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Abstract:

Background and purpose: The aim of this study was to develop and evaluate a prediction model 

for 2-year overall survival (OS) in stage I-IIIA non-small cell lung cancer (NSCLC) patients 

who received definitive radiotherapy by considering clinical variables and image features from 

pre-treatment CT-scans.

Materials and methods: NSCLC patients who received stereotactic radiotherapy were 

prospectively collected at the UMCG and split into a training and a hold out test set including 

189 and 81 patients, respectively. External validation was performed on 228 NSCLC patients 
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who were treated with radiation or concurrent chemoradiation at the Maastro clinic (Lung1 

dataset). A hybrid model that integrated both image and clinical features was implemented 

using deep learning. Image features were learned from cubic patches containing lung tumours 

extracted from pre-treatment CT scans. Relevant clinical variables were selected by univariable 

and multivariable analyses. 

Results: Multivariable analysis showed that age and clinical stage were significant prognostic 

clinical factors for 2-year OS. Using these two clinical variables in combination with image 

features from pre-treatment CT scans, the hybrid model achieved a median AUC of 0.76 [95% 

CI: 0.65-0.86] and 0.64 [95% CI: 0.58-0.70] on the complete UMCG and Maastro test sets, 

respectively. The Kaplan-Meier survival curves showed significant separation between low and 

high mortality risk groups on these two test sets (log-rank test: p-value < 0.001, p-value = 0.012, 

respectively)

Conclusion: We demonstrated that a hybrid model could achieve reasonable performance by 

utilizing both clinical and image features for 2-year OS prediction. Such a model has the 

potential to identify patients with high mortality risk and guide clinical decision making.

Running title: OS prediction for stage I-IIIA NSCLC using DL

Keywords: lung cancer; Radiotherapy; deep learning; logistic regression; overall survival

Introduction

Lung cancer is one of the deadliest cancer types in the developing and developed countries. The 

5-year survival rate of non-small cell lung cancer (NSCLC) is only around 20% [1]. 

Radiotherapy combined with chemotherapy or immunotherapy have increased the overall 

survival (OS) rate of NSCLC patients compared to the use of chemotherapy or immunotherapy 

alone [2]. However, treatment approaches for NSCLC largely depend on tumour stage and 
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treatment outcomes vary widely among individual patients, e.g. the 2-year overall survival rate 

after Stereotactic Body Radiation Therapy ranges from 50% to 71% [3]. Therefore, an accurate 

prediction of overall survival is of importance to support decision-making for the most optimal 

treatment options. 

      To guide clinical decision making, clinical models such as nomograms have been developed 

to estimate individual risks for patients with NSCLC using clinical factors. Louie et al. [4], 

developed a nomogram for 5-year OS in NSCLC patients including age, World Health 

Organization performance status, smoking status, tumour size and Charlson Comorbidity index 

(CCI). The proposed nomogram showed reasonable performance with a c-index of 0.66 on the 

test set. Kang et al. [5] developed prognostic nomograms for 5-year OS based on several clinical 

parameters of which tumour size, immune-inflammation index, diffusing capacity of carbon 

monoxide and CCI were the most important prognostic factors. The c-index of the developed 

nomograms was 0.72 on the hold-out set from the same centre. However, no external validation 

was performed. 

      Recently, advanced deep learning techniques have shown their effectiveness in automated 

quantitative image analysis for lung cancer, including early detection [6] and cancer risk 

assessment [7]. The use of deep learning also promotes the development of automatic OS 

prediction [8-10]. For example, to select NSCLC patients with high mortality risks, a shallow 

convolutional neural network was implemented [9]. Trained on the data collected from multiple 

centres, the proposed network showed a c-index of 0.62 and 0.67 on the independent Maastro 

test set for stage I-IV and I-II lung tumours, respectively. Moreover, Hosny et al. [10] reported 

an AUC of 0.70 of a 3D convolutional neural network using pre-treatment CT scans from two 

centres for training and fine-tuning in stage I-IIIB NSCLC cancer patients treated with 
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radiotherapy for 2-year OS. This network was able to stratify patients with stage III NSCLC 

into low and high risk for mortality [8]. To date, for mortality risk stratification in stage I-IIIA 

NSCLC patients treated with radiotherapy, while deep learning studies mainly focused on 

prognostic image features, the added value of clinical parameters were not considered in the 

deep learning models.

      Therefore, the purpose of this study was to develop and validate a hybrid deep learning-

based model that considers both clinical factors and image features from pre-treatment CT-

scans for the prediction of 2-year OS of stage I-IIIA NSCLC patients treated with definitive 

radiotherapy. Such a model could be used to stratify patients into low and high mortality risk 

groups.

Materials and methods

Study cohorts

The study performed a retrospective analysis of prospectively acquired NSCLC patient data 

available at University Medical Center Groningen (UMCG). Ethical approval was waived by 

the medical ethical committee of UMCG in view of the retrospective nature of the study. We 

used two independent radiotherapy datasets, one from UMCG and one from Maastro [11], 

which comprised a total of 498 patients with primary NSCLC from stage I to IIIA for this 

analysis. The UMCG cohort consisted of 270 patients treated in the UMCG between October 

2013 and September 2018 with Stereotactic Body Radiation Therapy (SBRT). Patients with a 

history of other cancers were excluded, leaving only patients with (suspicion of) NSCLC. The 

UMCG cohort was randomly split into a training set and a test set (70% vs 30%), of which the 

UMCG test set was a hold-out test set used for validation. The endpoint of this study was the 

prediction of 2-year OS after the time of treatment initiation. OS was dichotomised at the 2-
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year mark for classification and patients that were censored before the 2-year mark were 

excluded. The Maastro test set  [11] was only used for external validation. It contained 228 

patients with I-IIIA lung tumours treated with radiation or concurrent chemoradiation. Clinical 

characteristics of patients in the UMCG and Maastro datasets are summarized in Table 1 and 

in the supplemental file.

Deep learning on image features

A 3D convolutional neural network mainly consisting of 4 residual blocks was implemented 

for OS prediction. Normally, the number of patients in the stage I-IIIA NSCLC patient cohort 

with a death event at 2 years is relatively low (25%) [12]. Therefore, the deep learning model 

tends to predict no events due to the issue of imbalanced data. To tackle this problem, the focal 

loss function focusing more on the minorities than the binary cross entropy was used [13]. To 

provide a robust prediction, the average predicted value on cubes from CT scans of the same 

patient was calculated as the final prediction probability. Details in image processing and 

training of the deep learning model can be found in the supplementary file.

Machine learning on clinical factors

This study included the following clinical variables: age, sex (male vs female), T stage (T1 vs 

T2-T4), tumour stage (I vs II-IIIA) and the prescribed dose (as biologically effective-dose 

[BED]). Tumour stages were defined as stated in the seventh edition manual of American Joint 

Committee on Cancer [14]. The number of prescribed fractions, the fraction dose and the  𝛼/𝛽

ratio of 10 Gy were used for BED calculation, [15]. 

      A clinical model was built using logistic regression for overall survival prediction at 2 years 

after treatment. Specifically, univariable analysis was first performed to preliminarily identify 
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prognostic features. The input feature with a p-value larger than 0.2 in the univariable analysis 

was excluded from further analysis [16]. After that, we used a bootstrap model selection method 

to perform 1000 times multivariable analysis with logistic regression using backward selection 

based on the likelihood ratio test [17]. This bootstrap method aimed to find a robust model with 

the most frequently selected features by the selection of remaining features repeated on 1000 

bootstrap samples on the training set. At last, only the features selected more than 500 times in 

the bootstrap model selection method were considered as relevant variables to create the final 

logistic regression model for overall survival prediction.

Development of the hybrid model

We also designed a hybrid model that took both significant clinical features selected in the 

multivariable analysis and image features extracted by deep learning into account. The hybrid 

model illustrated in Fig. 1 was modified based on the deep learning model. In addition to the 

input of tumour cubes, previously selected clinical factors including continuous and categorical 

variables were set as the second input and concatenated with the image features after the global 

average pooling layer. The predicted overall survival probability was generated after the dense 

layer with the soft max function. 

      After predictions of the hybrid model, patients were stratified into low- and high-risk groups 

of mortality according to the optimal cut-off value of 0.3259 for the predicted mortality risk at 

2 years that resulted in a maximum sum of sensitivity and specificity in the receiver operating 

characteristic curve on the UMCG training cohort. 

Visualisation of the deep learning model
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To gain a better insight into how deep learning inferred the survival likelihood for patients, the 

visualization method named Gradient-weighted Class Activation Mapping (Grad-CAM) was 

applied to present an attention map showing where the deep learning focused on [18].

Statistical analysis

Statistical analysis was conducted using SPSS Statistics (version 22) and Python (version 3.7). 

P-values smaller than 0.05 were determined as statistically significant. Comparisons of 

continuous variables between training and test sets were analysed by t-test. Categorical 

variables in different sets were compared using chi-square comparisons or Fisher's exact test. 

When one of the entries was smaller than 10 in the frequency table, the Fisher's exact test ran. 

Otherwise, the chi-square test was applied. The Hosmer-Lemeshow test was used to evaluate 

the goodness-of-fit of the clinical model. Kaplan-Meier survival analysis and the log-rank test 

were used to compare the distributions between low- and high-risk groups. The performance of 

the prediction model was assessed using the area under the curve (AUC), sensitivity and 

specificity. The 95% confidence intervals (CI) for the AUCs were computed with DeLong’s 

method [19], 95% CI for sensitivity and specificity were also reported according to the 

reference [20].

Results

The performance of the developed clinical model, deep learning model and hybrid model, on 

the independent UMCG and Maastro test sets, was shown in Table 2. The deep learning model 

achieved a median AUC of 0.62 [95% CI: 0.48-0.75] and 0.58 [95% CI: 0.51-0.64] on the 

complete UMCG and Maastro test sets (I-IIIA tumours), respectively. Regarding the clinical 

model, age and clinical stage were associated (p  0.053 and p  0.053, respectively) with = =

OS in the univariable analysis. These two variables were also frequently selected in the 
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bootstrapping and showed statistical significance in the multivariable analysis (p  0.043 for =

age and p  0.043 for clinical stage). A logistic model was then developed and the Hosmer-=

Lemeshow test indicated the model fit the data well (p=0.899). The clinical model had similar 

AUCs as the deep learning model on the two complete test datasets. The hybrid model that 

combined prognostic clinical and image features presented a better median AUC of 0.76 [95% 

CI: 0.65-0.86] and 0.64 [95% CI: 0.58-0.70] on the two complete test sets than that of other 

models. Since the training UMCG set mainly consisted of tumours at stage I-II, sub-analyses 

were also performed on the Maastro test subset with only I-II tumours or IIIA tumours 

(supplementary file). 

      The Kaplan-Meier survival analysis was performed on the UMCG and Maastro test sets 

using the hybrid model that had the best AUCs. The Kaplan-Meier survival curves are shown 

in Fig. 2. The model showed discriminative separation between low and high mortality risk 

groups on the UMCG test set with (p 0.001). Similarly, a p-value of 0.012 on the complete <

Maastro dataset indicated significant differences between two groups for overall survival at 2 

years. The areas in the images that impacts survival prediction are visualized in Fig. 3. The 

most important regions were highlighted in red, while blue zones were relatively irrelevant. We 

found the deep learning model was mainly concentrated on partial tumour regions and these 

regions could contain prognostic patterns, such as lobulated shape. In addition, some regions 

surrounding the tumour were also enhanced, which may indicate tumour invasion. By contrast, 

areas with low intensity such as lung parenchyma showed fewer contributions to the prediction. 

Discussion

In this study, we developed and validated the prognostic significance of a hybrid deep learning-

based model to predict 2-year overall survival for stage I-IIIA NSCLC patients. By integrating 

clinical variables and image features on pre-treatment CT scans, the hybrid model had 
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reasonable prognostic performance with a median AUC of 0.76 [95% CI: 0.65-0.86] and 0.64 

[95% CI: 0.58-0.70] on the complete UMCG and Maastro test sets, outperforming the clinical 

and deep learning models . We also demonstrated the capability of the hybrid model in 

stratifying patients into low and high mortality risk groups. 

      Numerous studies attempted to use clinical factors for prediction of overall survival since 

these features are commonly used in the clinic. In the current study, we found that age was 

significantly associated with OS, which is supported by several other studies [21, 22]. T-stage 

was not identified as a prognostic factor, although it is associated with tumour size which has 

been shown to be a prognostic factor [5]. A possible explanation could be that most patients 

with a tumour at T2-T3 in the UMCG cohort did not have an event within 2 years. However, 

clinical stage showed prognostic value, which is in agreement with other studies [23, 24]. This 

indicates that the combination of tumour size (T-stage) and lymph node status are prognostic 

for OS. Our finding that BED10 was not a significant predictor for overall survival was in 

agreement with the results of Kang et al.[5]. Other studies showed that a higher BED might be 

more effective to control NSCLC for the larger tumours only (T2 (29) or > 11 cc (30)) and 

brings survival benefits for individuals [25, 26]. The LQ model used for BED calculations is 

only applicable in a limited range of fraction doses. Therefore, the BEDs of the very large 

fraction doses (>=12 Gy) could be overestimated somewhat in our study.  However, the models 

appeared to work surprisingly well in stereotactic treatments of lung cancer patients with 

fraction doses up to 20 Gy [27].

      The deep learning model achieved similar AUC values as the clinical model on both test 

sets, indicating the deep learning-based image features on pre-treatment CT scans had value for 
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prognosis. The visualization method (i.e., the attention maps) provided insight into deep 

learning image patterns which were relevant to the prediction. 

      After combining the features in clinical and deep learning models, the hybrid model had 

median AUCs of 0.76 [95% CI: 0.65-0.86] and 0.64 [95% CI: 0.58-0.70] which were higher 

than that of clinical model or deep learning model on the complete UMCG and Maastro test 

sets. Note that, the hybrid model could still perform reasonably well, even though patient 

characteristics were different in these two test sets. This showed that clinical features provided 

complementary information to the deep learning model, resulting in an improved performance 

of the hybrid model in OS prediction. The performance of the hybrid model was comparable to 

that of other studies focusing on prognosis of the tumours at stage I-III. Xu et al. [8] built a deep 

learning model utilizing not only pre-treatment CT scans but also post-treatment CT scans and 

that model had an AUC of 0.74 for 2-year overall survival (stage III tumours) on the hold-out 

dataset.  This performance was achieved when using 1-, 3-, and 6-month follow-up scans. For 

clinical practice this approach may be less suitable because of difficulties in collecting and 

preparing these follow-up scans. In addition, follow-up information will not be available before 

commencing treatment so these models cannot be used for decision-making in treatment 

strategies, e.g., individualized dose intensification or de-intensification. By contrast, in our 

study, only the pre-treatment scans were required for modelling and fewer human resources are 

needed. More importantly, the prediction is available before start of treatment, which makes it 

possible to adjust the treatment strategy. Moreover, Hosny et al. [10] performed a model for 2-

year overall survival prediction of patients with tumours at stage I-IIIB and their median AUC 

was 0.70 [95% CI: 0.63–0.78] on the external test set. The larger training dataset available (464 

patients) may be the reason why the model had better median AUC than ours: models could 

learn image features better from more samples with diverse morphological characteristics. 
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Furthermore, a sub-analysis on the Maastro test subset was performed and the hybrid model 

had a slightly better a median AUC of 0.66 [95% CI: 0.58-0.75] on tumours at stage I-II rather 

than at stage IIIA with 0.61 [95% CI: 0.51-0.70] (supplementary file). The reason could be that 

the model was mainly trained on the I-II tumours and image features were mainly learned from 

these tumours. Therefore, the model tended to have better prediction for overall survival on I-

II tumours than I-IIIA tumours.

      The present study has some limitations. First, we considered five clinical factors to build 

the clinical model. Other variables, such as Eastern Cooperative Oncology Group performance 

status score, smoking status, Charlson comorbidity index have shown statistical significance in 

OS prediction but were not available for this study [4, 5]. It could be interesting to include these 

variables to further improve the performance of the clinical and hybrid models. Second, the 

hybrid model has prognostic value in identifying patients with low and high mortality, but the 

predictive value in terms of discrimination in the locally advanced cases is relatively poor. It is 

expected that the model performance in the locally advanced cases can be improved by adding 

more advanced tumours in the training set. More research is necessary to investigate the options 

to intensify or de-intensify the treatment for the patient groups with high and low mortality risk.  

Third, there was heterogeneity between the UMCG training cohort and Maastro test set at the 

tumour level. The Maastro test set contained more patients with stage III disease (see table 1) 

compared to the UMCG training set. Stage III tumours have worse survival rates than the 

tumours at a lower stage. This could explain that the survival rates of the Maastro patients at 

low risk were lower than that of the UMCG patients at low risk in figure 2. Due to the difference 

in tumour size, the developed hybrid model might overestimate the survival rate of patients in 

the Maastro test set. Nevertheless, it is challenging to find an appropriate external test dataset 
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with the same tumour distributions and treatment methods for validation. Therefore, the 

evaluation on more external test datasets is required before applying it in clinical practice.

      In conclusion, we presented a hybrid deep learning-based model that considered both 

clinical and image features for overall survival prediction at two years in stage I-IIIA NSCLC 

patients who received radiation therapy. Such a hybrid model can be utilized to identify patients 

with worse survival outcomes and guide clinical decision making in order to optimize their 

treatment.
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Tables

Table 1. Clinical characteristics of patients in the UMCG and Maastro datasets
Characteristics UMCG 

training set 
(n=189)

UMCG test 
set1 (n=81)

P-value 
(training set 
vs test set1)

Maastro 

test set2 

(n=228)

P-value 

(training set 

vs test set2)

Age, Median 
(range)

76 (55-91) 73 (49-88) 0.060 71 (33-91) <0.001

Sex (%) 0.594   0.005

    Male 106 (56.1) 42 (51.9) 158 (69.3)

    Female 83 (43.9) 39 (48.1) 70 (30.7)

T stage (%) 0.438 <0.001

    T1 149 (78.8) 64 (79.0) 71 (31.1)

    T2 34 (18.0) 12 (14.8) 112 (49.1)

    T3 5 (2.6) 3 (3.7) 45 (19.7)

    T4 1 (0.5) 2 (2.5) 0 (0.0)

Clinical stage 
(%)

0.627 <0.001

    I 177 (93.7) 74 (91.4) 84 (36.8)

    II 10 (5.3) 5 (6.2) 36 (15.8)

    IIIA 2 (1.1) 2 (2.5) 108 (47.4)

BED10 (Gy), 
Median 
(range)

132 (68.4-
168.0)

132 (85.5-
187.5)

0.169 - -

2-year OS 
(class) 

0.927 <0.001

    Survival 141 60 89

    Death 48 21 139
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Table 2. Performance of the diverse models evaluated on independent UMCG and Maastro test 
sets for the predictive risk of overall survival at two years after treatment. Results are presented 
using a 95% confidence interval.

AUC Sensitivity Specificity
Deep learning model
UMCG training set (I-IIIA tumours) 0.90 [0.86-0.94] 0.81 [0.68-0.90] 0.87 [0.80-0.91]
UMCG test set (I-IIIA tumours) 0.62 [0.48-0.75] 0.33 [0.17-0.55] 0.92 [0.82-0.96]
UMCG complete set (I-IIIA tumours) 0.82 [0.77-0.87] 0.71 [0.59-0.80] 0.82 [0.76-0.87]
Maastro test set (I-IIIA tumours) 0.58 [0.51-0.64] 0.65 [0.57-0.72] 0.55 [0.45-0.65]
Clinical model
UMCG training set (I-IIIA tumours) 0.61 [0.52-0.71] 0.48 [0.34-0.62] 0.66 [0.58-0.73]
UMCG test set (I-IIIA tumours) 0.62 [0.50-0.76] 0.71 [0.50-0.86] 0.45 [0.33-0.58]
UMCG complete set (I-IIIA tumours) 0.62 [0.54-0.69] 0.72 [0.61-0.82] 0.38 [0.32-0.45]
Maastro test set (I-IIIA tumours) 0.57 [0.50-0.65] 0.76 [0.68-0.82] 0.36 [0.27-0.46]
Hybrid model
UMCG training set (I-IIIA tumours) 0.83 [0.78-0.88] 0.73 [0.59-0.83] 0.78 [0.70-0.84]
UMCG test set (I-IIIA tumours) 0.76 [0.65-0.86] 0.62 [0.41-0.79] 0.80 [0.68-0.88]
UMCG complete set (I-IIIA tumours) 0.80 [0.74-0.84] 0.65 [0.53-0.75] 0.82 [0.76-0.86]
Maastro test set (I-IIIA tumours) 0.64 [0.58-0.70] 0.76 [0.69-0.83] 0.52 [0.41-0.62]
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Figures

Fig. 1. Illustration of the hybrid model. (a) Cubic patches including tumours were extracted 

from the 4D pre-treatment CT scans. (b) The architecture of the 3D convolutional neural: each 

of the four residual blocks contained four convolutional layers (only block 1 and 4 are shown). 

The number of filters doubled after every block. Grey arrows indicate shortcut connections. (c) 

The prognostic clinical factors were selected using logistic regression. These variables were 

concatenated with image features extracted by deep learning in the hybrid model. (d) The 

survival likelihood was generated after the dense layer. 
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Fig. 2. Kaplan Meier curves for overall survival in independent UMCG and Maastro test cohorts 

for the low- and high-risk groups. The optimal cut off value, used to stratify patients into low 

and high mortality risk groups, was calculated in the UMCG training cohort, based on the 

predicted morality risk at 2 years that maximized the sum of sensitivity and specificity in the 

ROC curve.
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Fig. 3. Visualization of the attention map for survival prediction: red indicates the regions 

which contain the most prognostic image features.

Highlights

1. By considering clinical variables and image features from pre-treatment CT-scans, a hybrid 

deep learning-based model was implemented for overall survival prediction at two years in 

stage I-IIIA NSCLC patients. 

2. The proposed model achieved reasonable performance on different patient groups. 

3. The developed hybrid model has the potential to identify patients with high mortality risk 

and guide clinical decision making.


