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Predicting prognosis and IDH
mutation status for patients
with lower-grade gliomas using
whole slide images

Shuai Jiang?, George J. Zanazzi? & Saeed Hassanpour34*

We developed end-to-end deep learning models using whole slide images of adults diagnosed with
diffusely infiltrating, World Health Organization (WHO) grade 2 gliomas to predict prognosis and the
mutation status of a somatic biomarker, isocitrate dehydrogenase (IDH) 1/2. The models, which utilize
ResNet-18 as a backbone, were developed and validated on 296 patients from The Cancer Genome
Atlas (TCGA) database. To account for the small sample size, repeated random train/test splits were
performed for hyperparameter tuning, and the out-of-sample predictions were pooled for evaluation.
Our models achieved a concordance- (C-) index of 0.715 (95% Cl: 0.569, 0.830) for predicting prognosis
and an area under the curve (AUC) of 0.667 (0.532, 0.784) for predicting IDH mutations. When
combined with additional clinical information, the performance metrics increased to 0.784 (95% Cl:
0.655, 0.880) and 0.739 (95% Cl: 0.613, 0.856), respectively. When evaluated on the WHO grade 3
gliomas from the TCGA dataset, which were not used for training, our models predicted survival with a
C-index of 0.654 (95% Cl: 0.537, 0.768) and IDH mutations with an AUC of 0.814 (95% Cl: 0.721, 0.897).
If validated in a prospective study, our method could potentially assist clinicians in managing and
treating patients with diffusely infiltrating gliomas.

Diffuse gliomas are the most common primary brain tumors in adults, and one of the most common causes
of cancer death affecting young adults'. According to the World Health Organization (WHO) classification of
tumors of the central nervous system?, the diffusely infiltrating gliomas are categorized into grade 1 to 4 based
on histologic features such as mitotic activity, tumor cell pleomorphism, and the presence of necrosis and/or
microvascular proliferation®. Lower-grade gliomas (LGG) refer to grade 2 and grade 3 gliomas, and the median
survival time of patients with LGG is 7 years®. Predicting survival times for patients with LGG can inform treat-
ment and promote shared-decision making between physicians and patients, and is of great interest in clinical
practice. But this is a challenging task given the heterogeneity of this disease from histological, genetic, and
clinical aspects, as well as the efforts required for obtaining the morphological and molecular features.

Prognostic factors for adult diffuse gliomas include age, gender, performance status, the extent of tumor
resection, and intrinsic factors of the tumor including grade, isocitrate dehydrogenase (IDH) mutation, chromo-
some 1p/19q status, and MGMT promoter methylation*®. Although tumor tissues are graded according to well-
established histological criteria, this manual process is time-intensive and cannot provide detailed information
for an accurate survival estimation. The development of deep learning models over the past few years provides
unique opportunities to extract information from unstructured data such as whole slide images (WSIs)®~%. Sev-
eral studies have used WSIs to predict the prognosis of patients diagnosed with diffuse gliomas and have shown
promising results”!’. However, these models either were developed and evaluated for glioma patients with various
grades (grade 2 to 4), or did not report the performance when only using WSIs. Information on the prognostic
performance of WSI-based deep learning models for LGG is limited. A model trained using data across grade
2 to grade 4 cases can perform well in distinguishing high-risk patients from low-risk patients with different
grades of gliomas; however, it might not be able to differentiate high-risk patients from low-risk patients within
the same grade.
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USA. ZDepartment of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon,
NH 03756, USA. 3Department of Computer Science, Dartmouth College, Hanover, NH 03755, USA. “Department
of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA. *email: Saeed.Hassanpour@
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Survival prediction performance: C-index [95% CI]

Without WSI risk score With WSI risk score Difference
None - 0.715 [0.569, 0.830] -
Age 0.745 [0.627, 0.838] 0.765 [0.643, 0.865] 0.020 [-0.091, 0.100]
Gender 0.509 [0.345, 0.630] 0.688 [0.528, 0.815 0.179 [-0.007, 0.352]
Race 0.520 [0.444, 0.554] 0.193 [0.056, 0.322]*

Primary diagnosis

0.572 [0.437, 0.707]

]
0.713 [0.568, 0.831]
0.689 [0.539, 0.822]

0.117 [0.003, 0.230]*

IDH mutations

0.692 [0.573, 0.807]

0.762 [0.602, 0.878]

0.070 [-0.048, 0.161]

Age +IDH mutations

0.774 [0.658, 0.863]

0.784 [0.655, 0.880]

0.010 [-0.097, 0.085]

IDH mutation prediction performance: AUC [95% CI]

Without WSI Predicted IDH Mutation

With WSI Predicted IDH Mutation

Probability Probability Difference
None - 0.667 [0.532, 0.784] -
Age 0.689 [0.552, 0.816] 0.726 [0.599, 0.845] 0.037 [-0.053, 0.097]
Gender 0.536 [0.430, 0.643] 0.650 [0.507, 0.769] 0.114 [-0.078, 0.240]
Race 0.567 [0.480, 0.650] 0.687 [0.560, 0.800] 0.120 [-0.002, 0.229]

Primary diagnosis

0.519 [0.389, 0.641]

0.637 [0.472, 0.755]

0.118 [-0.090, 0.261]

Age+Race

0.711 [0.585, 0.834]

0.739 [0.613, 0.856]

0.028 [-0.051, 0.078]

Table 1. Model performance statistics for survival prediction task and IDH mutation prediction task,
evaluated among patients with grade 2 gliomas. 95% confidence intervals were derived from 10,000
bootstrapping replications. Bold texts indicate the best performance for each column. * Indicates statistically
significant difference (p <0.05).

In addition to morphological features, IDH mutation is another important prognostic feature for glioma
patients. IDH mutations are common in LGG patients with a prevalence of about 80%'", and are associated with
more favorable outcome®!? compared to IDH wild-type. Recent retrospective and clinical studies also suggest the
presence of an IDH mutation is an important treatment indicator®!*-"%, thus it is crucial to consider IDH mutation
status in clinical treatment planning. However, investigating IDH mutational status can be time-consuming and
expensive. If we can obtain the IDH mutation information directly from the histopathological slides, both time
and cost could be significantly reduced. However, there has not been a study on using deep learning models to
infer IDH mutation status based on WSIs for LGG patients, and it is not clear how the WSI-inferred IDH muta-
tion status can affect the performance in predicting survival.

In this study, we set our focus on LGG and explored the use of deep learning models for survival and IDH
mutation status predictions utilizing The Cancer Genome Atlas (TCGA) database. This is a more challenging
task in comparison to previous studies due to the smaller sample size and less variation in patient outcomes. To
overcome this challenge in our study, we used an ensemble deep learning framework and obtained pooled out-
of-sample predictions from repeated random splits of the dataset to ensure the stability and quality of our results.
This approach helps obtaining the distribution of the model performance on the entire dataset and makes the
results not subject to unbalanced splitting. We additionally evaluated if the WSI-inferred IDH mutation status
can be used for survival prediction when such information has not been directly measured for these patients.

Results
Model performance and comparison with clinical features for prognosis prediction. The aver-
age performance of the models with the chosen hyperparameters was 0.644 (standard deviation=0.107) in the
32 separate test splits. The ensembled predictions achieved a C-index of 0.715 (95% CI: 56.9, 83.0) for the prog-
nosis prediction task over the entire dataset (Table 1). Several demographic and clinical variables were consid-
ered for survival analysis in our study. A Cox-proportional hazards model of age achieved a C-index of 0.745.
When our WSI risk scores were added to the Cox model, the C-index was improved to 0.765 (difference =0.020,
95% CI:—0.091, 0.100). Gender and race were unrelated to survival, with C-index close to 0.5. The C-index when
using only a clinical variable (primary diagnosis) was 0.572. By adding our WSI-based risk scores, the C-index
was increased to 0.689 (difference 0.117, 95% CI: —0.003, 0.230) but still lower than WSI risk scores alone. IDH
mutation status was another strong predictor with a C-index of 0.692 without WSI risk scores or 0.762 with WSI
risk scores. When combining age and IDH mutations, the C-index was 0.774 (95% CI: 0.658, 0.863), and adding
our WSI-based risk scores improved the C-index slightly to 0.784 (difference =0.010, 95% CI: - 0.097, 0.085).

We then partitioned age and WSI risk score into 3 categories with an equal number of patients (i.e., tertiles)
to visualize the survival curve for each category. Figure la and ¢ show both age and WSI risk scores can suc-
cessfully identify high-risk patients (age >46 years or WSI risk score > 1.37) shortly after diagnosis. However,
patients with intermediate-risk were not significantly different from patients with low risk. The survival curve
for patients with IDH mutations separated from the survival curve for IDH wild-type patients about half-year
after diagnosis (Fig. 1b). Log-rank tests were significant for all three predictors.

In the WHO grade 3 cases (Supplementary Table S3), the WSI-based risk scores had lower performance alone
(0.654, 95% CI: 0.537, 0.768). Age and IDH mutations together achieved a C-index of 0.786 (95% CI: 0.683,
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Figure 1. Kaplan-Meier curves and ROC curves were evaluated among patients with grade 2 gliomas. (a), (b),
(b) Kaplan-Meier curves by age, IDH mutations, and WSI risk score, respectively. P-value was calculated by log-
rank test. Age and WSI risk score were categorized in tertiles. (d) ROC curve for IDH mutation prediction.
0.877). When combining WSI risk scores, the model performance improved slightly to 0.792 (95% CI: 0.701,
0.876). Kaplan-Meier curves for patients with WHO grade 3 gliomas are shown in Supplementary Figure S1.
Model performance and comparison with clinical features for IDH prediction. The AUC of the
WSI-based models for predicting IDH mutations was 0.667 (95% CI: 0.532, 0.784) (Table 1 and Fig. 1d). In addi-
tion, age is a strong predictor of IDH mutations with an AUC of 0.689 (95% CI: 0.552, 0.816). Race is a weak
predictor with an AUC of 0.567 (95% CI: 0.480, 0.650). Combining race and WSI-based scores, the AUC was
increased to 0.687. When combining age and race, the AUC was 0.711 (95% CI: 0.585, 0.834). Including WSI-
based scores raised the AUC to 0.739, with 0.028 improvement (95% CI: —0.051, 0.078).

For WHO grade 3 cases (Supplementary Table S3 and Figure S1), the WSI-based scores can predict IDH
mutations with an AUC of 0.814 (95% CI: 0.721, 0.897), which is much higher than the demographic and clinical
predictors. When combining age, the AUC was 0.845 (95% CI: 0.759, 0.919), which is a statistically significant
improvement over using only age as the predictor (0.122, 95% CI: 0.001, 0.198).
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Without WSI predicted IDH mutation

With WSI predicted IDH mutation

probability probability Difference
None - 0.727 [0.593, 0.834] -
Age 0.746 [0.625, 0.838] 0.767 [0.646, 0.862] 0.021 [-0.069, 0.091]
Gender 0.509 [0.344, 0.629] 0.704 [0.561, 0.823] 0.195 [0.041, 0.367]*
Race 0.520 [0.445, 0.554] 0.719 [0.585, 0.831] 0.199 [0.075, 0.322]*

Primary diagnosis

0.573 [0.433, 0.707]

0.700 [0.554, 0.818]

0.127[0.001, 0.236]*

WSI risk score

0.715 [0.573, 0.831]

0.723 [0.574, 0.839]

0.008 [~ 0.114, 0.081]

Age+WSI risk score | 0.766 [0.646, 0.866] 0.771 [0.647, 0.867] 0.005 [0.083, 0.062]

Table 2. Performance of survival prediction using predicted IDH mutation probability evaluated among
patients with grade 2 gliomas. 95% confidence intervals were derived from 10,000 bootstrapping replications.
Bold texts indicate the best performance for each column. * Indicates statistically significant difference
(p<0.05).

Prognosis prediction using WSI predicted IDH mutation probability. Additionally, we explored
if WSI-predicted IDH mutation probability can be used to replace IDH mutation status measurement in pre-
dicting the prognosis (Table 2 and Supplementary Table S4). Among patients with grade 2 gliomas, we found
predicted IDH mutation probability alone achieved a C-index of 0.727, which is notably greater than the WSI
risk score (0.715) and IDH mutations (0.692). When combining with age, the C-index increased to 0.767 (95%
CI: 0.646, 0.862), but not as good as combining age and IDH mutations (C-index = 0.774). Finally, when combin-
ing predicted IDH mutation probability with age and WSI risk score, the C-index was 0.771, which was better
than age and survival risk score (0.766), but not as good as combining age, survival risk score, and IDH muta-
tions (0.784). Among patients with grade 3 gliomas, similarly, we found that the WSI-inferred IDH mutation
probability could improve the performance of survival prediction. For example, combining WSI-inferred IDH
mutation probability with age and WSI risk score could achieve a C-index of 0.771. Although this performance
is lower than using IDH mutations measurement directly (C-index=0.792), it is 0.014 higher than using age and
WHSI risk score alone (C-index=0.757).

Visualization of model predictions. The average WSI-based risk scores across patients were 0.947
(standard deviation: 1.587). Prediction results on the whole slide and patch level are shown in Fig. 2 and Sup-
plementary Figure S2. Increased tumor cell density and tumor cell atypia, i.e., increased nuclear size, hyperchro-
masia, and irregular nuclear contours, are associated with higher grade and worse prognosis. The images of the
resection specimen in Fig. 2a show a diffusely infiltrating glial neoplasm with many areas of high cellularity and
pleomorphism. This tumor was diagnosed at the time as an oligoastrocytoma (mixed glioma), and the patient
died 1.4 years after diagnosis. The predicted risk score was high (10.77). The histology of this tumor differs
dramatically from the one shown in Fig. 2b, which reveals only small foci of hypercellularity and atypia (insets,
left). Much of the resection specimen from this 32-year-old man diagnosed with mixed glioma showed reactive
astrogliosis and mildly infiltrated brain parenchyma (insets, right). The model’s low predicted risk score of 0.65
is consistent with the low-grade histologic features of this tumor. The patient’s relatively long survival of six years
corroborated the model’s performance.

Discussion

In this study, we have shown that by using deep learning models on WSIs, we are able to achieve promising
results for predicting prognosis and IDH mutational status on the LGG dataset from the TCGA database. The
performance of the deep learning model based on WSIs alone is better than the model based on the primary
diagnosis and some demographic variables such as race and gender, but not as good as age at diagnosis. Com-
bining WSI-based deep learning predictions with demographic and clinical features could further improve the
model performance up to 0.784 to predict prognosis and 0.739 to predict IDH mutational status. We also found
if WSI predicted IDH mutation probability is used instead of IDH mutation status measurement, we could still
obtain a C-index of 0.771. Our results were further validated using the WHO grade 3 subset which was not used
during the training and hyperparameter selection.

Age is the single best predictor for almost all the tasks evaluated, except for IDH mutation prediction among
grade 3 glioma patients. However, gender, race, and primary diagnosis provided little value in the prognosis
prediction. It has long been known that histopathological diagnosis of lower-grade gliomas does not adequately
predict clinical outcomes due to interobserver variability?’. And previous studies have identified age as an impor-
tant prognostic factor using non-TCGA datasets, with older age associated with worse outcomes*"*2. This could
be due to the natural progression of the disease or that age is a proxy variable for many factors that could affect
the survival of LGG patients, such as comorbidities. Similar to previous studies, we also found that IDH muta-
tion is an important predictor of survival. Despite the strong prognostic value of age and IDH mutations, we still
achieved a small yet consistent improvement in C-index when including WSI-derived predictions, demonstrating
that our deep learning approach could extract complementary prognostic information from WSIs for developing
a more accurate survival prediction framework.
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Figure 2. Example predictions on whole slide images for prognosis prediction. (a) A 59-year-old female patient
diagnosed with mixed glioma, died 1.4 years after diagnosis. The predicted risk score is 10.77. (b) A 32-year-old
man diagnosed with mixed glioma, died 6 years later. The predicted risk score is 0.65.

Previous work on the application of deep learning models to LGG datasets is relatively limited. Studies using
less restrictive data inclusion/exclusion criteria reported higher performance in the survival prediction task and
IDH mutation prediction task. Specifically, Mobadersany et al.’ predicted survival of patients diagnosed with
grade 2 to 4 gliomas from the TCGA database, and they obtained a C-index of 0.741 in the testing phase. The
C-index of 0.715 achieved by the WSI risk scores in our study with only grade 2 patients is considerably lower
likely due to the smaller sample size of our study population and less variation in the disease severity.

Of note, for the IDH mutation prediction task, Momeni et al. applied deep recurrent attention models using
the TCGA dataset and obtained an AUC of 0.86%. In another study, Liu et al. achieved an AUC of 0.920 with a
dataset combining 200 TCGA grade 2 to 4 cases and 66 private cases®*. In contrast, the AUC of our model evalu-
ated on the restrictive grade 2 dataset was only 0.667, possibly because most (85%) of the grade 2 LGG patients
had IDH mutations. Although we explored both oversampling of the minority class and down-weighting the loss
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for the majority class, the performance could not be further improved on such an imbalanced dataset. However,
on grade 3 dataset, which is more balanced in terms of IDH mutation status (68.6%), we observed a much higher
AUC (0.814) using the same model. This indicates that our model does not lack the ability to distinguish IDH
mutation status, but that the imbalanced dataset makes the objective evaluation challenging.

Additionally, we found that using the inferred IDH mutation probability estimated from the WSIs could help
prognosis prediction. Among grade 2 patients, there was a 0.005 increase in AUC when including the inferred
IDH mutation probability in addition to age and WSI risk score. Among grade 3 patients, such improvement
was 0.014. While the prognosis prediction performance using IDH mutation probability was not as good as
using IDH mutation measurement directly, it can still provide the LGG patients more accurate survival estimate
when their IDH mutation status is not available. Determining IDH mutation status can be expensive and time-
consuming, because only a small proportion of mutations can be currently identified by sequencing®. Our deep
learning model can serve as a readily available tool for predicting IDH mutation status from WSIs without extra
cost and waiting time.

During initial experiments, we noticed that for a single data split, the higher performance in the validation
dataset does not necessarily translate to higher performance in the test dataset. This could be due to unbalanced
sampling when the sample size is small. We also found that a discrepancy in validation and test AUC occurred
in Liu et al’s study?’. For example, the AUC for their baseline model achieved an AUC of 0.920 on the test set,
while in the validation dataset the AUC is 0.823. This highlights the difficulty in obtaining a balanced train/
validation/test splitting with a limited sample size. Our adoption of the repeated data splits and pooling method
can alleviate this problem.

There are several limitations to this study. First, the sample size in the study is relatively small and the number
of lost to follow-up is substantial. With only 296 patients (among which 49 were observed at the endpoint and 44
were IDH wild-type), developing a deep learning framework is challenging. The small sample size also limited the
power to detect statistically significant improvement using the predictions based on WSIs over only demographic
and clinical information. Secondly, we did not evaluate the performance of our models on additional datasets;
thus, the generalizability of this method needs further validation. Thirdly, only the IDH mutation status was
considered as a molecular biomarker in this study. Other molecular biomarkers that are also important for LGG
prognosis prediction, such as 1p/19q co-deletion, that were not included in the current study will be explored
in future work. Lastly, the cause of death was not recorded in the TCGA dataset, thus our ground truth might
not be accurate for all the samples which could affect the model performance.

Notably, histological information could only explain part of the variance in survival time. Other information,
such as the location of the tumor, treatment, and comorbidities are also important determinants of the progres-
sion of the disease. In this study, we did not include important clinical data, such as treatment, in our analysis,
as the detailed information was not available in the TCGA dataset. We will pursue expanding our dataset and
include this additional relevant information in our analysis in future work. We expect incorporating additional
demographic, clinical, and genetic/molecular information in our method could potentially further improve the
ability to predict the prognosis of patients diagnosed with LGG.

Materials and methods

Data source. The digitized hematoxylin and eosin (H&E) stained whole slides used in this project were
obtained from the TCGA database. TCGA database is de-identified and is publicly available on the Web. There-
fore, this project does not meet the requirements of human subject research. Only grade 2 diffuse glioma patients
were included for model development (number of patients=307). There are two different types of whole slide
images in this dataset, namely formalin-fixed paraffin-embedded (FFPE) slides and frozen section slides?.
Since the frozen section slides contain many artifacts, we only included FFPE slides in our dataset (number of
patients =296, number of WSIs=524).

Demographics and clinical information were also downloaded from the TCGA website. For the deceased
patient, the follow-up time was derived from “days to death”. For patients who were alive at the last follow-up,
the follow-up time was derived from “days to last follow-up”. IDH mutation status was derived from IDH1 and
IDH2 mutation variables. Eight participants without IDH mutation information were excluded from IDH related
analysis. Demographic and clinical information including age, gender, race, and primary diagnosis, were used
in our analysis for comparison purposes. The average age of the patients in our dataset was 40.9 years with a
standard deviation of 13.0 years. Among those, 55.7% were men, and the majority (91.6%) of the patients were
white. The proportions of patients diagnosed as astrocytoma, oligoastrocytoma, and oligodendroglioma were
19.9%, 43.9% and 36.1%, respectively. 80.2% of the patients had an IDH1 mutation, while 4.5% had an IDH2
mutation (Supplementary Table S1).

To further evaluate the performance of our method, we obtained the grade 3 glioma cases from the TCGA
database for testing purposes only (number of patients =194, number of whole slides images=319). The data
processing procedure for grade 3 cases is the same as the grade 2 cases. The distribution of demographic variables
was similar to grade 2 cases, and IDH mutations were present in 68.6% of the patients (Supplementary Table S2).

Preprocessing of whole slide images. As WSIs are large and cannot fit in GPU memory, several pre-
processing steps were taken to extract patches from the original images. We loaded the WSIs at the magnification
factor of 10x (1 pum/pixel) and extracted patches with a size of 224 x 224 pixels without overlap. Background
patches were excluded by using color thresholding. A total of 1,887,767 patches were generated through this
process.
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Figure 3. An overview of the deep learning pipeline for prognosis prediction. Patches of size 224 x 224 x 3 are
randomly sampled from whole slide images at a 10 x magnification level. The ResNet-18 Convolutional Neural
Network transformed each patch into a 512 x 1 vector. Average pooling is performed at the patient level. The
patient level vectors then go through a two-layer fully connected network with a final output size of 1, which can
be interpreted as risk scores. Cox proportional hazards loss is calculated using the risk scores with consideration
of follow-up time and vital status. The gradient is calculated and backpropagated through the fully connected
layers and the ResNet-18 layers to train the entire model.

Model architecture. For the prognosis prediction task, our model architecture is adapted from the pro-
posed work by Wulczyn et al.”” and is illustrated in Fig. 3. In summary, for each batch, n participants were ran-
domly chosen from the training dataset. For each participant, k patches were randomly selected. These patches
were fed into a deep learning model. The ResNet-18 model with pre-trained ImageNet weights was used as the
backbone model*, and a fully-connected layer was replaced by an identity layer. The output size for each patch
was 512. We then averaged the feature vectors over k patches for each participant and used the pooled features
for risk estimation through a subsequent two-layer neural network with 128 neurons and 1 neuron for each layer,
respectively. The final output can be interpreted as risk scores and the loss is calculated as the negative log Cox
partial likelihood, which is defined as

1
J(B) = _;Ein:l)’i[xi — log(Zjer(1y)exp(x)))]

where 7 is the number of patients, x; is the risk score, y; is the event indicator (0 for alive and 1 for death), R(T;)
is the risk set at the event time of ith patient.

The model architecture for the binary IDH mutation prediction task is similar to the one for prognosis
prediction, except that the final output size is 2. Since the percentage of participants with IDH mutations was
much larger than that of participants without IDH mutations, we used weighted cross-entropy loss to handle
the imbalanced dataset by assigning a larger weight to cases without IDH mutations.

During validation, 100 random patches were selected for each patient in the validation group for a balance
between variations and efficiency. All the patches were used when making out-of-sample predictions for cases
in the test set.

Model evaluation metrics. Concordance index (C-index), which is defined as the proportion of concord-
ant pairs among all possible pairs, was used as the evaluation metric of our prognosis prediction model. Area
under ROC (receiver operating characteristic) curve (AUC) was used as the evaluation metric for the binary
classification tasks.

Training-validation data splits. The data splitting was performed at the patient level to avoid the infor-
mation leak across partitions. Due to limited training data, to ensure more balanced group splits, we first sorted
the patients by vital status and follow-up time, then created multiple 4-patient-blocks. Within each block, we
assigned 2 patients to the training group and 1 patient to each of the validation and test groups. This random
splitting was repeated 8 times for hyperparameter tuning, and was repeated another 24 times for model evalua-
tion (as explained below).

Hyperparameter tuning. Within each random data split, our deep learning model was fit on the training
split, with its performance monitored using the validation split. When the training is finished, an out-of-sample
prediction was obtained for the test dataset. We repeated this process in all of these 8 repetitions, and used the
average validation performance metrics to choose the best set of hyperparameters. The final set of hyperparam-
eters chosen was batch-size of n = 8 patients with k = 8 patches for each individual (64 patches per batch in
total), an initial learning rate of le—4 for the fully connected layers and 3e-7 for the convolutional layers.
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Data augmentation methods, such as random horizontal and vertical flips and color jittering, were used
during training time. To mitigate overfitting, we applied an L1 penalty with a regularization strength of 0.01 on
the fully connected layers. Adam optimization was used for training. Cosine annealing was used as the learning
rate scheduler. Each model was evaluated when every 20,480 (i.e., 320 steps) patches were used and training was
stopped after 96 thousand steps.

Bootstrapping on out-of-sample predictions. After training and hyperparameter tuning across the
first 8 random splits, we trained the models with the same hyperparameters using the additional 24 random
splits. These 32 models provided 32 out-of-sample predictions. The test set size for each model was one-fourth
of the total dataset. Because each participant was selected into the test dataset with a probability of 0.25, the
number of out-of-sample predictions for a participant follows the Poisson distribution with a mean of 8 (min =2,
max = 18). We ensembled all the out-of-sample predictions by averaging them as the final prediction.

Subsequently, we performed a bootstrapping method to evaluate the model performance. To do so, we ran-
domly selected 296 observations from the entire dataset with replacement as the training dataset (about 63%
of the patients). A statistical model (Cox or logistic) using demographic and clinical information with/without
deep learning predictions was fit on the training dataset. The participants who were not selected formed the
test dataset (about 37% of the patients) and were used to evaluate the performance of the statistical model. We
repeated this process 10,000 times to estimate the distribution of C-index and AUC without or with deep learn-
ing predictors as well as their difference. The deep learning framework was implemented in PyTorch (version
1.1.0). The statistical tests were performed using R (version 3.6.1).

Results visualization. Kaplan-Meier curves were used to present the observed survival probability over
time by tertiles (i.e., 33rd and 67th percentiles) of age and WSI risk score, and IDH mutation status. The Kaplan—
Meier curves were replicated for patients with grade 3 gliomas using the same cut-offs. For the IDH mutation
prediction task, ROC curves were plotted with age and WSI-based IDH mutation probability as the predictor.
To visualize the model performance at the whole slide level, we selected two patients from the prognosis pre-
diction task and another two from the IDH mutation prediction task. For the prognosis prediction task, we chose
one patient who died shortly after diagnosis, and another patient who survived at least 5 years after diagnosis. For
the IDH mutation prediction task, we chose one patient with an IDH mutation and one without. One whole slide
image was selected for each patient. Representative regions from the slide were chosen for a more detailed view.

Data availability
This project’s source of data is the TCGA database, which is publicly available on the Web (https://portal.gdc.
cancer.gov/projects/TCGA-LGG).

Code availability
This project’s source code is publicly available at https://github.com/BMIRDS/WSI-PLP.
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