342 research outputs found

    Nomogram to predict the outcomes of patients with microsatellite instability-high metastatic colorectal cancer receiving immune checkpoint inhibitors

    Get PDF
    Neoplasias gastrointestinales; InmunoterapiaNeoplàsies gastrointestinals; ImmunoteràpiaGastrointestinal neoplasms; ImmunotherapyBackground The efficacy of immune checkpoint inhibitors (ICIs) in patients with microsatellite instability (MSI)-high metastatic colorectal cancer (mCRC) is unprecedented. A relevant proportion of subjects achieving durable disease control may be considered potentially ‘cured’, as opposed to patients experiencing primary ICI refractoriness or short-term clinical benefit. We developed and externally validated a nomogram to estimate the progression-free survival (PFS) and the time-independent event-free probability (EFP) in patients with MSI-high mCRC receiving ICIs. Methods The PFS and EFP were estimated using a cure model fitted on a developing set of 163 patients and validated on a set of 146 patients with MSI-high mCRC receiving anti-programmed death (ligand)1 (PD-(L)1) ± anticytotoxic T-lymphocyte antigen 4 (CTLA-4) agents. A total of 23 putative prognostic factors were chosen and then selected using a random survival forest (RSF). The model performance in estimating PFS probability was evaluated by assessing calibration (internally—developing set and externally—validating set) and quantifying the discriminative ability (Harrell C index). Results RFS selected five variables: ICI type (anti-PD-(L)1 monotherapy vs anti-CTLA-4 combo), ECOG PS (0 vs >0), neutrophil-to-lymphocyte ratio (≤3 vs >3), platelet count, and prior treatment lines. As both in the developing and validation series most PFS events occurred within 12 months, this was chosen as cut-point for PFS prediction. The combination of the selected variables allowed estimation of the 12-month PFS (focused on patients with low chance of being cured) and the EFP (focused on patients likely to be event-free at a certain point of their follow-up). ICI type was significantly associated with disease control, as patients receiving the anti-CTLA-4-combination experienced the best outcomes. The calibration of PFS predictions was good both in the developing and validating sets. The median value of the EFP (46%) allowed segregation of two prognostic groups in both the developing (PFS HR=3.73, 95% CI 2.25 to 6.18; p<0.0001) and validating (PFS HR=1.86, 95% CI 1.07 to 3.23; p=0.0269) sets. Conclusions A nomogram based on five easily assessable variables including ICI treatment was built to estimate the outcomes of patients with MSI-high mCRC, with the potential to assist clinicians in their clinical practice. The web-based system ‘MSI mCRC Cure’ was released.The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors

    The AGAMENON-SEOM model for prediction of survival in patients with advanced HER2-positive oesophagogastric adenocarcinoma receiving first-line trastuzumab-based therapy

    Get PDF
    Gastric cancer; Survival; TrastuzumabCàncer gàstric; Supervivència; TrastuzumabCáncer gástrico; Supervivencia; TrastuzumabBackground: Trastuzumab and chemotherapy is the standard first-line treatment in human epidermal growth factor receptor 2 (HER2)-positive advanced gastro-oesophageal cancer. The objective was to develop a predictive model for overall survival (OS) and progression-free survival (PFS) in patients treated with trastuzumab. Methods: Patients with HER2-positive advanced gastro-oesophageal adenocarcinoma (AGA) from the Spanish Society of Medical Oncology (SEOM)-AGAMENON registry and treated first line with trastuzumab and chemotherapy between 2008 and 2021 were included. The model was externally validated in an independent series (The Christie NHS Foundation Trust, Manchester, UK). Results: In all, 737 patients were recruited (AGAMENON-SEOM, n = 654; Manchester, n = 83). Median PFS and OS in the training cohort were 7.76 [95% confidence interval (CI), 7.13–8.25] and 14.0 months (95% CI, 13.0–14.9), respectively. Six covariates were significantly associated with OS: neutrophil-to-lymphocyte ratio, Eastern Cooperative Oncology Group performance status, Lauren subtype, HER2 expression, histological grade and tumour burden. The AGAMENON-HER2 model demonstrated adequate calibration and fair discriminatory ability with a c-index for corrected PFS/OS of 0.606 (95% CI, 0.578–0.636) and 0.623 (95% CI, 0.594–0.655), respectively. In the validation cohort, the model is well calibrated, with a c-index of 0.650 and 0.683 for PFS and OS, respectively. Conclusion: The AGAMENON-HER2 prognostic tool stratifies HER2-positive AGA patients receiving trastuzumab and chemotherapy according to their estimated survival endpoints

    Predicting long-term outcome after acute ischemic stroke: a simple index works in patients from controlled clinical trials

    Get PDF
    Background and Purpose—An early and reliable prognosis for recovery in stroke patients is important for initiation of individual treatment and for informing patients and relatives. We recently developed and validated models for predicting survival and functional independence within 3 months after acute stroke, based on age and the National Institutes of Health Stroke Scale score assessed within 6 hours after stroke. Herein we demonstrate the applicability of our models in an independent sample of patients from controlled clinical trials. Methods—The prognostic models were used to predict survival and functional recovery in 5419 patients from the Virtual International Stroke Trials Archive (VISTA). Furthermore, we tried to improve the accuracy by adapting intercepts and estimating new model parameters. Results—The original models were able to correctly classify 70.4% (survival) and 72.9% (functional recovery) of patients. Because the prediction was slightly pessimistic for patients in the controlled trials, adapting the intercept improved the accuracy to 74.8% (survival) and 74.0% (functional recovery). Novel estimation of parameters, however, yielded no relevant further improvement. Conclusions—For acute ischemic stroke patients included in controlled trials, our easy-to-apply prognostic models based on age and National Institutes of Health Stroke Scale score correctly predicted survival and functional recovery after 3 months. Furthermore, a simple adaptation helps to adjust for a different prognosis and is recommended if a large data set is available. (Stroke. 2008;39:000-000.

    Machine learning algorithms combining slope deceleration and fetal heart rate features to predict acidemia

    Get PDF
    Electronic fetal monitoring (EFM) is widely used in intrapartum care as the standard method for monitoring fetal well-being. Our objective was to employ machine learning algorithms to predict acidemia by analyzing specific features extracted from the fetal heart signal within a 30 min window, with a focus on the last deceleration occurring closest to delivery. To achieve this, we conducted a case–control study involving 502 infants born at Miguel Servet University Hospital in Spain, maintaining a 1:1 ratio between cases and controls. Neonatal acidemia was defined as a pH level below 7.10 in the umbilical arterial blood. We constructed logistic regression, classification trees, random forest, and neural network models by combining EFM features to predict acidemia. Model validation included assessments of discrimination, calibration, and clinical utility. Our findings revealed that the random forest model achieved the highest area under the receiver characteristic curve (AUC) of 0.971, but logistic regression had the best specificity, 0.879, for a sensitivity of 0.95. In terms of clinical utility, implementing a cutoff point of 31% in the logistic regression model would prevent unnecessary cesarean sections in 51% of cases while missing only 5% of acidotic cases. By combining the extracted variables from EFM recordings, we provide a practical tool to assist in avoiding unnecessary cesarean sections

    Application of Machine Learning Algorithms to Predict Central Lymph Node Metastasis in T1-T2, Non-invasive, and Clinically Node Negative Papillary Thyroid Carcinoma

    Get PDF
    Purpose: While there are no clear indications of whether central lymph node dissection is necessary in patients with T1-T2, non-invasive, clinically uninvolved central neck lymph nodes papillary thyroid carcinoma (PTC), this study seeks to develop and validate models for predicting the risk of central lymph node metastasis (CLNM) in these patients based on machine learning algorithms. Methods: This is a retrospective study comprising 1,271 patients with T1-T2 stage, non-invasive, and clinically node negative (cN0) PTC who underwent surgery at the Department of Endocrine and Breast Surgery of The First Affiliated Hospital of Chongqing Medical University from February 1, 2016, to December 31, 2018. We applied six machine learning (ML) algorithms, including Logistic Regression (LR), Gradient Boosting Machine (GBM), Extreme Gradient Boosting (XGBoost), Random Forest (RF), Decision Tree (DT), and Neural Network (NNET), coupled with preoperative clinical characteristics and intraoperative information to develop prediction models for CLNM. Among all the samples, 70% were randomly selected to train the models while the remaining 30% were used for validation. Indices like the area under the receiver operating characteristic (AUROC), sensitivity, specificity, and accuracy were calculated to test the models' performance. Results: The results showed that ~51.3% (652 out of 1,271) of the patients had pN1 disease. In multivariate logistic regression analyses, gender, tumor size and location, multifocality, age, and Delphian lymph node status were all independent predictors of CLNM. In predicting CLNM, six ML algorithms posted AUROC of 0.70–0.75, with the extreme gradient boosting (XGBoost) model standing out, registering 0.75. Thus, we employed the best-performing ML algorithm model and uploaded the results to a self-made online risk calculator to estimate an individual's probability of CLNM (https://jin63.shinyapps.io/ML_CLNM/). Conclusions: With the incorporation of preoperative and intraoperative risk factors, ML algorithms can achieve acceptable prediction of CLNM with Xgboost model performing the best. Our online risk calculator based on ML algorithm may help determine the optimal extent of initial surgical treatment for patients with T1-T2 stage, non-invasive, and clinically node negative PTC

    Augmenting decision competence in healthcare using AI-based cognitive models

    Get PDF

    Survival prediction for stage I-IIIA non-small cell lung cancer using deep learning

    Get PDF
    BACKGROUND AND PURPOSE: The aim of this study was to develop and evaluate a prediction model for 2-year overall survival (OS) in stage I-IIIA non-small cell lung cancer (NSCLC) patients who received definitive radiotherapy by considering clinical variables and image features from pre-treatment CT-scans. MATERIALS AND METHODS: NSCLC patients who received stereotactic radiotherapy were prospectively collected at the UMCG and split into a training and a hold out test set including 189 and 81 patients, respectively. External validation was performed on 228 NSCLC patients who were treated with radiation or concurrent chemoradiation at the Maastro clinic (Lung1 dataset). A hybrid model that integrated both image and clinical features was implemented using deep learning. Image features were learned from cubic patches containing lung tumours extracted from pre-treatment CT scans. Relevant clinical variables were selected by univariable and multivariable analyses. RESULTS: Multivariable analysis showed that age and clinical stage were significant prognostic clinical factors for 2-year OS. Using these two clinical variables in combination with image features from pre-treatment CT scans, the hybrid model achieved a median AUC of 0.76 [95% CI: 0.65-0.86] and 0.64 [95% CI: 0.58-0.70] on the complete UMCG and Maastro test sets, respectively. The Kaplan-Meier survival curves showed significant separation between low and high mortality risk groups on these two test sets (log-rank test: p-value < 0.001, p-value = 0.012, respectively) CONCLUSION: We demonstrated that a hybrid model could achieve reasonable performance by utilizing both clinical and image features for 2-year OS prediction. Such a model has the potential to identify patients with high mortality risk and guide clinical decision making. Short title: OS prediction for stage I-IIIA NSCLC using DL

    Predicting prognosis and IDH mutation status for patients with lower-grade gliomas using whole slide images

    Get PDF
    We developed end-to-end deep learning models using whole slide images of adults diagnosed with diffusely infiltrating, World Health Organization (WHO) grade 2 gliomas to predict prognosis and the mutation status of a somatic biomarker, isocitrate dehydrogenase (IDH) 1/2. The models, which utilize ResNet-18 as a backbone, were developed and validated on 296 patients from The Cancer Genome Atlas (TCGA) database. To account for the small sample size, repeated random train/test splits were performed for hyperparameter tuning, and the out-of-sample predictions were pooled for evaluation. Our models achieved a concordance- (C-) index of 0.715 (95% CI: 0.569, 0.830) for predicting prognosis and an area under the curve (AUC) of 0.667 (0.532, 0.784) for predicting IDH mutations. When combined with additional clinical information, the performance metrics increased to 0.784 (95% CI: 0.655, 0.880) and 0.739 (95% CI: 0.613, 0.856), respectively. When evaluated on the WHO grade 3 gliomas from the TCGA dataset, which were not used for training, our models predicted survival with a C-index of 0.654 (95% CI: 0.537, 0.768) and IDH mutations with an AUC of 0.814 (95% CI: 0.721, 0.897). If validated in a prospective study, our method could potentially assist clinicians in managing and treating patients with diffusely infiltrating gliomas
    • …
    corecore