the hardware platform include the overhead of transferring

the image data between system memory and programmable logic.

5.2.5 Image Data

The image data used were CT and CBCT scans of bladder cancer patients (n=15) who

recieved external beam radiotherapy at the Edinburgh Cancer Centre.

Every patient had either one or two CT scans that were obtained prior to the

commencement of radiotherapy for the purpose of treatment planning. In addition,

each patient had between five and ten CBCT scans that were obtained during the

course of treatment as part of the routine workflow at the ECC.

In total, 18 CT scans and 114 CBCT scans were used. CT slices were 512 × 512

pixels in size and volumes ranged between 105 and 189 slices. CBCT slices were either

384× 384 (n=66) or 512× 512 (n=48) pixels in size with volumes ranging between 64

and 93 slices.

118



Chapter 5. Segmentation of Bony Anatomy from CT Scans of Bladder Cancer Patients

5.3 Results and Discussion

The results of the work are presented and discussed in this section. A comparison is

made of the performance of the implemented algorithms, firstly in terms of segmentation

quality and then in terms of execution time. The discussion of the execution time

performance initially deals with the time taken to process an image volume, before

examining the performance in more detail, by considering the time taken to process the

slices the image volumes are composed of. The results of implementing the Simplified

Haas algorithm in hardware are presented and discussed, as are strategies for improving

the performance of the algorithms. Finally, the findings are reviewed as they apply to

ART.

5.3.1 Segmentation Quality

The mean DSC comparing the segmentations obtained with the Haas and Simplified

Haas algorithms for CBCT volumes was 0.97 and for CT volumes was 0.99. The

distributions of DSC are shown in Figure 5.8. The differences observed between the

DSC for CBCT and CT volumes were found to be statistically significant (p < .05).

The results of the comparison of the segmentation produced using the Haas and

Simplified Haas algorithms shown in Figure 5.8 show good agreement between the seg-

mentations produced by the two algorithms. The agreement between the segmentations

on CT image volumes was stronger than for CBCT image volumes and this difference

was statistically significant.

These results demonstrate that the Simplified Haas algorithm is a reasonable alter-

native to the Haas algorithm for the image data used here with minimum DSC values

of 0.9786 and 0.8796 for CT and CBCT image volumes respectively.

The stronger agreement between segmentations for CT volumes than for CBCT

volumes indicates that the Simplified Haas algorithm may be more susceptible to noise

than the Haas algorithm.

119



Chapter 5. Segmentation of Bony Anatomy from CT Scans of Bladder Cancer Patients

CT CBCT
0.5

0.6

0.7

0.8

0.9

1.0
Di

ce
 S

im
ila

rit
y 

Co
ef

fic
ie

nt

Figure 5.8: Dice Similarity Coefficients comparing segmentations produced by the Haas and Simpli-
fied Haas algorithms for CBCT and CT image volumes

Examples of the segmentations obtained using the Haas and Simplified Haas algo-

rithms are shown in Figures 5.9 and 5.10. Figure 5.9 shows segmentations obtained

from the CT image volumes with the highest and lowest DSC values. Figure 5.10 shows

the equivalent segmentations obtained for the CBCT image volumes chosen using the

same criteria.

Figures 5.9 and 5.10 show that, within the ROI used for the Simplified Haas algo-

rithm, there was strong agreement between the Haas and Simplified Haas algorithms

and this is bourne out in the high values of DSC obtained, as shown in Figure 5.8.

The CBCT scan shown in Figure 5.10(a) and (b) shows some discrepancies in the

segmentations obtained using the two algorithms around the segmented regions. In

these areas, the Simplified Haas algorithm appears to have been less robust in the

presence of noise than the Haas algorithm and has segmented additional material.

120



Chapter 5. Segmentation of Bony Anatomy from CT Scans of Bladder Cancer Patients

(a) (b)

(c) (d)

Figure 5.9: Example segmentations obtained from CT volumes with segmented areas shown in blue.
(a) and (b) are segmentations obtained using the Haas and Simplified Haas algorithms respectively
from the CT volume with the lowest DSC. (c) and (d) are segmentations obtained using the Haas
and Simplified Haas algorithms respectively from the CT volume with the highest DSC. The green
box indicates the ROI processed by the Simplified Haas algorithm.

121



Chapter 5. Segmentation of Bony Anatomy from CT Scans of Bladder Cancer Patients

(a) (b)

(c) (d)

Figure 5.10: Example segmentations obtained from CBCT volumes with segmented areas shown
in blue. (a) and (b) are segmentations obtained using the Haas and Simplified Haas algorithms
respectively from the CBCT volume with the lowest DSC. (c) and (d) are segmentations obtained
using the Haas and Simplified Haas algorithms respectively from the CBCT volume with the highest
DSC. The green box indicates the ROI processed by the Simplified Haas algorithm.

122



Chapter 5. Segmentation of Bony Anatomy from CT Scans of Bladder Cancer Patients

Despite the increase in the upper threshold for bone segmentation applied in the

Simplified Haas algorithm compared to the Haas algorithm, it is evident from Fig-

ure 5.9(c) and (d) and Figure 5.10(c) and (d) that both algorithms fail to segment

areas of high density bone and hip prostheses. Furthermore, Figure 5.10(c) and (d)

shows that artifacts in CBCT imaged caused by hip prostheses are spuriously segmented

by both algorithms.

Anomalous Segmentations

In two CBCT cases, shown in Figure 5.11, the segmentations produced by both algo-

rithms were found to be grossly inaccurate in identifying the bony anatomy. However,

the DSC obtained from comparing the segmentations produced by the two algorithms

indicated good agreement, with DSC values of 0.88 and 0.99. This, again, suggests

that the Simplified Haas algorithm did not perform significantly worse than the Haas

algorithm.

The poor segmentation appears to have been as a result of the images having a

high noise content. This exposes the limitations of both the Haas and Simplified Haas

algorithms in handling noisy image data. However, this problem was only found in

2 out of the 114 CBCT volumes tested here and may be avoidable by selecting lower

noise imaging protocols.

Excluding the two anomalous CBCT volumes shown in Figure 5.11, the DSC values

for comparing the Haas and Simplified Haas algorithms ranged between 0.91 and 0.99,

well above the 0.7 level proposed as indicating strong agreement. This suggests that

the proposed modifications to the Haas algorithm produce similar segmentation results.

5.3.2 Execution Time per Volume

The results of measuring the time taken to process each image volume are summarised

in the boxplot of Figure 5.12. The mean time taken taken to process CBCT and CT

image volumes are shown in Table 5.1.

123



Chapter 5. Segmentation of Bony Anatomy from CT Scans of Bladder Cancer Patients

(a) (b)

(c) (d)

Figure 5.11: Example segmentations obtained from the CBCT volumes where the segmentations
were found to be grossly inaccurate. An example segmentation from the first case is shown, obtained
using (a) the Haas algorithm and (b) the Simplified Haas algorithm. An example segmentation from
the second case is also shown, obtained using (c) the Haas algorithm and (d) the Simplified Haas
algorithm. Segmented areas are shown in blue. The green box indicates the ROI processed by the
Simplified Haas algorithm.

124



Chapter 5. Segmentation of Bony Anatomy from CT Scans of Bladder Cancer Patients

Haas Simplified
Haas

Software

Simplified
Haas

Hardware

101

102

103

Ex
ec

ut
io

n 
Ti

m
e 

(m
s)

(a)

Haas Simplified
Haas

Software

Simplified
Haas

Hardware

101

102

103

Ex
ec

ut
io

n 
Ti

m
e 

(m
s)

(b)

Figure 5.12: Measured times to process image volumes using the three algorithm implementations
for (a) CBCT volumes and (b) CT volumes

Table 5.1: Mean measured times to process image volumes using the three algorithm implementa-
tions

Algorithm Implementation CBCT Volume (ms) CT Volume (ms)

Haas Software 331.3505 680.5748

Simplified Haas Software 64.8180 88.0092

Simplified Haas Hardware 34.2446 49.2951

It was found that the difference in time to process an image volume between the

hardware implementation and the Haas algorithm in software was statistically signifi-

cant (p < .05) for both CT and CBCT volumes. Likewise, the difference in time taken

to process an image volume between the Haas and Simplified Haas algorithms in soft-

ware was statistically significant (p < .05). However, the difference in time taken to

process an image volume between the hardware and software implementations of the

Simplified Haas algorithm was found to be statistically significant (p < .05) only in the

case of CBCT volumes. The difference for CT volumes was not statistically significant.

Compared to the Haas algorithm executing in software, the hardware implemen-

tation of the Simplified Haas algorithm was considerably quicker. For processing CT

scans, the hardware implementation was found to be 13.81 times faster on average

than the software implementation, as shown in Table 5.1. Likewise, the hardware im-

plementation was 9.68 times faster on average for CBCT image volumes, also shown in

Table 5.1.

125



Chapter 5. Segmentation of Bony Anatomy from CT Scans of Bladder Cancer Patients

This increase in performance was achieved in spite of the CPU executing the soft-

ware algorithm operating at a clock frequency 2.6 times greater than that used by the

hardware implementation. These results also include the data transfer overhead in-

herent to SoC-based designs for moving data between system memory and the FPGA

fabric.

Much of the performance improvement achieved with the hardware implementation

compared to the Haas algorithm executing in software is likely to be attributable to

the simplification of the segmentation algorithm. This can be seen from the substan-

tial improvement obtained using the Simplified Haas algorithm compared to the Haas

algorithm when both were executed in software, as shown in Table 5.1.

However, Table 5.1 shows that there was also a performance improvement for the

hardware implementation compared to the software implementation of the Simplified

Haas algorithm. For CBCT volumes, the hardware implementation was around 1.89

times faster on average than the software implementation and this difference was sta-

tistically significant. For CT volumes, on the other hand, the difference in average

performance of 1.79 times was found not to be statistically significant. The lack of

statistical significance for these results is likely due to the relatively small sample size

of CT images (n=18) since the performance of the hardware implementation was faster

than that of the Simplified Haas algorithm in software for each of the CT volumes

tested, as can be seen from Figure 5.12.

5.3.3 Execution Time per Slice

The results of measuring the time taken to process each image slice are summarised

in the boxplot of Figure 5.13. The mean time taken taken to process CBCT and CT

image slices are shown in Table 5.2.

The differences in slice processing time between each of the implementations for

both CBCT and CT image slices were found to be statistically significant (p < .05).

126



Chapter 5. Segmentation of Bony Anatomy from CT Scans of Bladder Cancer Patients

Haas Simplified
Haas

Software

Simplified
Haas

Hardware

10 1

100

101

102

Ex
ec

ut
io

n 
Ti

m
e 

(m
s)

(a)

Haas Simplified
Haas

Software

Simplified
Haas

Hardware

10 1

100

101

102

Ex
ec

ut
io

n 
Ti

m
e 

(m
s)

(b)

Figure 5.13: Measured times to process image slices using the three algorithm implementations for
(a) CBCT volumes and (b) CT volumes

Table 5.2: Mean measured times to process image slices using the three algorithm implementations

Algorithm Implementation CBCT Volume (ms) CT Volume (ms)

Haas Software 4.4134 5.2374

Simplified Haas Software 0.8633 0.6773

Simplified Haas Hardware 0.4590 0.3822

Effect of Pipelining the Processing of Consecutive Image Slices

A comparison was made between the time measured to process each image volume in

hardware and the sum of the times measured to process each slice of the corresponding

image volumes. In all cases the sum of the times to process the individual image slices

was greater than the time taken to process the volume as a whole. The mean difference

across all tested image volumes was 0.2362ms.

The improvement in performance between the software implementation of the Sim-

plified Haas algorithm and the hardware implementation is attributable to the increased

parallelism of data processing operations achieved with the processing pipeline imple-

mented in hardware. In the hardware implementation, the next stage of the pipeline is

able to start processing the first pixels output from the previous stage of the pipeline

while the previous stage is still processing the subsequent pixels. This is in contrast

to the operation of the software, where the next processing stage only begins once all

pixels have been processed by the previous stage.

127



Chapter 5. Segmentation of Bony Anatomy from CT Scans of Bladder Cancer Patients

Furthermore, once the first stage of the processing pipeline has finished processing

the pixels for one slice, it becomes available to start processing the next slice in parallel

with the previous slice being processed by subsequent stages of the pipeline. This

is, again, in contrast to the software implementation, which only begins processing the

next slice once the previous slice has been processed by each of the stages. This concept

is illustrated in Figure 3.3 on page 51.

The increase in performance in hardware due to image slice pipelining is evident

from comparing the difference in performance between the implementations on both a

slice-by-slice and volume-by-volume basis. The results of comparing the performance

of each of the implementations tested here on a slice-by-slice basis were broadly similar

to those on a volume-by-volume basis, as can be seen from a comparison of Figures 5.12

and 5.13. However, the measured increase in performance of the hardware implementa-

tion compared to the Haas and Simplified Haas algorithms in software was not as large

as on a volume-by-volume basis. Table 5.2 shows that the hardware implementation

was 13.70 times faster for CT image volumes and 9.62 times faster for CBCT image vol-

umes on a slice-by-slice basis than the Haas algorithm on average. This compares with

average performance increases of 13.81 times for CT image volumes and 9.68 times for

CBCT image volumes measured on a volume-by-volume basis, as shown in Table 5.1.

Similarly when comparing the hardware implementation with the Simplified Haas

algorithm implemented in software, Table 5.2 shows that the hardware implementation

was 1.77 times faster for CT image volumes and 1.88 times faster for CBCT images

volumes on a slice-by-slice basis on average. This compares with average performance

increases of 1.79 times for CT image volumes and 1.89 times for CBCT image volumes

measured on a volume-by-volume basis, as shown in Table 5.1.

Although the improvement attributable to image slice pipelining is small relative

to the time taken to process the image volume, it will be proportional to the number

of slices in the volume, suggesting greater improvement in images of larger volumes

or those imaged with higher resolution between slices. This is likely to explain the

128



Chapter 5. Segmentation of Bony Anatomy from CT Scans of Bladder Cancer Patients

difference in performance improvement between CT and CBCT image volumes, as

shown in Table 5.1, as the CT volumes used here had a greater number of slices than

the CBCT volumes.

5.3.4 Hardware Implementation

Resource Utilisation

Table 5.3 summarises the resource utilisation of the hardware design implemented on

the SoC. The resource utilisation is given in absolute terms and as a percentage of the

resources available on the Zynq Z7020 SoC used as the target platform for the work.

Table 5.4 similarly shows the utilisation of interfaces between the processing system

and programmable logic.

Table 5.3: Resource utilisation of hardware implementation

Resource Absolute Utilisation % Utilisation

LUT 6329 11.90

FF 8057 7.57

BRAM 7 5.00

Table 5.4: Processing system and programmable logic interconnection utilisation of hardware im-
plementation

Interconnection Absolute Utilisation % Utilisation

General purpose 1 25

ACP 0 0

AFI 3 75

129



Chapter 5. Segmentation of Bony Anatomy from CT Scans of Bladder Cancer Patients

Increasing Parallelism

Despite the use of a modest SoC device, and the corresonding limitations of the FPGA

fabric resources, it can be seen from Table 5.3 that the hardware design used very few

of the available FPGA resources. There is scope, therefore, to improve the performance

of the SoC implementation relative to the CPU by trading FPGA resources for greater

parallelism.

As touched upon in Section 5.3.2, multi-threaded parallelism could be achieved in

the hardware implementation by replicating the processing pipeline shown in Figure 5.7

in the FPGA fabric.

Given the resource utilisation shown in Table 5.3, the processing pipeline could be

duplicated up to 8 times, allowing up to 8 slices of an image volume to be processed

in parallel. However, the performance achieved using multiple pipelines is likely to be

limited by the bandwidth between memory and FPGA fabric, as there are only 4 AFIs

available on the device used here, and a single instance of the processing pipeline makes

use of 3 of them, as shown in Table 5.4.

The AFIs were configured to use 32-bit wide data buses and a 100MHz clock rate

to obtain the results presented here. In this configuration, and assuming perfect ac-

cess to memory and no protocol overhead, the 4 AFIs combined provide a maximum

throughput to memory of 1600MB/s on both the read and write channels [89]. Using

the largest image size processed here of 332× 512 pixels as the worst-case example, the

performance of multiple pipelines would be limited by the bandwidth provided by the

4 AFIs once there were more than 2 pipeline instances.

The bandwidth of the AFIs could be doubled by making full use of the 64-bit wide

data buses available on these interfaces [88, 89]. This would allow four 16-bit pixel

values to be packed onto the bus per transfer and the throughput of the pipeline could

be increased by processing multiple pixels per clock cycle. Additional FPGA resouces

would be required to enable the pipeline to process multiple pixels per clock cycle

but, as Table 5.3 shows, there would be ample resources available to achieve this. In

130



Chapter 5. Segmentation of Bony Anatomy from CT Scans of Bladder Cancer Patients

such a configuration, it would not be the bandwidth of the AFIs that would limit the

number of parallel processing pipelines that could be supported, but the bandwidth of

the memory controller.

The ZedBoard uses DDR3 memory with a clock rate of 533MHz and a 32-bit data

bus [131]. Again, using the largest image size processed here as the worst-case example

and assuming an 87% efficiency for the memory controller [89], the available bandwidth

to memory would only allow 5 parallel pipelines to be fully serviced.

The bandwidth to memory could be increased by using memory with a higher

clock rate or a wider data bus. The effect on the bandwidth between memory and the

FPGA fabric of an increase in the memory controller bandwidth would be limited if the

bandwidth of the AFIs was not also commensurately increased. This could be achieved

by increasing the number of available AFIs or the width of the data buses.

In the design presented here, the input image is transferred from memory to the

processing pipeline twice: first at the start of the pipeline and then when the body

mask is applied to it, as shown in Figure 5.6. The memory bandwidth requirements

could be greatly reduced by transferring the image from memory once and caching it

in the FPGA fabric until it is required for the body mask application. This would half

the bandwidth requirements of the read channels of the AFIs and would reduce the

bandwidth requirements of the memory controller by 40%.

It would also greatly increase the number of memory resources used on the SoC

device. Using the largest image size processed here as the worst-case example, caching

a single slice would consume a further 83 BRAMs in addition to the 7 already used

in the processing pipeline. The 140 BRAMs available on the SoC device used here

would prevent the caching of more than 1 input image slice, therefore limiting the

reduction in memory bandwidth usage and possible increase in the number of parallel

processing pipelines that could be serviced. This could be remedied by using an SoC

device with more FPGA memory resources, although that would also increase the cost

of the system.

131



Chapter 5. Segmentation of Bony Anatomy from CT Scans of Bladder Cancer Patients

The relatively low usage of the available FPGA resources also provides the ca-

pacity to increase the level of parallel processing in another way. If the complexity

of the implemented algorithm were increased by extending the current pipeline with

additional processing stages, the amount of data being processed concurrently by the

pipeline would also increase. The latency of the pipeline would increase by adding post-

processing stages to it, however, if these additional stages were able to at least match

the throughput of the current pipeline, the overall throughput of the design would not

be reduced.

Reducing Resource Utilisation

In the design implemented here, AXI4-Stream interfaces were used between each of

the stages of the processing pipeline, as shown in Figure 5.7. While the AXI4-Stream

interfaces were required to connect to the AXI DMA engines, they were not required

between the intermediate stages and their use restricted the data bus widths to being

byte-aligned.

In reality, most of the interfaces between the intermediate stages transfer binary

image pixel values, requiring data bus widths of 1-bit per pixel rather than the min-

imum 8-bit data bus width required by the AXI4-Stream protocol. Implementing an

alternative interface protocol between these stages could therefore reduce the amount

of FPGA resources used and provide further opportunities to trade off FPGA resources

for faster processing.

Timing Constraints

The timing constraints for the system were met targeting a 100MHz clock with the

worst case timing slacks shown in Table 5.5.

Increasing the Operating Frequency

The SoC hardware processing pipeline was synthesised and implemented using the

default strategies in Xilinx Vivado v2017.2 with a target clock frequency of 100MHz.

The worst case negative slack resulting from this was 0.021ns, as shown in Table 5.5.

132



Chapter 5. Segmentation of Bony Anatomy from CT Scans of Bladder Cancer Patients

Table 5.5: Worst case negative timing slacks of hardware implementation

Slack Type Worst Negative Slack (ns)

Setup 1.297

Hold 0.021

Pulse Width 3.750

This implies that the performance of the hardware implementation could have been

marginally improved, by around 0.21%, just by increasing the frequency of the clock

used to drive the design.

It may have been possible to improve the worst case negative slack and achieve

a design capable of operating at an even higher clock frequency by adopting a more

aggressive implementation strategy. It is not anticipated, however, that any such im-

provement would be substantial compared to the results presented here.

5.3.5 Strategies to Improve Performance

A multi-threaded programming model for the software implementation, rather than the

single-threaded approach used here, would be likely to improve the performance of the

software implementation. To achieve the best performance would require partitioning

the algorithm into separate threads capable of being executed largely independently of

one another.

Assuming perfect partitioning of the algorithm, the performance of the software

implementation would theoretically increase by a factor equal to the number of threads

the CPU is capable of processing, in this case 4. Even with such an increase in the

performance of the software implementation of the Haas algorithm, it would still fail

to match that of the hardware implementation.

However, in practice, there are a number of factors that can reduce the perfor-

mance of a multi-threaded implementation compared to the idealised maximum. The

partitioning of an algorithm often incurs a processing overhead for managing and syn-

chronising the multiple threads. In addition, some duplication of processing effort can

occur where it is not possible to make the separate threads completely independent. For

133



Chapter 5. Segmentation of Bony Anatomy from CT Scans of Bladder Cancer Patients

example, if a multi-threaded approach were employed for the morphological operators

used here by having each thread process a sub-region of the image, some of the pixels

would need to be processed by more than one thread. This is because the output from

a morphological operator depends on the values of a small neighbourhood of input pixel

values. Therefore, pixels at the boundaries of the image sub-regions would need to be

processed by the threads processing the sub-regions on either side of the boundary.

A multi-threaded programming model can also create competition for shared re-

sources, such as memory, between threads. This can decrease the actual performance

increase achieved compared to the theoretical maximum as one thread stalls waiting

for access to a resource being used by another thread.

Moreover, multi-threaded parallelism could also be pursued for the hardware im-

plementation through duplication of the processing pipeline in the FPGA fabric. Each

pipeline could then process independent slices of the image volume in parallel, as dis-

cussed in Section 5.3.4.

5.3.6 Results in the Context of ART

The relative increase in performance of the SoC implementation over the Haas algo-

rithm in software found here is substantial. However, in absolute terms, it reduced the

execution time of the algorithm from hundreds of milliseconds to tens of milliseconds.

In the context of an ART fraction lasting many minutes, the difference in performance

of this particular algorithm is likely to be inconsequential as the unaccelerated algo-

rithm took such little time to execute as a proportion of the fraction time. Nonetheless,

any reduction in the amount of time to process an image captured at treatment time

increases the validity of the image of the patient anatomy for adjusting the treatment,

thus increasing the accuracy of the treatment.

In ART, the most time sensitive image processing is likely to be required for those

images captured during a treatment fraction, which are most likely to be CBCT images

with current technologies. The increase in performance for CBCT images was not as

good as that measured for CT, but was still substantial.

134



Chapter 5. Segmentation of Bony Anatomy from CT Scans of Bladder Cancer Patients

Although the absolute improvement in performance for this particular algorithm is

relatively small in the context of an ART treatment fraction, the algorithm itself is a

small portion of the full image processing pipeline that is likely to be required for real-

time ART. In fact, the algorithm accelerated here is only the pre-segmentation stage of

a larger segmentation algorithm [5]. In comparing the planning image volume and the

treatment fraction image volume there is also likely to be a registration stage in the

full ART pipeline to establish a correspondence between the treatment plan and the

patient anatomy at the time of treatment. If similar relative increases in performance

could be achieved for each stage of the ART processing pipeline as have been found

here, the overall reduction in time is likely to be consequential for real-time ART.

For example, if the improvement in execution time performance attained here for

processing CBCT images were replicated for the ART algorithm reported in [33], the

time to adapt the treatment plan would reduce from 26 minutes to under 3 minutes, and

would then satisfy the ART timing requirements proposed in [3] and [4]. Considering

the findings presented here in this context clearly demonstrates their significance, and

highlights the potential for hardware acceleration to enable ART in the clinical setting.

Moreover, as was discussed in Section 5.3.4, increasing the depth of the processing

pipeline by increasing the complexity of the algorithm can improve the comparative

performance of the algorithm as it allows more processing to be done in parallel.

DICOM Feasibility

A single instance of the hardware processing pipeline for the Simplified Haas algorithm

was shown in Table 5.2 to be capable of processing in excess of 2000 image slices per

second. The results, presented in Chapter 4, page 85, from assessing the performance

of the DICOM protocol on the same ZedBoard platform as was used here, illustrate

that the rate of transfer of image data using the DICOM protocol over an Ethernet

connection was two orders of magnitude less than that required to support one instance

of the hardware processing pipeline. Such a low rate of image data transfer would

135



Chapter 5. Segmentation of Bony Anatomy from CT Scans of Bladder Cancer Patients

severely limit the performance of the system. Furthermore, even the extrordinarily

high DICOM transfer rates reported in [119] and [120] would not be sufficient to allow

the hardware processing pipeline to execute at its full rate.

These findings suggest that the DICOM protocol over an Ethernet connection is

likely to limit the performance of an ART system and an alternative, faster, method of

transferring image data should be used.

Segmentation Quality

The quality of the segmentation produced by the SoC implementation was assessed

against the segmentations produced by the Haas algorithm. The authors of the Haas

algorithm clinically validated the segmentations produced by their algorithm [5] and,

given that the algorithm implemented on the SoC was a slight modification of their

algorithm, it was reasonable to judge the quality of the segmentations produced by the

work here against this standard. However, in the context of a full ART algorithm, the

quality of the results produced by an initial segmentation algorithm will necessarily

impact the effectiveness of subsequent processing stages and the ultimate result of the

algorithm. Therefore, a better test of the quality of the segmentations produced would

be to use them in a full implementation of an ART algorithm and to clinically assess

the quality of the output from this. The difficulty in achieving this is that there is

currently no consensus on a clinically acceptable ART algorithm.

5.4 Conclusions

This chapter has considered the implementation in hardware of a commercially devel-

oped and clinically validated segmentation algorithm, the Haas algorithm, for ART

based on pelvic CT scans. Alterations to the Haas algorithm were proposed to make

it more suitable for realisation in hardware, with this new algorithm being termed the

Simplified Haas algorithm.

136



Chapter 5. Segmentation of Bony Anatomy from CT Scans of Bladder Cancer Patients

The segmentations produced by the Simplified Haas algorithm were assessed quan-

titatively against those produced by the Haas algorithm. The execution time of the

Haas algorithm in software was compared with those of the Simplified Haas algorithm

in software and hardware across a dataset of CT and CBCT image volumes of blad-

der cancer patients. Strategies to further improve the performance of the hardware

implementation were discussed, as were the results obtained in the context of ART.

The Simplified Haas algorithm in both software and hardware was found to be

much faster than the Haas algorithm while producing segmentations that strongly

agreed with those produced using the Haas algorithm. This implies that the proposed

modifications to the Haas algorithm greatly improve the segmentation performance in

terms of execution time without greatly affecting the quality of the segmentation as

assessed here.

The hardware implementation of the Simplified Haas algorithm outperformed the

software implementation in terms of execution time. This was due to greater parallelism

in the hardware implementation.

Although the improvement in the execution time of the segmentation algorithm

was found to be relatively small compared to the time of an ART fraction time, it was

demonstrated that, if similar improvements were made for each stage of a full ART

algorithm, the resulting reduction in execution time was significant and the algorithm

would consequently meet ART timing requirements.

The performance of the hardware implementation could be improved further by

increasing the amount of concurrent processing. One approach would be to replicate

the processing pipeline to process multiple images in parallel. This approach would

be limited by the bandwidth available between system memory and the FPGA fabric

and the memory resources available to cache image data in FPGA fabric on the SoC.

Another approach would be to extend the processing pipeline with additional function-

ality, such as registration. The reduction in execution time achieved by the hardware

implementation is also likely to be improved when using image datasets with a greater

number of slices in the image volumes, as these would take greater advantage of the

parallelism already realised.

137



Chapter 5. Segmentation of Bony Anatomy from CT Scans of Bladder Cancer Patients

The rate of transferring image data using the DICOM protocol over an Ethernet

connection was found to be substantially slower than that needed to service a single

instance of the Simplified Haas hardware processing pipeline. An alternative method

of transferring image data to the pipeline would therefore be required to realise its full

performance.

The results presented in this chapter demonstrate that FPGAs are good candidates

to improve the execution time performance of ART algorithms that can be implemented

as a data streaming pipeline. However, the bandwidth between system memory and

the FPGA fabric is likely to limit the performance of FPGA implementations of ART

algorithms. Some of this limitation could be mitigated by selecting FPGA devices with

large amounts of memory resources in the fabric. This would enable more data to

be cached in on-chip memory and reduce the number of accesses required to system

memory. FPGA devices with faster or wider data buses to system memory would

also help to alleviate this limitation. Selecting FPGA devices with large amounts of

resources also increases the scope for implementing deeper processing pipelines or more

processing pipeline instances. This increased parallelism would improve the execution

time performance of the FPGA implementation for algorithms that can support it.

Another critical consideration when selecting an FPGA-based device for hardware

acceleration in ART is the data rate that can be achieved when interfacing it to existing

radiotherapy equipment. The processing pipeline will be starved of data if it cannot

be transferred to the FPGA fast enough, and this will limit the performance of the

hardware accelerator.

Although the Haas and Simplified Haas algorithms were shown to produce similar

quality segmentations on the considered image data, both algorithms were also found

to be limited in their ability to produce accurate segmentations in the presence of

noise. This was found to be particularly the case for the Simplified Haas algorithm.

Some radiotherapy techniques particularly well-suited to ART utilise image data that

are more prone to noise than the image data used here, such as four-dimensional CT

(4DCT). Consideration should therefore be given to the segmentation performance of

the Simplified Haas algorithm on such data.

138



Chapter 6

Hardware Accelerated

Segmentation of 4DCT Images

4DCT scans are intended to better visualise tissues regularly displaced by a periodic

perturbation, such as breathing. During scanning, the capture of image data is corre-

lated to the position of a surrogate marker, whose movement is, in turn, correlated to

the periodic perturbation. By dividing the period of motion into a number of phases,

the captured image data can be assigned to the phase of motion during which it was

captured. Image volumes pertaining to each phase of motion can then be reconstructed

using the image data captured only during the respective phase of the periodic motion.

Modern radiotherapy techniques such as SBRT are predicated on being able to

deliver a precise and accurate treatment. For lesions in the thoracic and, to a lesser

extent, pelvic cavities this requires consideration of the anatomical movement induced

by breathing [1, 2]. 4DCT scans are therefore well-suited to the planning and quality

assurance of modern treatment of lesions in these areas.

Compared to conventional CT scans, 4DCT scans produce much more image data

[1, 133, 134]. With the equipment used here, 14 times as many image volumes were

produced using 4DCT scanning techniques as would have been using conventional

techniques. With such a copious amount of data to be processed, the rate of image

processing is even more important in order to meet the timing requirements of ART.

139



Chapter 6. Hardware Accelerated Segmentation of 4DCT Images

In addition, the motion of the subject being scanned tends to increase the amount

of noise present in 4DCT image volumes compared to conventional CT [1,2,135]. This

further increases the challenge of processing the image volumes automatically.

This chapter focuses on accelerating the segmentation of 4DCT image data as the

preliminary stage of a full ART algorithm for abdominal malignancies whose treatment

is affected by respiratory motion. Acceleration of the segmentation algorithms was

sought by implementing them in dedicated hardware. The image data investigated was

of a quality assurance phantom designed to model the anatomical movement in patients

caused by respiration.

Two approaches to the segmentation problem are investigated. Firstly, a simplistic

approach based on generating optimal thresholds using Otsu’s method [6]. Secondly,

a continuation of the work presented in Chapter 5 using the algorithm based on that

proposed by Haas et al. [5].

For both approaches, software and hardware implementations were developed and

their performance compared in terms of execution time. In addition, the quality of the

segmentation produced was assessed both quantitatively and qualitatively. Considera-

tion is given to the extension of these algorithms for application to clinical 4DCT image

data and the limitations of the developed implementations are also discussed.

6.1 4DCT Data

The image data used here was of a Modus Medical QUASAR Programmable Respira-

tory Motion Phantom (Modus Medical Devices Inc., London, ON) [136]. The phantom

is designed to mimic breathing motion in patients and is shown in Figure 6.1. There

are three salient parts to the phantom: the main phantom body, the phantom insert

and the marker platform, as illustrated in Figure 6.1.

The main phantom body mimics a patient’s body for the purposes of imaging and

surrounds the phantom insert.

The phantom insert is a cylindrical piece that moves periodically, mimicking the

movement caused by respiration of a patient’s internal anatomy in the superior-inferior

direction. The phantom insert used here was the QUASAR Imaging Insert [137], which

140



Chapter 6. Hardware Accelerated Segmentation of 4DCT Images

marker
block

marker block 
platform

phantom
body

imaging
insert

(a)

phantom
body

imaging
insert

marker
block

(b)

Figure 6.1: QUASAR phantom shown (a) photographically and (b) schematically

contains a set of target objects, as shown in Figure 6.2. The target objects consist

of a Delrin cube of side 30mm, two Delrin spheres with 10mm and 20mm diameters

respectively, and a 1mm diameter steel ball.

30mm side
Delrin cube

20mm diameter
Delrin sphere

10mm diameter
Delrin sphere

1mm diameter
steel sphere

Figure 6.2: Section through the QUASAR Imaging Insert

Movement of the phantom insert was synchronised with the movement of the marker

platform. The marker platform motion replicates the movement of the anterior surface

of a supine patient’s chest during breathing and allows a marker block to be placed

on it. The position of the marker block was tracked using a video camera to act as a

surrogate for the motion of the phantom insert and to assign the captured image data

to its appropriate motion phase.

141



Chapter 6. Hardware Accelerated Segmentation of 4DCT Images

Each period of motion was divided into ten phases with the first phase beginning

at the peak inhale point, when the marker block was at its highest position. The other

phases represented equal time durations between peak inhale points, as illustrated in

Figure 6.3.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
Phase

Peak
Exhale

Peak
Inhale

Su
rro

ga
te

 M
ar

ke
r P

os
iti

on

Figure 6.3: Illustration of marker block position against time showing the division of the motion
period into phases

Each 4DCT dataset therefore contained ten image volumes, each representing a

different phase of the motion. Additionally, an image volume was produced using all of

the captured image data in the dataset and three further volumes were produced from

a combination of the phase volumes:

• the maximum intensity projection — represents each pixel by the maximum in-

tensity value across all phases;

• the minimum intensity projection — represents each pixel by the minimum in-

tensity value across all phases;

142



Chapter 6. Hardware Accelerated Segmentation of 4DCT Images

• the average projection — represents each pixel by the average intensity value

across all phases.

A conventional CT image volume was also captured for each of the eight 4DCT datasets

used here. In total, the eight datasets used here comprised 120 image volumes.

The phantom allows the range of motion of the phantom insert to be configured.

Two ranges of motion were used for the image data here: four datasets with a 30mm

range of motion and four datasets with a 15mm range of motion.

6.2 Segmentation based on Otsu’s Method

Otsu’s method is a widely used method for determining optimal thresholds to segment

a greyscale image into different classes based on pixel intensity [138–140]. The object

of the algorithm as applied here was to find the optimal set of thresholds to segment

the 4DCT image data into three classes corresponding to air, phantom body and the

target objects within the imaging insert.

The image data of a phantom provided a more simplistic scenario than is likely

in the clinical setting, where the imaged volume largely contained only three, quite

distinct materials. An approach based on Otsu’s method was therefore selected as it

was thought this may be effective given this scenario.

6.2.1 Otsu’s Method

Otsu’s method works by iterating over all sets of possible thresholds to find the set

that minimises the variance of pixel intensities within the segmented classes. It was

shown by Otsu that minimising the within-class variance is equivalent to maximising

the between-class variance, σ2B [6].

In the case of segmenting a greyscale image into K classes, σ2B is given by Equa-

tion 6.1, where Pk is the probabilty that a pixel belongs to the kth class, µk is the mean

intensity of the pixels in the kth class and µT is the mean pixel intensity in the image.

σ2B =

K−1∑
k=0

Pkµ
2
k − µ2T (6.1)

143



Chapter 6. Hardware Accelerated Segmentation of 4DCT Images

For a set of thresholds, {T1, . . . , TK−1}, Pk is given by Equation 6.2, where N is

the number of pixels in the image and ni is the number of pixels in the image with

intensity i. The lower limit for the first class is given by T0 = 0, while the upper limit

for the Kth class is given by TK = L, where the pixel intensities in the image are on

the interval [0, L− 1].

Pk =
1

N

Tk+1−1∑
i=Tk

ni (6.2)

All possible sets of threshold values need to be searched to find the set of thresholds,

{T ∗1 , . . . , T ∗K−1}, that maximises the value of σ2B. In the case where there is more than

one set of optimal thresholds, the average of each of these sets is taken [6].

Practical Computation

The search space for the optimal set of thresholds is constrained by the condition:

0 < T1 < . . . < TK−1 < L − 1. Furthermore, the µT term in Equation 6.1 is the

same for each set of thresholds and, therefore, the optimal set of thresholds are simply

those that maximse the first term in Equation 6.1, termed the modified between-class

variance, σ2B
′

and given in Equation 6.3 [6].

σ2B
′
=

K−1∑
k=0

Pkµ
2
k (6.3)

Although this reduces the computational burden, σ2B
′

must still be calculated (L−

K+ 1)K−1 times. It is, therefore, desirable to reduce the computational effort required

for each calculation. This can be achieved by framing the computation of σ2B
′

in terms

of the results of recursive operations on the image histogram [141].

The computation of Pk lends itself well to this approach. The probability of a pixel

having an intensity between 1 and v is given by the relationship in Equation 6.4, with

the special case for the initial condition, P (1, 0) = 0. Pk can then be calculated for an

arbitrary Tk and Tk+1 as shown in Equation 6.5.

144



Chapter 6. Hardware Accelerated Segmentation of 4DCT Images

P (1, v) = P (1, v − 1) +
nv
N

(6.4)

Pk = P (1, Tk+1)− P (1, Tk) (6.5)

The computation of µk, on the other hand, does not lend itself so well to a simple

recursive calculation. Instead, it can be substituted in the calculation of σ2B
′

for the

cumulative mean of the class, mk. Equations 6.6 and 6.7 show the relationship between

µk and mk, and express σ2B
′

in terms of mk, respectively.

µk =
mk

Pk
(6.6)

σ2B
′
=

K−1∑
k=0

m2
k

Pk
(6.7)

The relationship between mk and the image histogram is shown in Equation 6.8.

From this, it can be seen that the cumulative mean for pixels with intensities between 1

and v is given by Equation 6.9, with the special case for the initial condition, m(1, 0) =

0.

mk =
1

N

Tk+1−1∑
i=Tk

ini (6.8)

m(1, v) = m(1, v − 1) + v · nv
N

(6.9)

mk can then be calculated for an arbitrary Tk and Tk+1 as shown in Equation 6.10.

mk = m(1, Tk+1)−m(1, Tk) (6.10)

This approach allows P (1, v) andm(1, v) to be computed recursively for v ∈ [1, L−1]

and written to look-up tables. The computation of either Pk or mk for any class with

arbitrary thresholds is then reduced to two table look-ups and a subtraction, thus

reducing the computational burden during the search for the optimal thresholds.

145



Chapter 6. Hardware Accelerated Segmentation of 4DCT Images

6.2.2 Applying Otsu’s Method to 4DCT Phantom Image Data

Hardware and software implementations of Otsu’s method were developed with the aim

of finding optimal thresholds for segmenting the 4DCT phantom image data into air,

phantom body and target objects within the imaging insert.

Limitations

The global nature of the optimal threshold generation process used in Otsu’s method

was found to be problematic when applying it to the 4DCT image data used here.

The most obvious way to apply Otsu’s method to the 4DCT image data would be

to apply it to each volume in turn. However, the thresholds arrived at using Otsu’s

method depend upon the distribution of the pixel intensities in the entire image volume.

Therefore, classes with a low proportion of pixels in the image, such as those in the

target objects within the imaging insert, can be lost in the natural variations of pixel

intensities within classes forming higher proportions of the image. This is illustrated

in the pixel intensity distribution for one of the image volumes shown in Figure 6.4.

It can be seen that the number of pixels that should have been classified as air, at

values around -1000HU, dominate the distribution, while pixels that should have been

classified as belonging to target objects, at values around 300HU, are not visible in

the histogram. This resulted in the segmentation failing to segment the target objects

in the imaging insert from the rest of the phantom. An example of the segmentation

produced is also shown in Figure 6.4.

The application of Otsu’s method to the image data on a slice-by-slice basis was

precluded by the fact that some slices in each image volume would certainly not con-

tain any pixels belonging to the target objects in the imaging insert. The thresholds

produced for these image slices would, therefore, be spurious.

Instead, a 32×64×128 pixel subvolume was selected from within the image volumes.

The same subvolume was selected from each volume. The subvolume was selected to

contain a more equal proportion of pixels from each of the target classes than in the

146



Chapter 6. Hardware Accelerated Segmentation of 4DCT Images

(a) (b)

1000 500 0 500 1000 1500
Pixel Intensity (HU)

0

1000000

2000000

3000000

4000000

Nu
m

be
r o

f P
ix

el
s

250 0 250 500
0

20000

40000

(c)

Figure 6.4: Application of Otsu’s method-based segmentation to a full 4DCT image volume showing
(a) the segmentation produced, with the pixels classified as phantom body shown in red and those
classified as target object shown in blue, (b) the pixels classified as phantom body shown in isolation
for clarity, and (c) the histogram of pixel intensities.

147



Chapter 6. Hardware Accelerated Segmentation of 4DCT Images

complete volumes and to encompass the full range of motion of the target objects in

the imaging insert. The selection of the subvolume depended on a priori knowledge of

the location of the target objects within the image volumes and their range of motion.

Noise Reduction

To reduce the effect of noise on the segmentation, a mean filter was applied to the

selected subvolumes. The value of an output pixel from the mean filter was calculated

as the mean of the corresponding input pixel and its 26 nearest neighbours, as shown in

Figure 6.5. For input pixels at the boundaries of the subvolume, a replication scheme

[142] was used to assign values to the neighbouring pixels that did not correspond to

pixels within the subvolume. The thresholds obtained from applying Otsu’s method to

the original volume were used to segment the filtered subvolume. This approach was

termed the 4DCT Optimised Threshold algorithm.

An alternative averaging filter type, such as a median filter, could have been used in

place of the mean filter. A median filter would tend to be more robust against isolated

spurious pixel values caused by noise, since its output is not affected by outlying values

in the input. However, the mean filter uses a simpler computation than the median

filter and, therefore, has superior execution time performance.

Implementation

Figure 6.6 shows the 4DCT Optimised Threshold algorithm applied to the 4DCT im-

age data used here to segment it into three classes. After the image histogram was

constructed for the subvolume, look-up tables of P (1, v) and m(1, v) were created re-

cursively for each bin in the histogram, as described in Equations 6.4 and 6.9 respec-

tively. These look-up tables were used to perform an exhaustive search of each pair of

thresholds in the search space, calculating σ2B
′
for each pair. The first pair of thresholds

that were found to maximise σ2B
′

were returned as the optimal set of thresholds and

were used to segment the filtered 4DCT subvolume.

148



Chapter 6. Hardware Accelerated Segmentation of 4DCT Images

target
pixel

image
slices

Figure 6.5: Mean filter neighbourhood: the target pixel is shown in blue with neighbouring pixels
used in the calculation shown in yellow

Some adaptations were made to the generic Otsu’s method described in Section 6.2.1

to improve the performance of the implementation in terms of execution time. These

adaptations will now be outlined.

As can be seen from Equations 6.2, 6.7 and 6.8, each term in the computation of

σ2B
′

is divided by the number of pixels in the subvolume, N . Typically this would be

accounted for by computing the normalised histogram for the image, where the ith bin

of the histogram is expressed as ni
N . However, in determining the optimal thresholds,

computing the precise value of σ2B
′

is not necessary. It is only necessary to find the

set of thresholds that maximise σ2B
′

and so a comparative value is sufficient. The un-

normalised histogram was therefore used to compute σ2B
′

scaled by a factor of N . This

still allowed the optimal thresholds to be found while avoiding the computational and

hardware expense of normalising the histogram or dividing σ2B
′

by N .

The range of pixel intensities searched for the optimal thresholds was also restricted

to improve the execution time performance of the algorithm. The range was restricted

based on application-specific a priori knowledge of the expected range in which the

thresholds between classes were expected to be found. Having this a priori knowledge

149



Chapter 6. Hardware Accelerated Segmentation of 4DCT Images

4DCT
Subvolume

Construct
Histogram

Calculate
Look-up Tables

Search
Thresholds

Segmented
Subvolume

Mean
Filter

{T1*, T2*}
Filtered

Subvolume

O
ts

u'
s 

M
et

ho
d

Figure 6.6: The 4DCT Optimised Threshold algorithm

is realistic in the clinical setting for segmenting CT scans into air, soft tissue and bone

classes, since the approximate ranges of CT numbers corresponding to these classes are

relatively well defined [5].

The search range was restricted to pixel intensities between −600 and 400HU. When

constructing the histogram of pixel intensities in the image, any pixels with an intensity

less than −600HU were added to the −600HU bin, and any pixels with an intensity

greater than 400HU were added to the 400HU bin.

Finally, the first pair of thresholds that were found to maximise σ2B
′
were returned as

the optimal set of threshold rather than returning the average of every set of thresholds

that maximised σ2B
′
. This approach was chosen as it still provided an optimal solution to

the problem, while also avoiding the computational and hardware expense of recording

and post-processing every set of thresholds that maximised σ2B
′
.

150



Chapter 6. Hardware Accelerated Segmentation of 4DCT Images

Software

The software implementation was written in C++ and executed on an Intel Core-i5

3230M CPU. The generation of optimal thresholds and filtering of the subvolume were

performed sequentially. An example of the software code can be found in Appendix B.

Hardware

The hardware implementation used a Xilinx Zynq 7020 SoC device on an AvNet Zed-

Board development board. The system was implemented from a software description

of the algorithm using the Xilinx SDx v2017.2 software.

The generation of optimal thresholds and filtering of the subvolume were performed

concurrently in the programmable logic of the SoC, with the input pixel values streamed

to the two implementations simultaneously. The output pixels from the mean filter were

streamed back to system memory as they were generated.

Generation of the optimal thresholds took much longer than the mean filtering of

the subvolume and caching of the filtered subvolume in programmable logic would have

been prohibitively expensive in terms of memory resource utilisation. Therefore, the

thresholding of the filtered subvolume using the optimal threholds was performed using

the CPU in the processing system to save the additional data transfer overhead from

caching the filtered subvolume in system memory and thresholding in the programmable

logic.

The use of binary logarithms was considered to further simplify the computation

of σ2B
′

in hardware. This approach has been shown to improve the speed of hardware

implementations of Otsu’s method in the case of segmenting images into two classes

[139,140].

By approximating the logarithms of mk and Pk in Equation 6.7, the squaring of mk

becomes a multiplication by two, which is trivial in binary logic, and the division of

m2
k by Pk becomes a subtraction of log2 Pk from 2 log2mk [139,140]. It was found that

the time saved from the elimination of a division and a non-trivial multiplication was

greater than the time taken to approximate the logarithms of mk and Pk. Therefore

the approach improved the execution time of the algorithm overall [139,140].

151



Chapter 6. Hardware Accelerated Segmentation of 4DCT Images

However, in the case of segmentation into three or more classes, the logarithm of

the
m2

k
Pk

expression must be converted back, by approximating the anti-logarithm, before

summing the values for each class to ensure that the true optimal thresholds are found.

It was found that, with the addition of the approximation of the anti-logarithm, the

performance advantage of using logarithms over the standard approach was lost, and

the standard approach was faster to compute the optimal thresholds while requiring

fewer hardware resources. Therefore the standard approach was used for the hardware

implementation presented here.

Assessing Performance

A number of facets to the performance of the algorithm implementations presented

here were considered.

Firstly, the quality of the segmentations produced by the implementations was

assessed. This task was simplified by the segmentations from the hardware and software

implementations being identical.

The quality of the segmentations produced was assessed quantitatively by detecting

the range of motion of the segmented target objects in the imaging insert and comparing

this with the nominal range of motion programmed on the QUASAR phantom for the

respective image dataset. To assess the range of motion, the goal was to detect the

leading edge of the cube target object in each of the motion phase subvolumes in the

dataset. By comparing the minimum and maximum slice that the leading edge was

detected across all phases of the motion, and knowing the slice thickness, the range of

motion was approximated.

To find slices containing the cube target object, a morphological opening was per-

formed on each slice using a square structuring element of side approximately 15mm.

The first slice found with target object pixels after this opening was assumed to be the

leading edge of the cube target object. The first five slices of the subvolume (equating

to 15mm) were neglected in this operation, as these were likely to contain extraneous

parts of the phantom that could be spuriously classified as belonging to the class of

target object pixels.

152



Chapter 6. Hardware Accelerated Segmentation of 4DCT Images

Secondly, the execution time for the hardware implementation was compared to

that of the software implementation.

Finally, the FPGA resources required for the hardware implementation were con-

sidered.

6.2.3 Results and Discussion

The results of running the software and hardware implementations of the 4DCT Opti-

mal Threshold algorithm on the 4DCT phantom image data are presented and discussed

below. The results are divided into those concerning segmentation quality, execution

time and the resource utilisation of the hardware implementation.

Segmentation Quality

The detected range of motion of the target objects in the imaging insert are shown

in Table 6.1. In each case the detected range of motion matched the nominal range

to within 1.5mm; the extent to which measurements could be taken, given the spatial

resolution of the image volumes considered.

Table 6.1: Ranges of motion for the imaging insert in the 4DCT image data

Dataset Nominal Range (mm) Detected Range (mm ±1.5mm)

1 30 30

2 30 30

3 30 30

4 30 30

5 15 15

6 15 15

7 15 15

8 15 15

The agreement between the nominal and detected ranges of motion tends to indicate

that the segmentation produced using the 4DCT Optimal Threshold algorithm was of

good quality. However, the accuracy of the range of motion detection algorithm can be

153



Chapter 6. Hardware Accelerated Segmentation of 4DCT Images

ascribed in large part to the well-known and well-defined shape of the target object.

In clinical practice, where these assumptions are not valid, the task of distinguishing

between the true target object and noise in the segmentation would be much more

challenging. It is unlikely, therefore, that such an accurate measurement of the range

of motion could be made in clinical image data. Nevertheless, this approach served the

purpose here of providing a quantitative assessment of the segmentation quality.

An example of a typical segmentation is shown in Figure 6.7 along with the distri-

bution of of pixel intensities in the subvolume. It can be seen that the trimodal nature

of the pixel intensity distribution is much clearer for the selected subvolume than it

was for the entire 4DCT image volume, shown in Figure 6.4 on page 147. This resulted

in a greatly improved segmentation of the target objects, as shown in Figure 6.7.

(a)

1000 500 0 500 1000 1500
Pixel Intensity (HU)

0

1000

2000

3000

4000

5000

6000

Nu
m

be
r o

f P
ix

el
s

(b)

Figure 6.7: Application of 4DCT Optimal Threshold algorithm showing (a) the segmentation pro-
duced — with the pixels classified as phantom body shown in red, those classified as target object
shown in blue and the extent of the subvolume shown in green — and (b) the histogram of pixel
intensities.

Execution Time

The average execution times for the hardware and software implementations to segment

a 4DCT subvolume are shown in Table 6.2.

154



Chapter 6. Hardware Accelerated Segmentation of 4DCT Images

Table 6.2: Average measured times to process 4DCT subvolume using the two algorithm implemen-
tations

Algorithm Implementation Execution Time (ms)

Software 46.6741

Hardware 23.9212

It can be seen from Table 6.2 that the segmentation in hardware is 1.95 times faster

than in software. This difference was found to be statistically significant (p < .05).

The performance advantage of the hardware implementation over the software im-

plementation was not nearly so marked as was found for the Haas algorithm applied

to the bladder cancer patient data in Chapter 5. Much of the performance advantage

that was observed here is likely to be attributable to the hardware implementation

executing the mean filtering and Otsu’s method concurrently, wheras the software im-

plementation performed these operations sequentially. If a multi-threaded approach

were adopted for the software implementation to perform these two operations in par-

allel, the performance advantage of the hardware implementation would be greatly

reduced.

Resource Utilisation

The resource utilisation for the hardware implementation is shown in Table 6.3. This

shows relatively low resource utilisation, particularly considering the modest amount

of FPGA resources available on the SoC device used here.

Table 6.3: Resource utilisation for hardware implementation

Resource Utilisation (%)

LUT 19252 (36.19)

FF 23378 (21.97)

BRAM 21.5 (15.36)

DSP 14 (6.36)

155



Chapter 6. Hardware Accelerated Segmentation of 4DCT Images

Each histogram bin was represented by a 19-bit unsigned integer to be able to

denote values up to and including 262144, the number of pixels in the subvolume. To

represent all 1599 bins used in the histogram, three 18Kbit BRAMs were required. A

further 14 BRAMs were required for the computation of σ2B
′
.

The image subvolume was oriented to minimise the amount of memory resources

required to buffer an image slice, at the expense of a slower execution time due to there

being more slices in the subvolume. The image subvolume of dimensions 32× 64× 128

was processed as 128 slices of 32 rows and 64 columns, with each slice containing 2048

pixels.

The mean filter required two slice buffers, each buffering 30 rows of a slice, with the

other two rows being contained in row buffers. A slice buffer therefore required enough

memory to contain 1920 16-bit values. Each 18Kbit BRAM has capacity to hold 1000

16-bit values, meaning that each slice buffer required two BRAMs and the mean filter

required four BRAMs overall. The six row buffers required by the mean filter were

implemented using LUT resources rather than BRAMs.

The resource utilisation reported here should be viewed in the context that this

implementation used a small subvolume extracted from the main image volume using

a priori information about the position of the target objects within the image volume.

This is a legitimate approach when using a well-defined phantom, the setup of which

can be readily reproduced. However, it would be less appropriate in the case of clinical

image data, since the position of any target anatomy is unlikely to be so well localised

prior to imaging and the reproducibilty of patient setup is more challenging [143,144].

Therefore, it is anticipated that this implementation would need to be extended to be

able to process larger image volumes if it were to be used in ART.

6.2.4 Extension to Clinical Image Data

The 4DCT Optimal Threshold algorithm approach was premised on using specifically

selected subvolumes from each of the full image volumes. The subvolumes were chosen

to contain significant proportions of pixels belonging to each of the three classes the

images were to be segmented into. These selections were based on a priori information

156



Chapter 6. Hardware Accelerated Segmentation of 4DCT Images

about the phantom and its setup. In practice, with clinical image data, such information

is unlikely to be available. A more robust approach would be to apply the algorithm

to the entire image volume.

Hardware Resource Requirements

Increasing the size of the volume to be processed would increase the execution time

of the algorithm commensurate with the number of additional pixels to be processed.

For the mean filter, more pixels would need to be filtered and, for Otsu’s method, the

construction of the histogram would take longer because of the additional pixels. The

search for the optimal set of thresholds is unlikely to increase in time, however, since

the number of bins in the histogram would not change.

Although the number of bins in the histogram would not increase, the amount of

memory required to represent the histogram may do. This is dependent on whether a

greater number of bits would be required for each histogram bin, to be able to represent

values up to the number of pixels in the volume. The amount of memory required to

represent the look-up tables used in the computation of σ2B
′

would also increase with

any increase in the bit-width of the histogram values.

Increasing the size of the volume to be processed would also increase the resources

required to implement the mean filter in hardware. For the 4DCT image data used

here, a full image volume was of dimension 512×512×47 pixels. Assuming the volume

orientation was selected to minimise the size of the image, each slice buffer would need

to consist of 45 rows of 512 columns of 16-bit values in order to process a full volume.

Each slice buffer would require 24 BRAMs, meaning the mean filter would require 48

BRAMs in total. While this is a substantial increase in the number of BRAMs required

compared to the design implemented here, it is still well within the available limits for

the SoC device used here of 280 BRAMs.

Faster processing could be achieved, at the expense of memory resources, by using

the slice orientation producing the fewest number of slices. For the full 4DCT image

volume, this would require processing slices with 512 rows and 512 columns and slice

buffers capable of containing 261120 16-bit pixel values. Each slice buffer would need

157



Chapter 6. Hardware Accelerated Segmentation of 4DCT Images

262 BRAMs, and 524 BRAMs would be necessary for the entire mean filter. The

requirements would preclude the use of the SoC device used here and a more expensive

device with greater FPGA resources would be needed.

Algorithm Suitability

Although it would be technically feasible to extend the hardware implementation of

the algorithm used here to process the full 4DCT volumes, the segmentation shown in

Figure 6.4 on page 147 illustrates the poor segmentation results that would be achieved.

These findings demonstrate a fundamental weakness in Otsu’s method for this applica-

tion, in the sense that it depends greatly upon there being a reasonable proportion of

pixels belonging to each class in the image to accurately identify the optimal thresholds.

If one of the classes is poorly represented in the image then the algorithm may identify

a subdivision of a more dominant class as the optimal segmentation.

Otsu’s method is, therefore, unsuitable for the segmentation of 4DCT data into air,

soft tissue and bony anatomy without additonal processing or a priori knowledge that

the proportion of pixels in the image belonging to each class is relatively balanced. It

may, however, be suitable as part of a greater segmentation algorithm for ART, where

these criteria can be more readily met, such as the automatic abdominal segmentation

algorithm proposed in [145]. Therefore, the results presented here should not be entirely

discounted.

Notwithstanding that the hardware implementation of the 4DCT Optimal Thresh-

old algorithm presented here showed a significant speed-up over its software counter-

part, the structure of Otsu’s method is not well suited to the FPGA architecture. Otsu’s

method is a global algorithm that relies on all of the pixel values in an image to produce

the output. This is in contrast to the Haas algorithm or the mean filter, which can

be implemented as a sequence of simple local operations where the output of a stage

at any point in time depends only on a few input values that have relatively recently

been input to the stage. The computationally expensive processing required for Otsu’s

method cannot begin until all of the pixels have been recorded in the histogram. This

restricts the creation of deep processing pipelines, where the pixel data can be streamed

158



Chapter 6. Hardware Accelerated Segmentation of 4DCT Images

through a sequence of concurrently executing processing stages. An algorithm that can

be decomposed into a series of local operations, such as the Haas algorithm, would be

better suited as a segmentation stage in an ART algorithm implemented on an FPGA

architecture.

6.3 Segmentation based on Haas’ Algorithm

The other approach that was considered for segmenting the target objects from the

imaging insert in the 4DCT image data was the same algorithm that was investigated

for segmenting bony anatomy in Chapter 5. A brief description of the investigation

that was carried out follows in the remainder of this section, along with a presentation

and discussion of the results obtained.

Based on these results, an extension to the previously developed implementations

was proposed to improve the quality of the segmentation in the presence of noise. The

results from implementing this extended algorithm in software and hardware are also

presented and discussed here.

6.3.1 Application of the Haas and Simplified Haas Algorithms

The same algorithms that were used for bone segmentation of CT scans of bladder can-

cer patients in Chapter 5 were applied to the 4DCT image data. These were, namely,

the Haas algorithm implemented in software, and the Simplified Haas algorithm im-

plemented in both software and hardware.

The same platforms that were used for the software and hardware implementations

in Chapter 5 and for the Otsu-based approach were also used here.

The algorithm implementations were applied to each of the 120 4DCT image vol-

umes available in the datasets. For the Simplified Haas algorithm, a subvolume of

interest corresponding to an approximately 340 × 170mm region in the centre of each

slice was extracted for processing.

159



Chapter 6. Hardware Accelerated Segmentation of 4DCT Images

Two methods were used to assess the quality of the segmentations produced. Firstly,

the segmentations produced by the Haas and Simplified Haas algorithms were assessed

by detecting the range of motion of the segmented cube target object in the eight

datasets employed in this work. The detected range of motion was then compared to

the nominal range of motion for each of the datasets. A more detailed description of

the method used is provided in Section 6.2.2.

Secondly, the segmentations produced for each image volume using the Simplified

Haas algorithm were compared to those produced using the Haas algorithm. The DSC

was calculated to provide a quantitative assessment of the segmentation quality.

The execution times of the implementations were measured and compared.

The resource utilisation for the hardware implementation of the Simplified Haas

algorithm is the same as that reported and discussed in Chapter 5. Therefore, it is not

reported or discussed any further here.

6.3.2 Results and Discussion

The results obtained are presented in this section. Firstly, the results from measur-

ing the execution time of the implementations are presented and discussed. These

are followed by the results obtained from assessing the quality of the segmentations

produced.

Segmentation Quality

The quality of the segmentations produced using the Haas and Simplified Haas algo-

rithms was assessed by detecting the range of motion of the segmented cube target

object in the phantom’s imaging insert. Table 6.4 shows the nominal and detected

ranges of motion.

It can be seen from the results in Table 6.4, that in each of the datasets tested

here, the segmentations produced by both the Haas and Simplified Haas algorithms

accurately identified the range of motion of the target objects from the image data.

160



Chapter 6. Hardware Accelerated Segmentation of 4DCT Images

Table 6.4: Segmented target object range of motion

Nominal Detected Range

Dataset Range (mm) (mm ±1.5mm)

Haas Simplified Haas

1 30 30 30

2 30 30 30

3 30 30 30

4 30 30 30

5 15 15 15

6 15 15 15

7 15 15 15

8 15 15 15

On the face of it, these results suggest that the segmentation produced by the

Simplified Haas algorithm was as good, in terms of detecting the range of motion of

the target objects, as that produced using the Haas algorithm and that, therefore, the

two segmentations are of similar quality. However, it must be borne in mind that the

algorithm used to detect the range of motion was based on having a priori knowledge

of the size, shape and orientation of the target objects, making the algorithm robust

against noisy segmentations. While this premise is perfectly valid when phantom data

is being used, it is extremely unlikely to be equally valid in clinical practice. In clinical

practice, an algorithm for detecting the range of motion from a segmentation is likely

to be far less robust against noise in the segmentation and is unlikely to produce as

accurate results as have been found here.

A further assessment of the quality of the segmentation produced using the Simpli-

fied Haas algorithm was made by comparing it directly to the segmentation produced

using the Haas method on a volume-by-volume basis. The DSC measure [132] was

used to quantify the similarity between the segmentations, and the distribution of the

results is shown in Figure 6.8.

161



Chapter 6. Hardware Accelerated Segmentation of 4DCT Images

Haas vs.
Simplified Haas

0.0

0.2

0.4

0.6

0.8

1.0
Di

ce
 S

im
ila

rit
y 

Co
ef

fic
ie

nt

Figure 6.8: DSC resulting from a comparison of the segmentations produced by the Simplified Haas
and Haas Algorithms

It can be seen from Figure 6.8 that in the majority of the 120 image volumes

tested, the segmentation produced using the Simplified Haas algorithm was not in

good agreement (DSC < 0.7) with that produced by the Haas algorithm.

A visual comparison of the segmentations produced using the two algorithms re-

vealed that the segmentation produced using the Simplified Haas algorithm contained

a good deal more noise than that produced using the Haas algorithm. Figure 6.9 shows

a typical comparison from the two algorithms. This finding corresponds with the find-

ings presented in Chapter 5, where the quality of the segmentation produced using the

Simplified Haas algorithm is significantly reduced when noise is present in the image.

Given the inherently noisy nature of 4DCT image data, the Simplified Haas algorithm

would need to be adapted to improve its robustness to noise to make it suitable for use

with 4DCT data.

162



Chapter 6. Hardware Accelerated Segmentation of 4DCT Images

(a) (b)

Figure 6.9: Typical segmentations produced by the (a) Haas algorithm and (b) Simplified Haas
algorithm. The region of interest processed by the Simplified Haas algorithm is shown in green.

Execution Time

The average time taken to process an image volume using the Haas and the Simplified

Haas algorithms are shown in Table 6.5. The average time taken to process an image

slice is also shown.

Table 6.5: Average time to segment 4DCT image data

Time to Segment Time to Segment

Implementation Volume (ms) Slice (ms)

Haas Algorithm in Software 300.0594 6.3342

Simplified Haas in Software 17.5056 0.3725

Simplified Haas in Hardware 20.0414 0.4293

The results in Table 6.5 show that the execution of the Simplified Haas algorithm,

in hardware and software, was much faster than the Haas algorithm in software. By

14.97 and 17.14 times, respectively, for an image volume. These results were found to

be statistically significant (p < .05).

163



Chapter 6. Hardware Accelerated Segmentation of 4DCT Images

The software implementation of the Simplified Haas algorithm was found to be

slightly faster than the hardware implementation, around 14.5% faster for an image

volume, although this result was not statistically significant. This finding is the converse

of that found in Chapter 5, where the hardware implementation was found to perform

slightly better than the software implementation.

Although the time taken to process an image slice using the hardware implementa-

tion is broadly similar to those observed when processing the bladder image data, as

shown in Table 5.2 on page 5.2, the time taken to process a slice of the 4DCT image

data using the software implementation was much less than the times recorded for the

bladder image data. This difference in processing time between the two sets of image

data is difficult to reconcile. It cannot be explained by the difference in the number of

pixels per slice between the two sets of image data, as the average number is similar

between the two sets and the 4DCT set, in fact, had slightly more on average.

However, the time taken to process a slice was not measured while processing the

slices individually, but in the context of processing entire volumes. The volumes in the

4DCT dataset contain far fewer slices than the volumes in the bladder dataset. There

may, therefore, have been some memory caching efficiency that was possible because the

amount of data in a 4DCT volume was so much lower than that in a bladder volume.

This may explain the faster processing of the 4DCT data than the bladder data using

the software implementation.

When comparing the relative speed-up of the Simplified Haas algorithm implemen-

tations against the implementation of the Haas algorithm on a volume- and slice-wise

basis, the effects of slice pipelining in the hardware implementation can be observed.

The relative improvement in execution time for the software implementation of the

Simplified Haas algorithm over the Haas algorithm was 17.14 times for both the aver-

age time to process a slice and a volume. For the hardware implementation, however,

the improvement over the Haas algorithm was slightly greater when considering the

time to process a volume compared to the time to process a slice, at 14.97 and 14.87

times, respectively.

164



Chapter 6. Hardware Accelerated Segmentation of 4DCT Images

This pattern was also, obviously, observed in the performance deficit of the hard-

ware implementation relative to the software implementation of the Simplified Haas

algorithm. The software implementation was 15.25% faster on a slice-wise basis, but

only 14.97% faster on a volume-wise basis.

In the case of the 4DCT data used here, the advantage imparted to the hardware

implementation by slice pipelining was limited by the small number of slices in each

volume, namely 47. With image data composed of a greater number of slices, the time to

process an image volume using the hardware implementation would improve relative to

the software implementation of both the Haas and Simplified Haas algorithms. There

is likely to be a number of slices above which the volume-wise performance of the

hardware implementation is superior to the software implementation of the Simplified

Haas algorithm.

The number of slices in the 4DCT image volumes used here was relatively low

because the size of the phantom was small compared to a patient, and the extremities

of the volume to be imaged were well-defined when setting the extent of the CT scans.

In clinical practice, volumes composed of a greater number of slices are likely to be more

prevalent [119, 123] given the greater variability in patient setup and poorer definition

of the volume of interest prior to CT scanning. The image volumes used in Chapter 5

are likely to be more representative of the typical sizes of clinical image volumes for

abdominal therapies.

With image volumes composed of more slices, the execution time performance of

the hardware implementation is anticipated to improve relative to the software imple-

mentations, due to the increased effect of slice pipelining. For clinical 4DCT scans, the

performance of the hardware implementation relative to the software implementations

reported here is likely to be pessimistic.

6.3.3 Improving Segmentation Quality

The Simplified Haas algorithm was adapted to improve the quality of the segmentation

produced from noisy image data to make it more suitable for use with 4DCT image

data.

165



Chapter 6. Hardware Accelerated Segmentation of 4DCT Images

It can be seen from Figure 6.9 that the noise in the segmentation produced by the

Simplified Haas algorithm tended to be individual pixels isolated from other segmented

pixels. These types of artifacts can be removed using a morphological opening operation

on the segmentation [142]. Moreover, the Simplified Haas algorithm already utilised a

morphological opening operation in the creation of the body mask. The Simplified Haas

algorithm could therefore be simply augmented with the duplication of this function-

ality in order to improve its performance on noisy image data. Figure 6.10 shows the

adapted algorithm schematically and the new algorithm was termed the Noise-reduced

algorithm.

CT Slice
ROI

Apply
Thresholds

Morphological
Filtering

Body
Mask

Apply
Thresholds

B
od

y 
M

a
sk

 G
en

er
at

io
n

B
one M

ask
G

eneratio
n

Bone
Mask

Morphological
Filtering

Figure 6.10: Noise-reduced algorithm

The Noise-reduced algorithm was implemented in both software and hardware using

the same platforms as were used previously. An example of the code used for the

software implementation can be found in Appendix B. The same 4DCT image data

were also used.

166



Chapter 6. Hardware Accelerated Segmentation of 4DCT Images

The quality of the segmentation produced by the Noise-reduced algorithm was,

again, assessed by detecting the range of motion of the segmented target objects, as

well as comparing it to the segmentation produced using the Haas algorithm. This

enabled the effects of the proposed modifications to the Simplified Haas algorithm to

be evaluated.

The execution times of the Noise-reduced algorithm were measured for both the

hardware and software implementations to compare with each other and those recorded

for the Haas and the Simplified Haas algorithms. The resource utilisation of the hard-

ware implementation was also recorded for comparison with that of the hardware im-

plementation of the Simplified Haas algorithm.

6.3.4 Results and Discussion

Segmentation Quality

The main purpose in proposing the Noise-reduced algorithm was to improve the quality

of the segmentation produced using the Simplified Haas algorithm. The quality of the

segmentation was assessed by comparing it with the segmentation produced using the

Haas algorithm and by finding the range of motion of the segmented cube target object.

Figure 6.11 shows the distribution of the DSC values obtained from comparing the

segmentations produced using the Noise-reduced and Haas algorithms. The distribu-

tion of DSC values obtained from comparing the segmentations produced using the

Simplified Haas and Haas algorithms are also shown in Figure 6.11.

It can be clearly seen from Figure 6.11 that, in the majority of cases tested here, the

Noise-reduced algorithm produced a segmentation more similar to that produced by the

Haas algorithm than the Simplified Haas algorithm. Greater than 75% of the segmenta-

tions produced by the Noise-reduced algorithm showed good agreement (DSC ≥ 0.7)

with those produced by the Haas algorithm, compared with less than 50% for the

Simplified Haas algorithm. The mean DSC for the Noise-reduced algorithm was 0.83,

whereas the mean DSC for the Simplified Haas algorithm was 0.49 and this difference

was found to be statistically significant (p < .05).

167



Chapter 6. Hardware Accelerated Segmentation of 4DCT Images

Haas vs.
Noise-reduced

Haas vs.
Simplified Haas

0.0

0.2

0.4

0.6

0.8

1.0
Di

ce
 S

im
ila

rit
y 

Co
ef

fic
ie

nt

Figure 6.11: DSC resulting from comparing segmentations produced by the Noise-reduced and
Simplified Haas algorithms with those produced by the Haas algorithm

These results demonstrate that the proposed additional morphological filtering

stages were effective at reducing the susceptibility of the Simplified Haas algorithm

to noise. This point was reinforced by a visual comparison between the segmentations

of a typical image slice produced using the Haas, Simplified Haas and Noise-reduced

algorithms, as shown in Figure 6.12.

The detected range of motion of the segmented cube target object was, again, found

to match the nominal range of motion for each of the datasets tested here. This result

is unsurprising given that this was also the outcome for the segmentations produced

using both the Haas and Simplified Haas algorithms.

Execution Time

The average time taken to process an image volume and slice using the hardware and

software implementations of the Noise-reduced algorithm are shown in Table 6.6.

168



Chapter 6. Hardware Accelerated Segmentation of 4DCT Images

(a) (b)

(c)

Figure 6.12: Typical segmentations produced by the (a) Haas algorithm, (b) Simplified Haas algo-
rithm and (c) Noise-reduced algorithm. The region of interest processed by the Simplified Haas and
Noise-reduced algorithms is shown in green.

169



Chapter 6. Hardware Accelerated Segmentation of 4DCT Images

Table 6.6: Average time to segment 4DCT image data using the Noise-reduced algorithm

Time to Segment Time to Segment

Implementation Volume (ms) Slice (ms)

Software 22.0274 0.4687

Hardware 20.0533 0.4295

In comparison to the software implementation of the Haas algorithm, the execu-

tion time for both the hardware and software implementations of the Noise-reduced

algorithm were much reduced, by factors of 14.96 and 13.62, respectively, on average.

These differences were found to be statistically significant (p < .05). The proposed

Noise-reduced algorithm, therefore, still represents a significant improvement over the

Haas algorithm in terms of execution time.

Compared to the corresponding implementations of the Simplified Haas algorithm,

the execution time of the Noise-reduced algorithm was greater. However, the increase

in the mean execution time between the hardware implementations was small, around

0.05%, and was not found to be statistically significant. While the increase in the

execution time between the software implementations, on the other hand, was found

to be greater, around 25% on average, and statistically significant (p < .05).

An increased execution time for the Noise-reduced algorithm was unsurprising given

that the Noise-reduced algorithm extends the Simplified Haas algorithm by adding a

morphological filter post-processing stage to remove noise from the segmentation.

In the case of the software implementation, the additional processing stages in-

creased the execution time of the algorithm considerably. As each of the additional

stages is processed sequentially in the software implementation, the time to process

a slice is increased by the sum of the execution times of the added stages. In turn,

since each slice is processed sequentially, the time to process a volume is lengthened by

the increased amount of time to process a slice multiplied by the number of slices in a

volume.

170



Chapter 6. Hardware Accelerated Segmentation of 4DCT Images

In the case of the hardware implementation, on the other hand, there was no statisti-

cally significant increase in the execution time of the Noise-reduced algorithm compared

to the Simplified Haas algorithm. The additional processing of the Noise-reduced algo-

rithm increased the depth of the processing pipeline, resulting in a greater capacity for

processing pixels concurrently. The increase in processing time on a slice-by-slice basis

was, therefore, much less compared to the software implementation.

Furthermore, the results imply an increased slice pipelining effect in the hardware

implementation due to the deeper pipeline. This is suggested by the hardware imple-

mentation of the Noise-reduced algorithm being 9.13% faster than the software im-

plementation on a slice-by-slice basis, but 9.84% faster on a volume-by-volume basis.

Neither of these results were statistically significant.

The results in Table 6.6 show the hardware implementation of the Noise-reduced

algorithm was faster than the software implementation with the 4DCT image data used

here, although, the difference was not found to be statistically significant.

The performance advantage of the hardware implementation is likely to be further

increased when applied to clinical image data. As discussed previously, the image

volumes used here were composed of very few slices compared to typical clinical image

data. In image volumes with a greater number of slices, the slice pipelining effect would

be more pronounced and provide a greater performance advantage for the hardware

implementation.

Further improvements in performance of the hardware implementation relative to

the software implementation are likely to be exhibited if the depth of the processing

pipeline can be increased further. Extending the pipeline with the additional processing

for a full ART algorithm may present opportunities to achieve this.

Resource Utilisation

The resource utilisation for the hardware implementation of the Noise-reduced algo-

rithm is shown in Table 6.7.

It can be seen for Table 6.7 that the Noise-reduced algorithm still uses relatively

few of the resources available, even on the fairly modest SoC device used here.

171



Chapter 6. Hardware Accelerated Segmentation of 4DCT Images

Table 6.7: Resource utilisation for the hardware implementation of the Noise-reduced algorithm in
absolute terms and as a percentage of the available resources

Resource Utilisation (%)

LUT 8977 (16.87)

FF 10784 (10.14)

BRAM 11 (7.86)

For each of the resources reported in Table 6.7, there is increased utilisation com-

pared to the hardware implementation of the Simplified Haas algorithm shown in Ta-

ble 5.3 on page 5.3. An increased use of resources relative to the Simplified Haas

algorithm was expected, since the Noise-reduced algorithm is the Simplified Haas al-

gorithm augmented with additional morphological filtering stages. The increases in

resource usage are shown in Table 6.8, where they are also expressed as a relative

increase in terms of the available resources on the SoC device.

Table 6.8: Increase in resource utilisation for the hardware implementation of the Noise-reduced
algorithm compared to the Simplified Haas algorithm

Resource Utilisation Increase (%)

LUT 2648 (4.93)

FF 2727 (2.58)

BRAM 4 (2.86)

Table 6.8 shows a small increase in the resource utilisation for the Noise-reduced

algorithm compared to the Simplified Haas algorithm. However, given the significant

improvement in segmentation quality exhibited by the Noise-reduced algorithm, this

small increase in resource utilisation would seem a prudent trade-off.

The small increase in the number of resources used was not sufficient to materially

affect the analysis of the factors limiting the implementation of multiple parallel pro-

cessing pipeline instances provided in Chapter 5, page 5.3.4. Specifically, the finding

that the implementation of multiple parallel processing pipelines would be constrained

by the bandwidth between the FPGA fabric and system memory on the platform used

here remains valid.

172



Chapter 6. Hardware Accelerated Segmentation of 4DCT Images

Likewise, the changes to the design to reduce the number of resources used proposed

in Chapter 5, page 5.3.4 are equally applicable to the design for the Noise-reduced

algorithm proposed here.

Similarly to the hardware implementation of the Simplified Haas algorithm dis-

cussed in Chapter 5, the Noise-reduced processing pipeline was synthesised and im-

plemented using the default strategies in Xilinx Vivado v2017.2 with a target clock

frequency of 100MHz. The worst case negative slack resulting from this was 0.023ns.

This, again, implies that the performance of the hardware implementation could have

been marginally improved, by around 0.23%, just by increasing the clock frequency

used to drive the design. Some improvement may also have been possible to the worst

case negative slack to produce a design capable of operating at higher frequencies by

adopting a more aggressive implementation strategy.

6.4 Conclusions

Two algorithms were investigated for accelerating the segmentation of 4DCT image

data by implementing them in hardware. One algorithm was based on Otsu’s method

for optimally segmenting images into multiple classes, while the other was based on the

work presented in Chapter 5 using the Haas algorithm. Eight sets of 4DCT image data

of a quality assurance phantom were used for the investigation.

4DCT Optimal Threshold Algorithm

A hardware implementation of Otsu’s method to generate optimal thresholds to seg-

ment an image into three classes was developed. Adaptations to the original algorithm

were proposed to suit the specific application of segmenting 4DCT data and for its

realisation in hardware. Subvolumes, selected from each of the 4DCT image volumes,

were used.

173



Chapter 6. Hardware Accelerated Segmentation of 4DCT Images

A hardware implementation of a three-dimensional mean filter was also developed

to reduce the amount of noise in the 4DCT image data. The optimal thresholds gen-

erated using Otsu’s method were used to segment the image volume after it had been

filtered using the mean filter. This algorithm was termed the 4DCT Optimal Threshold

algorithm.

The execution time of the algorithm was compared between the software and hard-

ware implementations. The quality of the segmentations produced were also assessed

quantitatively by detecting the range of motion of a segmented target object in each of

the 4DCT datasets tested. In addition, the feasibility and suitability of extending the

algorithm presented here to clinical 4DCT image data was considered.

The algorithm with the adaptations proposed here was shown to be effective at

segmenting the subvolumes selected from the 4DCT image volumes. In each dataset

tested, the range of motion of the segmented target object was accurately detected.

The hardware implementation was found to be faster than the single-threaded soft-

ware implementation. The improved performance of the hardware implementation was

attributable to more parallel processing, although a multi-threaded software implemen-

tation would significantly reduce this advantage.

The performance of the hardware implementation of the mean filter could be im-

proved, at the expense of memory resources, by processing the image volume as fewer,

larger slices. Although, this would not improve the overall performance of the segmen-

tation algorithm as the threshold generation, which executed concurrently with the

mean filtering, took considerably longer to complete. Additionally, extending this ap-

proach to typically-sized clinical image volumes would require more memory resources

than were available on the SoC device used here, meaning a larger, and more expensive,

SoC device would be needed.

When the algorithm was investigated for extension to process full 4DCT image

volumes, it was found to be ineffective at segmenting the volumes into the desired

classes. This was due to a disproportionate number of low intensity pixels within the

volume.

174



Chapter 6. Hardware Accelerated Segmentation of 4DCT Images

These findings indicated that the Otsu-based approach was unsuitable for the global

segmentation of 4DCT image volumes being considered here. In the context of a larger

ART algorithm, however, it may find use as a refining segmentation algorithm following

a coarser pre-segmentation.

Haas Algorithm

The software implementation of the Haas algorithm and the hardware and software

implementations of the Simplified Haas algorithm presented in Chapter 5 were applied

to the 4DCT image data.

The execution times of the implementations were compared and the quality of the

segmentations produced were quantitatively assessed. Two methods for assessing the

segmentation quality were used. Similarly to the Otsu-based segmentation, the range

of motion of a segmented target object in each of the 4DCT datasets was detected and

compared to nominal values. In addition, the similarity between the segmentations

produced using the Haas and Simplified Haas algorithms was considered.

The segmentations produced using both the Haas and Simplified Haas algorithms

allowed the accurate detection of the range of motion of the target object in each of

the datasets tested here. However, the segmentations produced using the Simplified

Haas algorithm were found to show poor agreement with those produced using the

Haas algorithm in the majority of cases. This result corresponded with the finding in

Chapter 5 that the Simplified Haas algorithm was adversely affected by noise in the

image data. Therefore, the Simplified Haas algorithm is not a reasonable alternative

to the Haas algorithm for segmenting 4DCT data due to the noise inherent in 4DCT

image data.

Similarly to Chapter 5, the Haas algorithm was found to be significantly slower

than both the hardware and software implementations of the Simplified Haas algo-

rithm. However, conversely to the findings in Chapter 5, the software implementation

of the Simplified Haas algorithm was found to be slightly faster than the hardware

implementation. The reversal of the execution time performance of the two implemen-

tations is believed to be related to the considered 4DCT image volumes being composed

175



Chapter 6. Hardware Accelerated Segmentation of 4DCT Images

of many fewer slices than the image volumes used in Chapter 5. The image volumes

used in Chapter 5 were more representative of the size of clinical image volumes and, so,

it is anticipated that the execution time performance of the hardware implementation

relative to the software implementation reported in this chapter may be pessimistic if

the algorithm were extended to clinical 4DCT image data.

Adaptations to the Simplified Haas algorithm were proposed to create a Noise-

reduced algorithm with the aim of improving the segmentation quality. The Noise-

reduced algorithm was implemented in hardware and software and its performance, in

terms of execution time and segmentation quality, was assessed in the same manner as

was used for the Simplified Haas algorithm.

The segmentations produced using the Noise-reduced algorithm showed much better

agreement with those produced using the Haas algorithm. In the majority of cases

tested here, the segmentations produced using the Noise-reduced algorithm showed

good agreement with those produced using the Haas algorithm, indicating that the

Noise-reduced algorithm is a reasonable alternative to the Haas algorithm with much

faster performance for segmenting 4DCT image data.

Again, the hardware and software implementations of the Noise-reduced algorithm

were found to execute significantly faster than the Haas algorithm. The hardware and

software implementations of the Noise-reduced algorithm were found to execute more

slowly than their respective counterparts of the Simplified Haas algorithm. In the case

of the hardware implementations, the difference was found to be very small.

In contrast to the Simplified Haas algorithm, the hardware implementation of the

Noise-reduced algorithm was found to execute slightly faster than the software im-

plementation. This was attributable to the Noise-reduced algorithm having a deeper

processing pipeline than the Simplified Haas algorithm, increasing the concurrent pro-

cessing compared to the software implementation. It is anticipated that the perfor-

mance advantage of the hardware implementation would be increased when used with

clinical 4DCT data, where the number of slices in the image volume is likely to be

greater, therefore increasing the opportunities for concurrent processing.

176



Chapter 6. Hardware Accelerated Segmentation of 4DCT Images

There was a small increase in resource utilisation between the Noise-reduced and

Simplified Haas algorithms. The increase was not sufficient, however, to affect that the

bandwidth between programmable logic and system memory was the factor limiting

the improvement of the execution time performance on the development board used

here.

The results presented in this chapter have illustrated the non-triviality of the task of

selecting the most appropriate processing architecture for ART algorithms. The selec-

tion can depend not only on the structure of the algorithm, but also on the amount of

data to be processed. Although FPGAs are well suited to implementing data streaming

algorithms, when processing small amounts of data, the efficiencies achieved by the con-

current processing pipeline of the FPGA are not sufficient to overcome the fast serial

processing capabilities of the CPU architecture. However, the longer the processing

pipeline, the more advantageous it is to the FPGA architecture, assuming the same

throughput can be maintained. With each additional processing stage, the execution

time of the FPGA implementation increases only by the latency of the added stage.

The execution time of the serial CPU implementation increases by the latency of the

added stage for each data element to be processed.

177



Chapter 7

Conclusion

The aim of this thesis was to investigate the use of hardware acceleration to speed-

up algorithms for the segmentation of bony anatomy in CT images, with a view to

reducing the plan adaptation time for ART. To achieve this aim, three avenues were

investigated:

• the data transfer overhead introduced by integrating an FPGA-based hardware

accelerator with existing radiotherapy systems using the DICOM protocol;

• segmenting bony anatomy in three-dimensional image data;

• segmenting bony anatomy in four-dimensional image data.

7.1 Summary

7.1.1 Data Transfer Overhead

Chapter 4 examined the rate at which image data could be transferred to FPGA-based

SoC platforms using the DICOM protocol. Two FPGA-based SoC platforms were

considered: the ZedBoard, a relatively modest platform that was also used for the

hardware implementations elsewhere in this thesis; and the ZCU102, a more expensive

platform with a higher performance SoC. The performance of these two platforms was

compared with that of a desktop computer and those reported in the literature.

178



Chapter 7. Conclusion

These platforms were chosen primarily due to their availability. Both platforms are

general-purpose development boards that have not been specifically optimised for the

tasks required by ART. Their performance is, therefore, likely to be lower than that

which could be attained using an FPGA-based SoC board specifically developed for

ART. However, the data obtained using these platforms has enabled the identification

of some of the key criteria when selecting an FPGA-based SoC platform for ART, which

are discussed further in Section 7.1.4.

Both the FPGA-based SoC platforms were found to meet or exceed the clinically

representative transfer rates reported in the literature in the majority of cases. The

ZedBoard was consistently found to have much lower data transfer rates than any of

the other platforms tested, both for sending and receiving image data. The ZCU102

was found to have a significantly lower transfer rate than the desktop computer only

for receiving image data.

In absolute terms, however, the transfer times of the SoC platforms were found

to be sufficiently short that their use as hardware accelerators for ART could not be

precluded.

7.1.2 Three-dimensional Images

Chapter 5 considered segmenting bony anatomy in three-dimensional images of bladder

cancer patients. The image data was composed of both conventional CT scans and

CBCT scans. Modifications to the clinically validated Haas algorithm [5] were proposed

to make it more suitable for implementation in hardware. The modified algorithm

was termed the Simplified Haas algorithm, and a hardware implementation of it was

developed.

The Simplified Haas algorithm was found to execute significantly faster in both

hardware and software than the Haas algorithm. On average, the hardware implemen-

tation processed CBCT volumes 9.68 times and CT volumes 13.81 times faster than

the Haas algorithm. The software implementation, meanwhile, was found to process

CBCT volumes 5.11 times and CT volumes 7.73 times faster than the Haas algorithm,

on average.

179



Chapter 7. Conclusion

In each of the cases considered, the segmentation produced by the Simplified Haas

algorithm showed good agreement (DSC > 0.7) with that produced by the Haas algo-

rithm. The Simplified Haas algorithm, and the hardware implementation in particular,

therefore demonstrated substantially superior execution time performance to the Haas

algorithm, while producing comparable segmentations, and is a reasonable and faster

alternative.

The acceleration in real terms was in the order of milliseconds and is inconsequential

compared to the typical length of time for a treatment fraction. However, it was shown

that, if the relative acceleration achieved with this algorithm were replicated for each

of the operations necessary for ART, some of the ART techniques proposed in the

literature would then meet the clinically acceptable time requirements and make ART

in routine clinical practice a possibility. It also demonstrated the ability of FPGAs to

accelerate ART algorithms that can be implemented as data streaming pipelines.

A major obstacle to further improving the execution time performance of the hard-

ware implementation of the Simplified Haas algorithm, by replicating the hardware

accelerator to create multiple instances executing in parallel, was identified to be the

bandwidth between the hardware accelerator and system memory. It was found that

with the FPGA-based SoC platform used, the interconnection between the FPGA fabric

and system memory would only be capable of meeting the data transfer requirements

of two parallel instances of the hardware accelerator.

It was also noted that the data transfer rates measured for each of the platforms

in Chapter 4 were around two orders of magnitude lower than would be necessary to

satisfy the processing capacity of a single instance of the Simplified Haas hardware

implementation. Based on these findings, it is reasonable to conclude that using the

DICOM protocol over an Ethernet connection is likely to be the limiting factor in the

performance of hardware accelerators for ART integrated with existing radiotherapy

equipment using this method.

180



Chapter 7. Conclusion

7.1.3 Four-dimensional Images

Segmenting bony anatomy in four-dimensional image data of a quality assurance test

phantom was investigated in Chapter 6. A novel method was proposed to segment the

image data into three classes based on optimal thresholds, derived using Otsu’s method

[6], and a three-dimensional mean filter to reduce noise in the image. A hardware

implementation was developed that was shown to execute 1.95 times faster than the

algorithm in software. However, the algorithm was found to be unsuitable for the

task of global segmentation of 4DCT images examined here, as it depended on the

distribution of pixel intensities in the image being more uniformly spread between the

target classes than is reasonable to assume in clinical image data. In the context of a

larger ART algorithm, however, it may find use as a refining segmentation algorithm

following a coarser pre-segmentation.

The Simplified Haas algorithm developed in Chapter 5 was also applied to the

four-dimensional image data. Unlike with the three-dimensional image data used in

Chapter 5, the vast majority of segmentations produced from the four-dimensional

data showed poor agreement (DSC < 0.7) with segmentations produced using the Haas

algorithm. The addition of further morphological filtering stages to the Simplified Haas

algorithm was proposed to improve the quality of segmentation produced with four-

dimensional image data. This new algorithm was termed the Noise-reduced algorithm.

A hardware implementation of the Noise-reduced algorithm was developed and used

to segment the four-dimensional image data. The Noise-reduced algorithm showed a

great improvement over the Simplified Haas algorithm in terms of segmentation qual-

ity. The Noise-reduced algorithm produced segmentations that strongly agreed with

those produced by the Haas algorithm in greater than 75% of the cases considered.

The hardware implementation of the Noise-reduced algorithm was found to execute

14.96 times faster, on average, than the Haas algorithm, and 1.09 times faster than

the software implementation of the Noise-reduced algorithm. Moreover, the execution

time of the hardware implementation of the Noise-reduced algorithm only increased

marginally over that of the hardware implementation of the Simplified Haas algorithm.

181



Chapter 7. Conclusion

The increase was much smaller than the increase observed between the two software

implementations and illustrated a major strength of pipeline parallelism that can be

achieved using FPGAs.

Similarly to the Simplified Haas algorithm in Chapter 5, the major obstacle to

increasing the parallelism of the hardware implementation of the Noise-reduced algo-

rithm, by replicating multiple instances of the hardware accelerator, was the bandwidth

between the accelerators and system memory.

7.1.4 FPGA-based SoCs for ART

A number of criteria were identified that should be considered when selecting or design-

ing an FPGA-based SoC platform for accelerating ART. Given the high cost and power

requirements of the typical radiotherapy equipment in clinical use today, the cost and

power consumption of the acceleration platform are unlikely to be critical factors.

However, the bandwidth between the FPGA fabric and system memory was recog-

nised as a major obstacle to increasing the level of parallelism exploited by the hardware

accelerator. An FPGA-based SoC platform for accelerating ART should have a high

bandwidth between the FPGA fabric and system memory. This could be achieved ei-

ther by increasing the clock frequency of the system memory, or increasing the data

bus width between the SoC and system memory. Indeed, there are FPGA-based prod-

ucts that have recently arrived to market that use High Bandwidth Memory (HBM),

rather than the DDR memory of the SoC platforms used here [146]. HBM tends to

offer drastically increased bandwidth compared to DDR memory, chiefly by utilising

much wider data buses.

Selecting an SoC device with a large amount of memory resources in the FPGA

fabric is also likely to improve the performance of the platform. Such devices allow

more data to be cached in the FPGA fabric and can reduce the number of accesses to

system memory. Moreover, access times to data cached in the FPGA fabric tend to be

much shorter than those for accessing data in system memory.

182



Chapter 7. Conclusion

Indeed, an SoC device with large amounts of FPGA fabric is desirable more gen-

erally. Large amounts of FPGA fabric enables increased parallelism to be achieved,

through implementing deep processing pipelines and multiple parallel accelerator in-

stances. Furthermore, FPGA fabric has tended to become faster over time as the pro-

cess node used for its manufacture has reduced. Selecting the fastest available FPGA

fabric may allow the same design to operate at higher clock frequency and, therefore

reduce its execution time.

The platform should also have enough system memory to be able to contain all

of the data required for an entire ART fraction. This avoids the need to read and

write data to much slower non-volatile storage and will increase the rate at which

data can be exchanged with existing radiotherapy equipment. The transfer overhead

from exchanging data with existing radiotherapy equipment was assessed here using

the DICOM protocol over a 1Gb/s Ethernet connection. There are, however, a range

of alternative technologies that are likely to provide significant improvements in the

transfer rate and should be considered. For example, the SoC device on the ZCU102

platform tested here has a Peripheral Component Interface express (PCIe) interfaces

that could be used [97]. There have also been FPGA-based SoC devices introduced to

the market recently that incorporate both PCIe and 100Gb/s Ethernet interfaces [147].

Either of these technologies should provide a significant improvement in transfer rate

compared to the 1Gb/s Ethernet connection used in this work.

7.2 Further Work

There are a number of opportunities to extend the work presented in this thesis.

Extension to a Full ART Pipeline

Bony anatomy segmentation algorithms are likely to form the very first stage in a long

processing pipeline to perform plan adaptation for ART. Subsequent processing stages

may include segmentation for other anatomical features, rigid and non-rigid image

registration, plan adaptation and dose calculation algorithms. Hardware acceleration

183



Chapter 7. Conclusion

using FPGA-based SoC platforms should be investigated for each of these stages to

create a full, hardware-accelerated ART processing pipeline in order to fully assess the

feasibility of this approach to enabling ART as a routine clinical technique.

Future Development of ART

ART is still an emerging technology and its clinical implementation is likely to be

subject to significant changes and developments in the near future. Improvements in

the availability of high quality image data at the time of treatment delivery, such as

with the introduction of MR linacs, has tended to increase the interest in ART. This

may continue as other imaging modalities, including functional imaging [41], become

more routinely available at treatment delivery. Increasing the amount of imaging data

available at each treatment fraction could increase the accuracy with which tumours

can be targeted. However, it also increases the amount of processing that needs to be

performed, and makes selecting the optimal processing architecture even more vital to

meet the time requirements of ART. Furthermore, the increasing availability of high

quality, real-time imaging during the delivery of treatment is likely to further increase

interest in inline ART, with its much more challenging time requirements.

Currently, there is no clear consensus on the most appropriate algorithms for ART

and this is an area of very active research. For example, deep-learning methods are

starting to emerge as popular candidates for investigation [41]. Given this lack of clarity

on what the best ART algorithms are, it is challenging to identify the optimal processing

architecture or architectures for ART in general. However, the work presented in this

thesis establishes FPGA-based architectures as strong candidates for accelerating ART

algorithms that can be implemented as deep data streaming pipelines.

Even once a clearer consensus on the most appropriate ART algorithms is reached,

there are still likely to be a variety of ART algorithms used, which will vary with

different cancer sites and with different imaging modalities. While the reconfigurability

of FPGAs means they can be relatively easily re-programmed to implement different

algorithms, it is unlikely that FPGAs will be the most appropriate architecture for

all of the algorithms. Selection of the most appropriate architecture should, ideally,

184



Chapter 7. Conclusion

be done on a case-by-case basis. Indeed, different stages of some algorithms may

be better suited to different processing architectures. It is, therefore, probable that

the acceleration of ART algorithms will be best served by heterogeneous processing

architectures with shared memory and the ability to efficiently dispatch tasks to the

processing architecture best suited to them.

The relatively laborious nature of FPGA development compared to other architec-

tures may yet present an obstacle to the widespread adoption of FPGA-based archi-

tectures for ART. However, significant efforts are being made to simplify the FPGA

development process and to make it similar to that for CPUs and GPUs.

7.3 Concluding Remarks

This thesis accelerated bony anatomy segmentation algorithms for ART using an FPGA-

based SoC, and demonstrated the potential for hardware acceleration using FPGAs to

help enable ART in the clinic by reducing the plan adaptation time. Although there

has been considerable interest in accelerating ART algorithms by implementing them

on processing architectures other than the ubiquitous CPU, the use of FPGAs to imple-

ment custom processing architectures has been largely overlooked in this field. FPGAs

provide the ability to create custom processing architectures tailored to the require-

ments of the algorithm. However, in cases where the requirements of the algorithm

are well-suited to a dedicated processing architecture, such as a CPU or GPU, FPGA

implementations are likely to be at a severe disadvantage. Given the variety of process-

ing operations required to implement ART, a platform with a range of heterogeneous

processing architectures, including FPGAs, would appear to be a promising candidate

for implementing ART in the fastest possible timeframe.

185



Appendix A

Image Data for DICOM Transfer

Rate Testing

This appendix lists the DICOM Unique Identifier (UID) for the data used in the work

presented in Chapter 4.

Fifty studies and fifty series were randomly selected from those in the PROSTATE-

DIAGNOSIS collection [123] of TCIA [124]. The Study UIDs and Series UIDs are

listed for the randomly selected studies and series respectively.

A.1 Studies

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.226942730522978355375127754234

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.251248986699057078371521281317

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.256497543454355764493550283953

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.715274401015287661199271453789

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.527348936177830290504929974283

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.289937596945055977296068173104

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.289657662519376183468383514641

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.188945635159044234697126286661

186



Appendix A: Image Data for DICOM Transfer Rate Testing

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.208388284708806018229084271566

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.283673389930228934790889933385

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.130996941903934368671182206591

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.329083844110698086185255403810

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.336789281171732592675589569351

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.231189311161071347840729730880

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.255155426083170046699432509461

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.408966338064575230248767257678

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.303748253546622459869186593214

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.302105167530764336558357645458

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.376449827379841987090877335813

• 1.3.6.1.4.1.14519.5.2.1.4793.2002.226613315564674431333961061583

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.238114008950064360545354434916

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.282109840312056580799247662402

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.297593141156589992910905382889

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.265117863364529695705442737331

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.189523095739709751173738978686

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.338621801610608700452868970648

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.160199590397995084811937433399

• 1.3.6.1.4.1.14519.5.2.1.4793.2002.246453091085545123551767634750

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.565068864034569366067102158753

187



Appendix A: Image Data for DICOM Transfer Rate Testing

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.252274654986257881821391001634

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.281618486289602641777972668126

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.208539110710641195855467414500

• 1.3.6.1.4.1.14519.5.2.1.4793.2002.136841246334736805333667834346

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.533091514477506692042869439615

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.844035924340532631879159657538

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.228775316018976813333732911408

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.261862605115390886640658075495

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.387539693221715962674080857663

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.390669812782637886659974333876

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.231206157401050134405695297067

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.229434241476122091745021333332

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.269119633629915933563063400237

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.641957959102001371594193952048

• 1.3.6.1.4.1.14519.5.2.1.4794.2002.153827229472044097174834462636

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.969707826520202562379081770522

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.230121956554707593293824747756

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.253679888937002110786708421397

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.920024346241839833195823018831

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.260474708817042900099758697427

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.109320896703960819084104222755

188



Appendix A: Image Data for DICOM Transfer Rate Testing

A.2 Series

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.201692855911252231509355142799

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.974321269699417802100111133291

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.297034580842473602763721385474

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.229913814498264977835403918384

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.100014848411669268258437163840

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.175917459437297191793468824742

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.844461591723028958575214634105

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.547859932619263163138072576297

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.724094027168216691989845096805

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.118292634596938021305082493999

• 1.3.6.1.4.1.14519.5.2.1.4793.2002.266061128829233494399571309298

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.136237263416420865661412627627

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.291740854230531166235906183470

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.242742826237099500444317897544

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.200599613636525443228849842837

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.313068846876306863944214870057

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.724451007161666432447927174075

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.277397871450460662011364841784

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.213214392796774544946089585754

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.326070834847479417929952413225

189



Appendix A: Image Data for DICOM Transfer Rate Testing

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.448669710529908229140570733660

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.271262052841909559555518598442

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.210561409473093405191930387844

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.268096098263779549646061123539

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.486381358798545140660852870181

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.194554989030301084144241934104

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.602306478149735272752089070548

• 1.3.6.1.4.1.14519.5.2.1.4793.2002.192410886982882241154275002635

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.324261515746447796308356044556

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.123440947254258005332059294934

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.233726231212794709666050860512

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.211718631963740729482447646754

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.939371065319004733843568275859

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.148905023997614579737171972996

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.590502518321849465672425273207

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.205479958475605908390270478944

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.222086594714645919154278216729

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.239745692969312974757081064337

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.137956770522326851616178526259

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.374103389997445025478257817439

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.808325518953056805217365462536

190



Appendix A: Image Data for DICOM Transfer Rate Testing

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.138939646057453992715025162382

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.173750612921654303090895528898

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.548594553994577317322914624600

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.328272913700201150291112016673

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.914436865667152895709403568872

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.222670508954246125855524820719

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.304009706256340482269530054975

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.298266279315485073430814787893

• 1.3.6.1.4.1.14519.5.2.1.4792.2002.141390060439549754968061238051

191



Appendix B

Code Listings

This appendix provides examples of the source code created as part of the work pre-

sented in this thesis. The full source code generated from this project can be obtained

from [148], [149], [150], [151] and [152].

B.1 DICOM Transfer Rates

B.1.1 Inserting DICOM Data in the PACS

Listing B.1 shows the C++ application used to insert DICOM studies in the PACS.

An overview of the operation of this application is given in Algorithm 1 on page 74.

Further details of the code and its application can be found in [148].

1 #include "dcmtk/config/osconfig.h" // include OS specific configuration

2 #include "dcmtk/dcmnet/diutil.h"

3 #include "dcmtk/dcmnet/scu.h"

4

5 #include <chrono > // C++11 for high_resolution_clock

6

7 #include <iostream >

8 #include <fstream >

9

10 #include "study_list.h" // File containing list of studies to transfer

11

12 #define NUM_TESTS 50 // number of studies to retrieve

13 #define MAX_INST_STUDY 512 // max number of SOP instances in a single study

14

15 /*

16 * Print guidelines for usage of application to the standard output

17 */

18 void printUsage () {

19 std::cout << "sndspdtest: Application to send a list of DICOM studies to"

20 << " a peer using C-STORE service requests and write the time"

21 << " taken to send each study to a results file." << std::endl;

22 std::cout << "Usage: sndspdtest dataset" << std::endl;

192



Appendix B: Code Listings

23 std::cout << "\tdataset - directory containing the studies to be"

24 << " transferred" << std::endl;

25 std::cout << "\nNOTE: The files comprising the dataset are assumed to be"

26 << " arranged in a particular order. Each study instance should"

27 << " be contained within in its own subdirectory named for the"

28 << " study instance UID. Likewise , each series should be"

29 << " contained in its own directory within the appropriate study"

30 << " directory and named for the series instance UID."

31 << std::endl;

32

33 }

34

35 /*

36 * Find a negotiated presentation context for the given SOP class using one of

37 * the listed transfer syntaxes

38 */

39 static Uint8 findPresContext(const OFString& sopClass , DcmSCU& scu ,

40 const OFList <OFString >& ts) {

41

42 Uint8 pc;

43 OFListIterator(OFString) ts_it = ts.begin();

44

45 /*

46 * Search from the front of the list of transfer syntaxes given in ts

47 * argument for one that has been accepted by the peer application

48 */

49 while (ts_it != ts.end()) {

50

51 pc = scu.findPresentationContextID(sopClass , *ts_it);

52

53 if (pc != 0)

54 return pc;

55

56 ts_it ++;

57 }

58

59 /*

60 * No presentation contexts with any of the listed transfer syntaxes have

61 * been accepted by the peer application for the SOP class

62 */

63 return 0;

64

65 }

66

67

68 int main(int argc , char *argv []) {

69

70 // Parse input arguments

71 if (argc != 2) {

72 printUsage ();

73 return -1;

74 }

75 OFString rootdir = OFString(argv [1]);

76

77 OFLog:: configure(OFLogger :: INFO_LOG_LEVEL);

78

79 DcmSCU scu;

80 scu.setAETitle("SND -SPD -TEST");

81 scu.setPeerHostName("192.168.1.103");

82 scu.setPeerPort (104);

83 scu.setPeerAETitle("ORTHANC");

84

85 // Create list of all uncompressed transfer syntaxes

86 OFList <OFString > ts;

193



Appendix B: Code Listings

87 ts.push_back(UID_LittleEndianExplicitTransferSyntax);

88 ts.push_back(UID_BigEndianExplicitTransferSyntax);

89 ts.push_back(UID_LittleEndianImplicitTransferSyntax);

90

91 /*

92 * Propose MRI storage SOP class to peer with the transfer syntaxes listed

93 * previously. This assumes that the SOP Instances being transferred are

94 * all of the MRI storage SOP class , as is the case with the

95 * Prostate -Diagnosis dataset from the cancer imaging archive.

96 */

97 scu.addPresentationContext(UID_MRImageStorage , ts);

98

99 // Initialize network

100 OFCondition result = scu.initNetwork ();

101 if (result.bad()) {

102 DCMNET_ERROR("Unable to set up the network: " << result.text());

103 return -1;

104 }

105

106 // Negotiate Association

107 result = scu.negotiateAssociation ();

108 if (result.bad()) {

109 DCMNET_ERROR("Unable to negotiate association: " << result.text());

110 return -1;

111 }

112

113 /*

114 * Find a presentation context for the C-STORE service that has been

115 * accepted by the peer

116 */

117 T_ASC_PresentationContextID pcID = findPresContext(

118 UID_MRImageStorage , scu , ts);

119 if (pcID == 0) {

120 DCMNET_ERROR("There is no accepted presentation context for C-STORE");

121 return -1;

122 }

123

124 // Send a set of DICOM studies to peer

125 int storedStudyCount = 0;

126 OFListIterator(OFString) sopInst;

127 OFList <OFString > storedStudyUIDs;

128 Uint16 storeResp[MAX_INST_STUDY ];

129 Uint16 storeRqCount;

130 OFBool testResp;

131 OFString studydir;

132 OFList <OFString > file_list;

133

134 /*

135 * Dummy variables required for call to default DCMTK sendSTORERequest ()

136 * function

137 */

138 DcmDataset* dummyDataset = NULL;

139 OFString dummyMoveOrigTitle = "";

140 Uint16 dummyMoveOrigMsgID = 0;

141

142 // https ://www.pluralsight.com/blog/software -development/how -to-measure -

execution -time -intervals -in-c--

143 /*

144 * Create objects to measure and record time taken for each C-MOVE request

145 * to complete:

146 * - two time_point objects using the high_resolution_clock time_point

147 * type to record the time at the start and finish of each C-MOVE

148 * request

149 * - an array of duration objects to hold the durations of each C-MOVE

194



Appendix B: Code Listings

150 * request

151 */

152 std:: chrono :: time_point <std:: chrono :: high_resolution_clock > start , finish;

153 std:: chrono ::duration <double > intervals[NUM_TESTS ];

154 long int timestamps[NUM_TESTS ];

155

156 // Every loop run attempts to send a C-STORE request for a study

157 for (int i = 0; i < 5; i++) {

158

159 // Construct path to directory containing study to transfer

160 studydir = rootdir;

161 studydir += "/";

162 studydir += study_uid_list[i];

163

164 std::cout << "Current Study directory: " << studydir << std::endl;

165

166 // Check whether constructed path exists and if it is a directory

167 if ( OFStandard :: dirExists(studydir) ) {

168

169 // Start with an empty list of files

170 file_list.clear();

171

172 /*

173 * Get a list of all the files contained within the study directory

174 * and its subdirectories. It is assumed that all of these files

175 * are MRI Storage SOP class instances

176 */

177 OFStandard :: searchDirectoryRecursively(studydir , file_list);

178

179 /*

180 * Issue C-STORE requests for the SOP instances belonging to the

181 * selected study

182 */

183

184 if(result.good())

185 std::cout << "result is OK before sending STORE requests" << std::

endl;

186 else

187 std::cout << "result is bad before sending STORE requests" << std::

endl;

188

189 sopInst = file_list.begin ();

190 storeRqCount = 0;

191 start = std:: chrono :: high_resolution_clock ::now();

192 while (( sopInst != file_list.end()) && result.good()) {

193 result = scu.sendSTORERequest(pcID , OFFilename (* sopInst),

194 dummyDataset , storeResp[storeRqCount], dummyMoveOrigTitle ,

195 dummyMoveOrigMsgID);

196 storeRqCount ++;

197 sopInst ++;

198 }

199 finish = std:: chrono :: high_resolution_clock ::now();

200

201

202 /*

203 * Test whether C-STORE requests were issued and responses received

204 * successfully

205 */

206 if (result.good()) {

207

208 // Test the received response status code(s)

209 testResp = OFTrue;

210 for(int j = 0; j < storeRqCount; j++) {

211 if(storeResp[j] != 0) {

195



Appendix B: Code Listings

212 testResp = OFFalse;

213 break;

214 }

215 }

216

217 /*

218 * Responses from peer indicate that the C-STORE requests

219 * succeeded. Record the time taken to complete the C-STORE

220 * requests and the study instance UID of the study that has

221 * been stored by the peer

222 */

223 if(testResp) {

224 intervals[storedStudyCount] = finish - start;

225 timestamps[storedStudyCount] =

226 std:: chrono :: duration_cast <std:: chrono ::seconds >

227 (start.time_since_epoch ()).count ();

228 storedStudyUIDs.push_back(study_uid_list[i]);

229 DCMNET_INFO("Store request succeeded for study: "

230 << study_uid_list[i] << " in "

231 << intervals[storedStudyCount ]. count() << "s");

232 storedStudyCount ++;

233 }

234 else {

235 DCMNET_INFO("Responses from peer indicate that store"

236 << " operation failed for study: " << study_uid_list[i]);

237 }

238 }

239 else {

240 DCMNET_INFO("Store request failed to issue successfully for

study: "

241 << study_uid_list[i]);

242 }

243

244 }

245 else {

246 DCMNET_ERROR("Directory for study " << study_uid_list[i]

247 << " does not appear to exist");

248 }

249 }

250

251

252 // Release association

253 scu.closeAssociation(DCMSCU_RELEASE_ASSOCIATION);

254

255 // Process results

256 std:: ofstream results_file ("sndspdtest_results.txt");

257 OFListIterator(OFString) studyUID = storedStudyUIDs.begin();

258 double sum = 0.0;

259 for(int i = 0; i < storedStudyCount; i++) {

260 results_file << timestamps[i] << ", ";

261 results_file << *( studyUID) << ", ";

262 results_file << intervals[i].count () << std::endl;

263 sum += intervals[i]. count();

264 studyUID ++;

265 }

266

267 results_file.close ();

268

269 std::cout << "Average time per request based on " << storedStudyCount;

270 std::cout << " C-STORE requests: " << sum/storedStudyCount << "s" << std::

endl;

271

272 return 0;

273

196



Appendix B: Code Listings

274 }

Listing B.1: Application to measure the time taken to insert DICOM studies in a PACS

B.1.2 Retrieving DICOM Data from the PACS

The C++ application implementing the C-MOVE SCU for retrieving DICOM series

from a PACS, shown in Figure 4.4 on page 75, is given in Listing B.2. Further details

of this code and its application can also be found in [148].

1 #include "dcmtk/config/osconfig.h" // include OS specific configuration

2 #include "dcmtk/dcmnet/diutil.h"

3 #include "dcmtk/dcmnet/scu.h"

4

5 #include <chrono > // C++11 for high_resolution_clock and random number seed

6

7 #include <iostream >

8 #include <fstream >

9

10 #include "series_list.h" // File containing list of series to transfer

11

12 #define NUM_TESTS 50 // number of series to retrieve

13

14 // Create a logger for this application

15 static OFLogger appLogger = OFLog:: getLogger("dcmtk.apps.rcvspdtest");

16

17 /*

18 * Find a negotiated presentation context for the given SOP class using one of

19 * the listed transfer syntaxes

20 */

21 static Uint8 findPresContext(const OFString& sopClass , DcmSCU& scu ,

22 OFList <OFString >& ts) {

23

24 Uint8 pc;

25

26 /*

27 * Search from the front of the list of transfer syntaxes given in ts

28 * argument for one that has been accepted by the peer application

29 */

30 while (!ts.empty()) {

31

32 pc = scu.findPresentationContextID(sopClass , ts.front());

33

34 if (pc != 0)

35 return pc;

36

37 ts.pop_front ();

38 }

39

40 /*

41 * No presentation contexts with any of the listed transfer syntaxes have

42 * been accepted by the peer application for the SOP class

43 */

44 return 0;

45

46 }

47

48 int main(int argc , char *argv []) {

49

197



Appendix B: Code Listings

50

51 OFLog:: configure(OFLogger :: OFF_LOG_LEVEL);

52

53 DcmSCU scu;

54 scu.setAETitle("RCV -SPD -TEST");

55 scu.setPeerHostName("192.168.1.103");

56 scu.setPeerPort (104);

57 scu.setPeerAETitle("ORTHANC");

58

59 // Create list of all uncompressed transfer syntaxes

60 OFList <OFString > ts;

61 ts.push_back(UID_LittleEndianExplicitTransferSyntax);

62 ts.push_back(UID_BigEndianExplicitTransferSyntax);

63 ts.push_back(UID_LittleEndianImplicitTransferSyntax);

64

65 /*

66 * Propose 2 presentation contexts to peer , one each for the C-ECHO and

67 * C-MOVE services , both proposing the transfer syntaxes listed previously.

68 */

69 scu.addPresentationContext(UID_MOVEStudyRootQueryRetrieveInformationModel ,

ts);

70 scu.addPresentationContext(UID_VerificationSOPClass , ts);

71

72 // Initialize network

73 OFCondition result = scu.initNetwork ();

74 if (result.bad()) {

75 DCMNET_ERROR("Unable to set up the network: " << result.text());

76 return -1;

77 }

78

79 // Negotiate Association

80 result = scu.negotiateAssociation ();

81 if (result.bad()) {

82 DCMNET_ERROR("Unable to negotiate association: " << result.text());

83 return -1;

84 }

85

86

87 // Test connection to peer with C-ECHO request

88 result = scu.sendECHORequest (0);

89 if (result.bad()) {

90 DCMNET_ERROR("Could not process C-ECHO with the server: " << result.text

());

91 return -1;

92 }

93

94

95 /*

96 * Find a presentation context for the C-MOVE service that has been

97 * accepted by the peer

98 */

99 T_ASC_PresentationContextID pcID =

100 findPresContext(UID_MOVEStudyRootQueryRetrieveInformationModel , scu , ts);

101

102 if (pcID == 0) {

103 DCMNET_ERROR("There is no accepted presentation context for Study Root

MOVE");

104 return -1;

105 }

106

107 DcmDataset qry;

108 Uint32 movedSeriesCount = 0;

109 OFList <RetrieveResponse*> moveResponses;

110 OFList <OFString > movedSeriesUIDs;

198



Appendix B: Code Listings

111

112 // https ://www.pluralsight.com/blog/software -development/how -to-measure -

execution -time -intervals -in-c--

113 /*

114 * Create objects to measure and record time taken for each C-MOVE request

115 * to complete:

116 * - two time_point objects using the high_resolution_clock time_point

117 * type to record the time at the start and finish of each C-MOVE

118 * request

119 * - an array of duration objects to hold the durations of each C-MOVE

120 * request

121 */

122 std:: chrono :: time_point <std:: chrono :: high_resolution_clock > start , finish;

123 std:: chrono ::duration <double > intervals[NUM_TESTS ];

124 long int timestamps[NUM_TESTS ];

125

126 // Every loop run sends a C-MOVE request for a series

127 for (int i = 0; i < NUM_TESTS; i++) {

128

129 // Add series instance UID to the DICOM dataset to request the C-MOVE

130 qry.putAndInsertOFStringArray(DCM_SeriesInstanceUID , series_uid_list[i])

;

131

132 /*

133 * Issue the C-MOVE request , specifying the AET of the C-STORE SCP to

134 * be used by the peer to return the series to

135 */

136 start = std:: chrono :: high_resolution_clock ::now();

137 result = scu.sendMOVERequest(pcID , "STORESCP", &qry , &moveResponses);

138 finish = std:: chrono :: high_resolution_clock ::now();

139

140 // Test whether C-MOVE request succeeded

141 if (result.good() && (( moveResponses.back())->m_status == STATUS_Success

)) {

142 intervals[movedSeriesCount] = finish - start;

143 timestamps[movedSeriesCount] =

144 std:: chrono :: duration_cast <std:: chrono ::seconds >

145 (start.time_since_epoch ()).count ();

146 movedSeriesUIDs.push_back(series_uid_list[i]);

147 DCMNET_INFO("Move request succeeded for series: " << series_uid_list

[i]

148 << " in " << intervals[movedSeriesCount ].count() << "s");

149 movedSeriesCount ++;

150 }

151 else

152 DCMNET_INFO("Move request failed for series: " << series_uid_list[i

]);

153

154 // Clear moveResponses list ready for next C-MOVE request

155 moveResponses.clear();

156

157 }

158

159

160 // Release association

161 scu.closeAssociation(DCMSCU_RELEASE_ASSOCIATION);

162

163 // Process results

164 std:: ofstream results_file ("rcvspdtest_results.txt");

165 OFListIterator(OFString) seriesUID = movedSeriesUIDs.begin();

166 double sum = 0.0;

167 for(Uint32 ii = 0; ii < movedSeriesCount; ii++) {

168 results_file << timestamps[ii] << ", ";

169 results_file << *( seriesUID) << ", ";

199



Appendix B: Code Listings

170 results_file << intervals[ii].count() << std::endl;

171 sum += intervals[ii].count();

172 seriesUID ++;

173 }

174

175 results_file.close ();

176

177 std::cout << "Average time per request based on " << movedSeriesCount;

178 std::cout << " C-MOVE requests: " << sum/movedSeriesCount << "s" << std::

endl;

179

180 return 0;

181

182 }

Listing B.2: Application to measure the time taken to retrieve DICOM series from a PACS

B.2 Bone Segmentation Algorithms

B.2.1 Haas Algorithm

Listing B.3 shows the C++ application implementing the original segmentation algo-

rithm proposed by Haas et al. [5] and described in detail in Sections 5.1 and 5.2.1,

starting on page 103. This application makes use of the OpenCV libraries [128]. Fur-

ther code associated with this application can be obtained from [149] and [151].

1 #include "binvol.h"

2 #include <opencv2/opencv.hpp >

3

4 #define HU_OFFSET 1024

5 #define BODY_CC_MIN_AREA 800 // Minimum area of connected components in body

mask in mm^2

6 #define RECT_WIDTH 340 // Width of centralised rectangle for body mask

components in mm

7 #define RECT_HEIGHT 170 // Height of centralised rectangle for body mask

components in mm

8 #define BONE_CC_MIN_AREA 25 // Minimum area of connected components in bone

mask in mm^2

9

10 void segmentBoneSlice( BinVolume *vol , unsigned short slice_idx ,

11 short lo_thold , short hi_thold , int min_cc_area ,

12 int rect_bound_top , int rect_bound_bottom ,

13 int rect_bound_left , int rect_bound_right ,

14 short lo_bone_thold , short hi_bone_thold ,

15 int min_bone_area ) {

16

17 // Get pixel data for slice and convert to OpenCV Mat

18 unsigned short orig_pix[vol ->nrows * vol -> ncols];

19 vol ->getSlice(slice_idx , orig_pix);

20 cv::Mat orig_img = cv::Mat(vol ->nrows , vol ->ncols , CV_16U ,

21 (void *) orig_pix);

22

23 // Apply thresholds

24 cv::Mat lo_pixels = cv::Mat(orig_img.size(), CV_16U);

25 cv::Mat hi_pixels = cv::Mat(orig_img.size(), CV_16U);

26 cv:: threshold(orig_img , lo_pixels , (double) hi_thold + HU_OFFSET , 255,

200



Appendix B: Code Listings

27 cv:: THRESH_BINARY_INV);

28 lo_pixels.convertTo(lo_pixels , CV_8U);

29 cv:: threshold(orig_img , hi_pixels , (double) lo_thold + HU_OFFSET , 255,

30 cv:: THRESH_BINARY);

31 hi_pixels.convertTo(hi_pixels , CV_8U);

32 cv::Mat body_mask = cv::Mat(orig_img.size(), CV_8U);

33 cv:: bitwise_and(lo_pixels , hi_pixels , body_mask);

34

35 // Morphological opening

36 cv::Mat strel = cv:: getStructuringElement(cv:: MORPH_CROSS , cv::Size(3, 3));

37 cv:: morphologyEx(body_mask , body_mask , cv::MORPH_OPEN , strel ,

38 cv:: Point(-1, -1), 2, cv:: BORDER_REPLICATE);

39

40 // Find connected components

41 cv::Mat labelled_image = cv::Mat(orig_img.size(), CV_32S);

42 cv::Mat cc_stats = cv::Mat(orig_img.size(), CV_32S);

43 cv::Mat centroids = cv::Mat(orig_img.size(), CV_64F);

44 int cc_count = cv:: connectedComponentsWithStats(body_mask , labelled_image ,

45 cc_stats , centroids , 4, CV_32S , cv:: CCL_DEFAULT);

46

47 // Discard connected components that are too small or do not overlap a

48 // centralised rectangle

49 bool discard_label[cc_count ];

50 for(int i = 1; i < cc_count; i++){ // Indexed from 1, 0 is background label

51 if (cc_stats.at <int >(i, cv:: CC_STAT_AREA) < min_cc_area ||

52 cc_stats.at<int >(i, cv:: CC_STAT_LEFT) > rect_bound_right ||

53 cc_stats.at<int >(i, cv:: CC_STAT_TOP) > rect_bound_bottom ||

54 cc_stats.at<int >(i, cv:: CC_STAT_LEFT) + cc_stats.at <int >(i, cv::

CC_STAT_WIDTH) < rect_bound_left ||

55 cc_stats.at<int >(i, cv:: CC_STAT_TOP) + cc_stats.at<int >(i, cv::

CC_STAT_HEIGHT) < rect_bound_top)

56 discard_label[i] = true;

57 else

58 discard_label[i] = false;

59 }

60

61 for(int i = 0; i < orig_img.rows; i++) {

62 for(int j = 0; j < orig_img.cols; j++) {

63

64 int label = labelled_image.at <int >(i, j);

65

66 if(label != 0){

67 if(discard_label[label ]) {

68 unsigned char *mask_pixel = body_mask.ptr <unsigned char >(i,

j);

69 *mask_pixel = 0;

70 }

71 }

72 }

73 }

74

75 // Apply body mask to original image

76 cv::Mat body_img = cv::Mat(orig_img.size(), CV_16U);

77 orig_img.copyTo(body_img , body_mask);

78

79 // Apply thresholds

80 cv::Mat lo_bone_pixels = cv::Mat(orig_img.size(), CV_16U);

81 cv::Mat hi_bone_pixels = cv::Mat(orig_img.size(), CV_16U);

82 cv:: threshold(body_img , lo_bone_pixels , (double) hi_bone_thold + HU_OFFSET ,

255,

83 cv:: THRESH_BINARY_INV);

84 lo_bone_pixels.convertTo(lo_bone_pixels , CV_8U);

85 cv:: threshold(body_img , hi_bone_pixels , (double) lo_bone_thold + HU_OFFSET ,

255,

201



Appendix B: Code Listings

86 cv:: THRESH_BINARY);

87 hi_bone_pixels.convertTo(hi_bone_pixels , CV_8U);

88 cv::Mat bone_mask = cv::Mat(orig_img.size(), CV_8U);

89 cv:: bitwise_and(lo_bone_pixels , hi_bone_pixels , bone_mask);

90

91 // Discard components that are unlikely to be bone

92 cc_count = cv:: connectedComponentsWithStats(bone_mask , labelled_image ,

93 cc_stats , centroids , 4, CV_32S , cv:: CCL_DEFAULT);

94

95 bool discard_bone_label[cc_count ];

96 for(int i = 1; i < cc_count; i++){ // Indexed from 1, 0 is background label

97 if (cc_stats.at <int >(i, cv:: CC_STAT_AREA) < min_bone_area ||

98 cc_stats.at<int >(i, cv:: CC_STAT_WIDTH) / cc_stats.at <int >(i, cv::

CC_STAT_HEIGHT) > 6 ||

99 cc_stats.at<int >(i, cv:: CC_STAT_HEIGHT) / cc_stats.at<int >(i, cv::

CC_STAT_WIDTH) > 6)

100 discard_bone_label[i] = true;

101 else

102 discard_bone_label[i] = false;

103 }

104

105 for(int i = 0; i < orig_img.rows; i++) { // Look in to replacing with

forEach

106 for(int j = 0; j < orig_img.cols; j++) {

107

108 int label = labelled_image.at <int >(i, j);

109

110 if(label != 0){

111 if(discard_bone_label[label ]) {

112 unsigned char *mask_pixel = bone_mask.ptr <unsigned char >(i,

j);

113 *mask_pixel = 0;

114 }

115 }

116 }

117 }

118

119 return;

120

121 }

122

123

124 int main( int argc , char *argv[] ) {

125

126 // Create BinVolume object

127 std:: string fname = std:: string("testvolume.bin");

128 if( argc >= 2 )

129 fname = std:: string(argv [1]);

130 BinVolume vol = BinVolume(fname.c_str());

131

132 // Find physical area of pixels in image slice in mm^2

133 float pix_area = vol.pixel_height * vol.pixel_width;

134

135 // Choose slice to perform operation on

136 unsigned short slice_idx;

137 if( argc >= 3 )

138 slice_idx = (unsigned short) strtoul(argv[2], NULL , 0);

139 else

140 slice_idx = 1;

141

142 // Choose thresholds to apply to image

143 short lo_thold , hi_thold;

144 if( argc >= 4 )

145 lo_thold = (short) strtol(argv[3], NULL , 0);

202



Appendix B: Code Listings

146 else

147 lo_thold = -175;

148 if( argc >= 5 )

149 hi_thold = (short) strtol(argv[4], NULL , 0);

150 else

151 hi_thold = 1250;

152

153 // Set minimum number of pixels for body connected components

154 int min_cc_area = (int)(BODY_CC_MIN_AREA / pix_area);

155

156 // Set bounds of central rectangle with which components must overlap

157 float rect_height = RECT_HEIGHT / vol.pixel_height;

158 float rect_width = RECT_WIDTH / vol.pixel_width;

159

160 int rect_bound_top = (int)((vol.nrows - rect_height) / 2);

161 int rect_bound_bottom = (int)(rect_bound_top + rect_height);

162

163 int rect_bound_left = (int)((vol.ncols - rect_width) / 2);

164 int rect_bound_right = (int)(rect_bound_left + rect_width);

165

166 // Choose thresholds for bone

167 short lo_bone_thold , hi_bone_thold;

168 if( argc >= 6 )

169 lo_bone_thold = (short) strtol(argv[5], NULL , 0);

170 else

171 lo_bone_thold = 145;

172 if( argc >= 7 )

173 hi_bone_thold = (short) strtol(argv[6], NULL , 0);

174 else

175 hi_bone_thold = 1500;

176

177 // Set minimum number of pixels for bone connected components

178 int min_bone_area = (int)(BONE_CC_MIN_AREA / pix_area);

179

180 // Call segmentBoneSlice function

181 segmentBoneSlice (&vol , slice_idx , lo_thold , hi_thold , min_cc_area ,

182 rect_bound_top , rect_bound_bottom , rect_bound_left ,

183 rect_bound_right , lo_bone_thold , hi_bone_thold ,

184 min_bone_area);

Listing B.3: Application applying the Haas algorithm to segment bony anatomy from a CT slice

B.2.2 Simplified Haas Algorithm

The software implementation of the Simplified Haas algorithm described in Section 5.2.1,

on page 111, is shown in Listing B.4. All of the code and data associated with this

application can be found in [149] and [151].

1 #include "binvol.h"

2 #include <opencv2/opencv.hpp >

3 #include <opencv2/core/utils/trace.hpp > // required for trace macros

4 #include <chrono > // C++11 library for timing performance

5

6 #define HU_OFFSET 1024

7

8 void segmentBoneSlice( cv::Mat const& orig_img , cv::Mat &bone_mask ,

9 short lo_thold , short hi_thold , short lo_bone_thold ,

10 short hi_bone_thold ) {

11

203



Appendix B: Code Listings

12 #ifdef __TRACE__

13 CV_TRACE_FUNCTION ();

14 CV_TRACE_REGION("BodyMaskThreshold");

15 #endif

16

17

18 // Apply thresholds

19 cv::Mat lo_pixels = cv::Mat(orig_img.size(), CV_16U);

20 cv::Mat hi_pixels = cv::Mat(orig_img.size(), CV_16U);

21 cv:: threshold(orig_img , lo_pixels , (double) hi_thold + HU_OFFSET , 255,

22 cv:: THRESH_BINARY_INV);

23 lo_pixels.convertTo(lo_pixels , CV_8U);

24 cv:: threshold(orig_img , hi_pixels , (double) lo_thold + HU_OFFSET , 255,

25 cv:: THRESH_BINARY);

26 hi_pixels.convertTo(hi_pixels , CV_8U);

27 cv::Mat body_mask = cv::Mat(orig_img.size(), CV_8U);

28 cv:: bitwise_and(lo_pixels , hi_pixels , body_mask);

29

30

31 #ifdef __TRACE__

32 CV_TRACE_REGION_NEXT("BodyMaskMorphologicalFilter");

33 #endif

34

35 // Morphological opening

36 cv::Mat strel = cv:: getStructuringElement(cv:: MORPH_CROSS , cv::Size(3, 3));

37 cv:: morphologyEx(body_mask , body_mask , cv::MORPH_OPEN , strel ,

38 cv:: Point(-1, -1), 2, cv:: BORDER_REPLICATE);

39

40

41 #ifdef __TRACE__

42 CV_TRACE_REGION_NEXT("BodyMaskApplication");

43 #endif

44

45 // Apply body mask to original image

46 cv::Mat body_img = cv::Mat(orig_img.size(), CV_16U);

47 orig_img.copyTo(body_img , body_mask);

48

49 #ifdef __TRACE__

50 CV_TRACE_REGION_NEXT("BoneMaskThreshold");

51 #endif

52

53 // Apply thresholds

54 cv::Mat lo_bone_pixels = cv::Mat(orig_img.size(), CV_16U);

55 cv::Mat hi_bone_pixels = cv::Mat(orig_img.size(), CV_16U);

56 cv:: threshold(body_img , lo_bone_pixels , (double) hi_bone_thold + HU_OFFSET ,

255,

57 cv:: THRESH_BINARY_INV);

58 lo_bone_pixels.convertTo(lo_bone_pixels , CV_8U);

59 cv:: threshold(body_img , hi_bone_pixels , (double) lo_bone_thold + HU_OFFSET ,

255,

60 cv:: THRESH_BINARY);

61 hi_bone_pixels.convertTo(hi_bone_pixels , CV_8U);

62 cv:: bitwise_and(lo_bone_pixels , hi_bone_pixels , bone_mask);

63

64 return;

65

66 }

67

68

69 int main( int argc , char *argv[] ) {

70

71 // Create BinVolume object

72 std:: string fname = std:: string("testvolume.bin");

73 if( argc >= 2 )

204



Appendix B: Code Listings

74 fname = std:: string(argv [1]);

75 BinVolume vol = BinVolume(fname.c_str());

76

77 // Choose thresholds to apply to image

78 short lo_thold , hi_thold;

79 if( argc >= 3 )

80 lo_thold = (short) strtol(argv[2], NULL , 0);

81 else

82 lo_thold = -175;

83 if( argc >= 4 )

84 hi_thold = (short) strtol(argv[3], NULL , 0);

85 else

86 hi_thold = 1250;

87

88 // Choose thresholds for bone

89 short lo_bone_thold , hi_bone_thold;

90 if( argc >= 5 )

91 lo_bone_thold = (short) strtol(argv[4], NULL , 0);

92 else

93 lo_bone_thold = 145;

94 if( argc >= 6 )

95 hi_bone_thold = (short) strtol(argv[5], NULL , 0);

96 else

97 hi_bone_thold = 1500;

98

99 // Initialise a BinVolume file to write bone mask pixel data to

100 BinVolume bone_vol("bone_volume.bin", vol.nrows , vol.ncols , vol.nslices ,

101 vol.pixel_height , vol.pixel_width);

102

103 #ifdef __TIME_SLICE__

104

105 /*

106 * Initialise a file and variables for recording the time for each call to

107 * segmentBoneSlice function

108 */

109

110 std:: chrono :: time_point <std:: chrono :: high_resolution_clock > slice_start ,

slice_finish;

111 std:: chrono ::duration <double > slice_interval;

112

113 #endif

114

115 #ifdef __TIME_VOLUME__

116

117 /*

118 * Initialise a file and variables for recording the time to process entire

volume

119 */

120

121 std:: chrono :: time_point <std:: chrono :: high_resolution_clock > volume_start ,

volume_finish;

122 std:: chrono ::duration <double > volume_interval;

123

124 volume_start = std:: chrono :: high_resolution_clock ::now();

125

126 #endif

127

128 // Call segmentBoneSlice function for each slice of volume

129 for(unsigned short slice_idx = 0; slice_idx < vol.nslices; slice_idx ++) {

130

131 // Get pixel data for slice and convert to OpenCV Mat

132 unsigned short orig_pix[vol.nrows * vol.ncols];

133 vol.getSlice(slice_idx , orig_pix);

134 cv::Mat orig_img(vol.nrows , vol.ncols , CV_16U , (void *) orig_pix);

205



Appendix B: Code Listings

135 cv::Mat bone_mask(orig_img.size(), CV_8U);

136

137 #ifdef __TIME_SLICE__

138

139 slice_start = std:: chrono :: high_resolution_clock ::now();

140

141 #endif

142

143 segmentBoneSlice(orig_img , bone_mask , lo_thold , hi_thold , lo_bone_thold ,

144 hi_bone_thold);

145

146 #ifdef __TIME_SLICE__

147

148 slice_finish = std:: chrono :: high_resolution_clock ::now();

149 slice_interval = slice_finish - slice_start;

150

151 std::cout << vol.filename << ";" << slice_idx << ";"

152 << slice_interval.count() << std::endl;

153

154 #endif

155

156 // Write pixel data for bone mask slice to output file

157 std::vector <unsigned char > slice_pix;

158 if(bone_mask.isContinuous ())

159 slice_pix.assign(bone_mask.datastart , bone_mask.dataend);

160 else {

161 for(int i = 0; i < bone_mask.rows; i++) {

162 slice_pix.insert(slice_pix.end(),

163 bone_mask.ptr <unsigned char >(i),

164 bone_mask.ptr <unsigned char >(i) +

165 bone_mask.cols);

166 }

167 }

168

169 bone_vol.appendSlice(slice_pix);

170

171 }

172

173 #ifdef __TIME_VOLUME__

174

175 volume_finish = std:: chrono :: high_resolution_clock ::now();

176 volume_interval = volume_finish - volume_start;

177

178 std::cout << vol.filename << ";" << volume_interval.count() << std::endl;

179

180 #endif

181

182

183 return 0;

184

185 }

Listing B.4: Application applying the Simplified Haas algorithm to segment bony anatomy from a
region of interest in a CT slice

206



Appendix B: Code Listings

B.2.3 Noise-reduced Algorithm

Listing B.5 shows the C++ software implementation of the Noise-reduced algorithm

illustrated in Figure 6.10 on page 166. Further code and data for this application can

be obtained from [151].

1 #include "binvol.h"

2 #include <opencv2/opencv.hpp >

3 #include <opencv2/core/utils/trace.hpp > // required for trace macros

4 #include <chrono > // C++11 library for timing performance

5

6 #define HU_OFFSET 1024

7

8 void segmentBoneSlice( cv::Mat const& orig_img , cv::Mat &bone_mask ,

9 short lo_thold , short hi_thold , short lo_bone_thold ,

10 short hi_bone_thold ) {

11

12 #ifdef __TRACE__

13 CV_TRACE_FUNCTION ();

14 CV_TRACE_REGION("BodyMaskThreshold");

15 #endif

16

17

18 // Apply thresholds

19 cv::Mat lo_pixels = cv::Mat(orig_img.size(), CV_16U);

20 cv::Mat hi_pixels = cv::Mat(orig_img.size(), CV_16U);

21 cv:: threshold(orig_img , lo_pixels , (double) hi_thold + HU_OFFSET , 255,

22 cv:: THRESH_BINARY_INV);

23 lo_pixels.convertTo(lo_pixels , CV_8U);

24 cv:: threshold(orig_img , hi_pixels , (double) lo_thold + HU_OFFSET , 255,

25 cv:: THRESH_BINARY);

26 hi_pixels.convertTo(hi_pixels , CV_8U);

27 cv::Mat body_mask = cv::Mat(orig_img.size(), CV_8U);

28 cv:: bitwise_and(lo_pixels , hi_pixels , body_mask);

29

30

31 #ifdef __TRACE__

32 CV_TRACE_REGION_NEXT("BodyMaskMorphologicalFilter");

33 #endif

34

35 // Morphological opening

36 cv::Mat strel = cv:: getStructuringElement(cv:: MORPH_CROSS , cv::Size(3, 3));

37 cv:: morphologyEx(body_mask , body_mask , cv::MORPH_OPEN , strel ,

38 cv:: Point(-1, -1), 2, cv:: BORDER_REPLICATE);

39

40

41 #ifdef __TRACE__

42 CV_TRACE_REGION_NEXT("BodyMaskApplication");

43 #endif

44

45 // Apply body mask to original image

46 cv::Mat body_img = cv::Mat(orig_img.size(), CV_16U);

47 orig_img.copyTo(body_img , body_mask);

48

49 #ifdef __TRACE__

50 CV_TRACE_REGION_NEXT("BoneMaskThreshold");

51 #endif

52

53 // Apply thresholds

54 cv::Mat lo_bone_pixels = cv::Mat(orig_img.size(), CV_16U);

55 cv::Mat hi_bone_pixels = cv::Mat(orig_img.size(), CV_16U);

207



Appendix B: Code Listings

56 cv:: threshold(body_img , lo_bone_pixels , (double) hi_bone_thold + HU_OFFSET ,

255,

57 cv:: THRESH_BINARY_INV);

58 lo_bone_pixels.convertTo(lo_bone_pixels , CV_8U);

59 cv:: threshold(body_img , hi_bone_pixels , (double) lo_bone_thold + HU_OFFSET ,

255,

60 cv:: THRESH_BINARY);

61 hi_bone_pixels.convertTo(hi_bone_pixels , CV_8U);

62 cv:: bitwise_and(lo_bone_pixels , hi_bone_pixels , bone_mask);

63

64 #ifdef __TRACE__

65 CV_TRACE_REGION_NEXT("BoneMaskMorphologicalFilter");

66 #endif

67

68 /*

69 * Second morphological filtering stage

70 * This stage was specifically added to reduce the amount of noise

71 * typically found in 4DCT scans from being incorrectly segmented as bone

72 */

73 cv:: morphologyEx(bone_mask , bone_mask , cv::MORPH_OPEN , strel ,

74 cv:: Point(-1, -1), 2, cv:: BORDER_REPLICATE);

75

76 return;

77

78 }

79

80

81 int main( int argc , char *argv[] ) {

82

83 // Create BinVolume object

84 std:: string fname = std:: string("testvolume.bin");

85 if( argc >= 2 )

86 fname = std:: string(argv [1]);

87 BinVolume vol = BinVolume(fname.c_str());

88

89 // Choose thresholds to apply to image

90 short lo_thold , hi_thold;

91 if( argc >= 3 )

92 lo_thold = (short) strtol(argv[2], NULL , 0);

93 else

94 lo_thold = -175;

95 if( argc >= 4 )

96 hi_thold = (short) strtol(argv[3], NULL , 0);

97 else

98 hi_thold = 1250;

99

100 // Choose thresholds for bone

101 short lo_bone_thold , hi_bone_thold;

102 if( argc >= 5 )

103 lo_bone_thold = (short) strtol(argv[4], NULL , 0);

104 else

105 lo_bone_thold = 145;

106 if( argc >= 6 )

107 hi_bone_thold = (short) strtol(argv[5], NULL , 0);

108 else

109 hi_bone_thold = 1500;

110

111 // Initialise a BinVolume file to write bone mask pixel data to

112 BinVolume bone_vol("bone_volume.bin", vol.nrows , vol.ncols , vol.nslices ,

113 vol.pixel_height , vol.pixel_width);

114

115 #ifdef __TIME_SLICE__

116

117 /*

208



Appendix B: Code Listings

118 * Initialise variables for recording the time for each call to the

119 * segmentBoneSlice function

120 */

121

122 std:: chrono :: time_point <std:: chrono :: high_resolution_clock > slice_start ,

slice_finish;

123 std:: chrono ::duration <double > slice_interval;

124

125 #endif

126

127 // Call segmentBoneSlice function for each slice of volume

128 for(unsigned short slice_idx = 0; slice_idx < vol.nslices; slice_idx ++) {

129

130 // Get pixel data for slice and convert to OpenCV Mat

131 unsigned short orig_pix[vol.nrows * vol.ncols];

132 vol.getSlice(slice_idx , orig_pix);

133 cv::Mat orig_img(vol.nrows , vol.ncols , CV_16U , (void *) orig_pix);

134 cv::Mat bone_mask(orig_img.size(), CV_8U);

135

136 #ifdef __TIME_SLICE__

137

138 slice_start = std:: chrono :: high_resolution_clock ::now();

139

140 #endif

141

142 segmentBoneSlice(orig_img , bone_mask , lo_thold , hi_thold , lo_bone_thold ,

143 hi_bone_thold);

144

145 #ifdef __TIME_SLICE__

146

147 slice_finish = std:: chrono :: high_resolution_clock ::now();

148 slice_interval = slice_finish - slice_start;

149

150 std::cout << vol.filename << ";" << slice_idx << ";"

151 << slice_interval.count() << std::endl;

152

153 #endif

154

155 // Write pixel data for bone mask slice to output file

156 std::vector <unsigned char > slice_pix;

157 if(bone_mask.isContinuous ())

158 slice_pix.assign(bone_mask.datastart , bone_mask.dataend);

159 else {

160 for(int i = 0; i < bone_mask.rows; i++) {

161 slice_pix.insert(slice_pix.end(),

162 bone_mask.ptr <unsigned char >(i),

163 bone_mask.ptr <unsigned char >(i) +

164 bone_mask.cols);

165 }

166 }

167

168 bone_vol.appendSlice(slice_pix);

169

170 }

171

172

173 return 0;

174

175 }

Listing B.5: Application applying the Noise-reduced algorithm to segment bony anatomy from a
region of interest in a 4DCT slice

209



Appendix B: Code Listings

B.2.4 Otsu’s Method

The software implementation of Otsu’s method described in Section 6.2.1, starting

on page 143, and as applied in the 4DCT Optimal Threshold algorithm, is shown

in Listing B.6. This implementation uses an un-normalised histogram and recursive

operations to compute the between-class variance. Further code and data associated

with this application can be obtained from [150].

1 #include <stdint.h>

2 #include <stdio.h>

3

4 #define GREY_LEVELS 2645

5

6 /* values contained in this array should be in interval [0, 1] */

7 unsigned hist[GREY_LEVELS ];

8 /* value to offset array index to account for negative pixel values */

9 uint16_t index_offset = 1000;

10 /* array to hold set of optimal thresholds */

11 uint32_t opt_tholds [2];

12

13 /* *****************************************************************************

14 *

15 * Function to create normalised histogram of image

16 *

17 * @param Pointer to array of image pixels

18 *

19 * @param Number of pixels in image

20 *

21 * @return None

22 *

23 * @notes None

24 *

25 **************************************************************************** */

26 void normaliseHistogram(int16_t *imagePtr , unsigned numPix) {

27

28 unsigned i = 0;

29

30 /*

31 * Initialise hist array elements to zero

32 */

33 for(i = 0; i < GREY_LEVELS; i++) {

34 hist[i] = 0;

35 }

36

37 /*

38 * Iterate through image pixels incrementing the appropriate bin in

39 * histogram

40 */

41 for (i = 0; i < numPix; i++) {

42 hist[* imagePtr + index_offset ]++;

43 imagePtr ++;

44 }

45

46 }

47

48 /* *****************************************************************************

49 *

50 * Function to compute optimal thresholds to segment image into 3 classes

51 *

210



Appendix B: Code Listings

52 * @param Pointer to normalised image histogram

53 *

54 * @return None

55 *

56 * @notes None

57 *

58 **************************************************************************** */

59 void computeThresholds(unsigned *hist) {

60

61 uint32_t i, j;

62 unsigned cumsum1 , cumsum2 , cumsum3;

63 unsigned long cummean1 , cummean2 , cummean3;

64 float mod_bcv;

65 unsigned long cum_mean[GREY_LEVELS ];

66 unsigned cum_sum[GREY_LEVELS ];

67 uint16_t max_thold1 = 0;

68 uint16_t max_thold2 = 1;

69 float max_mod_bcv = 0;

70

71 /*

72 * Iterate through cum_mean and cum_sum arrays populating each element with

73 * the cumulative mean and cumulative sum of the normalised histogram to

74 * that index.

75 */

76 cum_sum [0] = hist [0];

77 cum_mean [0] = 0;

78

79 for(i = 1; i < GREY_LEVELS; i++) {

80

81 cum_sum[i] = cum_sum[i-1] + hist[i];

82 cum_mean[i] = cum_mean[i-1] + (i * hist[i]);

83

84 }

85

86 /*

87 * Iterate through every combination of thresholds calculating the

88 * between class variance and find the thresholds that produce the

89 * maximum between class variance

90 */

91 for(i = 0; i < (GREY_LEVELS - 2); i++) {

92

93 for(j = (i + 1); j < (GREY_LEVELS - 1); j++) {

94

95 cumsum1 = cum_sum[i];

96 cumsum2 = cum_sum[j] - cum_sum[i];

97 cumsum3 = cum_sum[GREY_LEVELS - 1] - cum_sum[j];

98 cummean1 = cum_mean[i];

99 cummean2 = cum_mean[j] - cum_mean[i];

100 cummean3 = cum_mean[GREY_LEVELS - 1] - cum_mean[j];

101

102 /*

103 * If the cumulative sum for any of the classes is zero , this

104 * implies that no pixels belong to that class and therefore that

105 * is not a valid solution

106 */

107 if(!(( cumsum1 == 0) || (cumsum2 == 0) || (cumsum3 == 0))) {

108 /*

109 * Compute modified between class variance

110 */

111 mod_bcv = (( float)cummean1 * (float)cummean1 /( float)cumsum1)

112 + (( float)cummean2 * (float)cummean2 /(float)cumsum2)

113 + (( float)cummean3 * (float)cummean3 /(float)cumsum3)

;

114

211



Appendix B: Code Listings

115 /*

116 * Test if computed variance is greater than maximum previously

117 * computed between class variance

118 * If it is, record the new maximum value and record the set of

119 * thresholds for which it occurred

120 */

121 if(mod_bcv > max_mod_bcv) {

122 max_mod_bcv = mod_bcv;

123 max_thold1 = i;

124 max_thold2 = j;

125 }

126

127 }

128 }

129 }

130

131 opt_tholds [0] = max_thold1;

132 opt_tholds [1] = max_thold2;

133

134 }

135

136 int main(){

137

138 FILE *filePtr;

139 unsigned numPix = 262144;

140 int16_t pixels[numPix ];

141

142 /*

143 * Obtain pixel values from binary filePtr

144 */

145 filePtr = fopen("image.bin", "rb");

146

147 if(filePtr == NULL) {

148 printf("Unable to open input file\n\r");

149 return -1;

150 }

151

152 fread(pixels , 2, numPix , filePtr);

153 fclose(filePtr);

154

155 /*

156 * Compute optimal thresholds

157 */

158 normaliseHistogram(pixels , numPix);

159 computeThresholds(hist);

160

161 printf("\n\rOptimal Thresholds: [%d, %d]\n\r",

162 (opt_tholds [0] - index_offset), (opt_tholds [1] - index_offset));

163

164 return 1;

165

166 }

Listing B.6: Implementation of Otsu’s method used in the 4DCT Optimal Threshold algorithm

212



Bibliography

[1] C. K. Glide-Hurst and I. J. Chetty, “Improving radiotherapy planning, delivery

accuracy, and normal tissue sparing using cutting edge technologies,” Journal of

Thoracic Disease, vol. 6, no. 4, pp. 303–318, 2014.

[2] B. F. O’Connell, D. M. Irvine, A. J. Cole, G. G. Hanna, and C. K. McGarry,

“Optimizing geometric accuracy of four-dimensional CT scans acquired using

the wall- and couch-mounted Varian® Real-time Position Management™ camera

systems,” British Journal of Radiology, vol. 88, no. 1046, 2015.

[3] A. Vestergaard, S. Hafeez, L. P. Muren, S. Nill, M. Høyer, V. N. Hansen,

C. Grønborg, E. M. Pedersen, J. B. Petersen, R. Huddart, and U. Oelfke, “The

potential of MRI-guided online adaptive re-optimisation in radiotherapy of uri-

nary bladder cancer,” Radiotherapy and Oncology, vol. 118, no. 1, pp. 154–159,

Jan. 2016.

[4] E. E. Ahunbay, C. Peng, S. Holmes, A. Godley, C. Lawton, and X. A. Li, “Online

Adaptive Replanning Method for Prostate Radiotherapy,” International Journal

of Radiation Oncology • Biology • Physics, vol. 77, no. 5, pp. 1561–1572, Aug.

2010.

[5] B. Haas, T. Coradi, M. Scholz, P. Kunz, M. Huber, U. Oppitz, L. André, V. Leng-

keek, D. Huyskens, A. van Esch, and R. Reddick, “Automatic segmentation of

thoracic and pelvic CT images for radiotherapy planning using implicit anatomic

knowledge and organ-specific segmentation strategies,” Physics in Medicine and

Biology, vol. 53, no. 6, pp. 1751–1771, Mar. 2008.

213



Bibliography

[6] N. Otsu, “A threshold selection method from gray-level histogram,” IEEE Trans-

actions on Systems, Man and Cybernetics, vol. 9, no. 1, pp. 62–66, 1979.

[7] F. H. Martini, J. Nath, and E. F. Bartholomew, Fundamentals of anatomy &

physiology. Harlow: Pearson, 2014.

[8] I. F. Tannock, R. P. Hill, R. G. Bristow, and L. Harrington, Eds., The basic

science of oncology, 5th ed. New York: McGraw-Hill, 2013.

[9] F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre, and A. Jemal,

“Global cancer statistics 2018: Globocan estimates of incidence and mortality

worldwide for 36 cancers in 185 countries,” CA: A Cancer Journal for Clinicians,

vol. 68, no. 6, pp. 394–424, 2018.

[10] J. Ferlay, M. Colombet, I. Soerjomataram, C. Mathers, D. Parkin, M. Pineros,

A. Znaor, and F. Bray, “Estimating the global cancer incidence and mortality

in 2018: Globocan sources and methods,” International Journal of Cancer, vol.

144, no. 8, pp. 1940–1953, 2019.

[11] Cancer Research UK, “Cancer Statistics for the UK,” accessed: 9th May 2020.

[Online]. Available: https://www.cancerresearchuk.org/health-professional/

cancer-statistics-for-the-uk

[12] B. Emami, J. Lyman, A. Brown, L. Cola, M. Goitein, J. Munzenrider, B. Shank,

L. Solin, and M. Wesson, “Tolerance of normal tissue to therapeutic irradiation,”

International Journal of Radiation Oncology • Biology • Physics, vol. 21, no. 1,

pp. 109–122, May 1991.

[13] N. Suntharalingam, E. Podgorsak, and J. Hendry, “Basic Radiobiology,” in Ra-

diation Oncology Physics: A Handbook for Teachers and Students, ii ed., E. Pod-

gorsak, Ed. Vienna: International Atomic Energy Agency, 2005.

[14] E. Podgorsak, “External photon beams: physical aspects,” in Radiation Oncol-

ogy Physics: A Handbook for Teachers and Students, ii ed., E. Podgorsak, Ed.

Vienna: International Atomic Energy Agency, 2005.

214

https://www.cancerresearchuk.org/health-professional/cancer-statistics-for-the-uk
https://www.cancerresearchuk.org/health-professional/cancer-statistics-for-the-uk


Bibliography

[15] ——, “Treatment machines for external beam radiotherapy,” in Radiation On-

cology Physics: A Handbook for Teachers and Students, ii ed., E. Podgorsak, Ed.

Vienna: International Atomic Energy Agency, 2005.

[16] S. K. Agarwal, R. V. Scheele, and J. Wakley, “Physical Measurements Including

Depth Dose Data and Isodose Curves for 8 MV Roentgen Rays,” Acta Radiologica:

Therapy, Physics, Biology, vol. 11, no. 1, pp. 97–105, Jan. 1972.

[17] K. J. Kim, J. Y. Lee, and K. R. Park, “Characteristics of 15 MV Photon Beam

from a Varian Clinac 1800 Dual Energy Linear Accelerator,” J Korean Soc Ther

Radiol, vol. 9, no. 1, pp. 131–142, 1991.

[18] C. Fong, P. Sanghera, A. Hartley, J. Cashmore, D. Ford, and S. Green, “Proton

radiotherapy: Important clinical and technical aspects for UK patients,” Imaging

and Oncology, pp. 6–13, 2017.

[19] P. Han, M. Rotman, A. R. Schulsinger, B. R. Pieters, C. C. E. Koning, F. J. Pos,

M. C. C. M. Hulshof, and P. Poortmans, “Bladder Cancer,” in Technical Basis

of Radiation Therapy, S. H. Levitt, J. A. Purdy, C. A. Perez, and P. Poortmans,

Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 801–827.

[20] J. M. Michalski and T. Wiegel, “Prostate,” in Technical Basis of Radiation Ther-

apy, S. H. Levitt, J. A. Purdy, C. A. Perez, and P. Poortmans, Eds. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2011, pp. 949–1025.

[21] L. C. Cho, V. Fonteyne, W. DeNeve, S. S. Lo, and R. D. Timmerman, “Stereotac-

tic Body Radiotherapy,” in Technical Basis of Radiation Therapy, S. H. Levitt,

J. A. Purdy, C. A. Perez, and P. Poortmans, Eds. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2011, pp. 363–400.

[22] R. Li, P. Keall, and L. Xing, “Linac-Based Image Guided Intensity Modulated

Radiation Therapy,” in Technical Basis of Radiation Therapy, S. H. Levitt, J. A.

Purdy, C. A. Perez, and P. Poortmans, Eds. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2011, pp. 275–312.

215



Bibliography

[23] C. Ménard, U. Nestle, and D. Jaffray, “Imaging in Radiation Therapy,” in Tech-

nical Basis of Radiation Therapy, S. H. Levitt, J. A. Purdy, C. A. Perez, and

P. Poortmans, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp.

63–83.

[24] J. A. Purdy, P. Poortmans, and C. A. Perez, “Three-Dimensional Treatment

Planning and Conformal Therapy,” in Technical Basis of Radiation Therapy,

S. H. Levitt, J. A. Purdy, C. A. Perez, and P. Poortmans, Eds. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2011, pp. 253–273.

[25] T. J. Kinsella, J. Sohn, and B. Wessels, “Principles of Radiation Oncology,” in

Oncology: An Evidence-Based Approach, A. E. Chang, P. A. Ganz, D. F. Hayes,

T. J. Kinsella, H. I. Pass, J. H. Schiller, R. M. Stone, and V. J. Strecher, Eds.

New York: Springer, 2006, pp. 41–57.

[26] N. G. Burnet, “Defining the tumour and target volumes for radiotherapy,” Cancer

Imaging, vol. 4, no. 2, pp. 153–161, 2004.

[27] J. da Silva, R. Ansorge, and R. Jena, “Sub-second pencil beam dose calculation

on GPU for adaptive proton therapy,” Physics in Medicine and Biology, vol. 60,

no. 12, pp. 4777–4795, Jun. 2015.

[28] P. J. Keall, D. T. Nguyen, R. O’Brien, V. Caillet, E. Hewson, P. R. Poulsen,

R. Bromley, L. Bell, T. Eade, A. Kneebone, J. Martin, and J. T. Booth, “The first

clinical implementation of real-time image-guided adaptive radiotherapy using a

standard linear accelerator,” Radiotherapy and Oncology, vol. 127, no. 1, pp. 6–11,

Apr. 2018.

[29] F. Lagerwaard, A. Bruynzeel, S. Tetar, S. Oei, C. Haasbeek, B. Slotman, S. Senan,

O. Bohoudi, and M. Palacios, “Stereotactic MR-Guided Adaptive Radiation

Therapy (SMART) for Prostate Cancer,” International Journal of Radiation On-

cology • Biology • Physics, vol. 99, no. 2, pp. E681–E682, Oct. 2017.

216



Bibliography

[30] B. W. Raaymakers et al., “First patients treated with a 1.5 T MRI-Linac: clinical

proof of concept of a high-precision, high-field MRI guided radiotherapy treat-

ment,” Physics in Medicine & Biology, vol. 62, no. 23, pp. L41–L50, Nov. 2017.

[31] S. A. Mangar, E. Scurr, R. A. Huddart, S. A. Sohaib, A. Horwich, D. P. Dearnaley,

and V. S. Khoo, “Assessing intra-fractional bladder motion using cine-MRI as

initial methodology for Predictive Organ Localization (POLO) in radiotherapy

for bladder cancer,” Radiotherapy and Oncology, vol. 85, no. 2, pp. 207–214, Nov.

2007.

[32] K. M. Langen, T. R. Willoughby, S. L. Meeks, A. Santhanam, A. Cunningham,

L. Levine, and P. A. Kupelian, “Observations on Real-Time Prostate Gland Mo-

tion Using Electromagnetic Tracking,” International Journal of Radiation Oncol-

ogy • Biology • Physics, vol. 71, no. 4, pp. 1084–1090, Jul. 2008.

[33] S. Acharya et al., “Online Magnetic Resonance Image Guided Adaptive Radia-

tion Therapy: First Clinical Applications,” International Journal of Radiation

Oncology • Biology • Physics, vol. 94, no. 2, pp. 394–403, Feb. 2016.

[34] J. Lamb, M. Cao, A. Kishan, N. Agazaryan, D. H. Thomas, N. Shaverdian,

Y. Yang, S. Ray, D. A. Low, A. Raldow, M. L. Steinberg, and P. Lee, “Online

Adaptive Radiation Therapy: Implementation of a New Process of Care,” Cureus,

Aug. 2017.

[35] B. Zitova and J. Flusser, “Image registration methods: a survey,” Image and

Vision Computing, vol. 21, pp. 977–1000, 2003.

[36] D. L. G. Hill, P. G. Batchelor, M. Holden, and D. J. Hawkes, “Medical image

registration,” Physics in Medicine and Biology, vol. 46, pp. R1–R45, 2001.

[37] J. B. A. Maintz and M. A. Viergever, “A survey of medical image registration,”

Medical Image Analysis, vol. 2, no. 1, pp. 1–36, 1998.

217



Bibliography

[38] W. Plishker, O. Dandekar, S. Bhattacharyya, and R. Shekhar, “A Taxonomy for

Medical Image Registration Acceleration Techniques,” in IEEE/NIH Life Science

Systems and Applications Workshop (LISSA 2007). IEEE, 2007, pp. 160–163.

[39] Y. Wang, T. R. Mazur, J. C. Park, D. Yang, S. Mutic, and H. H. Li, “Develop-

ment of a fast Monte Carlo dose calculation system for online adaptive radiation

therapy quality assurance,” Physics in Medicine and Biology, vol. 62, no. 12, pp.

4970–4990, Jun. 2017.

[40] J. Bertholet, G. Anastasi, D. Noble, A. Bel, R. van Leeuwen, T. Roggen,

M. Duchateau, S. Pilskog, C. Garibaldi, N. Tilly, R. Garćıa-Mollá, J. Bonaque,

U. Oelfke, M. C. Aznar, and B. Heijmen, “Patterns of practice for adaptive and

real-time radiation therapy (POP-ART RT) part II: Offline and online plan adap-

tion for interfractional changes,” Radiotherapy and Oncology, vol. 153, pp. 88–96,

Dec. 2020.

[41] O. L. Green, L. E. Henke, and G. D. Hugo, “Practical clinical workflows for online

and offline adaptive radiation therapy,” Seminars in Radiation Oncology, vol. 29,

no. 3, pp. 219–227, Jul. 2019.

[42] C. Kontaxis, G. H. Bol, B. Stemkens, M. Glitzner, F. M. Prins, L. G. W. Kerkmei-

jer, J. J. W. Lagendijk, and B. W. Raaymakers, “Towards fast online intrafraction

replanning for free-breathing stereotactic body radiation therapy with the MR-

linac,” Physics in Medicine & Biology, vol. 62, no. 18, pp. 7233–7248, Aug. 2017.

[43] L. P. Muren, A. T. Redpath, H. Lord, and D. McLaren, “Image-guided radio-

therapy of bladder cancer: Bladder volume variation and its relation to margins,”

Radiotherapy and Oncology, vol. 84, no. 3, pp. 307–313, Sep. 2007.

[44] D. W. Litzenberg, J. M. Balter, S. W. Hadley, H. M. Sandler, T. R. Willoughby,

P. A. Kupelian, and L. Levine, “Influence of intrafraction motion on margins for

prostate radiotherapy,” International Journal of Radiation Oncology • Biology •

Physics, vol. 65, no. 2, pp. 548–553, Jun. 2006.

218



Bibliography

[45] Cancer Research UK, “Bladder cancer statistics,” accessed: 9th May 2020.

[Online]. Available: https://www.cancerresearchuk.org/health-professional/

cancer-statistics/statistics-by-cancer-type/bladder-cancer

[46] L. P. Muren, R. Smaaland, and O. Dahl, “Organ motion, set-up variation and

treatment margins in radical radiotherapy of urinary bladder cancer,” Radiother-

apy and Oncology, vol. 69, no. 3, pp. 291–304, Dec. 2003.

[47] S. D. Collins and M. M. Leech, “A review of plan library approaches in adaptive

radiotherapy of bladder cancer,” Acta Oncologica, vol. 57, no. 5, pp. 566–573,

2018.

[48] Cancer Research UK, “A trial looking at different ways of giving radiotherapy

for bladder cancer (RAIDER),” accessed: 4th January 2021. [Online]. Avail-

able: https://www.cancerresearchuk.org/about-cancer/find-a-clinical-trial/

a-trial-looking-at-different-ways-of-giving-radiotherapy-for-bladder-cancer-raider

[49] ——, “Prostate cancer statistics,” accessed: 9th May 2020. [Online]. Avail-

able: https://www.cancerresearchuk.org/health-professional/cancer-statistics/

statistics-by-cancer-type/prostate-cancer

[50] M. van Herk, A. Bruce, A. Guus Kroes, T. Shouman, A. Touw, and J. V.

Lebesque, “Quantification of organ motion during conformal radiotherapy of the

prostate by three dimensional image registration,” International Journal of Ra-

diation Oncology • Biology • Physics, vol. 33, no. 5, pp. 1311–1320, Dec. 1995.

[51] J. A. Antolak, I. I. Rosen, C. H. Childress, G. K. Zagars, and A. Pollack, “Prostate

target volume variations during a course of radiotherapy,” International Journal

of Radiation Oncology • Biology • Physics, vol. 42, no. 3, pp. 661–672, Oct. 1998.

[52] A. Wong and S. Lou, “Medical Image Archive, Retrieval, and Communication,”

in Handbook of medical image processing and analysis, 2nd ed., I. N. Bankman,

Ed. Amsterdam: Elsevier/Academic Press, 2009, pp. 861–873.

219

https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/bladder-cancer
https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/bladder-cancer
https://www.cancerresearchuk.org/about-cancer/find-a-clinical-trial/a-trial-looking-at-different-ways-of-giving-radiotherapy-for-bladder-cancer-raider
https://www.cancerresearchuk.org/about-cancer/find-a-clinical-trial/a-trial-looking-at-different-ways-of-giving-radiotherapy-for-bladder-cancer-raider
https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/prostate-cancer
https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/prostate-cancer


Bibliography

[53] D. P. Bovet and M. Cesati, Understanding the Linux kernel. Beijing ; Cambridge,

Mass: O’Reilly, 2001.

[54] G. Frantz, “Digital signal processor trends,” IEEE micro, vol. 20, no. 6, pp.

52–59, 2000.

[55] S. Che, J. Li, J. W. Sheaffer, K. Skadron, and J. Lach, “Accelerating Compute-

Intensive Applications with GPUs and FPGAs,” in 2008 Symposium on Applica-

tion Specific Processors. Anaheim, CA, USA: IEEE, Jun. 2008, pp. 101–107.

[56] V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. D. Nguyen, N. Satish,

M. Smelyanskiy, S. Chennupaty, P. Hammarlund et al., “Debunking the 100X

GPU vs. CPU myth: an evaluation of throughput computing on CPU and GPU,”

in Proceedings of the 37th annual international symposium on Computer archi-

tecture, 2010, pp. 451–460.

[57] P. Richmond, “GPU computing: GPU architecture,” accessed: 17th January

2021. [Online]. Available: http://paulrichmond.shef.ac.uk/teaching/NVIDIA/

rabat/02%20-%20Architectures%20Overview.pdf

[58] S. Sirowy and A. Forin, “Where’s the Beef? Why FPGAs Are So Fast,” White

Paper, Sep. 2008, accessed: 20th August 2018. [Online]. Available: https://www.

microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-2008-130.pdf

[59] J. T. Teubner and L. Woods, Data processing on FPGAs, ser. Synthesis lectures

on data management. San Rafael, Calif.: Morgan & Claypool Publ, 2013, no. 35.

[60] J. Fowers, G. Brown, P. Cooke, and G. Stitt, “A performance and energy compar-

ison of FPGAs, GPUs, and multicores for sliding-window applications,” in Pro-

ceedings of the ACM/SIGDA international symposium on Field Programmable

Gate Arrays - FPGA ’12. Monterey, California, USA: ACM Press, 2012, p. 47.

220

http://paulrichmond.shef.ac.uk/teaching/NVIDIA/rabat/02%20-%20Architectures%20Overview.pdf
http://paulrichmond.shef.ac.uk/teaching/NVIDIA/rabat/02%20-%20Architectures%20Overview.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-2008-130.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-2008-130.pdf


Bibliography

[61] Wei-Ning Huang, Sheng-Wei Cheng, C.-W. Chang, Yu-Chen Wu, T.-W. Kuo,

Y.-C. Hsu, W.-Y. I. Tseng, and Shih-Hao Hung, “The acceleration of pipeline

workloads under the FPGA area and bandwidth constraints,” in 2014 IEEE 20th

International Conference on Embedded and Real-Time Computing Systems and

Applications. Chongqing, China: IEEE, Aug. 2014, pp. 1–9.

[62] G. Georgis, G. Lentaris, and D. Reisis, “Acceleration techniques and evaluation

on multi-core CPU, GPU and FPGA for image processing and super-resolution,”

Journal of Real-Time Image Processing, vol. 16, no. 4, pp. 1207–1234, 2019.

[63] M. E. Angoletta, “Digital signal processor fundamentals and system design,”

2008.

[64] J. Eyre, “The digital signal processor derby,” IEEE Spectrum, vol. 38, no. 6, pp.

62–68, 2001.

[65] F. Zhang, Y. Gao, and J. D. Bakos, “Lucas-Kanade optical flow estimation on

the TI C66x digital signal processor,” in 2014 IEEE High Performance Extreme

Computing Conference (HPEC). IEEE, 2014, pp. 1–6.

[66] S. M. Trimberger, “Three Ages of FPGAs: A Retrospective on the First Thirty

Years of FPGA Technology,” Proceedings of the IEEE, vol. 103, no. 3, pp. 318–

331, Mar. 2015.

[67] D. G. Bailey, Design for embedded image processing on FPGAs. Singapore: John

Wiley & Sons (Asia), 2011.

[68] X. Jia, P. Ziegenhein, and S. B. Jiang, “GPU-based high-performance computing

for radiation therapy,” Physics in Medicine and Biology, vol. 59, no. 4, pp. R151–

R182, Feb. 2014.

[69] C. Gendrin, H. Furtado, C. Weber, C. Bloch, M. Figl, S. A. Pawiro, H. Bergmann,

M. Stock, G. Fichtinger, D. Georg, and W. Birkfellner, “Monitoring tumor motion

by real time 2d/3d registration during radiotherapy,” Radiotherapy and Oncology,

vol. 102, no. 2, pp. 274–280, Feb. 2012.

221



Bibliography

[70] J. Spoerk, C. Gendrin, C. Weber, M. Figl, S. A. Pawiro, H. Furtado, D. Fabri,

C. Bloch, H. Bergmann, E. Gröller, and W. Birkfellner, “High-performance GPU-

based rendering for real-time, rigid 2d/3d-image registration and motion predic-

tion in radiation oncology,” Zeitschrift für Medizinische Physik, vol. 22, no. 1,

pp. 13–20, Feb. 2012.

[71] S. S. Samant, J. Xia, P. Muyan-Özçelik, and J. D. Owens, “High performance

computing for deformable image registration: Towards a new paradigm in adap-

tive radiotherapy: Novel high performance computing for deformable image reg-

istration,” Medical Physics, vol. 35, no. 8, pp. 3546–3553, Jul. 2008.

[72] X. Gu, H. Pan, Y. Liang, R. Castillo, D. Yang, D. Choi, E. Castillo, A. Majumdar,

T. Guerrero, and S. B. Jiang, “Implementation and evaluation of various demons

deformable image registration algorithms on a GPU,” Physics in Medicine and

Biology, vol. 55, no. 1, pp. 207–219, Jan. 2010.

[73] G. Yu, Y. Liang, G. Yang, H. Shu, B. Li, Y. Yin, and D. Li, “Accelerated gradient-

based free form deformable registration for online adaptive radiotherapy,” Physics

in Medicine and Biology, vol. 60, no. 7, pp. 2765–2783, Apr. 2015.

[74] C. Men, X. Jia, and S. B. Jiang, “GPU-based ultra-fast direct aperture optimiza-

tion for online adaptive radiation therapy,” Physics in Medicine and Biology,

vol. 55, no. 15, pp. 4309–4319, Aug. 2010.

[75] A. Hagan, A. Sawant, M. Folkerts, and A. Modiri, “Multi-GPU configuration of

4d intensity modulated radiation therapy inverse planning using global optimiza-

tion,” Physics in Medicine & Biology, vol. 63, no. 2, p. 025028, Jan. 2018.

[76] T. Jagt, S. Breedveld, R. van Haveren, B. Heijmen, and M. Hoogeman, “An au-

tomated planning strategy for near real-time adaptive proton therapy in prostate

cancer,” Physics in Medicine & Biology, vol. 63, no. 13, p. 135017, Jul. 2018.

[77] P. Ziegenhein, I. N. Kozin, C. P. Kamerling, and U. Oelfke, “Towards real-time

photon Monte Carlo dose calculation in the cloud,” Physics in Medicine and

Biology, vol. 62, no. 11, pp. 4375–4389, Jun. 2017.

222



Bibliography

[78] X. Gu, D. Choi, C. Men, H. Pan, A. Majumdar, and S. B. Jiang, “GPU-based

ultra-fast dose calculation using a finite pencil beam model,” Physics in Medicine

and Biology, vol. 54, no. 20, pp. 6287–6297, Oct. 2009.

[79] Y. Chi, Z. Tian, and X. Jia, “Modeling parameterized geometry in GPU-based

Monte Carlo particle transport simulation for radiotherapy,” Physics in Medicine

and Biology, vol. 61, no. 15, pp. 5851–5867, Aug. 2016.

[80] R. W. Keyes, C. Romano, D. Arnold, and S. Luan, “Radiation therapy calcula-

tions using an on-demand virtual cluster via cloud computing,” ArXiv e-prints,

Sep. 2010.

[81] G. Pratx and L. Xing, “Monte Carlo simulation of photon migration in a cloud

computing environment with MapReduce,” Journal of Biomedical Optics, vol. 16,

no. 12, p. 125003, 2011.

[82] C. M. Poole, I. Cornelius, J. V. Trapp, and C. M. Langton, “Radiotherapy Monte

Carlo simulation using cloud computing technology,” Australasian Physical &

Engineering Sciences in Medicine, vol. 35, no. 4, pp. 497–502, Dec. 2012.

[83] K. Whitton, X. Hu, C. Yi, and D. Chen, “An FPGA Solution for Radiation

Dose Calculation,” in 2006 14th Annual IEEE Symposium on Field-Programmable

Custom Computing Machines. Napa, CA: IEEE, Apr. 2006, pp. 227–236.

[84] A. S. Pasciak and J. R. Ford, “High-speed evaluation of track-structure Monte

Carlo electron transport simulations,” Physics in Medicine and Biology, vol. 53,

no. 19, pp. 5539–5553, Oct. 2008.

[85] J. Luu, K. Redmond, W. Lo, P. Chow, L. Lilge, and J. Rose, “FPGA-based

Monte Carlo Computation of Light Absorption for Photodynamic Cancer Ther-

apy,” in 2009 17th IEEE Symposium on Field Programmable Custom Computing

Machines. Napa, CA, USA: IEEE, 2009, pp. 157–164.

223



Bibliography

[86] B. Zhou, X. S. Hu, D. Z. Chen, and C. X. Yu, “A multi-FPGA accelerator for

radiation dose calculation in cancer treatment,” in 2009 IEEE 7th Symposium on

Application Specific Processors. San Francisco, CA, USA: IEEE, Jul. 2009, pp.

70–79.

[87] M. Gokhale and P. S. Graham, Reconfigurable computing: accelerating computa-

tion with field-programmable gate arrays. Dordrecht: Springer, 2005.

[88] L. H. Crockett, R. A. Elliot, M. A. Enderwitz, R. W. Stewart, and University of

Strathclyde, Eds., The Zynq Book: embedded processing with the ARM Cortex-A9

on the Xilinx Zynq-7000 all programmable SoC, 1st ed. Glasgow: Strathclyde

Academic Media, 2014.

[89] Xilinx Inc., “Zynq-7000 SoC: Technical Reference Manual UG585, v1.12.2,” Jul.

2018, accessed: 24th August 2018. [Online]. Available: https://www.xilinx.com/

support/documentation/user guides/ug585-Zynq-7000-TRM.pdf

[90] ——, “Zynq UltraScale+ MPSoC Data Sheet: Overview DS891 v1.5,” Jul.

2017, accessed: 21st August 2018. [Online]. Available: https://www.xilinx.com/

support/documentation/data sheets/ds891-zynq-ultrascale-plus-overview.pdf

[91] L. Crockett, D. Northcote, C. Ramsay, F. Robinson, and R. Stewart, EXPLOR-

ING ZYNQ MPSOC: with pynq and machine learning applications. Strathclyde

Academic Media, 2019.

[92] Z. Guo, W. Najjar, F. Vahid, and K. Vissers, “A quantitative analysis of

the speedup factors of FPGAs over processors,” in Proceeding of the 2004

ACM/SIGDA 12th international symposium on Field programmable gate arrays

- FPGA ’04. Monterey, California, USA: ACM Press, 2004, p. 162.

[93] B. Cope, P. Cheung, W. Luk, and S. Witt, “Have GPUs made FPGAs redun-

dant in the field of video processing?” in Proceedings. 2005 IEEE International

Conference on Field-Programmable Technology, 2005. Singapore, China: IEEE,

2005, pp. 111–118.

224

https://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
https://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds891-zynq-ultrascale-plus-overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds891-zynq-ultrascale-plus-overview.pdf


Bibliography

[94] S. Asano, T. Maruyama, and Y. Yamaguchi, “Performance comparison of FPGA,

GPU and CPU in image processing,” in 2009 International Conference on Field

Programmable Logic and Applications. Prague, Czech Republic: IEEE, Aug.

2009, pp. 126–131.

[95] L. Daoud, D. Zydek, and H. Selvaraj, “A Survey of High Level Synthesis Lan-

guages, Tools, and Compilers for Reconfigurable High Performance Computing,”

in Advances in Systems Science, J. Swiatek, A. Grzech, P. Swiatek, and J. M.

Tomczak, Eds. Cham: Springer International Publishing, 2014, vol. 240, pp.

483–492.

[96] A. Agne, M. Happe, A. Keller, E. Lubbers, B. Plattner, M. Platzner, and

C. Plessl, “ReconOS: An Operating System Approach for Reconfigurable Com-

puting,” IEEE Micro, vol. 34, no. 1, pp. 60–71, Jan. 2014.

[97] Xilinx Inc., “Zynq UltraScale+ Device: Technical Reference Manual UG1085,

v1.8,” Aug. 2018, accessed: 24th August 2018. [Online]. Available: https://www.

xilinx.com/support/documentation/user guides/ug1085-zynq-ultrascale-trm.pdf

[98] ——, “Zynq-7000 SoC Data Sheet: Overview DS190 v1.11.1,” Jul. 2018,

accessed: 21st August 2018. [Online]. Available: https://www.xilinx.com/

support/documentation/data sheets/ds190-Zynq-7000-Overview.pdf

[99] W. Meeus, K. Van Beeck, T. Goedemé, J. Meel, and D. Stroobandt, “An overview

of today’s high-level synthesis tools,” Design Automation for Embedded Systems,

vol. 16, no. 3, pp. 31–51, Sep. 2012.

[100] J. Cong, Bin Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Zhiru Zhang,

“High-Level Synthesis for FPGAs: From Prototyping to Deployment,” IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems,

vol. 30, no. 4, pp. 473–491, Apr. 2011.

225

https://www.xilinx.com/support/documentation/user_guides/ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com/support/documentation/user_guides/ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf


Bibliography

[101] P. Mantovani, G. Di Guglielmo, and L. P. Carloni, “High-level synthesis of ac-

celerators in embedded scalable platforms,” in 2016 21st Asia and South Pacific

Design Automation Conference (ASP-DAC). Macao, Macao: IEEE, Jan. 2016,

pp. 204–211.

[102] B. Draper, J. Beveridge, A. Bohm, C. Ross, and M. Chawathe, “Accelerated

image processing on FPGAs,” IEEE Transactions on Image Processing, vol. 12,

no. 12, pp. 1543–1551, Dec. 2003.

[103] Takashi Saegusa, Tsutomu Maruyama, and Yoshiki Yamaguchi, “How fast is an

FPGA in image processing?” in 2008 International Conference on Field Pro-

grammable Logic and Applications. Heidelberg, Germany: IEEE, 2008, pp.

77–82.

[104] F. Grull and U. Kebschull, “Biomedical image processing and reconstruction with

dataflow computing on FPGAs,” in 2014 24th International Conference on Field

Programmable Logic and Applications (FPL). Munich, Germany: IEEE, Sep.

2014, pp. 1–2.

[105] Jun Jiang, W. Luk, and D. Rueckert, “FPGA-based computation of free-form

deformations in medical image registration,” in Proceedings. 2003 IEEE In-

ternational Conference on Field-Programmable Technology (FPT) (IEEE Cat.

No.03EX798). Tokyo, Japan: IEEE, 2003, pp. 234–241.

[106] O. Dandekar and R. Shekhar, “FPGA-Accelerated Deformable Image Registra-

tion for Improved Target-Delineation During CT-Guided Interventions,” IEEE

Transactions on Biomedical Circuits and Systems, vol. 1, no. 2, pp. 116–127,

Jun. 2007.

[107] J. Koo, A. Evans, and W. Gross, “3-D Brain MRI Tissue Classification on FP-

GAs,” IEEE Transactions on Image Processing, vol. 18, no. 12, pp. 2735–2746,

Dec. 2009.

226



Bibliography

[108] I. Chiuchisan, “A new FPGA-based real-time configurable system for medical im-

age processing,” in 2013 E-Health and Bioengineering Conference (EHB). IASI,

Romania: IEEE, Nov. 2013, pp. 1–4.

[109] H. Okuhata, R. Imai, M. Ise, R. Y. Omaki, H. Nakamura, S. Hara, and I. Shi-

rakawa, “Implementation of dynamic-range enhancement and super-resolution

algorithms for medical image processing,” in 2014 IEEE International Confer-

ence on Consumer Electronics (ICCE). Las Vegas, NV, USA: IEEE, Jan. 2014,

pp. 181–184.

[110] P. Li, T. Page, G. Luo, W. Zhang, P. Wang, P. Zhang, P. Maass, M. Jiang, and

J. Cong, “FPGA Acceleration for Simultaneous Medical Image Reconstruction

and Segmentation,” in 2014 IEEE 22nd Annual International Symposium on

Field-Programmable Custom Computing Machines. Boston, MA, USA: IEEE,

May 2014, pp. 172–172.

[111] T. Hussain, O. Palomar, A. Cristal, E. Ayguade, and A. Haider, “ViPS: Visual

processing system for medical imaging,” in 2015 8th International Conference on

Biomedical Engineering and Informatics (BMEI). Shenyang, China: IEEE, Oct.

2015, pp. 40–45.

[112] K. Neshatpour, A. Koohi, F. Farahmand, R. Joshi, S. Rafatirad, A. Sasan, and

H. Homayoun, “Big biomedical image processing hardware acceleration: A case

study for K-means and image filtering,” in 2016 IEEE International Symposium

on Circuits and Systems (ISCAS). Montréal, QC, Canada: IEEE, May 2016,

pp. 1134–1137.

[113] S. Afifi, H. GholamHosseini, and R. Sinha, “A low-cost FPGA-based SVM clas-

sifier for melanoma detection,” in 2016 IEEE EMBS Conference on Biomedical

Engineering and Sciences (IECBES). Malaysia: IEEE, Dec. 2016, pp. 631–636.

227



Bibliography

[114] M. Birk, E. Kretzek, P. Figuli, M. Weber, J. Becker, and N. V. Ruiter, “High-

Speed Medical Imaging in 3d Ultrasound Computer Tomography,” IEEE Trans-

actions on Parallel and Distributed Systems, vol. 27, no. 2, pp. 455–467, Feb.

2016.

[115] E. Samei, J. A. Seibert, K. Andriole, A. Badano, J. Crawford, B. Reiner, M. J.

Flynn, and P. Chang, “AAPM/RSNA Tutorial on Equipment Selection: PACS

Equipment Overview: General Guidelines for Purchasing and Acceptance Testing

of PACS Equipment,” RadioGraphics, vol. 24, no. 1, pp. 313–334, Jan. 2004.

[116] J. Philbin, F. Prior, and P. Nagy, “Will the Next Generation of PACS Be Sitting

on a Cloud?” Journal of Digital Imaging, vol. 24, no. 2, pp. 179–183, Apr. 2011.

[117] J. C. Honeyman, W. Huda, M. M. Frost, C. K. Palmer, and E. V. Staab, “Pic-

ture archiving and communication system bandwidth and storage requirements,”

Journal of Digital Imaging, vol. 9, no. 2, pp. 60–66, May 1996.

[118] M. Vossberg, T. Tolxdorff, and D. Krefting, “DICOM Image Communication in

Globus-Based Medical Grids,” IEEE Transactions on Information Technology in

Biomedicine, vol. 12, no. 2, pp. 145–153, Mar. 2008.

[119] Oracle Corporation, “A Performance Evaluation of Storage and Retrieval of

DICOM Image Content in Oracle Database 11g Using HP Blade Servers and

Intel Processors (White Paper),” Redwood Shores, CA., White Paper, Jul.

2008, accessed: 22nd May 2018. [Online]. Available: http://www.oracle.com/

technetwork/products/multimedia/overview/ora-dicom-bench-2008-129543.pdf

[120] ——, “A Performance Evaluation of Storage and Retrieval of DICOM

Image Content in Oracle Database 11g Using HP Blade Servers and

Intel Processors: A Summary (White Paper),” Redwood Shores, CA.,

White Paper, Jan. 2010, accessed: 22nd May 2018. [Online]. Available:

http://www.oracle.com/us/industries/healthcare/058477.pdf

228

http://www.oracle.com/technetwork/products/multimedia/overview/ora-dicom-bench-2008-129543.pdf
http://www.oracle.com/technetwork/products/multimedia/overview/ora-dicom-bench-2008-129543.pdf
http://www.oracle.com/us/industries/healthcare/058477.pdf


Bibliography

[121] S. Jodogne, C. Bernard, M. Devillers, E. Lenaerts, and P. Coucke, “Orthanc - A

lightweight, restful DICOM server for healthcare and medical research.” IEEE,

Apr. 2013, pp. 190–193.

[122] K. Barlee, personal communication, Aug. 2017.

[123] B. N. Bloch, A. Jain, and C. C. Jaffe, “Data From PROSTATE-DIAGNOSIS,”

2015, dOI: 10.7937/K9/TCIA.2015.FOQEUJVT, accessed: 8th May 2018.

[Online]. Available: https://wiki.cancerimagingarchive.net/x/xgEy

[124] K. Clark, B. Vendt, K. Smith, J. Freymann, J. Kirby, P. Koppel, S. Moore,

S. Phillips, D. Maffitt, M. Pringle, L. Tarbox, and F. Prior, “The Cancer Imaging

Archive (TCIA): Maintaining and Operating a Public Information Repository,”

Journal of Digital Imaging, vol. 26, no. 6, pp. 1045–1057, Dec. 2013.

[125] D. Rowntree, Statistics without tears: an introduction for non-mathematicians,

reprinted with minor corr. and new further reading ed., ser. Penguin mathematics.

London: Penguin, 2000.

[126] T. C. Urdan, Statistics in plain English, fourth edition ed. New York, NY:

Routledge, Taylor & Francis Group, 2017.

[127] S. Godard, “SYSSTAT,” accessed: 1st June 2018. [Online]. Available:

http://sebastien.godard.pagesperso-orange.fr/

[128] OpenCV, “OpenCV,” Feb. 2018, accessed: 2nd May 2020. [Online]. Available:

https://opencv.org

[129] Xilinx, “xfOpenCV Library,” Sep. 2017, accessed: 2nd May 2020. [Online].

Available: https://github.com/Xilinx/xfopencv/tree/v2017.2

[130] Xilinx Inc., “Vivado Design Suite: AXI Reference Guide

UG1037, v4.0,” Jul. 2017, accessed: 13th April 2020. [Online].

Available: https://www.xilinx.com/support/documentation/ip documentation/

axi ref guide/latest/ug1037-vivado-axi-reference-guide.pdf

229

https://wiki.cancerimagingarchive.net/x/xgEy
http://sebastien.godard.pagesperso-orange.fr/
https://opencv.org
https://github.com/Xilinx/xfopencv/tree/v2017.2
https://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/latest/ug1037-vivado-axi-reference-guide.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/latest/ug1037-vivado-axi-reference-guide.pdf


Bibliography

[131] Avnet Inc., “ZedBoard Hardware User’s Guide,” Jan. 2014, accessed:

13th April 2020. [Online]. Available: http://zedboard.org/sites/default/files/

documentations/ZedBoard HW UG v2 2.pdf

[132] L. R. Dice, “Measures of the Amount of Ecologic Association Between Species,”

Ecology, vol. 26, no. 3, pp. 297–302, Jul. 1945.

[133] P. Keall, “4-Dimensional Computed Tomography Imaging and Treatment Plan-

ning,” Seminars in Radiation Oncology, vol. 14, no. 1, pp. 81–90, 2004.

[134] P. J. Keall, G. Starkschall, H. Shukla, K. M. Forster, V. Ortiz, C. W. Stevens,

S. S. Vedam, R. George, T. Guerrero, and R. Mohan, “Acquiring 4d thoracic CT

scans using a multislice helical method,” Physics in Medicine & Biology, vol. 49,

pp. 2053–2067, 2004.

[135] S. B. Jiang, J. Wolfgang, and G. S. Mageras, “Quality assurance challenges for

motion-adaptive radiation therapy: gating, breath holding, and four-dimensional

computed tomography,” International Journal of Radiation Oncology • Biology

• Physics, vol. 71, no. 1, pp. S103–S107, 2008.

[136] “QUASAR Respiratory Motion Phantom Product Datasheet,” 2019, accessed:

18th April 2020. [Online]. Available: https://modusqa.com/wp-content/uploads/

2020/02/QUASAR pRESP PDS.pdf

[137] “QUASAR Respiratory Motion Phantom Inserts Product Datasheet,” 2016,

accessed: 18th April 2020. [Online]. Available: https://modusqa.com/

wp-content/uploads/2020/02/MMDI QUASAR Inserts PDS-1.pdf

[138] W. Jianlai, Y. Chunling, Z. Min, and W. Changhui, “Implementation of Otsu’s

thresholding process based on FPGA,” in 2009 4th IEEE Conference on Industrial

Electronics and Applications. IEEE, 2009, pp. 479–483.

[139] H. Tian, S. Lam, and T. Srikanthan, “Implementing Otsu’s thresholding process

approximation unit using area-time efficient logarithmic,” in Proceedings of IEEE

Symposium on Circuits and Systems. IEEE, 2003.

230

http://zedboard.org/sites/default/files/documentations/ZedBoard_HW_UG_v2_2.pdf
http://zedboard.org/sites/default/files/documentations/ZedBoard_HW_UG_v2_2.pdf
https://modusqa.com/wp-content/uploads/2020/02/QUASAR_pRESP_PDS.pdf
https://modusqa.com/wp-content/uploads/2020/02/QUASAR_pRESP_PDS.pdf
https://modusqa.com/wp-content/uploads/2020/02/MMDI_QUASAR_Inserts_PDS-1.pdf
https://modusqa.com/wp-content/uploads/2020/02/MMDI_QUASAR_Inserts_PDS-1.pdf


Bibliography

[140] J. G. Pandey, A. Karmakar, C. Shekhar, and S. Gurunarayanan, “A Novel Archi-

tecture for FPGA Implementation of Otsu’s Global Automatic Image Threshold-

ing Algorithm,” in 2014 27th International Conference on VLSI Design and 2014

13th International Conference on Embedded Systems. IEEE, 2014, pp. 300–305.

[141] P.-S. Liao, T.-S. Chen, and P.-C. Chung, “A fast algorithm for multilevel thresh-

olding,” Journal of Information Science and Engineering, vol. 17, no. 5, pp.

713–727, 2001.

[142] R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd ed. Pearson,

Apr. 1992.

[143] M. van Herk, “Errors and Margins in Radiotherapy,” Seminars in Radiation

Oncology, vol. 14, no. 1, pp. 52–64, 2004.

[144] A. T. Redpath and L. P. Muren, “An optimisation algorithm for determination

of treatment margins around moving and deformable targets,” Radiotherapy and

Oncology, vol. 77, pp. 194–201, 2005.

[145] P. Campadelli, E. Casiraghi, S. Pratissoli, and G. Lombardi, “Automatic ab-

dominal organ segmentation from CT images,” ELCVIA: electronic letters on

computer vision and image analysis, pp. 1–14, 2009.

[146] Xilinx Inc., “Alveo U50 Data Center Accelerator Card Data Sheet

DS965 v1.7,” Jun. 2020, accessed: 19th July 2020. [Online]. Available:

https://www.xilinx.com/support/documentation/data sheets/ds965-u50.pdf

[147] ——, “Versal ACAP Technical Reference Manual AM011 v1.0,” Jul. 2020,

accessed: 19th July 2020. [Online]. Available: https://www.xilinx.com/support/

documentation/architecture-manuals/am011-versal-acap-trm.pdf

[148] F. Robinson, “Dicom transfer rates using fpga-based systems on chip,” 2018,

accessed: 20th February 2021. [Online]. Available: https://doi.org/10.15129/

F8EF7BE8-9A14-4674-B7F4-5497DAD226CC

231

https://www.xilinx.com/support/documentation/data_sheets/ds965-u50.pdf
https://www.xilinx.com/support/documentation/architecture-manuals/am011-versal-acap-trm.pdf
https://www.xilinx.com/support/documentation/architecture-manuals/am011-versal-acap-trm.pdf
https://doi.org/10.15129/F8EF7BE8-9A14-4674-B7F4-5497DAD226CC
https://doi.org/10.15129/F8EF7BE8-9A14-4674-B7F4-5497DAD226CC


Bibliography

[149] ——, “Performance of hardware accelerated bone segmentation,” 2019,

accessed: 20th February 2021. [Online]. Available: https://doi.org/10.15129/

1A667DBC-8202-443D-A52B-45B5F8B498D2

[150] ——, “High-level synthesis of hardware accelerated 3d image segmentation based

on otsu’s method,” 2016, accessed: 20th February 2021. [Online]. Available:

https://doi.org/10.15129/A80F62FC-F2B2-4866-BB34-62CA39F76525

[151] ——, “Performance of hardware accelerated bone segmentation on 4dct

images,” 2021, accessed: 20th February 2021. [Online]. Available: https:

//doi.org/10.15129/E46D23A5-227B-4E2B-8A51-0F4BDD17D644

[152] ——, “Performance of hardware accelerated bone segmentation with noise reduc-

tion on 4dct images,” 2021, accessed: 20th February 2021. [Online]. Available:

https://doi.org/10.15129/89D99E2A-A2C6-4F82-9626-B849FC93E6C2

232

https://doi.org/10.15129/1A667DBC-8202-443D-A52B-45B5F8B498D2
https://doi.org/10.15129/1A667DBC-8202-443D-A52B-45B5F8B498D2
https://doi.org/10.15129/A80F62FC-F2B2-4866-BB34-62CA39F76525
https://doi.org/10.15129/E46D23A5-227B-4E2B-8A51-0F4BDD17D644
https://doi.org/10.15129/E46D23A5-227B-4E2B-8A51-0F4BDD17D644
https://doi.org/10.15129/89D99E2A-A2C6-4F82-9626-B849FC93E6C2

	List of Figures
	List of Tables
	List of Acronyms
	Acknowledgements
	Introduction
	Introduction
	Clinical Context
	Adaptive Radiotherapy
	Field Programmable Gate Arrays
	Aim and Contributions
	Outputs
	Thesis Outline

	Adaptive Radiotherapy in Pelvic Cancers
	Cancer
	Radiotherapy
	External Beam Radiotherapy
	Fractionation
	Conventional Radiotherapy

	Adaptive Radiotherapy
	ART Workflow
	State of Online ART
	Inline ART

	ART in Pelvic Cancers
	Bladder Cancer
	Prostate Cancer

	Clinical Image Storage and Communication Infrastructure
	DICOM
	DICOM Information Model
	DICOM Communications Protocol
	Data Transfer Process

	Conclusion

	Hardware Acceleration using FPGA and Systems on Chip
	Principles of Hardware Acceleration
	CPU
	Alternative Processing Architectures

	Hardware Acceleration in ART
	FPGAs
	FPGAs for Hardware Acceleration

	FPGA-Based SoC
	Processing System and Programmable Logic Interconnections

	FPGA Design Methodologies
	High-Level Synthesis

	FPGA Acceleration of Image Analysis
	Medical Image Analysis

	Selecting a Processing Architecture for Hardware Acceleration in ART
	Digital Signal Processors
	GPUs
	FPGAs

	Conclusion

	DICOM Transfer Rates on FPGA-based SoC Platforms
	Relevant Work
	Materials and Methods
	Hardware Used
	Measuring Transfer Rates
	Monitoring System Activity

	Results and Discussion
	Data Selection
	Measured Transfer Rates
	Correlation between Transfer Rate and Size
	System Activity
	Experimental Set-up
	Comparison with Literature
	Results in the Context of ART

	Conclusion

	Segmentation of Bony Anatomy from CT Scans of Bladder Cancer Patients
	Segmentation Algorithm
	Haas Algorithm Implementations
	Software Implementation
	Hardware Implementation
	Implementation Platforms
	Performance Metrics
	Image Data

	Results and Discussion
	Segmentation Quality
	Execution Time per Volume
	Execution Time per Slice
	Hardware Implementation
	Strategies to Improve Performance
	Results in the Context of ART

	Conclusions

	Hardware Accelerated Segmentation of 4DCT Images
	4DCT Data
	Segmentation based on Otsu's Method
	Otsu's Method
	Applying Otsu's Method to 4DCT Phantom Image Data
	Results and Discussion
	Extension to Clinical Image Data

	Segmentation based on Haas' Algorithm
	Application of the Haas and Simplified Haas Algorithms
	Results and Discussion
	Improving Segmentation Quality
	Results and Discussion

	Conclusions

	Conclusion
	Summary
	Data Transfer Overhead
	Three-dimensional Images
	Four-dimensional Images
	FPGA-based SoCs for ART

	Further Work
	Concluding Remarks

	Image Data for DICOM Transfer Rate Testing
	Studies
	Series

	Code Listings
	DICOM Transfer Rates
	Inserting DICOM Data in the PACS
	Retrieving DICOM Data from the PACS

	Bone Segmentation Algorithms
	Haas Algorithm
	Simplified Haas Algorithm
	Noise-reduced Algorithm
	Otsu's Method


	Bibliography

